1
|
Li Y, Tian X, Zhang L, Lin J, Wang Q, Gu L, Li H, Yu B, Wang Z, Chi M, Zhao G, Cui Li. Rutin resists Aspergillus fumigatus keratitis by activating Nrf2/HO-1 pathway, inhibiting Dectin-1/p-Syk pathway and affecting fungal structures. Exp Eye Res 2025; 254:110323. [PMID: 40054830 DOI: 10.1016/j.exer.2025.110323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Fungal keratitis (FK) is a severe vision-threatening eye disease. The fungal invasiveness and excessive inflammatory response contribute to corneal tissue damage. Rutin (RT) possesses anti-inflammatory, antimicrobial, antioxidant, and improved wound-healing characteristics. This study aimed to evaluate antifungal, anti-inflammatory, and therapeutic effects of RT in FK. The results showed that RT exerted antifungal effects by inhibiting fungal growth, altering hyphal morphology, destroying biofilm, and disrupting fungal cellular structures. RT exhibited anti-inflammatory benefits by suppressing the Dectin-1/p-Syk pathway, activating the Nrf2/HO-1 pathway, and decreasing the expression of inflammatory factors in vivo and in vitro. RT demonstrated therapeutic effects by reducing clinical scores, fungal load, macrophage recruitment, and neutrophil activity. In conclusion, RT exhibited anti-inflammatory, antifungal, and therapeutic effects in Aspergillus fumigatus keratitis, and has the potential to become a novel therapeutic strategy for FK.
Collapse
Affiliation(s)
- Yuqi Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lina Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hong Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Bing Yu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ziyi Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Menghui Chi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
2
|
Chi M, Gu L, Zhang L, Lin J, Wang Q, Fu X, Tian X, Wang Z, Yu B, Liu W, Li C, Zhao G. The therapeutic effect and mechanism of carnosic acid in Aspergillus fumigatus keratitis. Exp Eye Res 2025; 254:110338. [PMID: 40089135 DOI: 10.1016/j.exer.2025.110338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/12/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Fungal keratitis is a vision-threatening corneal infectious disease. However, clinically therapeutic medicines cannot attain ideal efficacy due to limited control of fungal virulence and excessive inflammatory response. Carnosic acid (CA) is a phenolic diterpene, which has been reported to have multiple abilities including antibacterial, anti-inflammatory and antioxidant. The therapeutic efficacy and potential mechanism of CA in fungal keratitis remain unknown. This study aimed to confirm the therapeutic role and potential mechanism of CA in Aspergillus fumigatus (A. fumigatus)-caused keratitis. In this study, we demonstrated that CA markedly suppressed the growth of A. fumigatus hyphae, the generation of biofilms and the integrity of the hyphal membrane. A. fumigatus-related genes (RodA, RodB, FKs, Rho1, CshA-C and Cyp51A-B) levels were suppressed under CA treatment. CA at 5 μg/mL and 10 μg/mL obviously promoted cell proliferation. In A. fumigatus-infected mice cornea, CA relieved the severity of corneal impairment, inhibited neutrophil recruitment and fungal load. Compared with inactivated hyphae, CA down-regulated the mRNA and protein levels of inflammatory cytokines, Dectin-1, NLRP3, cleaved caspase-1, IL-18 and IL-1β. Moreover, Curdlan (a specific agonist of Dectin-1) stimulation could promote the expression of NLRP3, cleaved caspase-1, IL-18 and IL-1β, which could be down-regulated by CA treatment. In conclusion, CA displays antifungal function on A. fumigatus. CA ameliorates the prognosis of keratomycosis by suppressing inflammatory cytokines production, which is regulated by Dectin-1 and pyroptosis.
Collapse
Affiliation(s)
- Menghui Chi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Lina Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Xueyun Fu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Ziyi Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Bing Yu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Wenyao Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China.
| |
Collapse
|
3
|
Fu X, Zhang L, Lin J, Wang Q, Wang Z, Chi M, Li D, Zhao G, Li C. Zeolitic Imidazolate Framework-90 Treats Fungal Keratitis by Promoting Macrophage Apoptosis and Targeting Increased Mitochondrial Reactive Oxygen Species in Aspergillus Fumigatus. Int J Nanomedicine 2025; 20:4551-4569. [PMID: 40242606 PMCID: PMC12002346 DOI: 10.2147/ijn.s517169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
Background Fungal keratitis is a severe vision-threatening corneal infection with a prognosis influenced by fungal virulence and the host's immune defense mechanisms. However, there is still a lack of effective drugs that attenuate fungal virulence while relieving the inflammatory response caused by fungal keratitis. Purpose Finding an effective treatment to solve these problems is particularly important. Methods We synthesized Zeolitic imidazolate framework-90 (ZIF-90) by water-based synthesis method and characterized it. In vitro experiments included mycelium electron microscopy, Cell Counting Kit-8 (CCK-8), and Enzyme-linked immunosorbent assay (ELISA). These trials verified the disruptive effects of ZIF-90 on morphology, cell membrane, cell wall, and biofilm formation of Aspergillus fumigatus (A. fumigatus). These experiments also demonstrated the impact of ZIF-90 on the proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Moreover, the effect of ZIF-90 on mitochondrial reactive oxygen species (mtROS) of cells and fungi was verified by MitoSOX Red Mitochondrial Superoxide Indicator (MitoSOX). In vivo, corneal toxicity test, establishment and treatment of mycotic keratitis mouse model, and immunofluorescence staining were used to evaluate the efficacy of ZIF-90 in the procedure of fungal keratitis. In addition, to investigate whether the metal-ligand zinc and the organic ligand imidazole acted as essential factors in ZIF-90, we investigated the in vitro antimicrobial and anti-inflammatory effects of ZIF-8, ZIF-67 and Metal-Organic Frameworks-74 (Zn) (MOF-74 (Zn)) by Minimum Inhibitory Concentration (MIC) and ELISA experiments. Results ZIF-90 has therapeutic effects on fungal keratitis, which could break the protective organelles of A. fumigatus, such as the cell wall. In addition, ZIF-90 can also be targeted to increase the amount of mtROS in fungi and promote apoptosis of macrophages. The results demonstrated that both zinc ions and imidazole possessed antimicrobial and anti-inflammatory effects. In addition, ZIF-90 exhibited better antifungal properties than ZIF-8, ZIF-67, and MOF-74 (Zn).
Collapse
Affiliation(s)
- Xueyun Fu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Lina Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Ziyi Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Menghui Chi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Daohao Li
- State Key Laboratory of Bio-fibers and Eco-Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, People’s Republic of China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
4
|
Wang A, Jin M, Yang Z, Zhou S, Yue J, Liu S, Xie Y, Zhang H. New Biomarkers for Patients With Fungal Keratitis From Blood Routine Examination: Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio. J Ophthalmol 2025; 2025:5594701. [PMID: 40114778 PMCID: PMC11925608 DOI: 10.1155/joph/5594701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
Purpose: To assess the potential of neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) as novel diagnostic and prognostic biomarkers in fungal keratitis (FK). Methods: This study was carried out retrospectively in 77 FK patients and 77 matched cataract controls from Henan Eye Hospital. Peripheral venous blood samples were collected via venipuncture and analyzed using complete blood count for routine clinical evaluation. FK patients were classified into three subgroups: Fusarium, Aspergillus, and Candida groups. Inflammation severity was quantified using standardized clinical scoring. The treatment modalities were used to divide the FK patients into enucleation and nonenucleation groups. Results: NLR and PLR were significantly elevated in FK versus controls (p < 0.001). NLR correlated strongly with inflammation scores (r = 0.535, p < 0.0001), exceeding PLR's moderate correlation (r = 0.311, p=0.0059). FK patients in the enucleation group had significantly higher NLR (p=0.012) and PLR (p=0.021) values than those in the nonenucleation group. There were no significant biomarker differences across fungal species (p > 0.05). Conclusion: Elevated NLR and PLR values during routine laboratory testing might serve as supplementary indicators for early suspicion of FK and monitoring inflammatory progression, particularly in resource-limited settings where specialized ophthalmic diagnostics are unavailable.
Collapse
Affiliation(s)
- Aizhen Wang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institution, Henan Key Laboratory for Ophthalmology and Visual Science, Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Menghe Jin
- Department of Ophthalmology, Henan University People's Hospital, Zhengzhou 450003, Henan, China
| | - Zhanpeng Yang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institution, Henan Key Laboratory for Ophthalmology and Visual Science, Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Shuaibing Zhou
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institution, Henan Key Laboratory for Ophthalmology and Visual Science, Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Juan Yue
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institution, Henan Key Laboratory for Ophthalmology and Visual Science, Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Susu Liu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institution, Henan Key Laboratory for Ophthalmology and Visual Science, Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Yanting Xie
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institution, Henan Key Laboratory for Ophthalmology and Visual Science, Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Hongmin Zhang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institution, Henan Key Laboratory for Ophthalmology and Visual Science, Zhengzhou University, Zhengzhou 450003, Henan, China
| |
Collapse
|
5
|
Santos Manzi de Souza PDF, Milanez EPR, de Andrade ARC, Silva L, Silva ML, Monteiro RC, Rodrigues AM, de Souza Collares Maia DCB, de Melo Guedes GM, de Aguiar Cordeiro R. Antifungal susceptibility, clinical findings, and biofilm resistance of Fusarium species causing keratitis: a challenge for disease control. Braz J Microbiol 2025; 56:341-352. [PMID: 39821607 PMCID: PMC11885700 DOI: 10.1007/s42770-024-01611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/25/2024] [Indexed: 01/19/2025] Open
Abstract
Fusarium keratitis (FK) is an important clinical condition that can lead to blindness and eye loss, and is most commonly caused by the Fusarium solani species complex (FSSC). This study evaluated the susceptibility of planktonic cells and biofilms of FSSC (n = 7) and non-FSSC (n = 7) isolates obtained from patients with keratitis from a semi-arid tropical region to amphotericin B (AMB), natamycin (NAT), voriconazole (VRZ), efinaconazole (EFZ), and luliconazole (LCZ). Analysis of clinical data showed that trauma was the most common risk factor for FK patients. Disease onset was longer in non-FSSC group (3-30 days) than in the FSSC group (3-7 days). FSSC strains were less susceptible to AMB and VRZ than non-FSSC strains (p < 0.05). Susceptibility to NAT, LCZ and EFZ was similar between isolates of FSSC and non-FSSC groups. Overall, patients infected with non-FSSC showed a better response to antifungal treatment. Corneal transplantation was more common in patients infected with FSSC (3/7) than in those infected with non-FSSC (1/7). Mature biofilms showed a poor response to antifungal treatment. Patients infected with Fusarium strains capable of forming antifungal tolerant biofilms had more complex therapeutic management, requiring two antifungals and/or corneal transplantation (p < 0.05). This study highlights the importance of mycological diagnosis and the antifungal susceptibility testing in the clinical management of FK. The ability of Fusarium to form antifungal tolerant biofilms poses a challenge to clinicians and urges the development of new antibiofilm therapeutics.
Collapse
Affiliation(s)
| | | | | | - Lua Silva
- Federal University of Ceará Fortaleza, Ceará, Brazil
| | | | | | | | | | | | | |
Collapse
|
6
|
Han F, Wang L, Wu J, Shen L, Li Y, Guo H, Li J. Inhibition of LRRK2 Ameliorates Aspergillus fumigatus Keratitis by Regulating STING Signaling Pathways. Invest Ophthalmol Vis Sci 2025; 66:13. [PMID: 39908129 PMCID: PMC11804891 DOI: 10.1167/iovs.66.2.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025] Open
Abstract
Purpose The purpose of this study was to investigate the role of LRRK2 in the inflammatory response to fungal keratitis (FK) and elucidate the underlying mechanisms. Methods The protein levels of leucine-rich repeat kinase 2 (LRRK2), p-LRRK2, and stimulator of interferon genes (STING)-related proteins were assessed by western blot analysis. ELISA and quantitative real-time polymerase chain reaction (qRT-PCR) were employed to evaluate the inflammatory response induced by Aspergillus fumigatus. Mass spectrometry was performed to identify the interaction partners of LRRK2. The glutathione S-transferase (GST) pull-down assay and co-immunoprecipitation (co-IP) were used to verify the interaction between LRRK2 and STING. Additionally, fungal load determinations and clinical score assessments were conducted to determine corneal infection in a mouse model. Results A. fumigatus stimulation promoted the phosphorylation of LRRK2 through Toll-like receptor 2 (TLR2) in human corneal epithelial cells (HCECs) and mouse corneas. LRRK2 overexpression enhanced the A. fumigatus-induced inflammatory response, and LRRK2 knockdown alleviated A. fumigatus keratitis both in vitro and in vivo. Mass spectrometry identified STING as a novel interaction partner of LRRK2. Moreover, A. fumigatus treatment enhanced the interaction between LRRK2 and STING, resulting in the phosphorylation and activation of STING. The phosphorylated STING then triggered its downstream signaling pathways, exacerbating the severity of A. fumigatus keratitis. LRRK2 inhibitor (LRRK2-IN-1) significantly mitigated the inflammatory response and corneal damage caused by A. fumigatus stimulation. Conclusions LRRK2 inhibition ameliorates A. fumigatus-induced inflammation through modulating STING signaling pathways in both HCECs and mouse models. Our results suggest that targeted inhibition of LRRK2 could be a promising strategy for FK treatment.
Collapse
Affiliation(s)
- Fang Han
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Leyi Wang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiayin Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Shen
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yangyang Li
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Guo
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Jianqiao Li
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Liu W, Yang H, Xu Q, Lee J, Sun J, Xue S, Yang X, Sun X, Che C. Role of MYO1F in neutrophil and macrophage recruitment and pro-inflammatory cytokine production in Aspergillus fumigatus keratitis. Int Immunopharmacol 2024; 142:113094. [PMID: 39276460 DOI: 10.1016/j.intimp.2024.113094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
PURPOSE Myosin 1f (Myo1f), an unconventional long-tailed class Ⅰ myosin, plays significant roles in immune cell motility and innate antifungal immunity. This study was aimed to assess the expression and role of Myo1f in Aspergillus fumigatus (AF) keratitis. METHODS Myo1f expression in the corneas of mice afflicted with AF keratitis and in AF keratitis-related cells was assessed using protein mass spectrometry, quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunofluorescence. Myo1f expression following pre-treatment with inhibitors of dendritic cell-associated C-type lectin-1 (Dectin-1), Toll-like receptor 4 (TLR-4), and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) was also examined. In AF keratitis mouse models, Myo1f small interfering RNA (siRNA) was administered via subconjunctival injection to observe disease progression, inflammatory cell recruitment, and protein production using slit lamp examination, immunofluorescence, hematoxylin-eosin (HE) staining, and western blotting. RESULTS Myo1f expression was upregulated in both AF keratitis mouse models and AF keratitis-related cells. Dectin-1, TLR-4, and LOX-1 were found to be essential for the production of Myo1f in response to the infection with AF. In mice with AF keratitis, knockdown of Myo1f reduced disease severity, decreased the recruitment of neutrophils alongside macrophages to inflammatory areas, suppressed the myeloid differentiation factor 88 (MyD88)/ nuclear factor-kappaB (NF-κB) signaling pathway, and decreased the production of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, along with IL-6. Additionally, Myo1f was associated with apoptosis and pyroptosis in mice with AF keratitis. CONCLUSIONS These findings demonstrated that Myo1f contributed to the recruitment of neutrophils and macrophages, the production of pro-inflammatory cytokines, and was associated with apoptosis and pyroptosis during AF keratitis.
Collapse
Affiliation(s)
- Wenting Liu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hua Yang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Xu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jieun Lee
- Department of Ophthalmology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Jintao Sun
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Xue
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuejiao Yang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyan Sun
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Liu X, Zhang Y, Peng F, Li C, Wang Q, Wang Z, Hu L, Peng X, Zhao G, Lin J. Macrophage Membrane-Coated Nanoparticles for the Delivery of Natamycin Exhibit Increased Antifungal and Anti-Inflammatory Activities in Fungal Keratitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59777-59788. [PMID: 39467057 DOI: 10.1021/acsami.4c11366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
This study aims to explore the efficacy and safety of macrophage membrane-coated nanoparticles for the delivery of natamycin (NAT) in the therapy of fungal keratitis (FK). Macrophage membranes were isolated and identified by immunofluorescence staining (IFS). NAT was encapsulated into poly(lactic-co-glycolic acid) (PLGA). Fungal stimulated macrophage membranes (M1) or unstimulated membranes (M) were separately mixed and sonicated with PLGA nanoparticles. The biocompatible nanoparticles (PLGA-NAT, PLGA-NAT@M, and PLGA-NAT@M1) were characterized with zeta-sizer analysis, transmission electron microscopy (TEM), and Western blot. Drug encapsulation and loading efficiency and the release of NAT in the nanoparticles were detected by ultraviolet spectrophotometry. The cytotoxicity, ocular surface toxicity and irritability, and systemic safety of nanoparticles with different concentrations were assessed. In vitro, we examined the antifungal properties of the nanoparticles. The eye surface retention time, drug release, and curative effects on FK were evaluated in vitro and in vivo. IFS results showed the separation of the macrophage membrane and nucleus. The prepared nanoparticles had a typical "core-shell" structure and uniform nanometer size, and the membrane proteins were retained on the membrane allowing to exert functional effects of macrophage. The loading efficiencies of PLGA-NAT@M and PLGA-NAT@M1 were 7.6 and 6.7%, respectively. The encapsulation efficiencies of PLGA-NAT@M and PLGA-NAT@M1 were 51.2 and 41.5%, respectively. PLGA-NAT@M and PLGA-NAT@M1 could gradually release NAT and reduce the clearance of the ocular surface. Macrophage membranes enhanced the antifungal activity of PLGA-NAT. Furthermore, the membrane coated with macrophage increased the biocompatibility and decreased the corneal toxicity of nanoparticles. In vivo, PLGA-NAT@M1 significantly alleviated the severity of FK. In vitro, PLGA@M and PLGA@M1 reduced the protein levels of inflammatory cytokines after fungal stimulation. The prepared PLGA-NAT@M1 has good physical properties and biosafety. It could evade ocular surface clearance, release NAT gradually, and achieve high antifungal and anti-inflammatory efficiencies to FK. Macrophage membrane-coated nanoparticles clinically have high application potential to the treatment of FK.
Collapse
Affiliation(s)
- Xing Liu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province 266003, China
| | - Yunfeng Zhang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province 266003, China
| | - Fang Peng
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province 266003, China
| | - Cui Li
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province 266003, China
| | - Qian Wang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province 266003, China
| | - Zhenhan Wang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province 266003, China
| | - Liting Hu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province 266003, China
| | - Xudong Peng
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province 266003, China
| | - Guiqiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province 266003, China
| | - Jing Lin
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province 266003, China
| |
Collapse
|
9
|
Tian Y, Luan J, Wang Q, Li C, Peng X, Jiang N, Zhao G, Lin J. Licochalcone A Ameliorates Aspergillus fumigatus Keratitis by Reducing Fungal Load and Activating the Nrf2/HO-1 Signaling Pathway. ACS Infect Dis 2024; 10:3516-3527. [PMID: 39283729 DOI: 10.1021/acsinfecdis.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Fungal keratitis (FK) is a blinding corneal infectious disease. The prognosis is frequently unfavorable due to fungal invasion and an excessive host inflammatory response. Licochalcone A (Lico A) exhibits a broad spectrum of pharmacological activities, encompassing antifungal, anti-inflammatory, antioxidation, and antitumor properties. However, the role of Lico A has not yet been studied in FK. In this study, we discovered that Lico A could disrupt Aspergillus fumigatus (A. fumigatus) biofilms, inhibit fungal growth and adhesion to host cells, induce alterations of hyphal morphology, and impair the cell membrane and cell wall integrity and mitochondrial structure of A. fumigatus. Lico A can alleviate the severity of FK in mice, reduce neutrophil infiltration and fungal load, and significantly decrease the pro-inflammatory cytokines in mouse corneas infected with A. fumigatus. In vitro, we also demonstrated that Lico A increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) around the nucleus in human corneal epithelial cells (HCECs) stimulated with A. fumigatus. We verified that the anti-inflammatory effect of Lico A is associated with the activation of the Nrf2/HO-1 axis. These results indicated that Lico A could provide a protective role in A. fumigatus keratitis through its anti-inflammatory and antifungal activities.
Collapse
Affiliation(s)
- Yiran Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Junjie Luan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Xudong Peng
- Department of Ophthalmology, University of Washington, 750 Republican St, Seattle, Washington 98109, United States
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | | | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO.16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| |
Collapse
|
10
|
Yu B, Wang Q, Zhang L, Lin J, Feng Z, Wang Z, Gu L, Tian X, Luan S, Li C, Zhao G. Ebselen improves fungal keratitis through exerting anti-inflammation, anti-oxidative stress, and antifungal effects. Redox Biol 2024; 73:103206. [PMID: 38796864 PMCID: PMC11152752 DOI: 10.1016/j.redox.2024.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
Fungal keratitis is a severely vision-threatening corneal infection, where the prognosis depends on both fungal virulence and host immune defense. Inappropriate host responses can induce substantial inflammatory damage to the cornea. Therefore, in the treatment of fungal keratitis, it is important to concurrently regulate the immune response while efforts are made to eliminate the pathogen. Ebselen is a widely studied organo-selenium compound and has been demonstrated to have antifungal, antibacterial, anti-inflammatory, and oxidative stress-regulatory properties. The effectiveness of ebselen for the treatment of fungal keratitis remains unknown. In this study, ebselen was demonstrated to produce a marked inhibitory effect on Aspergillus fumigatus (A. fumigatus), including spore germination inhibition, mycelial growth reduction, and fungal biofilm disruption. The antifungal activity of ebselen was related to the cell membrane damage caused by thioredoxin (Trx) system inhibition-mediated oxidative stress. On the contrary, ebselen enhanced the antioxidation of Trx system in mammalian cells. Further, ebselen was proven to suppress the expressions of inflammatory mediators (IL-1β, IL-6, TNF-α, COX-2, iNOS, and CCL2) and reduce the production of oxidative stress-associated indicators (ROS, NO, and MDA) in fungi-stimulated RAW264.7 cells. In addition, ebselen regulated PI3K/Akt/Nrf2 and p38 MAPK signaling pathways, which contributed to the improvement of inflammation and oxidative stress. Finally, we verified the therapeutic effect of ebselen on mouse fungal keratitis. Ebselen improved the prognosis and reduced the fungal burden in mouse corneas. Expressions of inflammatory mediators, as well as the infiltration of macrophages and neutrophils in the cornea were also obviously decreased by ebselen. In summary, ebselen exerted therapeutic effects by reducing fungal load and protecting host tissues in fungal keratitis, making it a promising treatment for fungal infections.
Collapse
Affiliation(s)
- Bing Yu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Lina Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Zhuhui Feng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Ziyi Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Songying Luan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong Province, 266003, China.
| |
Collapse
|
11
|
Ayhan DH, Abbondante S, Martínez-Soto D, Milo S, Rickelton K, Sohrab V, Kotera S, Arie T, Marshall ME, Rocha MC, Haridas S, Grigoriev IV, Shlezinger N, Pearlman E, Ma LJ. The differential virulence of Fusarium strains causing corneal infections and plant diseases is associated with accessory chromosome composition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595639. [PMID: 38826335 PMCID: PMC11142239 DOI: 10.1101/2024.05.23.595639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Fusarium oxysporum is a cross-kingdom pathogen. While some strains cause disseminated fusariosis and blinding corneal infections in humans, others are responsible for devastating vascular wilt diseases in plants. To better understand the distinct adaptations of F. oxysporum to animal or plant hosts, we conducted a comparative phenotypic and genetic analysis of two strains: MRL8996 (isolated from a keratitis patient) and Fol4287 (isolated from a wilted tomato [Solanum lycopersicum]). In vivo infection of mouse corneas and tomato plants revealed that, while both strains cause symptoms in both hosts, MRL8996 caused more severe corneal ulceration and perforation in mice, whereas Fol4287 induced more pronounced wilting symptoms in tomato. In vitro assays using abiotic stress treatments revealed that the human pathogen MRL8996 was better adapted to elevated temperatures, whereas the plant pathogen Fol4287 was more tolerant of osmotic and cell wall stresses. Both strains displayed broad resistance to antifungal treatment, with MRL8996 exhibiting the paradoxical effect of increased tolerance to higher concentrations of the antifungal caspofungin. We identified a set of accessory chromosomes (ACs) and protein-encoding genes with distinct transposon profiles and functions, respectively, between MRL8996 and Fol4287. Interestingly, ACs from both genomes also encode proteins with shared functions, such as chromatin remodeling and post-translational protein modifications. Our phenotypic assays and comparative genomics analyses lay the foundation for future studies correlating genotype with phenotype and for developing targeted antifungals for agricultural and clinical uses.
Collapse
Affiliation(s)
- Dilay Hazal Ayhan
- Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Serena Abbondante
- Physiology and Biophysics and Ophthalmology, University of California, Irvine, USA University of Massachusetts Amherst, Amherst, MA, USA
| | - Domingo Martínez-Soto
- Department of Microbiology, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Shira Milo
- Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Katherine Rickelton
- Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Vista Sohrab
- Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Shunsuke Kotera
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, Japan
| | - Tsutomu Arie
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu, Tokyo, Japan
| | - Michaela Ellen Marshall
- Physiology and Biophysics and Ophthalmology, University of California, Irvine, USA University of Massachusetts Amherst, Amherst, MA, USA
| | - Marina Campos Rocha
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Neta Shlezinger
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eric Pearlman
- Physiology and Biophysics and Ophthalmology, University of California, Irvine, USA University of Massachusetts Amherst, Amherst, MA, USA
| | - Li-Jun Ma
- Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
12
|
Shi WH, Wang LM, Yan HJ, Liu SL, Yang X, Yang XJ, Che CY. CD3ε of a pan T cell marker involved in mouse Aspergillus fumigatus keratitis. Int J Ophthalmol 2024; 17:616-624. [PMID: 38638265 PMCID: PMC10988075 DOI: 10.18240/ijo.2024.04.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/12/2024] [Indexed: 04/20/2024] Open
Abstract
AIM To explore whether CD3ε is involved in the adaptive immunity of Aspergillus fumigatus (A. fumigatus) keratitis in mice and the role of innate and adaptive immunity in it. METHODS Mice models of A. fumigatus keratitis were established by intra-stromal injection and corneal epithelial scratching. Subconjunctival injections of natamycin, wedelolactone, LOX-1 inhibitor (poly I) or Dectin-1 inhibitor (laminarin) were used to treat mice with A. fumigatus keratitis. Mice were pretreated by intraperitoneal injection of anti-mouse CD3ε. We observed the corneal infection of mice under the slit lamp microscope and made a clinical score. The protein expression of CD3ε and interleukin-10 (IL-10) was determined by Western blotting. RESULTS With the disease progresses, the degree of corneal opacity and edema augmented. In the intra-stromal injection models, CD3ε protein expression began to increase significantly on the 2nd day. However, in the scraping epithelial method models, CD3ε only began to increase on the 3rd day. After natamycin treatment, the degree of corneal inflammation in mice was significantly attenuated on the 3rd day. After wedelolactone treatment, the severity of keratitis worsened. And the amount of CD3ε protein was also reduced, compared with the control group. By inhibiting LOX-1 and Dectin-1, there was no significant difference in CD3ε production compared with the control group. After inhibiting CD3ε, corneal ulcer area and clinical score increased, and IL-10 expression was downregulated. CONCLUSION As a pan T cell marker, CD3ε participate in the adaptive immunity of A. fumigatus keratitis in mice. In our mice models, the corneas will enter the adaptive immune stage faster. By regulating IL-10, CD3ε exerts anti-inflammatory and repairs effects in the adaptive immune stage.
Collapse
Affiliation(s)
- Wen-Hao Shi
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
- Weifang Medical University, Weifang 261053, Shandong Province, China
| | - Li-Mei Wang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
- Eye Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Hai-Jing Yan
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
- Eye Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Shi-Long Liu
- Department of Medical Engineering, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Xian Yang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Xue-Jiao Yang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Cheng-Ye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| |
Collapse
|
13
|
Han F, Wang L, Shen L, Liu W, Li Y, Ma H, Wu X. A20 ameliorates Aspergillus fumigatus keratitis by promoting autophagy and inhibiting NF-κB signaling. Int J Biol Macromol 2023; 253:127640. [PMID: 37879579 DOI: 10.1016/j.ijbiomac.2023.127640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/14/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Fungal keratitis (FK) is a serious, potentially sight-threatening corneal infection, which is associated with poor prognosis. A20, also called TNFAIP3, plays significant roles in the negative regulation of inflammation and immunity. However, the function of A20 in Aspergillus fumigatus (A. fumigatus) keratitis remains obscure. Herein, we found that the level of A20 is increased in human corneal epithelial cells (HCECs) and in mouse corneas with A. fumigatus infection, and that nuclear factor-κB (NF-κB) signaling is required for A20 upregulation. A20 overexpression inhibits A. fumigatus-mediated inflammatory responses, while A20 knockdown results in opposite effect. Mechanically, we showed that A20 inhibits NF-κB signaling and activates autophagy in infected HCECs. We also showed that inhibition of NF-κB signaling reverses the increased inflammatory responses in infected HCECs with A20 knockdown. Furthermore, autophagy blockage impedes the anti-inflammatory effect of A20 in A. fumigatus infected HCECs. Moreover, A20 ameliorates the corneal damage and inflammation in A. fumigatus infected mouse corneas. In conclusion, this study reveals that A20 alleviates A. fumigatus keratitis by activating autophagy and inhibiting NF-κB signaling. This suggests that exogenous use of A20 protein may be a potentially promising therapeutic strategy for FK treatment.
Collapse
Affiliation(s)
- Fang Han
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Leyi Wang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Lin Shen
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Wenhui Liu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yangyang Li
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Hanlin Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|