1
|
Jung M, Kim H, Choi E, Shin MK, Shin SJ. Enhancing vaccine effectiveness in the elderly to counter antibiotic resistance: The potential of adjuvants via pattern recognition receptors. Hum Vaccin Immunother 2024; 20:2317439. [PMID: 39693178 DOI: 10.1080/21645515.2024.2317439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 12/20/2024] Open
Abstract
Vaccines are an effective way to prevent the emergence and spread of antibiotic resistance by preventing diseases and establishing herd immunity. However, the reduced effectiveness of vaccines in the elderly due to immunosenescence is one of the significant contributors to the increasing antibiotic resistance. To counteract this decline and enhance vaccine effectiveness in the elderly, adjuvants play a pivotal role. Adjuvants are designed to augment the effectiveness of vaccines by activating the innate immune system, particularly through pattern recognition receptors on antigen-presenting cells. To improve vaccine effectiveness in the elderly using adjuvants, it is imperative to select the appropriate adjuvants based on an understanding of immunosenescence and the mechanisms of adjuvant functions. This review demonstrates the phenomenon of immunosenescence and explores various types of adjuvants, including their mechanisms and their potential in improving vaccine effectiveness for the elderly, thereby contributing to developing more effective vaccines for this vulnerable demographic.
Collapse
Affiliation(s)
- Myunghwan Jung
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunsol Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Szachniewicz MM, Neustrup MA, van den Eeden SJF, van Meijgaarden KE, Franken KLMC, van Veen S, Koning RI, Limpens RWAL, Geluk A, Bouwstra JA, Ottenhoff THM. Evaluation of PLGA, lipid-PLGA hybrid nanoparticles, and cationic pH-sensitive liposomes as tuberculosis vaccine delivery systems in a Mycobacterium tuberculosis challenge mouse model - A comparison. Int J Pharm 2024; 666:124842. [PMID: 39424087 DOI: 10.1016/j.ijpharm.2024.124842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Tuberculosis (TB) continues to pose a global threat for millennia, currently affecting over 2 billion people and causing 10.6 million new cases and 1.3 million deaths annually. The only existing vaccine, Mycobacterium Bovis Bacillus Calmette-Guérin (BCG), provides highly variable and inadequate protection in adults and adolescents. This study explores newly developed subunit tuberculosis vaccines that use a multistage protein fusion antigen Ag85b-ESAT6-Rv2034 (AER). The protection efficacy, as well as in vivo induced immune responses, were compared for five vaccines: BCG; AER-CpG/MPLA mix; poly(D,L-lactic-co-glycolic acid) (PLGA); lipid-PLGA hybrid nanoparticles (NPs); and cationic pH-sensitive liposomes (the latter three delivering AER together with CpG and MPLA). All vaccines, except the AER-adjuvant mix, induced protection in Mycobacterium tuberculosis (Mtb)-challenged C57/Bl6 mice as indicated by a significant reduction in bacterial burden in lungs and spleens of the animals. Four AER-based vaccines significantly increased the number of circulating multifunctional CD4+ and CD8+ T-cells producing IL-2, IFNγ, and TNFα, exhibiting a central memory phenotype. Furthermore, AER-based vaccines induced an increase in CD69+ B-cell counts as well as high antigen-specific antibody titers. Unexpectedly, none of the observed immune responses were associated with the bacterial burden outcome, such that the mechanism responsible for the observed vaccine-induced protection of these vaccines remains unclear. These findings suggest the existence of non-classical protective mechanisms for Mtb infection, which could, once identified, provide interesting targets for novel vaccines.
Collapse
Affiliation(s)
- Mikołaj M Szachniewicz
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands.
| | - Malene A Neustrup
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands
| | - Susan J F van den Eeden
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Krista E van Meijgaarden
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Kees L M C Franken
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Suzanne van Veen
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Roman I Koning
- Electron Microscopy Facility, Leiden University Medical Center (LUMC), the Netherlands
| | - Ronald W A L Limpens
- Electron Microscopy Facility, Leiden University Medical Center (LUMC), the Netherlands
| | - Annemieke Geluk
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands
| | - Tom H M Ottenhoff
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| |
Collapse
|
3
|
Wu Y, Xiong Y, Zhong Y, Liao J, Wang J. Role of dormancy survival regulator and resuscitation-promoting factors antigens in differentiating between active and latent tuberculosis: a systematic review and meta-analysis. BMC Pulm Med 2024; 24:541. [PMID: 39472851 PMCID: PMC11523848 DOI: 10.1186/s12890-024-03348-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Dormancy survival regulator (DosR) and resuscitation-promoting factor (Rpf) antigens of Mycobacterium tuberculosis are activated during dormant phase of tuberculosis (TB). This study evaluates the differential immunogenicity potentials of DosR and Rpf antigens in individuals with latent tuberculosis infection (LTBI) and active TB patients. METHODS After a literature search in electronic databases, studies were selected by following precise eligibility criteria. Outcomes were synthesized systematically, and meta-analyses were performed to estimate standardized mean differences (SMDs) in interferon-gamma (IFNγ) levels, and IFNγ positive immune cells between individuals with LTBI and active TB patients. RESULTS Twenty-six studies (1278 individuals with LTBI and 1189 active TB patients) were included. DosR antigens Rv0569 (Standardized mean difference; SMD 2.44 [95%CI: 1.21, 3.66]; p < 0.0001), Rv1733c (SMD 0.60 [95%CI: 0.14, 1.07]; p = 0.011), Rv1735c (SMD 1.16 [95%CI: 0.44, 1.88]; p = 0.002), Rv1737c (SMD 1.26 [95%CI: 0.59, 1.92]; p < 0.0001), Rv2029c (SMD 0.89 [95%CI: 0.35, 1.42]; p = 0.002), RV2626c (SMD 1.24 [95%CI: 0.45, 2.02); p = 0.002), and Rv2628 (SMD 0.65 [95%CI: 0.38, 0.91]; p < 0.0001) and Rpf antigens Rv0867c (SMD 1.33 [95%CI: 0.48, 2.18]; p = 0.002), Rv1009 (SMD 0.65 [95%CI: 0.05, 1.25]; p = 0.034), and Rv2450c (SMD 1.54 [95%CI: 0.92, 2.16]; p < 0.0001) elicited higher IFNγ levels in individuals with LTBI in comparison with active TB patients. IFNγ-positive immunoresponsive cells were significantly higher in individuals with LTBI than in active TB patients for antigens Rv1733c (SMD 1.02 [95%CI: 0.15, 1.88]; p = 0.021), Rv2029c (SMD 0.57 [95%CI: 0.05, 1.09]; p = 0.031), and Rv2628 [SMD 0.38 [95%CI: 0.15, 0.61]; p = 0.001). CONCLUSION DosR antigens Rv0569, Rv1733c, Rv1735c, Rv1737c, RV2626c, Rv2628, and Rv2029c, and Rpf antigens Rv0867c, Rv1009, and Rv2450c are found to elicit immune responses differently in individuals with LTBI and active TB patients.
Collapse
Affiliation(s)
- Yu Wu
- Clinical Laboratory and Blood Transfusion Department, No. 908th Hospital of Joint Logistic Support Force, No. 1028 Jinggangshan Avenue, Qingyunpu District, Nanchang, Jiangxi, 330002, China.
| | - Yuanyuan Xiong
- Clinical Laboratory and Blood Transfusion Department, No. 908th Hospital of Joint Logistic Support Force, No. 1028 Jinggangshan Avenue, Qingyunpu District, Nanchang, Jiangxi, 330002, China
| | - Ying Zhong
- Clinical Laboratory and Blood Transfusion Department, No. 908th Hospital of Joint Logistic Support Force, No. 1028 Jinggangshan Avenue, Qingyunpu District, Nanchang, Jiangxi, 330002, China
| | - Juanjuan Liao
- Clinical Laboratory and Blood Transfusion Department, No. 908th Hospital of Joint Logistic Support Force, No. 1028 Jinggangshan Avenue, Qingyunpu District, Nanchang, Jiangxi, 330002, China
| | - Jin Wang
- Clinical Laboratory and Blood Transfusion Department, No. 908th Hospital of Joint Logistic Support Force, No. 1028 Jinggangshan Avenue, Qingyunpu District, Nanchang, Jiangxi, 330002, China
| |
Collapse
|
4
|
Miles JR, Lu P, Bai S, Aguillón-Durán GP, Rodríguez-Herrera JE, Gunn BM, Restrepo BI, Lu LL. Antigen specificity shapes antibody functions in tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597169. [PMID: 38895452 PMCID: PMC11185737 DOI: 10.1101/2024.06.03.597169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tuberculosis (TB) is the number one infectious disease cause of death worldwide due to an incomplete understanding of immunity. Emerging data highlight antibody functions mediated by the Fc domain as immune correlates. However, the mechanisms by which antibody functions impact the causative agent Mycobacterium tuberculosis (Mtb) are unclear. Here, we examine how antigen specificity determined by the Fab domain shapes Fc effector functions against Mtb. Using the critical structural and secreted virulence proteins Mtb cell wall and ESAT-6 & CFP-10, we observe that antigen specificity alters subclass, antibody post-translational glycosylation, and Fc effector functions in TB patients. Moreover, Mtb cell wall IgG3 enhances disease through opsonophagocytosis of extracellular Mtb . In contrast, polyclonal and a human monoclonal IgG1 we generated targeting ESAT-6 & CFP-10 inhibit intracellular Mtb . These data show that antibodies have multiple roles in TB and antigen specificity is a critical determinant of the protective and pathogenic capacity.
Collapse
|
5
|
Dong J, Zhang Q, Yang J, Zhao Y, Miao Z, Pei S, Qin H, Jing C, Wen G, Zhang A, Tao P. BacScan: a novel genome-wide strategy for uncovering broadly immunogenic proteins in bacteria. Front Immunol 2024; 15:1392456. [PMID: 38779673 PMCID: PMC11109440 DOI: 10.3389/fimmu.2024.1392456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
In response to the global threat posed by bacterial pathogens, which are the second leading cause of death worldwide, vaccine development is challenged by the diversity of bacterial serotypes and the lack of immunoprotection across serotypes. To address this, we introduce BacScan, a novel genome-wide technology for the rapid discovery of conserved highly immunogenic proteins (HIPs) across serotypes. Using bacterial-specific serum, BacScan combines phage display, immunoprecipitation, and next-generation sequencing to comprehensively identify all the HIPs in a single assay, thereby paving the way for the development of universally protective vaccines. Our validation of this technique with Streptococcus suis, a major pathogenic threat, led to the identification of 19 HIPs, eight of which conferred 20-100% protection against S. suis challenge in animal models. Remarkably, HIP 8455 induced complete immunity, making it an exemplary vaccine target. BacScan's adaptability to any bacterial pathogen positions it as a revolutionary tool that can expedite the development of vaccines with broad efficacy, thus playing a critical role in curbing bacterial transmission and slowing the march of antimicrobial resistance.
Collapse
Affiliation(s)
- Junhua Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Qian Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Jinyue Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Yacan Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Zhuangxia Miao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Siyang Pei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Huan Qin
- College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Changwei Jing
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Guoyuan Wen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| |
Collapse
|
6
|
McIntyre S, Warner J, Rush C, Vanderven HA. Antibodies as clinical tools for tuberculosis. Front Immunol 2023; 14:1278947. [PMID: 38162666 PMCID: PMC10755875 DOI: 10.3389/fimmu.2023.1278947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Tuberculosis (TB) is a leading cause of morbidity and mortality worldwide. Global research efforts to improve TB control are hindered by insufficient understanding of the role that antibodies play in protective immunity and pathogenesis. This impacts knowledge of rational and optimal vaccine design, appropriate diagnostic biomarkers, and development of therapeutics. Traditional approaches for the prevention and diagnosis of TB may be less efficacious in high prevalence, remote, and resource-poor settings. An improved understanding of the immune response to the causative agent of TB, Mycobacterium tuberculosis (Mtb), will be crucial for developing better vaccines, therapeutics, and diagnostics. While memory CD4+ T cells and cells and cytokine interferon gamma (IFN-g) have been the main identified correlates of protection in TB, mounting evidence suggests that other types of immunity may also have important roles. TB serology has identified antibodies and functional characteristics that may help diagnose Mtb infection and distinguish between different TB disease states. To date, no serological tests meet the World Health Organization (WHO) requirements for TB diagnosis, but multiplex assays show promise for improving the sensitivity and specificity of TB serodiagnosis. Monoclonal antibody (mAb) therapies and serum passive infusion studies in murine models of TB have also demonstrated some protective outcomes. However, animal models that better reflect the human immune response to Mtb are necessary to fully assess the clinical utility of antibody-based TB prophylactics and therapeutics. Candidate TB vaccines are not designed to elicit an Mtb-specific antibody response, but evidence suggests BCG and novel TB vaccines may induce protective Mtb antibodies. The potential of the humoral immune response in TB monitoring and control is being investigated and these studies provide important insight into the functional role of antibody-mediated immunity against TB. In this review, we describe the current state of development of antibody-based clinical tools for TB, with a focus on diagnostic, therapeutic, and vaccine-based applications.
Collapse
Affiliation(s)
- Sophie McIntyre
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Jeffrey Warner
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Catherine Rush
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
| | - Hillary A. Vanderven
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, QLD, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Looney MM, Hatherill M, Musvosvi M, Flynn J, Kagina BM, Frick M, Kafuko Z, Schmidt A, Southern J, Wilder-Smith A, Tippoo P, Paradkar V, Popadić D, Scriba TJ, Hanekom W, Giersing B. Conference report: WHO meeting summary on mRNA-based tuberculosis vaccine development. Vaccine 2023; 41:7060-7066. [PMID: 37872013 DOI: 10.1016/j.vaccine.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Tuberculosis (TB) is a global health emergency. Across the globe, approximately 2 billion people are currently infected with Mycobacterium tuberculosis (Mtb), and of those, 5-10% may progress to become ill and potentially transmit the bacterium. In 2021, nearly 10.6 million people developed TB disease and 1.6 million died. There is an urgent need for accelerated development of new TB-focused interventions, in particular, improved TB vaccines. However, progress in developing highly effective TB vaccines has been slow and is chronically under-resourced. The mRNA vaccine platform may offer an opportunity to accelerate development of new TB vaccines. In April 2023, the World Health Organization convened global experts to discuss the feasibility and potential value of mRNA-based vaccines for TB. Here we report on meeting deliberations related to the current TB vaccine pipeline and potential novel antigens, the status of efforts to identify correlates of protection, potential clinical development strategies and considerations for community acceptance of new TB vaccines based on this relatively new platform. The role of industry collaborations, ethics, social science, and responsibility to the global community regarding transparency and manufacturing capacity building were discussed through expert presentations and panel sessions. The overall conclusion of the meeting is that mRNA-based vaccines constitute a potentially powerful new tool for reducing the global burden of TB.
Collapse
Affiliation(s)
- Monika M Looney
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Munyaradzi Musvosvi
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - JoAnne Flynn
- Department of Microbiology and Molecular Genetics and the Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Benjamin M Kagina
- Vaccines for Africa (VACFA), School of Public Health and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Mike Frick
- Treatment Action Group, New York City, NY, USA
| | | | - Alex Schmidt
- Bill & Melinda Gates Medical Research Institute, Cambridge, MA, USA
| | - James Southern
- South African Health Products Regulatory Authority (SAPHRA), Gauteng, South Africa
| | | | | | | | | | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Willem Hanekom
- Africa Health Research Institute (AHRI), KwaZulu-Natal, South Africa
| | | |
Collapse
|
8
|
Pan J, Chang Z, Zhang X, Dong Q, Zhao H, Shi J, Wang G. Research progress of single-cell sequencing in tuberculosis. Front Immunol 2023; 14:1276194. [PMID: 37901241 PMCID: PMC10611525 DOI: 10.3389/fimmu.2023.1276194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Tuberculosis is a major infectious disease caused by Mycobacterium tuberculosis infection. The pathogenesis and immune mechanism of tuberculosis are not clear, and it is urgent to find new drugs, diagnosis, and treatment targets. A useful tool in the quest to reveal the enigmas related to Mycobacterium tuberculosis infection and disease is the single-cell sequencing technique. By clarifying cell heterogeneity, identifying pathogenic cell groups, and finding key gene targets, the map at the single cell level enables people to better understand the cell diversity of complex organisms and the immune state of hosts during infection. Here, we briefly reviewed the development of single-cell sequencing, and emphasized the different applications and limitations of various technologies. Single-cell sequencing has been widely used in the study of the pathogenesis and immune response of tuberculosis. We review these works summarizing the most influential findings. Combined with the multi-molecular level and multi-dimensional analysis, we aim to deeply understand the blank and potential future development of the research on Mycobacterium tuberculosis infection using single-cell sequencing technology.
Collapse
Affiliation(s)
| | | | | | | | | | - Jingwei Shi
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences/China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| | - Guoqing Wang
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences/China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
9
|
Nziza N, Jung W, Mendu M, Chen T, McNamara RP, Fortune SM, Franken KLMC, Ottenhoff THM, Bryson B, Ngonzi J, Bebell LM, Alter G. Maternal HIV infection drives altered placental Mtb-specific antibody transfer. Front Microbiol 2023; 14:1171990. [PMID: 37228375 PMCID: PMC10203169 DOI: 10.3389/fmicb.2023.1171990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Placental transfer of maternal antibodies is essential for neonatal immunity over the first months of life. In the setting of maternal HIV infection, HIV-exposed uninfected (HEU) infants are at higher risk of developing severe infections, including active tuberculosis (TB). Given our emerging appreciation for the potential role of antibodies in the control of Mycobacterium tuberculosis (Mtb), the bacteria that causes TB, here we aimed to determine whether maternal HIV status altered the quality of Mtb-specific placental antibody transfer. Methods Antigen-specific antibody systems serology was performed to comprehensively characterize the Mtb-specific humoral immune response in maternal and umbilical cord blood from HIV infected and uninfected pregnant people in Uganda. Results Significant differences were noted in overall antibody profiles in HIV positive and negative maternal plasma, resulting in heterogeneous transfer of Mtb-specific antibodies. Altered antibody transfer in HIV infected dyads was associated with impaired binding to IgG Fc-receptors, which was directly linked to HIV viral loads and CD4 counts. Conclusions These results highlight the importance of maternal HIV status on antibody transfer, providing clues related to alterations in transferred maternal immunity that may render HEU infants more vulnerable to TB than their HIV-unexposed peers.
Collapse
Affiliation(s)
- Nadege Nziza
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Wonyeong Jung
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Maanasa Mendu
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA, United States
| | - Tina Chen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Sarah M. Fortune
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Kees L. M. C. Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Bryan Bryson
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Joseph Ngonzi
- Department of Obstetrics and Gynecology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Lisa M. Bebell
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Medical Practice Evaluation Center, Massachusetts General Hospital, Boston, MA, United States
- Center for Global Health, Massachusetts General Hospital, Boston, MA, United States
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
10
|
Duong VT, Skwarczynski M, Toth I. Towards the development of subunit vaccines against tuberculosis: The key role of adjuvant. Tuberculosis (Edinb) 2023; 139:102307. [PMID: 36706503 DOI: 10.1016/j.tube.2023.102307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
According to the World Health Organization (WHO), tuberculosis (TB) is the leading cause of death triggered by a single infectious agent, worldwide. Bacillus Calmette-Guerin (BCG) is the only currently licensed anti-TB vaccine. However, other strategies, including modification of recombinant BCG vaccine, attenuated Mycobacterium tuberculosis (Mtb) mutant constructs, DNA and protein subunit vaccines, are under extensive investigation. As whole pathogen vaccines can trigger serious adverse reactions, most current strategies are focused on the development of safe anti-TB subunit vaccines; this is especially important given the rising TB infection rate in immunocompromised HIV patients. The whole Mtb genome has been mapped and major antigens have been identified; however, optimal vaccine delivery mode is still to be established. Isolated protein antigens are typically poorly immunogenic so adjuvants are required to induce strong and long-lasting immune responses. This article aims to review the developmental status of anti-TB subunit vaccine adjuvants.
Collapse
Affiliation(s)
- Viet Tram Duong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
11
|
Coexpression Network Analysis-Based Identification of Critical Genes Differentiating between Latent and Active Tuberculosis. DISEASE MARKERS 2022; 2022:2090560. [PMID: 36411825 PMCID: PMC9674975 DOI: 10.1155/2022/2090560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022]
Abstract
Methods Three Gene Expression Omnibus (GEO) microarray datasets (GSE19491, GSE98461, and GSE152532) were downloaded, with GSE19491 and GSE98461 then being merged to form a training dataset. Hub genes capable of differentiating between ATB and LTBI were then identified through differential expression analyses and a WGCNA analysis of this training dataset. Receiver operating characteristic (ROC) curves were then used to gauge to the diagnostic accuracy of these hub genes in the test dataset (GSE152532). Gene expression-based immune cell infiltration and the relationship between such infiltration and hub gene expression were further assessed via a single-sample gene set enrichment analysis (ssGSEA). Results In total, 485 differentially expressed genes were analyzed, with the WGCNA approach yielding 8 coexpression models. Of these, the black module was the most closely correlated with ATB. In total, five hub genes (FBXO6, ATF3, GBP1, GBP4, and GBP5) were identified as potential biomarkers associated with LTBI progression to ATB based on a combination of differential expression and LASSO analyses. The area under the ROC curve values for these five genes ranged from 0.8 to 0.9 in the test dataset, and ssGSEA revealed the expression of these genes to be negatively correlated with lymphocyte activity but positively correlated with myeloid and inflammatory cell activity. Conclusion The five hub genes identified in this study may play a novel role in tuberculosis-related immunopathology and offer value as novel biomarkers differentiating LTBI from ATB.
Collapse
|
12
|
BCGΔBCG1419c increased memory CD8 + T cell-associated immunogenicity and mitigated pulmonary inflammation compared with BCG in a model of chronic tuberculosis. Sci Rep 2022; 12:15824. [PMID: 36138053 PMCID: PMC9499934 DOI: 10.1038/s41598-022-20017-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/07/2022] [Indexed: 12/18/2022] Open
Abstract
Previously, we reported that a hygromycin resistant version of the BCGΔBCG1419c vaccine candidate reduced tuberculosis (TB) disease in BALB/c, C57BL/6, and B6D2F1 mice infected with Mycobacterium tuberculosis (Mtb) H37Rv. Here, the second-generation version of BCGΔBCG1419c (based on BCG Pasteur ATCC 35734, without antibiotic resistance markers, and a complete deletion of BCG1419c) was compared to its parental BCG for immunogenicity and protective efficacy against the Mtb clinical isolate M2 in C57BL/6 mice. Both BCG and BCGΔBCG1419c induced production of IFN-γ, TNF-α, and/or IL-2 by effector memory (CD44+CD62L-), PPD-specific, CD4+ T cells, and only BCGΔBCG1419c increased effector memory, PPD-specific CD8+ T cell responses in the lungs and spleens compared with unvaccinated mice before challenge. BCGΔBCG1419c increased levels of central memory (CD62L+CD44+) T CD4+ and CD8+ cells compared to those of BCG-vaccinated mice. Both BCG strains elicited Th1-biased antigen-specific polyfunctional effector memory CD4+/CD8+ T cell responses at 10 weeks post-infection, and both vaccines controlled Mtb M2 growth in the lung and spleen. Only BCGΔBCG1419c significantly ameliorated pulmonary inflammation and decreased neutrophil infiltration into the lung compared to BCG-vaccinated and unvaccinated mice. Both BCG strains reduced pulmonary TNF-α, IFN-γ, and IL-10 levels. Taken together, BCGΔBCG1419c increased memory CD8+T cell-associated immunogenicity and mitigated pulmonary inflammation compared with BCG.
Collapse
|
13
|
Mun SJ, Cho E, Kim JS, Yang CS. Pathogen-derived peptides in drug targeting and its therapeutic approach. J Control Release 2022; 350:716-733. [PMID: 36030988 DOI: 10.1016/j.jconrel.2022.08.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 02/06/2023]
Abstract
Peptides, short stretches of amino acids or small proteins that occupy a strategic position between proteins and amino acids, are readily accessible by chemical and biological methods. With ideal properties for forming high-affinity and specific interactions with host target proteins, they have established an important niche in the drug development spectrum complementing small molecule and biological therapeutics. Among the most successful biomedicines in use today, peptide-based drugs show great promise. This, coupled with recent advances in synthetic and nanochemical biology, has led to the creation of tailor-made peptide therapeutics for improved biocompatibility. This review presents an overview of the latest research on pathogen-derived, host-cell-interacting peptides. It also highlights strategies for using peptide-based therapeutics that address cellular transport challenges through the introduction of nanoparticles that serve as platforms to facilitate the delivery of peptide biologics and therapeutics for treating various inflammatory diseases. Finally, this paper describes future perspectives, specific pathogen-based peptides that can enhance specificity, efficiency, and capacity in functional peptide-based therapeutics, which are in the spotlight as new treatment alternatives for various diseases, and also presents verified sequences and targets that can increase chemical and pharmacological value.
Collapse
Affiliation(s)
- Seok-Jun Mun
- Department of Bionano Technology, Hanyang University, Seoul 04673, Republic of Korea; Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea
| | - Euni Cho
- Department of Bionano Technology, Hanyang University, Seoul 04673, Republic of Korea; Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea
| | - Jae-Sung Kim
- Department of Bionano Technology, Hanyang University, Seoul 04673, Republic of Korea; Institute of Natural Science & Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Chul-Su Yang
- Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea; Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
14
|
Nziza N, Cizmeci D, Davies L, Irvine EB, Jung W, Fenderson BA, de Kock M, Hanekom WA, Franken KLMC, Day CL, Ottenhoff THM, Alter G. Defining Discriminatory Antibody Fingerprints in Active and Latent Tuberculosis. Front Immunol 2022; 13:856906. [PMID: 35514994 PMCID: PMC9066635 DOI: 10.3389/fimmu.2022.856906] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/11/2022] [Indexed: 01/10/2023] Open
Abstract
Tuberculosis (TB) is among the leading causes of death worldwide from a single infectious agent, second only to COVID-19 in 2020. TB is caused by infection with Mycobacterium tuberculosis (Mtb), that results either in a latent or active form of disease, the latter associated with Mtb spread. In the absence of an effective vaccine, epidemiologic modeling suggests that aggressive treatment of individuals with active TB (ATB) may curb spread. Yet, clinical discrimination between latent (LTB) and ATB remains a challenge. While antibodies are widely used to diagnose many infections, the utility of antibody-based tests to diagnose ATB has only regained significant traction recently. Specifically, recent interest in the humoral immune response to TB has pointed to potential differences in both targeted antigens and antibody features that can discriminate latent and active TB. Here we aimed to integrate these observations and broadly profile the humoral immune response across individuals with LTB or ATB, with and without HIV co-infection, to define the most discriminatory humoral properties and diagnose TB disease more easily. Using 209 Mtb antigens, striking differences in antigen-recognition were observed across latently and actively infected individuals that was modulated by HIV serostatus. However, ATB and LTB could be discriminated, irrespective of HIV-status, based on a combination of both antibody levels and Fc receptor-binding characteristics targeting both well characterized (like lipoarabinomannan, 38 kDa or antigen 85) but also novel Mtb antigens (including Rv1792, Rv1528, Rv2435C or Rv1508). These data reveal new Mtb-specific immunologic markers that can improve the classification of ATB versus LTB.
Collapse
Affiliation(s)
- Nadege Nziza
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Deniz Cizmeci
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Leela Davies
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, United States
| | - Edward B. Irvine
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Wonyeong Jung
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Brooke A. Fenderson
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Marwou de Kock
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Willem A. Hanekom
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | | | - Cheryl L. Day
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | | | - Galit Alter
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| |
Collapse
|
15
|
Khabibullina NF, Kutuzova DM, Burmistrova IA, Lyadova IV. The Biological and Clinical Aspects of a Latent Tuberculosis Infection. Trop Med Infect Dis 2022; 7:tropicalmed7030048. [PMID: 35324595 PMCID: PMC8955876 DOI: 10.3390/tropicalmed7030048] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 01/22/2023] Open
Abstract
Tuberculosis (TB), caused by bacilli from the Mycobacterium tuberculosis complex, remains a serious global public health problem, representing one of the main causes of death from infectious diseases. About one quarter of the world’s population is infected with Mtb and has a latent TB infection (LTBI). According to the World Health Organization (WHO), an LTBI is characterized by a lasting immune response to Mtb antigens without any TB symptoms. Current LTBI diagnoses and treatments are based on this simplified definition, although an LTBI involves a broad range of conditions, including when Mtb remains in the body in a persistent form and the immune response cannot be detected. The study of LTBIs has progressed in recent years; however, many biological and medical aspects of an LTBI are still under discussion. This review focuses on an LTBI as a broad spectrum of states, both of the human body, and of Mtb cells. The problems of phenotypic insusceptibility, diagnoses, chemoprophylaxis, and the necessity of treatment are discussed. We emphasize the complexity of an LTBI diagnosis and its treatment due to its ambiguous nature. We consider alternative ways of differentiating an LTBI from active TB, as well as predicting TB reactivation based on using mycobacterial “latency antigens” for interferon gamma release assay (IGRA) tests and the transcriptomic analysis of human blood cells.
Collapse
|
16
|
Coppola M, Lai RPJ, Wilkinson RJ, Ottenhoff THM. The In Vivo Transcriptomic Blueprint of Mycobacterium tuberculosis in the Lung. Front Immunol 2022; 12:763364. [PMID: 35003075 PMCID: PMC8727759 DOI: 10.3389/fimmu.2021.763364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) genes encoding proteins targeted by vaccines and drugs should be expressed in the lung, the main organ affected by Mtb, for these to be effective. However, the pulmonary expression of most Mtb genes and their proteins remains poorly characterized. The aim of this study is to fill this knowledge gap. We analyzed large scale transcriptomic datasets from specimens of Mtb-infected humans, TB-hypersusceptible (C3H/FeJ) and TB-resistant (C57BL/6J) mice and compared data to in vitro cultured Mtb gene-expression profiles. Results revealed high concordance in the most abundantly in vivo expressed genes between pulmonary Mtb transcriptomes from different datasets and different species. As expected, this contrasted with a lower correlation found with the highest expressed Mtb genes from in vitro datasets. Among the most consistently and highly in vivo expressed genes, 35 have not yet been explored as targets for vaccination or treatment. More than half of these genes are involved in protein synthesis or metabolic pathways. This first lung-oriented multi-study analysis of the in vivo expressed Mtb-transcriptome provides essential data that considerably increase our understanding of pulmonary TB infection biology, and identifies novel molecules for target-based TB-vaccine and drug development.
Collapse
Affiliation(s)
- Mariateresa Coppola
- Department Infectious Diseases, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Rachel P-J Lai
- The Francis Crick Institute, London, United Kingdom.,Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Robert J Wilkinson
- The Francis Crick Institute, London, United Kingdom.,Department of Infectious Diseases, Imperial College London, London, United Kingdom.,Department of Medicine, Institute of Infectious Disease and Molecular Medicine, Wellcome Centre for Infectious Diseases Research in Africa, Cape Town, South Africa
| | - Tom H M Ottenhoff
- Department Infectious Diseases, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
17
|
Lee D, Lee E, Jang S, Kim K, Cho E, Mun SJ, Son W, Jeon HI, Kim HK, Jeong YJ, Lee Y, Oh JE, Yoo HH, Lee Y, Min SJ, Yang CS. Discovery of Mycobacterium tuberculosis Rv3364c-Derived Small Molecules as Potential Therapeutic Agents to Target SNX9 for Sepsis. J Med Chem 2022; 65:386-408. [PMID: 34982557 DOI: 10.1021/acs.jmedchem.1c01551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The serine protease inhibitor Rv3364c of Mycobacterium tuberculosis (MTB) is highly expressed in cells during MTB exposure. In this study, we showed that the 12WLVSKF17 motif of Rv3364c interacts with the BAR domain of SNX9 and inhibits endosome trafficking to interact with p47phox, thereby suppressing TLR4 inflammatory signaling in macrophages. Derived from the structure of this Rv3364c peptide motif, 2,4-diamino-6-(4-tert-butylphenyl)-1,3,5-trazine, DATPT as a 12WLVSKF17 peptide-mimetic small molecule has been identified. DATPT can block the SNX9-p47phox interaction in the endosome and suppress reactive oxygen species and inflammatory cytokine production; it demonstrated significant therapeutic effects in a mouse model of cecal ligation and puncture-induced sepsis. DATPT has considerably improved potency, with an IC50 500-fold (in vitro) or 2000-fold (in vivo) lower than that of the 12WLVSKF17 peptide. Furthermore, DATPT shows potent antibacterial activities by reduction in ATP production and leakage of intracellular ATP out of bacteria. These results provide evidence for peptide-derived small molecule DATPT with anti-inflammatory and antibacterial functions for the treatment of sepsis.
Collapse
Affiliation(s)
- Daeun Lee
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, S. Korea
| | - Eunbi Lee
- Department of Applied Chemistry, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| | - Sein Jang
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| | - Kyungmin Kim
- Department of Applied Chemistry, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| | - Euni Cho
- Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea.,Department of Bionano Technology, Hanyang University, Seoul 04673, S. Korea
| | - Seok-Jun Mun
- Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea.,Department of Bionano Technology, Hanyang University, Seoul 04673, S. Korea
| | - Wooic Son
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| | - Hye-In Jeon
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| | - Hyo Keun Kim
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| | - Young Jin Jeong
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| | - Yuno Lee
- Korea Chemical Bank, Korea Research Institute of Chemical Technology, Daejeon 34114, S. Korea
| | - Ji Eun Oh
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan 15588, S. Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan 15588, S. Korea
| | - Youngbok Lee
- Department of Applied Chemistry, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea.,Department of Chemical & Molecular Engineering, Hanyang University, Ansan 15588, S. Korea
| | - Sun-Joon Min
- Department of Applied Chemistry, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea.,Department of Chemical & Molecular Engineering, Hanyang University, Ansan 15588, S. Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, S. Korea.,Center for Bionano Intelligence Education and Research, Ansan 15588, S. Korea
| |
Collapse
|
18
|
Fernando DM, Gee CT, Griffith EC, Meyer CJ, Wilt LA, Tangallapally R, Wallace MJ, Miller DJ, Lee RE. Biophysical analysis of the Mycobacteria tuberculosis peptide binding protein DppA reveals a stringent peptide binding pocket. Tuberculosis (Edinb) 2022; 132:102157. [PMID: 34894561 PMCID: PMC8818035 DOI: 10.1016/j.tube.2021.102157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 01/03/2023]
Abstract
The peptide binding protein DppA is an ABC transporter found in prokaryotes that has the potential to be used as drug delivery tool for hybrid antibiotic compounds. Understanding the motifs and structures that bind to DppA is critical to the development of these bivalent compounds. This study focused on the biophysical analysis of the MtDppA from M. tuberculosis. Analysis of the crystal structure revealed a SVA tripeptide was co-crystallized with the protein. Further peptide analysis demonstrated MtDppA shows very little affinity for dipeptides but rather preferentially binds to peptides that are 3-4 amino acids in length. The structure-activity relationships (SAR) between MtDppA and tripeptides with varied amino acid substitutions were evaluated using thermal shift, SPR, and molecular dynamics simulations. Efforts to identify novel ligands for use as alternative scaffolds through the thermal shift screening of 35,000 compounds against MtDppA were unsuccessful, indicating that the MtDppA binding pocket is highly specialized for uptake of peptides. Future development of compounds that seek to utilize MtDppA as a drug delivery mechanism, will likely require a tri- or tetrapeptide component with a hydrophobic -non-acidic peptide sequence.
Collapse
Affiliation(s)
- Dinesh M. Fernando
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Clifford T. Gee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Elizabeth C. Griffith
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Christopher J. Meyer
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Laura A. Wilt
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Rajendra Tangallapally
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Miranda J. Wallace
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Darcie J. Miller
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105,Corresponding Author:
| |
Collapse
|
19
|
Repurposing diphenylbutylpiperidine-class antipsychotic drugs for host-directed therapy of Mycobacterium tuberculosis and Salmonella enterica infections. Sci Rep 2021; 11:19634. [PMID: 34608194 PMCID: PMC8490354 DOI: 10.1038/s41598-021-98980-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
The persistent increase of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) infections negatively impacts Tuberculosis treatment outcomes. Host-directed therapies (HDT) pose an complementing strategy, particularly since Mtb is highly successful in evading host-defense by manipulating host-signaling pathways. Here, we screened a library containing autophagy-modulating compounds for their ability to inhibit intracellular Mtb-bacteria. Several active compounds were identified, including two drugs of the diphenylbutylpiperidine-class, Fluspirilene and Pimozide, commonly used as antipsychotics. Both molecules inhibited intracellular Mtb in pro- as well as anti-inflammatory primary human macrophages in a host-directed manner and synergized with conventional anti-bacterials. Importantly, these inhibitory effects extended to MDR-Mtb strains and the unrelated intracellular pathogen, Salmonella enterica serovar Typhimurium (Stm). Mechanistically Fluspirilene and Pimozide were shown to regulate autophagy and alter the lysosomal response, partly correlating with increased bacterial localization to autophago(lyso)somes. Pimozide's and Fluspirilene's efficacy was inhibited by antioxidants, suggesting involvement of the oxidative-stress response in Mtb growth control. Furthermore, Fluspirilene and especially Pimozide counteracted Mtb-induced STAT5 phosphorylation, thereby reducing Mtb phagosome-localized CISH that promotes phagosomal acidification. In conclusion, two approved antipsychotic drugs, Pimozide and Fluspirilene, constitute highly promising and rapidly translatable candidates for HDT against Mtb and Stm and act by modulating the autophagic/lysosomal response by multiple mechanisms.
Collapse
|
20
|
Alvarez AH. Revisiting tuberculosis screening: An insight to complementary diagnosis and prospective molecular approaches for the recognition of the dormant TB infection in human and cattle hosts. Microbiol Res 2021; 252:126853. [PMID: 34536677 DOI: 10.1016/j.micres.2021.126853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 12/17/2022]
Abstract
Tuberculosis (TB) is defined as a chronic infection in both human and cattle hosts and many subclinical cases remain undetected. After the pathogen is inhaled by a host, phagocyted bacilli can persist inside macrophages surviving intracellularly. Hosts develop granulomatous lesions in the lungs or lymph nodes, limiting infection. However, bacilli become persister cells. Immunological diagnosis of TB is performed basically by routine tuberculin skin test (TST), and in some cases, by ancillary interferon-gamma release assay (IGRA). The concept of human latent TB infection (LTBI) by M. tuberculosis is recognized in cohorts without symptoms by routine clinical diagnostic tests, and nowadays IGRA tests are used to confirm LTBI with either active or latent specific antigens of M. tuberculosis. On the other hand, dormant infection in cattle by M. bovis has not been described by TST or IGRA testing as complications occur by cross-reactive immune responses to homolog antigens of environmental mycobacteria or a false-negative test by anergic states of a wained bovine immunity, evidencing the need for deciphering more specific biomarkers by new-generation platforms of analysis for detection of M. bovis dormant infection. The study and description of bovine latent TB infection (boLTBI) would permit the recognition of hidden animal infection with an increase in the sensitivity of routine tests for an accurate estimation of infected dairy cattle. Evidence of immunological and experimental analysis of LTBI should be taken into account to improve the study and the description of the still neglected boLTBI.
Collapse
Affiliation(s)
- Angel H Alvarez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco A.C. (CIATEJ), Consejo Nacional de Ciencia y Tecnología (CONACYT), Av. Normalistas 800 C.P. 44270, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
21
|
P M, Ahmad J, Samal J, Sheikh JA, Arora SK, Khubaib M, Aggarwal H, Kumari I, Luthra K, Rahman SA, Hasnain SE, Ehtesham NZ. Mycobacterium tuberculosis Specific Protein Rv1509 Evokes Efficient Innate and Adaptive Immune Response Indicative of Protective Th1 Immune Signature. Front Immunol 2021; 12:706081. [PMID: 34386011 PMCID: PMC8354026 DOI: 10.3389/fimmu.2021.706081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Dissecting the function(s) of proteins present exclusively in Mycobacterium tuberculosis (M.tb) will provide important clues regarding the role of these proteins in mycobacterial pathogenesis. Using extensive computational approaches, we shortlisted ORFs/proteins unique to M.tb among 13 different species of mycobacteria and identified a hypothetical protein Rv1509 as a ‘signature protein’ of M.tb. This unique protein was found to be present only in M.tb and absent in all other mycobacterial species, including BCG. In silico analysis identified numerous putative T cell and B cell epitopes in Rv1509. Initial in vitro experiments using innate immune cells demonstrated Rv1509 to be immunogenic with potential to modulate innate immune responses. Macrophages treated with Rv1509 exhibited higher activation status along with substantial release of pro-inflammatory cytokines. Besides, Rv1509 protein boosts dendritic cell maturation by increasing the expression of activation markers such as CD80, HLA-DR and decreasing DC-SIGN expression and this interaction was mediated by innate immune receptor TLR2. Further, in vivo experiments in mice demonstrated that Rv1509 protein promotes the expansion of multifunctional CD4+ and CD8+T cells and induces effector memory response along with evoking a canonical Th1 type of immune response. Rv1509 also induces substantial B cell response as revealed by increased IgG reactivity in sera of immunized animals. This allowed us to demonstrate the diagnostic efficacy of this protein in sera of human TB patients compared to the healthy controls. Taken together, our results reveal that Rv1509 signature protein has immunomodulatory functions evoking immunological memory response with possible implications in serodiagnosis and TB vaccine development.
Collapse
Affiliation(s)
- Manjunath P
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology, New Delhi, India.,Department of Biotechnology, Jamia Hamdard, New Delhi, India
| | - Javeed Ahmad
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology, New Delhi, India.,Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Jasmine Samal
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology, New Delhi, India
| | | | - Simran Kaur Arora
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology, New Delhi, India.,Department of Biotechnology, Jamia Hamdard, New Delhi, India
| | - Mohd Khubaib
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology, New Delhi, India.,Department of Biotechnology, Jamia Hamdard, New Delhi, India
| | - Heena Aggarwal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Indu Kumari
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Seyed E Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India.,Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Nasreen Z Ehtesham
- Inflammation Biology and Cell Signaling Laboratory, National Institute of Pathology, New Delhi, India
| |
Collapse
|
22
|
Hermann C, King CG. TB or not to be: what specificities and impact do antibodies have during tuberculosis? OXFORD OPEN IMMUNOLOGY 2021; 2:iqab015. [PMID: 36845566 PMCID: PMC9914581 DOI: 10.1093/oxfimm/iqab015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/24/2022] Open
Abstract
Tuberculosis, an infectious disease caused by Mycobacterium tuberculosis (Mtb), is a major cause of global morbidity and mortality. The primary barrier to the development of an effective tuberculosis vaccine is our failure to fully understand the fundamental characteristics of a protective immune response. There is an increasing evidence that mobilization of antibody and B cell responses during natural Mtb infection and vaccination play a role in host protection. Several studies have assessed the levels of Mtb-specific antibodies induced during active disease as well as the potential of monoclonal antibodies to modulate bacterial growth in vitro and in vivo. A major limitation of these studies, however, is that the specific antigens capable of eliciting humoral responses are largely unknown. As a result, information about antibody dynamics and function, which might fundamentally transform our understanding of host Mtb immunity, is missing. Importantly, Mtb infection also induces the recruitment, accumulation and colocalization of B and T cells in the lung, which are positively correlated with protection in humans and animal models of disease. These ectopic lymphoid tissues generally support local germinal center reactions for the proliferation and ongoing selection of effector and memory B cells in the mucosa. Efforts to leverage such responses for human health, however, require a more complete understanding of how antibodies and B cells contribute to the local and systemic host Mtb immunity.
Collapse
Affiliation(s)
- Clemens Hermann
- Department of Biomedicine, University of Basel, University Hospital of Basel, CH-4031 Basel, Switzerland
| | - Carolyn G King
- Department of Biomedicine, University of Basel, University Hospital of Basel, CH-4031 Basel, Switzerland,Correspondence address. Department of Biomedicine, University of Basel, University Hospital of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland. Tel: +41 61 265 3874; E-mail:
| |
Collapse
|
23
|
In-vivo expressed Mycobacterium tuberculosis antigens recognised in three mouse strains after infection and BCG vaccination. NPJ Vaccines 2021; 6:81. [PMID: 34083546 PMCID: PMC8175414 DOI: 10.1038/s41541-021-00343-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/23/2021] [Indexed: 01/15/2023] Open
Abstract
Novel tuberculosis (TB)-vaccines preferably should (i) boost host immune responses induced by previous BCG vaccination and (ii) be directed against Mycobacterium tuberculosis (Mtb) proteins expressed throughout the Mtb infection-cycle. Human Mtb antigen-discovery screens identified antigens encoded by Mtb-genes highly expressed during in vivo murine infection (IVE-TB antigens). To translate these findings towards animal models, we determined which IVE-TB-antigens are recognised by T-cells following Mtb challenge or BCG vaccination in three different mouse strains. Eleven Mtb-antigens were recognised across TB-resistant and susceptible mice. Confirming previous human data, several Mtb-antigens induced cytokines other than IFN-γ. Pulmonary cells from susceptible C3HeB/FeJ mice produced less TNF-α, agreeing with the TB-susceptibility phenotype. In addition, responses to several antigens were induced by BCG in C3HeB/FeJ mice, offering potential for boosting. Thus, recognition of promising Mtb-antigens identified in humans validates across multiple mouse TB-infection models with widely differing TB-susceptibilities. This offers translational tools to evaluate IVE-TB-antigens as diagnostic and vaccine antigens.
Collapse
|
24
|
Fei B, Zhou L, Zhang Y, Luo L, Chen Y. Application value of tissue tuberculosis antigen combined with Xpert MTB/RIF detection in differential diagnoses of intestinal tuberculosis and Crohn's disease. BMC Infect Dis 2021; 21:498. [PMID: 34049506 PMCID: PMC8161674 DOI: 10.1186/s12879-021-06210-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 05/19/2021] [Indexed: 01/28/2023] Open
Abstract
Background The purpose of this study was to examine the value of Xpert MTB/RIF assay and detection of additional Mycobacterium tuberculosis complex (MTBC) species antigens from intestinal tissue samples in differentiating intestinal tuberculosis (ITB) from Crohn’s disease (CD). Methods Several clinical specimens of intestinal tissue obtained by either endoscopic biopsy or surgical excision were used for mycobacteriologic solid cultures,Xpert MTB/RIF assays, immunohistochemistry, and histological examinations. Four antigens (38KDa, ESAT-6, MPT64, and Ag85 complex) of MTBC in the intestinal tissue were detected by immunohistochemical analysis. Results The study included 42 patients with ITB and 46 with CD. Perianal lesions and longitudinal ulcers were more common in patients with CD, while caseating granuloma and annular ulcers were more common in patients with ITB. The positive rate of MTBC detected by Xpert MTB/RIF in intestinal tissues of patients with ITB was 33.33%, which was significantly higher than that in patients with CD and that detected using acid-fast staining smears. It was also higher than that detected by tissue MTBC culture, but the difference was not statistically significant. The positive MPT64 expression rate in patients with ITB was 40.48%, which was significantly higher than that observed in patients with CD. The sensitivity of parallelly combined detection of tuberculosis protein MPT64 and Xpert MTB/RIF in diagnosing ITB was 50.0%. Conclusions The detection of Xpert MTB/RIF in intestinal tissue is a rapid and useful method for establishing an early diagnosis of ITB. The detection of MTBC using Xpert MTB/RIF and MPT64 antigen in intestinal tissues has a definitive value in the differential diagnosis ofITB and CD. The combination of these two methods can improve the detection sensitivity.
Collapse
Affiliation(s)
- Baoying Fei
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, 310012, Zhejiang, China.
| | - Lin Zhou
- Departments of Minimally Invasive Surgery, Tuberculous Experimental Center, Hangzhou Red Cross Hospital, Hangzhou, 310003, Zhejiang, China
| | - Yu Zhang
- Department of Gastroenterology, Zhejiang Province People's Hospital, Hangzhou, 310014, Zhejiang, China
| | - Linhe Luo
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, 310012, Zhejiang, China
| | - Yuanyuan Chen
- Tuberculosis Diagnosis and Treatment Center, Hangzhou Red Cross Hospital, Hangzhou, 310003, Zhejiang, China
| |
Collapse
|
25
|
Arega AM, Mahapatra RK. Glycoconjugates, hypothetical proteins, and post-translational modification: Importance in host-pathogen interaction and antitubercular intervention development. Chem Biol Drug Des 2021; 98:30-48. [PMID: 33838076 DOI: 10.1111/cbdd.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022]
Abstract
With the emergence of multidrug-resistant bacteria, insufficiency of the established chemotherapy, and the existing vaccine BCG, tuberculosis (TB) subsists as the chief cause of death in different parts of the world. Thus, identification of novel target proteins is urgently required to develop more effective TB interventions. However, the novel vaccine and drug target knowledge based on the essentiality of the pathogen cell envelope components such as glycoconjugates, glycans, and the peptidoglycan layer of the lipid-rich capsule are limited. Furthermore, most of the genes encoding proteins are characterized as hypothetical and functionally unknown. Correspondingly, some researchers have shown that the lipid and sugar components of the envelope glycoconjugates are largely in charge of TB pathogenesis and encounter many drugs and vaccines. Therefore, in this review we provide an insight into a comprehensive study concerning the importance of cell envelope glycoconjugates and hypothetical proteins, the impact of post-translational modification, and the bioinformatics-based implications for better antitubercular intervention development.
Collapse
Affiliation(s)
- Aregitu Mekuriaw Arega
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India.,National Veterinary Institute, Debre Zeit, Ethiopia
| | | |
Collapse
|
26
|
Systematic Evaluation of Mycobacterium tuberculosis Proteins for Antigenic Properties Identifies Rv1485 and Rv1705c as Potential Protective Subunit Vaccine Candidates. Infect Immun 2021; 89:IAI.00585-20. [PMID: 33318140 PMCID: PMC8097267 DOI: 10.1128/iai.00585-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/27/2020] [Indexed: 01/07/2023] Open
Abstract
The lack of efficacious vaccines against Mycobacterium tuberculosis (MTB) infection is a limiting factor in the prevention and control of tuberculosis (TB), the leading cause of death from an infectious agent. Improvement or replacement of the BCG vaccine with one that reliably protects all age groups is urgent. The lack of efficacious vaccines against Mycobacterium tuberculosis (MTB) infection is a limiting factor in the prevention and control of tuberculosis (TB), the leading cause of death from an infectious agent. Improvement or replacement of the BCG vaccine with one that reliably protects all age groups is urgent. Concerns exist that antigens currently being evaluated are too homogeneous. To identify new protective antigens, we screened 1,781 proteins from a high-throughput proteome-wide protein purification study for antigenic activity. Forty-nine antigens (34 previously unreported) induced antigen-specific gamma interferon (IFN-γ) release from peripheral blood mononuclear cells (PBMCs) derived from 4,452 TB and suspected TB patients and 167 healthy donors. Three (Rv1485, Rv1705c, and Rv1802) of the 20 antigens evaluated in a BALB/c mouse challenge model showed protective efficacy, reducing lung CFU counts by 66.2%, 75.8%, and 60%, respectively. Evaluation of IgG2a/IgG1 ratios and cytokine release indicated that Rv1485 and Rv1705c induce a protective Th1 immune response. Epitope analysis of PE/PPE protein Rv1705c, the strongest candidate, identified a dominant epitope in its extreme N-terminal domain accounting for 90% of its immune response. Systematic preclinical assessment of antigens Rv1485 and Rv1705c is warranted.
Collapse
|
27
|
Santos-Pereira A, Magalhães C, Araújo PMM, Osório NS. Evolutionary Genetics of Mycobacterium tuberculosis and HIV-1: "The Tortoise and the Hare". Microorganisms 2021; 9:147. [PMID: 33440808 PMCID: PMC7827287 DOI: 10.3390/microorganisms9010147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
The already enormous burden caused by Mycobacterium tuberculosis and Human Immunodeficiency Virus type 1 (HIV-1) alone is aggravated by co-infection. Despite obvious differences in the rate of evolution comparing these two human pathogens, genetic diversity plays an important role in the success of both. The extreme evolutionary dynamics of HIV-1 is in the basis of a robust capacity to evade immune responses, to generate drug-resistance and to diversify the population-level reservoir of M group viral subtypes. Compared to HIV-1 and other retroviruses, M. tuberculosis generates minute levels of genetic diversity within the host. However, emerging whole-genome sequencing data show that the M. tuberculosis complex contains at least nine human-adapted phylogenetic lineages. This level of genetic diversity results in differences in M. tuberculosis interactions with the host immune system, virulence and drug resistance propensity. In co-infected individuals, HIV-1 and M. tuberculosis are likely to co-colonize host cells. However, the evolutionary impact of the interaction between the host, the slowly evolving M. tuberculosis bacteria and the HIV-1 viral "mutant cloud" is poorly understood. These evolutionary dynamics, at the cellular niche of monocytes/macrophages, are also discussed and proposed as a relevant future research topic in the context of single-cell sequencing.
Collapse
Affiliation(s)
- Ana Santos-Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.S.-P.); (C.M.); (P.M.M.A.)
- ICVS/3B’s-T Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Carlos Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.S.-P.); (C.M.); (P.M.M.A.)
- ICVS/3B’s-T Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Pedro M. M. Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.S.-P.); (C.M.); (P.M.M.A.)
- ICVS/3B’s-T Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Nuno S. Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.S.-P.); (C.M.); (P.M.M.A.)
- ICVS/3B’s-T Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
28
|
Immunological Characterization of Proteins Expressed by Genes Located in Mycobacterium tuberculosis-Specific Genomic Regions Encoding the ESAT6-like Proteins. Vaccines (Basel) 2021; 9:vaccines9010027. [PMID: 33430286 PMCID: PMC7825740 DOI: 10.3390/vaccines9010027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
The 6 kDa early secreted antigen target (ESAT6) is a low molecular weight and highly immunogenic protein of Mycobacterium tuberculosis with relevance in the diagnosis of tuberculosis and subunit vaccine development. The gene encoding the ESAT6 protein is located in the M. tuberculosis-specific genomic region known as the region of difference (RD)1. There are 11 M. tuberculosis-specific RDs absent in all of the vaccine strains of BCG, and three of them (RD1, RD7, and RD9) encode immunodominant proteins. Each of these RDs has genes for a pair of ESAT6-like proteins. The immunological characterizations of all the possible proteins encoded by genes in RD1, RD7 and RD9 have shown that, besides ESAT-6 like proteins, several other proteins are major antigens useful for the development of subunit vaccines to substitute or supplement BCG. Furthermore, some of these proteins may replace the purified protein derivative of M. tuberculosis in the specific diagnosis of tuberculosis by using interferon-gamma release assays and/or tuberculin-type skin tests. At least three subunit vaccine candidates containing ESAT6-like proteins as antigen components of multimeric proteins have shown efficacy in phase 1 and phase II clinical trials in humans.
Collapse
|
29
|
Adankwah E, Nausch N, Minadzi D, Abass MK, Franken KLMC, Ottenhoff THM, Mayatepek E, Phillips RO, Jacobsen M. Interleukin-6 and Mycobacterium tuberculosis dormancy antigens improve diagnosis of tuberculosis. J Infect 2020; 82:245-252. [PMID: 33278400 DOI: 10.1016/j.jinf.2020.11.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES IFNγ-release assays (IGRAs) used for diagnosis of Mycobacterium (M.) tuberculosis infection have limited sensitivity. Alternative cytokines and M. tuberculosis latency-associated antigens may improve immune-based tests. METHODS Multiplex cytokine analyses was done in culture supernatants after 6-day in vitro restimulation with M. tuberculosis IGRA and latency-associated antigens (i.e. Rv2628, Rv1733) in tuberculosis patients (n = 22) and asymptomatic contacts (AC)s (n = 20) from Ghana. RESULTS Four cytokines (i.e. IFNγ, IP-10, IL-22 and IL-6) were significantly increased after IGRA-antigen specific restimulation. IFNγ, IP-10, and IL-22 correlated positively and showed no differences between the study groups whereas IGRA-antigen induced IL-6 was significantly higher in tuberculosis patients. Using adjusted IGRA criteria, IL-6 showed the highest sensitivity for detection of tuberculosis patients (91%) and ACs (85%) as compared to IFNγ, IP-10, and IL-22. Rv2628 and Rv1733 restimulation induced significantly higher IFNγ, IP-10, and IL-22 concentrations in ACs. Combined antigen/cytokine analyses identified study group specific patterns and a combination of Rv2628/Rv1733 induced IFNγ with IGRA-antigen induced IL-6 was optimal for classification of tuberculosis patients and ACs (AUC: 0.92, p<0.0001). CONCLUSIONS We demonstrate the potency of alternative cytokines, especially IL-6, and latency-associated antigens Rv1733/Rv2628 to improve detection of M. tuberculosis infection and to classify tuberculosis patients and healthy contacts.
Collapse
Affiliation(s)
- Ernest Adankwah
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty Heinrich-Heine University, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Norman Nausch
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty Heinrich-Heine University, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Difery Minadzi
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | | | - Kees L M C Franken
- Department of Immunohematology & Blood Transfusion/Department of Infectious Diseases, Leiden University, the Netherlands
| | - Tom H M Ottenhoff
- Department of Immunohematology & Blood Transfusion/Department of Infectious Diseases, Leiden University, the Netherlands
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty Heinrich-Heine University, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Richard O Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana; School of Public Health, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty Heinrich-Heine University, Moorenstr. 5, 40225 Duesseldorf, Germany.
| |
Collapse
|
30
|
Rakshit S, Hingankar N, Alampalli SV, Adiga V, Sundararaj BK, Sahoo PN, Finak G, Uday Kumar J AJ, Dhar C, D'Souza G, Virkar RG, Ghate M, Thakar MR, Paranjape RS, De Rosa SC, Ottenhoff THM, Vyakarnam A. HIV Skews a Balanced Mtb-Specific Th17 Response in Latent Tuberculosis Subjects to a Pro-inflammatory Profile Independent of Viral Load. Cell Rep 2020; 33:108451. [PMID: 33264614 DOI: 10.1016/j.celrep.2020.108451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/15/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
HIV infection predisposes latent tuberculosis-infected (LTBI) subjects to active TB. This study is designed to determine whether HIV infection of LTBI subjects compromises the balanced Mycobacterium tuberculosis (Mtb)-specific T helper 17 (Th17) response of recognized importance in anti-TB immunity. Comparative analysis of Mtb- and cytomegalovirus (CMV)-specific CD4+ T cell responses demonstrates a marked dampening of the Mtb-specific CD4+ T cell effectors and polyfunctional cells while preserving CMV-specific response. Additionally, HIV skews the Mtb-specific Th17 response in chronic HIV-infected LTBI progressors, but not long-term non-progressors (LTNPs), with preservation of pro-inflammatory interferon (IFN)-γ+/interleukin-17+ (IL-17+) and significant loss of anti-inflammatory IL-10+/IL-17+ effectors that is restored by anti-retroviral therapy (ART). HIV-driven impairment of Mtb-specific response cannot be attributed to preferential infection as cell-associated HIV DNA and HIV RNA reveal equivalent viral burden in CD4+ T cells from different antigen specificities. We therefore propose that beyond HIV-induced loss of Mtb-specific CD4+ T cells, the associated dysregulation of Mtb-specific T cell homeostasis can potentially enhance the onset of TB in LTBI subjects.
Collapse
Affiliation(s)
- Srabanti Rakshit
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Nitin Hingankar
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Shuba Varshini Alampalli
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Vasista Adiga
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Bharath K Sundararaj
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Pravat Nalini Sahoo
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Greg Finak
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Anto Jesuraj Uday Kumar J
- Departments of Infectious Diseases & Pulmonary Medicine, St. John's Research Institute, Bangalore, India
| | - Chirag Dhar
- Departments of Infectious Diseases & Pulmonary Medicine, St. John's Research Institute, Bangalore, India
| | - George D'Souza
- Departments of Infectious Diseases & Pulmonary Medicine, St. John's Research Institute, Bangalore, India
| | | | - Manisha Ghate
- National Aids Research Institute, Bhosari, Pune, Maharashtra, India
| | - Madhuri R Thakar
- National Aids Research Institute, Bhosari, Pune, Maharashtra, India
| | | | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Annapurna Vyakarnam
- Laboratory of Immunology of HIV-TB Co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences & Medicine, Guy's Hospital, King's College London, London SE1 9RT, UK.
| |
Collapse
|
31
|
Kim SY, Kim D, Kim S, Lee D, Mun SJ, Cho E, Son W, Jang K, Yang CS. Mycobacterium tuberculosis Rv2626c-derived peptide as a therapeutic agent for sepsis. EMBO Mol Med 2020; 12:e12497. [PMID: 33258196 PMCID: PMC7721357 DOI: 10.15252/emmm.202012497] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
The Rv2626c protein of Mycobacterium tuberculosis is a promising vaccine candidate owing to its strong serum antibody response in patients with tuberculosis. However, there is limited information regarding the intracellular response induced by Rv2626c in macrophages. In this study, we demonstrated that Rv2626c interacts with the RING domain of TRAF6 and inhibits lysine (K) 63‐linked polyubiquitination of TRAF6 (E3 ubiquitin ligase activity); this results in the suppression of TLR4 inflammatory signaling in macrophages. Furthermore, we showed that the C‐terminal 123–131‐amino acid Rv2626c motif promotes macrophage recruitment, phagocytosis, M2 macrophage polarization, and subsequent bacterial clearance. We developed rRv2626c‐CA, a conjugated peptide containing the C‐terminal 123–131‐amino acid Rv2626c that targets macrophages, penetrates the cell membrane, and has demonstrated significant therapeutic effects in a mouse model of cecal ligation and puncture‐induced sepsis. This multifunctional rRv2626c‐CA has considerably improved potency, with an IC50 that is 250‐fold (in vitro) or 1,000‐fold (in vivo) lower than that of rRv2626c‐WT. We provide evidence for new peptide‐based drugs with anti‐inflammatory and antibacterial properties for the treatment of sepsis.
Collapse
Affiliation(s)
- Sun Young Kim
- Department of Bionano Technology, Hanyang University, Seoul, South Korea
| | - Donggyu Kim
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea.,Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Sojin Kim
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea
| | - Daeun Lee
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea
| | - Seok-Jun Mun
- Department of Bionano Technology, Hanyang University, Seoul, South Korea.,Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Euni Cho
- Department of Bionano Technology, Hanyang University, Seoul, South Korea.,Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Wooic Son
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea.,Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul, South Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea.,Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, South Korea
| |
Collapse
|
32
|
Clemmensen HS, Knudsen NPH, Billeskov R, Rosenkrands I, Jungersen G, Aagaard C, Andersen P, Mortensen R. Rescuing ESAT-6 Specific CD4 T Cells From Terminal Differentiation Is Critical for Long-Term Control of Murine Mtb Infection. Front Immunol 2020; 11:585359. [PMID: 33240275 PMCID: PMC7677256 DOI: 10.3389/fimmu.2020.585359] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/12/2020] [Indexed: 12/25/2022] Open
Abstract
In most cases, Mycobacterium tuberculosis (Mtb) causes life-long chronic infections, which poses unique challenges for the immune system. Most of the current tuberculosis (TB) subunit vaccines incorporate immunodominant antigens and at this point, it is poorly understood how the CD4 T cell subsets recognizing these antigens are affected during long-term infection. Very little is known about the requirements for sustainable vaccine protection against TB. To explore this, we screened 62 human-recognized Mtb antigens during chronic murine Mtb infection and identified the four most immunodominant antigens in this setting (MPT70, Rv3020c, and Rv3019c and ESAT-6). Combined into a subunit vaccine, this fusion protein induced robust protection both in a standard short-term model and in a long-term infection model where immunity from BCG waned. Importantly, replacement of ESAT-6 with another ESAT-6-family antigen, Rv1198, led to similar short-term protection but a complete loss of bacterial control during chronic infection. This observation was further underscored, as the ESAT-6 containing vaccine mediated sustainable protection in a model of post-exposure vaccination, where the ESAT-6-replacement vaccine did not. An individual comparison of the CD4 T cell responses during Mtb infection revealed that ESAT-6-specific T cells were more terminally differentiated than the other immunodominant antigens and immunization with the ESAT-6 containing vaccine led to substantially greater reduction in the overall T cell differentiation status. Our data therefore associates long-term bacterial control with the ability of a vaccine to rescue infection-driven CD4T cell differentiation and future TB antigen discovery programs should focus on identifying antigens with the highest accompanying T cell differentiation, like ESAT-6. This also highlights the importance of long-term readouts in both preclinical and clinical studies with TB vaccines.
Collapse
Affiliation(s)
- Helena Strand Clemmensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | - Rolf Billeskov
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Gregers Jungersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Claus Aagaard
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
33
|
Alvarez AH, Flores-Valdez MA. Can immunization with Bacillus Calmette-Guérin be improved for prevention or therapy and elimination of chronic Mycobacterium tuberculosis infection? Expert Rev Vaccines 2020; 18:1219-1227. [PMID: 31826664 DOI: 10.1080/14760584.2019.1704263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Tuberculosis (TB) is one of the most prevalent infectious diseases in the world. Current vaccination with BCG can prevent meningeal and disseminated TB in children. However, success against latent pulmonary TB infection (LTBI) or its reactivation is limited. Evidence suggests that there may be means to improve the efficacy of BCG raising the possibility of developing new vaccine candidates against LTBI.Areas covered: BCG improvements include the use of purified mycobacterial immunogenic proteins, either from an active or dormant state, as well as expressing those proteins from recombinant BCG strains that harvor those specific genes. It also includes boost protein mixtures with synthetic adjuvants or within liposomes, as a way to increase a protective immune response during chronic TB produced in laboratory animal models. References cited were chosen from PubMed searches.Expertopinion: Strategies aiming to improve or boost BCG have been receiving increased attention. With the advent of -omics, it has been possible to dissect several specific stages during mycobacterial infection. Recent experimental models of disease, diagnostic and immunological data obtained from individual M. tuberculosis antigens could introduce promising developments for more effective TB vaccines that may contribute to eliminating the hidden (latent) form of this infectious disease.
Collapse
Affiliation(s)
- A H Alvarez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| | - M A Flores-Valdez
- Biotecnología Médica Farmacéutica (CIATEJ-CONACYT), Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Guadalajara, México
| |
Collapse
|
34
|
Yang Q, Chen Q, Zhang M, Cai Y, Yang F, Zhang J, Deng G, Ye T, Deng Q, Li G, Zhang H, Yi Y, Huang RP, Chen X. Identification of eight-protein biosignature for diagnosis of tuberculosis. Thorax 2020; 75:576-583. [PMID: 32201389 PMCID: PMC7361018 DOI: 10.1136/thoraxjnl-2018-213021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023]
Abstract
Background Biomarker-based tests for diagnosing TB currently rely on detecting Mycobacterium tuberculosis (Mtb) antigen-specific cellular responses. While this approach can detect Mtb infection, it is not efficient in diagnosing TB, especially for patients who lack aetiological evidence of the disease. Methods We prospectively enrolled three cohorts for our study for a total of 630 subjects, including 160 individuals to screen protein biomarkers of TB, 368 individuals to establish and test the predictive model and 102 individuals for biomarker validation. Whole blood cultures were stimulated with pooled Mtb-peptides or mitogen, and 640 proteins within the culture supernatant were analysed simultaneously using an antibody-based array. Sixteen candidate biomarkers of TB identified during screening were then developed into a custom multiplexed antibody array for biomarker validation. Results A two-round screening strategy identified eight-protein biomarkers of TB: I-TAC, I-309, MIG, Granulysin, FAP, MEP1B, Furin and LYVE-1. The sensitivity and specificity of the eight-protein biosignature in diagnosing TB were determined for the training (n=276), test (n=92) and prediction (n=102) cohorts. The training cohort had a 100% specificity (95% CI 98% to 100%) and 100% sensitivity (95% CI 96% to 100%) using a random forest algorithm approach by cross-validation. In the test cohort, the specificity and sensitivity were 83% (95% CI 71% to 91%) and 76% (95% CI 56% to 90%), respectively. In the prediction cohort, the specificity was 84% (95% CI 74% to 92%) and the sensitivity was 75% (95% CI 57% to 89%). Conclusions An eight-protein biosignature to diagnose TB in a high-burden TB clinical setting was identified.
Collapse
Affiliation(s)
- Qianting Yang
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory for Diagnosis & Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Qi Chen
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory for Diagnosis & Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Mingxia Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory for Diagnosis & Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Yi Cai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Fan Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jieyun Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory for Diagnosis & Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Guofang Deng
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory for Diagnosis & Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Taosheng Ye
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory for Diagnosis & Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Qunyi Deng
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory for Diagnosis & Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Guobao Li
- National Clinical Research Center for Infectious Diseases, Guangdong Key Laboratory for Diagnosis & Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Huihua Zhang
- South China Biochip Research Center, RayBiotech, Guangzhou, China.,Raybiotech Center, RayBiotech, Norcross, Georgia, USA
| | - Yuhua Yi
- South China Biochip Research Center, RayBiotech, Guangzhou, China.,Raybiotech Center, RayBiotech, Norcross, Georgia, USA
| | - Ruo-Pan Huang
- South China Biochip Research Center, RayBiotech, Guangzhou, China .,Raybiotech Center, RayBiotech, Norcross, Georgia, USA
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
35
|
Coppola M, Villar-Hernández R, van Meijgaarden KE, Latorre I, Muriel Moreno B, Garcia-Garcia E, Franken KLMC, Prat C, Stojanovic Z, De Souza Galvão ML, Millet JP, Sabriá J, Sánchez-Montalva A, Noguera-Julian A, Geluk A, Domínguez J, Ottenhoff THM. Cell-Mediated Immune Responses to in vivo-Expressed and Stage-Specific Mycobacterium tuberculosis Antigens in Latent and Active Tuberculosis Across Different Age Groups. Front Immunol 2020; 11:103. [PMID: 32117257 PMCID: PMC7026259 DOI: 10.3389/fimmu.2020.00103] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
A quarter of the global human population is estimated to be latently infected by Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). TB remains the global leading cause of death by a single pathogen and ranks among the top-10 causes of overall global mortality. Current immunodiagnostic tests cannot discriminate between latent, active and past TB, nor predict progression of latent infection to active disease. The only registered TB vaccine, Bacillus Calmette-Guérin (BCG), does not adequately prevent pulmonary TB in adolescents and adults, thus permitting continued TB-transmission. Several Mtb proteins, mostly discovered through IFN-γ centered approaches, have been proposed as targets for new TB-diagnostic tests or -vaccines. Recently, however, we identified novel Mtb antigens capable of eliciting multiple cytokines, including antigens that did not induce IFN-γ but several other cytokines. These antigens had been selected based on high Mtb gene-expression in the lung in vivo, and have been termed in vivo expressed (IVE-TB) antigens. Here, we extend and validate our previous findings in an independent Southern European cohort, consisting of adults and adolescents with either LTBI or TB. Our results confirm that responses to IVE-TB antigens, and also DosR-regulon and Rpf stage-specific Mtb antigens are marked by multiple cytokines, including strong responses, such as for TNF-α, in the absence of detectable IFN-γ production. Except for TNF-α, the magnitude of those responses were significantly higher in LTBI subjects. Additional unbiased analyses of high dimensional flow-cytometry data revealed that TNF-α+ cells responding to Mtb antigens comprised 17 highly heterogeneous cell types. Among these 17 TNF-α+ cells clusters identified, those with CD8+TEMRA or CD8+CD4+ phenotypes, defined by the expression of multiple intracellular markers, were the most prominent in adult LTBI, while CD14+ TNF-α+ myeloid-like clusters were mostly abundant in adolescent LTBI. Our findings, although limited to a small cohort, stress the importance of assessing broader immune responses than IFN-γ alone in Mtb antigen discovery as well as the importance of screening individuals of different age groups. In addition, our results provide proof of concept showing how unbiased multidimensional multiparametric cell subset analysis can identify unanticipated blood cell subsets that could play a role in the immune response against Mtb.
Collapse
Affiliation(s)
- Mariateresa Coppola
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Raquel Villar-Hernández
- Institut d'Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Irene Latorre
- Institut d'Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Beatriz Muriel Moreno
- Institut d'Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther Garcia-Garcia
- Institut d'Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Cristina Prat
- Institut d'Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Zoran Stojanovic
- Servei de Neumología Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Joan-Pau Millet
- Serveis Clínics, Unitat Clínica de Tractament Directament Observat de la Tuberculosi, CIBER de Epidemiología y Salud Pública (CIBEREESP), Madrid, Spain
| | - Josefina Sabriá
- Servei de Pneumologia, Hospital Sant Joan Despí Moises Broggi, Sant Joan Despí, Spain
| | - Adrián Sánchez-Montalva
- Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Barcelona, Spain.,Grupo de Estudio de Micobacterias (GEIM), Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Antoni Noguera-Julian
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en Pediatria, Unitat d'Infeccions, Servei de Pediatria, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Jose Domínguez
- Institut d'Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
36
|
Khader SA, Divangahi M, Hanekom W, Hill PC, Maeurer M, Makar KW, Mayer-Barber KD, Mhlanga MM, Nemes E, Schlesinger LS, van Crevel R, Vankayalapati R(K, Xavier RJ, Netea MG. Targeting innate immunity for tuberculosis vaccination. J Clin Invest 2019; 129:3482-3491. [PMID: 31478909 PMCID: PMC6715374 DOI: 10.1172/jci128877] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Vaccine development against tuberculosis (TB) is based on the induction of adaptive immune responses endowed with long-term memory against mycobacterial antigens. Memory B and T cells initiate a rapid and robust immune response upon encounter with Mycobacterium tuberculosis, thus achieving long-lasting protection against infection. Recent studies have shown, however, that innate immune cell populations such as myeloid cells and NK cells also undergo functional adaptation after infection or vaccination, a de facto innate immune memory that is also termed trained immunity. Experimental and epidemiological data have shown that induction of trained immunity contributes to the beneficial heterologous effects of vaccines such as bacille Calmette-Guérin (BCG), the licensed TB vaccine. Moreover, increasing evidence argues that trained immunity also contributes to the anti-TB effects of BCG vaccination. An interaction among immunological signals, metabolic rewiring, and epigenetic reprogramming underlies the molecular mechanisms mediating trained immunity in myeloid cells and their bone marrow progenitors. Future studies are warranted to explore the untapped potential of trained immunity to develop a future generation of TB vaccines that would combine innate and adaptive immune memory induction.
Collapse
Affiliation(s)
- Shabaana A. Khader
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, and Department of Pathology, McGill International TB Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Willem Hanekom
- Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Philip C. Hill
- Centre for International Health, Department of Preventive and Social Medicine, University of Otago Medical School, Dunedin, New Zealand
| | - Markus Maeurer
- Department of Oncology/Haematology, Krankenhaus Nordwest (KHNW), Frankfurt, Germany
- ImmunoSurgery Unit, Champalimaud Foundation, Lisbon, Portugal
| | - Karen W. Makar
- Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Musa M. Mhlanga
- Division of Chemical Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine (IDM), Faculty of Health Sciences, Department of Integrative Biomedical Sciences, and
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Raman (Krishna) Vankayalapati
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Computational and Integrative Biology and
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | | |
Collapse
|
37
|
Adankwah E, Lundtoft C, Güler A, Franken KLMC, Ottenhoff THM, Mayatepek E, Owusu-Dabo E, Phillips RO, Nausch N, Jacobsen M. Two-Hit in vitro T-Cell Stimulation Detects Mycobacterium tuberculosis Infection in QuantiFERON Negative Tuberculosis Patients and Healthy Contacts From Ghana. Front Immunol 2019; 10:1518. [PMID: 31333654 PMCID: PMC6616195 DOI: 10.3389/fimmu.2019.01518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/18/2019] [Indexed: 01/08/2023] Open
Abstract
IFN-γ release assays [e.g., QuantiFERON (QFT)] are widely used for diagnosis of Mycobacterium tuberculosis (Mtb) infection. T-cell responses against QFT antigens ESAT6 and CFP10 are highly Mtb specific but previous studies indicated suboptimal assay sensitivity. Especially for potentially infected healthy contacts (HCs) of tuberculosis patients, alternative antigen usage and more sensitive tests may contribute to improved detection of latent Mtb infection. In a pilot case-control study of tuberculosis patients (n = 22) and HCs (n = 20) from Ghana, we performed multifaceted in vitro assays to identify optimal assay conditions. This included a two-hit stimulation assay, which is based on initial and second re-stimulation with the same antigen on d6 and intracellular IFN-γ analysis, to compare T-cell responses against ESAT6/CFP10 (E6/C10) and selected latency antigens (i.e. Rv2628, Rv1733, Rv2031, Rv3407) of Mtb. Considerable subgroups of tuberculosis patients (64%) and HCs (75%) had negative or indeterminate QFT results partially accompanied by moderate PHA induced responses and high IFN-γ background values. Intracellular IFN-γ analysis of E6/C10 specific CD4+ T-cell subpopulations and evaluation of responder frequencies had only moderate effects on assay sensitivity. However, two-hit in vitro stimulation significantly enhanced E6/C10 specific IFN-γ positive T-cell proportions especially in QFT non-responders, and in both study groups. Mtb latency antigen-specific T cells against Rv1733 and Rv2628 were especially detected in HCs after two-hit stimulation and T-cell responses against Rv2628 were highly capable to discriminate tuberculosis patients and HCs. Two-hit in vitro stimulation may improve moderate sensitivity of short term IFN-γ based assays, like QFT, to detect Mtb infection. Latency stage-specific antigens added significantly to detection of Mtb infection in HCs and tuberculosis patients with negative QFT test results.
Collapse
Affiliation(s)
- Ernest Adankwah
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty Heinrich-Heine University, Düsseldorf, Germany
| | - Christian Lundtoft
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty Heinrich-Heine University, Düsseldorf, Germany
| | - Alptekin Güler
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty Heinrich-Heine University, Düsseldorf, Germany
| | - Kees L M C Franken
- Department of Immunohematology and Blood Transfusion, Department of Infectious Diseases, Leiden University, Leiden, Netherlands
| | - Tom H M Ottenhoff
- Department of Immunohematology and Blood Transfusion, Department of Infectious Diseases, Leiden University, Leiden, Netherlands
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty Heinrich-Heine University, Düsseldorf, Germany
| | - Ellis Owusu-Dabo
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana.,School of Public Health, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Richard Odame Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana.,School of Public Health, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Norman Nausch
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty Heinrich-Heine University, Düsseldorf, Germany
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Medical Faculty Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
38
|
Ottenhoff THM. Correlates of vaccine adjuvanticity, vaccine activity, protective immunity and disease in human infectious disease and cancer. Semin Immunol 2018; 39:1-3. [PMID: 30318307 DOI: 10.1016/j.smim.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Tom H M Ottenhoff
- Dept. Infectious Diseases, Leiden University Medical Center, P.O. Box 9600, 2300RC, Leiden, the Netherlands.
| |
Collapse
|