1
|
Zhou B, Hu S, Chen W, Xiang S, Xue Y, Zhang W, Yang R. Visualized chemiluminescence immunoassay for simultaneous detection of multiple lung cancer markers based on spatially resolved microfluidic paper chip device. Talanta 2025; 295:128360. [PMID: 40408997 DOI: 10.1016/j.talanta.2025.128360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025]
Abstract
Lung cancer ranks as the most prevalent form of cancer. Early detection and diagnosis can lower death rates, and variations in tumor markers can help assess cancer risk. In this work, a glow-type chemiluminescent (CL) hydrogel SCG-Co2+-luminol was synthesized by a simple approach, and this hydrogel was integrated with a 3D microfluidic paper-based analytical device (3D μPAD) to develop a visual biosensor for identifying multiple lung cancer markers. The prepared SCG-Co2+-luminol can produce strong CL signal after reacting with H2O2, and the CL time can last more than 60 min because of its porous structure. The 3D μPAD is designed with six detection areas and can simultaneously identify two lung cancer markers, NSE and CEA, based on the concept of spatial resolution. Using the hydrogel as the sensing interface and the 3D μPAD as the detection platform, a blue CL signal was emitted upon H2O2 injection, and the luminescence image was captured by a smartphone. Image J software was used to process the gray values of the images, demonstrating a clear linear relationship between the concentrations of NSE and CEA concentrations and the CL intensity. The linear range of the immunoassay is 0.1-10000 pg/mL, with detection limits for NSE and CEA at 0.032 pg/mL and 0.036 pg/mL, respectively. Finally, the proposed visualized CL immunoassay was successfully employed to determine NSE and CEA in real samples. Overall, the fabricated method has the merits of rapid detection, high sensitivity, and portability, making it highly promising for multi-component detection and analysis in lung cancer.
Collapse
Affiliation(s)
- Bingqian Zhou
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China
| | - Shuangyi Hu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China
| | - Wenxia Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China
| | - Siyu Xiang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China
| | - Yangyang Xue
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Wencan Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Rui Yang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
2
|
García-Azuma R, Werner K, Revilla-Monsalve C, Trinidad O, Altamirano-Bustamante NF, Altamirano-Bustamante MM. Unveiling the state of the art: a systematic review and meta-analysis of paper-based microfluidic devices. Front Bioeng Biotechnol 2024; 12:1421831. [PMID: 39234268 PMCID: PMC11372461 DOI: 10.3389/fbioe.2024.1421831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction This systematic review and meta-analysis present a comprehensive evaluation of paper-based microfluidic devices, focusing on their applications in immunoassays. These devices are emerging as innovative solutions to democratize access to diagnostic technologies, especially in resource-limited settings. Our review consolidates findings from diverse studies to outline advancements in paper-based microfluidic technology, including design intricacies and operational efficacy. Key advantages such as low cost, portability, and ease of use are highlighted. Materials and Methods The review categorizes literature based on the design and operational nuances of these diagnostic tools, exploring various methodologies, fabrication techniques, detection methods, and applications, particularly in protein science. The meta-analysis extends to the diverse applications of these technologies, providing a framework for classifying and stratifying their uses in diagnostics. Results and discussion Notable findings include a critical analysis of performance metrics, such as sensitivity and specificity. The review addresses challenges, including the need for further validation and optimization for broader clinical applications. A critical discussion on the validation processes, including cross-validation and rigorous control testing, is provided to ensure the robustness of microfluidic devices. This study offers novel insights into the computational strategies underpinning these technologies and serves as a comprehensive roadmap for future research, potentially broadening the impact across the protein science universe.
Collapse
Affiliation(s)
- Rodrigo García-Azuma
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Karen Werner
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Cristina Revilla-Monsalve
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Oscar Trinidad
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | | | - Myriam M Altamirano-Bustamante
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| |
Collapse
|
3
|
Fang G, Hasi W, Lin X, Han S. Automated identification of pesticide mixtures via machine learning analysis of TLC-SERS spectra. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134814. [PMID: 38850932 DOI: 10.1016/j.jhazmat.2024.134814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Identification of components in pesticide mixtures has been a major challenge in spectral analysis. In this paper, we assembled monolayer Ag nanoparticles on Thin-layer chromatography (TLC) plates to prepare TLC-Ag substrates with mixture separation and surface-enhanced Raman scattering (SERS) detection. Spectral scans were performed along the longitudinal direction of the TLC-Ag substrate to generate SERS spectra of all target analytes on the TLC plate. Convolutional neural network classification and spectral angle similarity machine learning algorithms were used to identify pesticide information from the TLC-SERS spectra. It was shown that the proposed automated spectral analysis method successfully classified five categories, including four pesticides (thiram, triadimefon, benzimidazole, thiamethoxam) as well as a blank TLC-Ag data control. The location of each pesticide on the TLC plate was determined by the intersection of the information curves of the two algorithms with 100 % accuracy. Therefore, this method is expected to help regulators understand the residues of mixed pesticides in agricultural products and reduce the potential risk of agricultural products to human health and the environment.
Collapse
Affiliation(s)
- Guoqiang Fang
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150080, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450018, China
| | - Wuliji Hasi
- National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150080, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450018, China.
| | - Xiang Lin
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China.
| | - Siqingaowa Han
- Department of Combination of Mongolian Medicine and Western Medicine Stomatology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao 028043, China
| |
Collapse
|
4
|
Zhang M, Meng L, Kalyinur K, Dong S, Chang X, Yu Q, Wang R, Pang B, Kong X. Fabrication and Application of Ag@SiO 2/Au Core-Shell SERS Composite in Detecting Cu 2+ in Water Environment. Molecules 2024; 29:1503. [PMID: 38611782 PMCID: PMC11013303 DOI: 10.3390/molecules29071503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
A sensitive and simple method for detecting Cu2+ in the water source was proposed by using surface-enhanced Raman scattering spectroscopy (SERS) based on the Ag@SiO2/Au core-shell composite. The Ag@SiO2 SERS tag was synthesized by a simple approach, in which Ag nanoparticles were first embedded with Raman reporter PATP and next coated with a SiO2 shell. The Ag@SiO2 nanoparticles had strong stability even in a high-concentration salty solution, and there were no changes to their properties and appearance within one month. The Ag@SiO2/Au composite was fabricated through a controllable self-assemble process. L-cysteine was decorated on the surface of a functionalized Ag@SiO2/Au composite, as the amino and carboxyl groups of it can form coordinate covalent bond with Cu2+, which shows that the Ag@SiO2/Au composite labelled with L-cysteine has excellent performance for the detection of Cu2+ in aqueous media. In this study, the SERS detection of Cu2+ was carried out using Ag@SiO2 nanoparticles, and the limit of detection (LOD) as low as 0.1 mg/L was achieved.
Collapse
Affiliation(s)
- Meizhen Zhang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (M.Z.); (L.M.); (S.D.); (X.C.); (Q.Y.); (X.K.)
| | - Lin Meng
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (M.Z.); (L.M.); (S.D.); (X.C.); (Q.Y.); (X.K.)
- International Education College, Liaoning Petrochemical University, Fushun 113001, China;
| | - Kelgenbaev Kalyinur
- International Education College, Liaoning Petrochemical University, Fushun 113001, China;
| | - Siyuan Dong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (M.Z.); (L.M.); (S.D.); (X.C.); (Q.Y.); (X.K.)
- International Education College, Liaoning Petrochemical University, Fushun 113001, China;
| | - Xinyi Chang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (M.Z.); (L.M.); (S.D.); (X.C.); (Q.Y.); (X.K.)
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (M.Z.); (L.M.); (S.D.); (X.C.); (Q.Y.); (X.K.)
| | - Rui Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (M.Z.); (L.M.); (S.D.); (X.C.); (Q.Y.); (X.K.)
| | - Bo Pang
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (M.Z.); (L.M.); (S.D.); (X.C.); (Q.Y.); (X.K.)
| |
Collapse
|
5
|
Lu X, Ma Y, Jiang S, Wang Z, Yu Q, Ji C, Guo J, Kong X. Quantitative monitoring ofloxacin in beef by TLC-SERS combined with machine learning analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123790. [PMID: 38142496 DOI: 10.1016/j.saa.2023.123790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
Ofloxacin is one kind of quinolone antibiotic drugs, the abuse of ofloxacin in livestock and aquaculture may bring bacterial resistance and healthy problem of people. The illegally feeding cattle with ofloxacin will help it keep health, but the sedimentation of ofloxacin could bring problem in food safety. The accurate, simple and instant monitoring ofloxacin from beef by portable sensor was of vital issue in food quality. A simple and reliable method was proposed for instant and quantitative detecting ofloxacin in beef, in which the thin-layer chromatography (TLC) -surface-enhanced Raman scattering (SERS) spectroscopy was in tandem with machine learning analysis base one principal component analysis-back propagation neural network (PCA-BPNN). The TLC plate was composed with diatomite, that was function as the stationary phase to separate ofloxacin from beef. The real beef juice was directly casted onto the diatomite plate for separating and detecting. The directly monitor ofloxacin from beef was achieved and the sensitivity down to 0.01 ppm. The PCA-BPNN was used as reliable model for quantitative predict the concentration of ofloxacin, that shown superior accuracy compared with the traditional model. The results verify that the diatomite plate TLC-SERS combined with machine-learning analysis is an effective, simple and accurate technique for detecting and quantifying antibiotic drug in meat stuff to improve the food safety.
Collapse
Affiliation(s)
- Xiaoqi Lu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Yidan Ma
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China; International Education College, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Shangkun Jiang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Zice Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China; International Education College, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Chengcheng Ji
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China; Engineering Training Centre, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China; International Education College, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| |
Collapse
|
6
|
Zhao Y, Gan Y, Chen J, Zheng H, Chang Y, Lin C. Recent reports on the sensing strategy and the On-site detection of illegal drugs. RSC Adv 2024; 14:6917-6929. [PMID: 38410368 PMCID: PMC10895702 DOI: 10.1039/d3ra06931a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 02/28/2024] Open
Abstract
In this review, works on the on-site detection of illegal drugs in recent years are summarised and discussed, most of which were published within the past five years. The detection methods are categorised as colourimetric, fluorescence, Raman spectrometry, ion mobility spectrometry, electrochemistry, and mass spectrometry. Also, strategies that are possibly suitable for on-site detection and the actual instrumentation to be used in the field are listed.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security P.R.C. No. 18 Dongbeiwang West Road, Haidian District 100193 Beijing China
- Institute of Forensic Science of the Ministry of Public Security No. 17 Muxidi Nanli, West City District 100038 Beijing China
| | - Yumeng Gan
- Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University 9 Zengcuoan West Road 361005 Xiamen China
- State Key Laboratory of Physical Chemistry of Solid Surface Xiamen China
| | - Jun Chen
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security P.R.C. No. 18 Dongbeiwang West Road, Haidian District 100193 Beijing China
| | - Hui Zheng
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security P.R.C. No. 18 Dongbeiwang West Road, Haidian District 100193 Beijing China
| | - Ying Chang
- Institute of Forensic Science of the Ministry of Public Security No. 17 Muxidi Nanli, West City District 100038 Beijing China
| | - Changxu Lin
- Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University 9 Zengcuoan West Road 361005 Xiamen China
- State Key Laboratory of Physical Chemistry of Solid Surface Xiamen China
| |
Collapse
|
7
|
Zhou H, Zhu A, Wang C, Guo X, Ying Y, Wu Y, Liu X, Wang F, Wen Y, Yang H. Preparation of gold nanoparticles loaded MOF-199 for SERS detection of 5-hydroxyindole-3-acetic acid in serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123280. [PMID: 37619474 DOI: 10.1016/j.saa.2023.123280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
5-Hydroxyindole-3-acetic acid (5-HIAA) is regarded as a biomarker for diagnosis of carcinoid tumors, and it is of great significance to developing a precision assay for monitoring 5-HIAA levels. In this work, gold nanoparticles loading on the surface of MOF-199 (Au NPs/MOF-199) is prepared to propose a surface enhanced Raman scattering (SERS) assay for 5-HIAA. When 4-mercaptopyridine (4-MPy) is used as a SERS probe, on Au NPs/MOF-199, limit of detection (LOD) at 10-9 mol/L can be achieved. In addition, Au NPs/MOF-199 substrate with good preparation reproducibility shows long-term storage stability at 4 °C. Under optimal condition, the Au NPs/MOF-199-based SERS method is applied to determine 5-HIAA in serum. The concentration linear range is from 10-9 to 10-5 mol/L and LOD is of 6.40 × 10-11 mol/L. Much importantly, Au NPs/MOF-199 substrate exhibits specific response toward 5-HIAA against other metabolites in the serum due to the capturing selectivity from porous MOF-199. The recoveries obtained on spiked human serum samples locate in the span from 94.30% to 106.00% with RSD of 4.01-7.43%. Au NPs/MOF-199-based SERS sensing strategy is a promising avenue for on-field monitoring biomedical species for clinic diagnosis purpose.
Collapse
Affiliation(s)
- Huimin Zhou
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Anni Zhu
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Caiyin Wang
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoyu Guo
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Ye Ying
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yiping Wu
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Xinling Liu
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Feng Wang
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Ying Wen
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
8
|
Saar I, Evard H. Screen Printed Particle-Based Microfluidics: Optimization and Exemplary Application for Heavy Metals Analysis. MICROMACHINES 2023; 14:1369. [PMID: 37512680 PMCID: PMC10386728 DOI: 10.3390/mi14071369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023]
Abstract
In this work, a screen-printing method was developed to create porous particle-based materials as layers with specifically designed shape to produce microfluidics systems. Among several tested binding agents, xanthan gum was found to be an excellent choice for a printing mixture thickener as well as a durable binder for the resulting material. In addition to demonstrating control over the shape of the printed microfluidics chips, control over material thickness, wetting characteristics and general method accuracy were also investigated. The applicability of the introduced method was further demonstrated with a development of an exemplary microfluidics chip for quantitative detection of Fe (III), Ni (II), Cu (II), Cd (II), and Pb (II) from a mixed sample at millimolar levels. The novel approaches demonstrated in this article offer new perspective into creating multiplexed on-site chemical analysis tests.
Collapse
Affiliation(s)
- Indrek Saar
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Hanno Evard
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| |
Collapse
|
9
|
Lin NS, Hirayama K, Kitamura M, Koide S, Kitajima H, Harada T, Mayama S, Umemura K. Fabrication of a Floatable Micron-Sized Enzyme Device Using Diatom Frustules. ACS OMEGA 2023; 8:21145-21153. [PMID: 37332799 PMCID: PMC10268610 DOI: 10.1021/acsomega.3c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Immobilization of enzymes has been widely reported due to their reusability, thermal stability, better storage abilities, and so on. However, there are still problems that immobilized enzymes do not have free movements to react to substrates during enzyme reactions and their enzyme activity becomes weak. Moreover, when only the porosity of support materials is focused, some problems such as enzyme distortion can negatively affect the enzyme activity. Being a solution to these problems, a new function "floatability" of enzyme devices has been discussed. A "floatable" micron-sized enzyme device was fabricated to enhance the free movements of immobilized enzymes. Diatom frustules, natural nanoporous biosilica, were used to attach papain enzyme molecules. The floatability of the frustules, evaluated by macroscopic and microscopic methods, was significantly better than that of four other SiO2 materials, such as diatomaceous earth (DE), which have been widely used to fabricate micron-sized enzyme devices. The frustules were fully suspended at 30 °C for 1 h without stirring, although they settled at room temperature. When enzyme assays were performed at room temperature, 37, and 60 °C with or without external stirring, the proposed frustule device showed the highest enzyme activity under all conditions among papain devices similarly prepared using other SiO2 materials. It was confirmed by the free papain experiments that the frustule device was active enough for enzyme reactions. Our data indicated that the high floatability of the reusable frustule device, and its large surface area, is effective in maximizing enzyme activity due to the high probability to react to substrates.
Collapse
Affiliation(s)
- Nay San Lin
- Department
of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 1628601, Japan
| | - Kota Hirayama
- Department
of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 1628601, Japan
| | - Masaki Kitamura
- Department
of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 1628601, Japan
| | - Shinji Koide
- Department
of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 1628601, Japan
| | - Hiromasa Kitajima
- Department
of Integrated Science and Technology, Faculty of Science and Technology, Oita University, Dannoharu, 700, Oita City 870-1192, Japan
| | - Takunori Harada
- Department
of Integrated Science and Technology, Faculty of Science and Technology, Oita University, Dannoharu, 700, Oita City 870-1192, Japan
| | - Shigeki Mayama
- Tokyo
Diatomology Lab, 2-3-2
Nukuikitamachi, Koganei, Tokyo 184-0015, Japan
| | - Kazuo Umemura
- Department
of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 1628601, Japan
| |
Collapse
|
10
|
Dong J, Zhou W, Yang C, Wu H, Han Q, Zhang C, Gao W, Yan X, Sun M. Preparation of a Three-Dimensional Composite Structure Based on a Periodic Au@Ag Core-Shell Nanocube with Ultrasensitive Surface-Enhanced Raman Scattering for Rapid Detection. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37276612 DOI: 10.1021/acsami.3c05488] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The absorption and scattering frequencies of surface plasmon resonance can be selectively adjusted by changing the morphology, size, structure, arrangement, and gap between noble metal nanoparticles so that the local electromagnetic field on the substrate surface can be further enhanced. This change will promote and popularize surface-enhanced Raman spectroscopy. This paper reports the research results and improvement scheme of surface enhanced Raman scattering (SERS) activity of silver-coated gold nanocubed/organism (Au@Ag/CW NCs) prepared by three-phase self-assembly. In the experiment, the uppermost oil phase in the three-phase self-assembly process was optimized as ethanol and n-hexane solution containing a specific concentration of a probe molecule rhodamine 6G or aspartame. The probe molecules were directly self-assembled on the surface of the composite substrate to avoid the possible loss and pollution during immersion and preservation and achieve the purpose of rapid detection. The results show that the Au@Ag/CW NC array substrate is a periodic cubic ring structure. The sensitivity, uniformity, reproducibility, and stability of composite Au@Ag/CW NC array substrates are verified by comparing the Raman activities of various substrates. The feasibility of using the substrate to realize rapid SERS detection, compared with the advantages and disadvantages of the traditional soaking method, proved that the prepared substrate and improvement direction have excellent potential for application and development prospects in the field of rapid food additive detection.
Collapse
Affiliation(s)
- Jun Dong
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Wanting Zhou
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Chengyuan Yang
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Haoran Wu
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Qingyan Han
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Chengyun Zhang
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Wei Gao
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Xuewen Yan
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
11
|
Lu X, Ji S, Ren Z, Jiang S, Yu Q, Guo J, Wang AX, Kong X. Rapid, Convenient, and Ultrasensitive Point-of-Care sensing of histamine from fish: A Portable chromatographic platform based on derivatization reaction. J Chromatogr A 2023; 1696:463953. [PMID: 37037052 DOI: 10.1016/j.chroma.2023.463953] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Food poisoning caused by histamine ingestion is one of the prevalent allergies associated with fish consumption in the world. Reliable detection of histamine from fish by a portable platform was of urgent importance to food safety. A portable technology for on-site monitoring of histamine in tuna was established through combined azo-derivatized thin-layer chromatography (TLC) with surface-enhanced Raman scattering (SERS) spectroscopy. The real tuna meat sample was directly applied onto the portable sensor for the separation of histamine and azo-derivatizing of histamine was reacted on the TLC plate. The colorless histamine was visualized by azo-derivatization after spraying Pauly reagent onto the diatomite TLC plate. The molecule information and concentration of the histamine was measured and calculated by SERS spectra. Diatomite TLC plate was capable of separating histamine with 1.32 × 10-7 M of Au colloid for the SERS enhancement. Accordingly, the limit of detection of histamine from mixture sample could achieve 2.8 × 10-4 ppm. These results indicated that the portable azo-derivatized TLC-SERS sensor not only visualizes the histamine but also improves the intensity of the Raman spectra. The azo-derivatized TLC-SERS sensor could be applied for rapid, convenient, and ultrasensitive point-of-care sensing of histamine in fish.
Collapse
Affiliation(s)
- Xiaoqi Lu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Siyu Ji
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Zhengbing Ren
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Shangkun Jiang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, PR China
| | - Alan X Wang
- Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76798, USA
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| |
Collapse
|
12
|
Hou M, Li N, Tian X, Yu Q, Hinestroza JP, Kong X. Preparation of SERS active filter paper for filtration and detection of pesticides residue from complex sample. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121860. [PMID: 36137503 DOI: 10.1016/j.saa.2022.121860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
The selectivity is needed mostly in SERS sensing because analytes of interest are commonly present in a complex mixture containing particles and impurities, which hinder the interactions between the laser and analyte being detected. In this manuscript, we describe our efforts developing a simple and instant. method to prepare a filter paper SERS sensor. Colloidal Ag nanoparticles were immobilized on one side of filter paper via an in-situ growth method. The fabrication process of the sensor could be finished in several minutes, and no special facility needed. The filter paper SERS sensor demonstrated a spectra uniformity with a 7.0 % point-by-point signal deviation. And the filter function of the sensor could effectively filter out interferences from samples in 1 min, that allowing the direct detection of thiram in ketchup by SERS with detection limit of 93 ppb. Furthermore, we used a Quick Easy Cheap Effective Rugged and Safe (QuEChERS) sample preparation method to detect malachite green (MG) in soil with a sensitivity as low as 0.01 ppm without any sample pre-treatment or purification. A SERS filter paper may open a new avenue for rapid testing of food quality during manufacturing as well as fast detection of potential contaminants in a myriad of substrates.
Collapse
Affiliation(s)
- Min Hou
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Ning Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China; Engineering Training Centre, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Xiaoran Tian
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Juan-P Hinestroza
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| |
Collapse
|
13
|
Pal A, Kaswan K, Barman SR, Lin YZ, Chung JH, Sharma MK, Liu KL, Chen BH, Wu CC, Lee S, Choi D, Lin ZH. Microfluidic nanodevices for drug sensing and screening applications. Biosens Bioelectron 2023; 219:114783. [PMID: 36257116 PMCID: PMC9533638 DOI: 10.1016/j.bios.2022.114783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/18/2022] [Accepted: 10/01/2022] [Indexed: 11/03/2022]
Abstract
The outbreak of pandemics (e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 in 2019), influenza A viruses (H1N1 in 2009), etc.), and worldwide spike in the aging population have created unprecedented urgency for developing new drugs to improve disease treatment. As a result, extensive efforts have been made to design novel techniques for efficient drug monitoring and screening, which form the backbone of drug development. Compared to traditional techniques, microfluidics-based platforms have emerged as promising alternatives for high-throughput drug screening due to their inherent miniaturization characteristics, low sample consumption, integration, and compatibility with diverse analytical strategies. Moreover, the microfluidic-based models utilizing human cells to produce in-vitro biomimetics of the human body pave new ways to predict more accurate drug effects in humans. This review provides a comprehensive summary of different microfluidics-based drug sensing and screening strategies and briefly discusses their advantages. Most importantly, an in-depth outlook of the commonly used detection techniques integrated with microfluidic chips for highly sensitive drug screening is provided. Then, the influence of critical parameters such as sensing materials and microfluidic platform geometries on screening performance is summarized. This review also outlines the recent applications of microfluidic approaches for screening therapeutic and illicit drugs. Moreover, the current challenges and the future perspective of this research field is elaborately highlighted, which we believe will contribute immensely towards significant achievements in all aspects of drug development.
Collapse
Affiliation(s)
- Arnab Pal
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kuldeep Kaswan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Snigdha Roy Barman
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Zih Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jun-Hsuan Chung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Manish Kumar Sharma
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kuei-Lin Liu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Bo-Huan Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, 333, Taiwan
| | - Chih-Cheng Wu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; Center of Quality Management, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, 30059, Taiwan; College of Medicine, National Taiwan University, Taipei, 10051, Taiwan; Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, 35053, Taiwan
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, South Korea.
| | - Dongwhi Choi
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Gyeonggi, 17104, South Korea.
| | - Zong-Hong Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Gyeonggi, 17104, South Korea.
| |
Collapse
|
14
|
Wang S, Yu Q, Guo J, Yuan C, Kong X. On-site detection of pyrene from mixture with ppb level sensitivity by plasmonic TLC-DSERS. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121547. [PMID: 35785708 DOI: 10.1016/j.saa.2022.121547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons are a kind of persistent organic pollutants, which bring harmful effects to the ecological environment and human health. Therefore, it is critical to identify PAHs. In this study, we developed a highly efficient device for on-site identification of pyrene in edible oil using high performance plasmonic thin layer chromatography (PTLC) and dynamic surface-enhanced Raman spectroscopy (DSERS). PAHs in the mixture sample were efficiently separated on the PTLC plate and visualized under UV light, in which the plasmonic feature of the stationary phase could enhance the fluorescence of PAH. Then DSERS measurement was developed on a portable Raman spectrometer. The smaller size of Au NPs in the stationary phase could provide a lower theoretical plate height and provide higher separation efficiency. The sensitivity of the PTLC-DSERS method is down to 0.1 ppb, that nearly 4 orders of magnitude higher than current TLC-SERS method. The results indicate that this PTLC-DSERS method has the potential for on-site and sensitive identification of pyrene in the mixture.
Collapse
Affiliation(s)
- Shengjun Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, PR China
| | - Changquan Yuan
- Petrochina Fushun Petrochemical Company Catalyst Factory, Fushun 113001, PR China
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| |
Collapse
|
15
|
Chai R, Yu L, Dong C, Yin Y, Wang S, Chen Y, Zhang Q. Oxygen-evolving photosynthetic cyanobacteria for 2D bismuthene radiosensitizer-enhanced cancer radiotherapy. Bioact Mater 2022; 17:276-288. [PMID: 35386463 PMCID: PMC8965086 DOI: 10.1016/j.bioactmat.2022.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
The local hypoxic tumor environment substantially hampers the therapeutic efficiency of radiotherapy, which typically requires the large X-ray doses for tumor treatment but induces the serious side effects. Herein, a biomimetic radiosensitized platform based on a natural in-situ oxygen-evolving photosynthetic cyanobacteria combined with two-dimensional (2D) bismuthene with high atomic-number (Z) components, is designed and engineered to effectively modulate the radiotherapy-resistant hypoxic tumor environment and achieve sufficient radiation energy deposition into tumor. Upon the exogenous sequential irradiation of 660 nm laser and X-ray beam, continuous photosynthetic oxygen evolution by the cyanobacteria and considerable generation of reactive oxygen species by the 2D bismuthene radiosensitizer substantially augmented the therapeutic efficacy of radiotherapy and suppressed the in vivo tumor growth, as demonstrated on both LLC-lung tumor xenograft-bearing C57/B6 mice model and 4T1-breast tumor xenograft-bearing Balb/c mice model, further demonstrating the photosynthetic hypoxia-alleviation capability and radiosensitization performance of the engineered biomimetic radiosensitized platform. This work exemplifies a distinct paradigm on the construction of microorganism-enabled tumor-microenvironment modulation and nanoradiosensitizer-augmented radiotherapy for efficient tumor treatment. The unique microorganism-based and 2D bismuthene-mediated biomimetic radiosensitization platform has been engineered for enhanced tumor nanotherapy. The photosynthetic production of oxygen has been utilized via natural microorganism cyanobacteria to effectively modulate the radiotherapy-resistant hypoxic tumor environment with high biocompatibility. The biomimetic dual-radiosensitized platform has achieved sufficient radiation energy deposition for inducing overproduction of reactive oxygen species to augment the RT efficacy.
Collapse
Affiliation(s)
- Rong Chai
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Luodan Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Caihong Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, PR China
| | - Yipengchen Yin
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| | - Sheng Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Qin Zhang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China
| |
Collapse
|
16
|
Zhang M, Yu Q, Guo J, Wu B, Kong X. Review of Thin-Layer Chromatography Tandem with Surface-Enhanced Raman Spectroscopy for Detection of Analytes in Mixture Samples. BIOSENSORS 2022; 12:937. [PMID: 36354446 PMCID: PMC9687685 DOI: 10.3390/bios12110937] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In the real world, analytes usually exist in complex systems, and this makes direct detection by surface-enhanced Raman spectroscopy (SERS) difficult. Thin layer chromatography tandem with SERS (TLC-SERS) has many advantages in analysis such as separation effect, instant speed, simple process, and low cost. Therefore, the TLC-SERS has great potential for detecting analytes in mixtures without sample pretreatment. The review demonstrates TLC-SERS applications in diverse analytical relevant topics such as environmental pollutants, illegal additives, pesticide residues, toxic ingredients, biological molecules, and chemical substances. Important properties such as stationary phase, separation efficiency, and sensitivity are discussed. In addition, future perspectives for improving the efficiency of TLC-SERS in real sample detecting are outlined.
Collapse
Affiliation(s)
- Meizhen Zhang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Wu
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China
| |
Collapse
|
17
|
Malik R, Joshi N, Tomer VK. Functional graphitic carbon (IV) nitride: A versatile sensing material. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Surface-enhanced Raman spectroscopy tandem with derivatized thin-layer chromatography for ultra-sensitive on-site detection of histamine from fish. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Markina NE, Goryacheva IY, Markin AV. Surface-Enhanced Raman Spectroscopy for the Determination of Medical and Narcotic Drugs in Human Biofluids. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s106193482208007x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Facile Synthesis of Diatomite/β-Cyclodextrin Composite and Application for the Adsorption of Diphenolic Acid from Wastewater. MATERIALS 2022; 15:ma15134588. [PMID: 35806712 PMCID: PMC9267557 DOI: 10.3390/ma15134588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023]
Abstract
Diphenolic acid (DPA) is a kind of endocrine-disrupting compound, which brings serious health problems to humans and animals. An eco-friendly and cost-effective adsorbent was prepared through a simple method, in which the β-Cyclodextrin(β-CD) was crosslinked onto the surface of diatomite (DA), the as-prepared DA/β-CD composite showed higher adsorption efficiency for DPA than DA as the host–guest interaction between DPA and β-CD. DA is a kind of biosilica with a hierarchical pore structure that provides enough surface area for the DA/β-CD. The surface area and pore size of DA/β-CD were investigated by nitrogen adsorption and desorption. The DA/β-CD composite illustrated a good adsorption capability, and was used for removing DPA from wastewater. The adsorption ratio of DPA could achieve 38% with an adsorption amount of 9.6 mg g−1 under room temperature at pH = 6. The adsorption isotherm curves followed the Langmuir (R2 = 0.9867) and Freundlich (R2 = 0.9748) models. In addition, the regeneration rate of the DA/β-CD was nearly at 80.32% after three cycles of regeneration. These results indicated that the DA/β-CD has the potential for practical removal of the EDC contaminants from wastewater.
Collapse
|
21
|
Enhanced oil recovery: QM/MM based descriptors for anionic surfactant salt-resistance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
De Tommasi E, De Luca AC. Diatom biosilica in plasmonics: applications in sensing, diagnostics and therapeutics [Invited]. BIOMEDICAL OPTICS EXPRESS 2022; 13:3080-3101. [PMID: 35774319 PMCID: PMC9203090 DOI: 10.1364/boe.457483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 06/01/2023]
Abstract
Several living organisms are able to synthesize complex nanostructures provided with peculiar physical and chemical properties by means of finely-tuned, genetically controlled biomineralization processes. Frustules, in particular, are micro- and nano-structured silica shells produced by ubiquitous diatom microalgae, whose optical properties have been recently exploited in photonics, solar energy harvesting, and biosensing. Metallization of diatom biosilica, both in the shape of intact frustules or diatomite particles, can trigger plasmonic effects that in turn can find application in high-sensitive detection platforms, allowing to obtain effective nanosensors at low cost and on a large scale. The aim of the present review article is to provide a wide, complete overview on the main metallization techniques applied to diatom biosilica and on the principal applications of diatom-based plasmonic devices mainly but not exclusively in the fields of biochemical sensing, diagnostics and therapeutics.
Collapse
Affiliation(s)
- Edoardo De Tommasi
- National Research Council, Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Unit of Naples, Via P. Castellino 111, I-80131, Naples, Italy
| | - Anna Chiara De Luca
- National Research Council, Institute for Endocrinology and Experimental Oncology "Gaetano Salvatore", Unit of Naples, Via P. Castellino 111, I-80131, Naples, Italy
| |
Collapse
|
23
|
Hou X, Sivashanmugan K, Zhao Y, Zhang B, Wang AX. Multiplex Sensing of Complex Mixtures by Machine Vision Analysis of TLC-SERS Images. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 357:131355. [PMID: 35221529 PMCID: PMC8880841 DOI: 10.1016/j.snb.2021.131355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thin layer chromatography in tandem with surface-enhanced Raman scattering (TLC-SERS) has demonstrated tremendous potentials as a new analytical chemistry tool to detect a wide range of substances from real-world samples. However, it still faces significant challenges of multiplex sensing from complex mixtures due to the imperfect separation by TLC and the resulting interference of SERS detection. In this article, we propose a multiplex sensing method of complex mixtures by machine vision analysis of the scanning image of the TLC-SERS results. Briefly, various pure substances in solution and the complex mixture solution are separated by TLC followed by one-dimensional SERS scanning of the entire TLC plate, which generates TLC-SERS images of all target substances along the chromatography path. After that, a machine vision method is employed to extract the template images from the TLC-SERS images of pure substance solutions. Finally, we apply a feature point matching strategy based on the Winner-take-all principle, which matches the template image of each pure substance with the mixture image to confirm the existence and derive the position of each target substance in the TLC plate, respectively. Our experimental results based on the mixture solution of five different substances show that the proposed machine vision analysis is highly selective, sensitive and does not require artificial analysis of the SERS spectra. Therefore, we envision that the proposed machine vision analysis of the TLC-SERS imaging is an objective, accurate, and efficient method for multiplex sensing of trace level of target substances from complex mixtures.
Collapse
Affiliation(s)
- Xingwei Hou
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
- State Key Laboratory of Precision Measurement Technology and Instrument and School of Precision Instruments & Opto-Electronics Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Kundan Sivashanmugan
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Yong Zhao
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
- School of Electrical Engineering, The Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Yanshan University, Qinhuangdao, Hebei 066004, P.R. China
| | - Boxin Zhang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Alan X. Wang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
24
|
Tian X, Yu Q, Kong X, Zhang M. Preparation of Plasmonic Ag@PS Composite via Seed-Mediated In Situ Growth Method and Application in SERS. Front Chem 2022; 10:847203. [PMID: 35360532 PMCID: PMC8963369 DOI: 10.3389/fchem.2022.847203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022] Open
Abstract
The colloidal polystyrene (PS) was synthesized and decorated with silver nanoparticles (Ag NPs). The plasmonic Ag@PS nanocomposite was prepared by loading Ag NPs on PS microsphere through a seed-mediated in situ growth route. The property of Ag NPs deposited on the PS microsphere could be precisely controlled by adjusting the concentration of the chemicals used in the growth medium. The growth step is only limited by the diffusion of growing species in the growth media to the surface of the Ag seed. The Ag@PS prepared via the in situ growth method exhibited two advantages compared with the self-assembled PS/Ag. First, the high-density of Ag NPs were successfully deposited on the surface of PS as the electroless-deposited Ag seed process, which brings nearly three times SERS enhancement. Second, the rapid preparation process for in situ growth method (half an hour, 10 h for the self-assembled method). The PS/Ag could detect Nile blue A (NBA) down to 10-7 M by SERS. Furthermore, the plasmonic Ag@PS SERS substrate was used for pesticide identification. The on-site monitoring malachite green (MG) from fish was achieved by portable Raman spectrometer, and the limit of detection (LOD) was 0.02 ppm. The Ag@PS substrate has also shown capability for simultaneously sensing multiple pesticides by SERS.
Collapse
Affiliation(s)
- Xiaoran Tian
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, China
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, China
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, China
| | - Miao Zhang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
25
|
Zhang M, Liao J, Kong X, Yu Q, Zhang M, Wang AX. Ultra-Sensitive, Rapid and On-Site Sensing Harmful Ingredients Used in Aquaculture with Magnetic Fluid SERS. BIOSENSORS 2022; 12:bios12030169. [PMID: 35323439 PMCID: PMC8946156 DOI: 10.3390/bios12030169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 06/12/2023]
Abstract
The integration of surface-enhanced Raman scattering (SERS) spectroscopy with magnetic fluid provides significant utility in point-of-care (POC) testing applications. Bifunctional magnetic-plasmonic composites have been widely employed as SERS substrates. In this study, a simple and cost-effective approach was developed to synthesize magnetic-plasmonic SERS substrates by decorating silver nanoparticles onto magnetic Fe3O4 nanoparticles (AgMNPs), which function both as SERS-active substrates and magnetic fluid particles. The strong magnetic responsivity from AgMNPs can isolate, concentrate, and detect target analytes from the irregular surface of fish skin rapidly. We fabricate a microfluid chip with three sample reservoirs that confine AgMNPs into ever smaller volumes under an applied magnetic field, which enhances the SERS signal and improves the detection limit by two orders of magnitude. The magnetic fluid POC sensor successfully detected malachite green from fish with excellent selectivity and high sensitivity down to the picomolar level. This work achieves a label-free, non-destructive optical sensing approach with promising potential for the detection of various harmful ingredients in food or the environment.
Collapse
Affiliation(s)
- Meizhen Zhang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (M.Z.); (J.L.); (Q.Y.)
| | - Jingru Liao
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (M.Z.); (J.L.); (Q.Y.)
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (M.Z.); (J.L.); (Q.Y.)
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (M.Z.); (J.L.); (Q.Y.)
| | - Miao Zhang
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Alan X. Wang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
26
|
Dong J, Yang C, Wu H, Wang Q, Cao Y, Han Q, Gao W, Wang Y, Qi J, Sun M. Two-Dimensional Self-Assembly of Au@Ag Core-Shell Nanocubes with Different Permutations for Ultrasensitive SERS Measurements. ACS OMEGA 2022; 7:3312-3323. [PMID: 35128242 PMCID: PMC8811882 DOI: 10.1021/acsomega.1c05452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2022] [Indexed: 05/08/2023]
Abstract
Different self-assembly methods not only directly change the arrangement of noble metal particles on the substrate but also indirectly affect the local electromagnetic field distribution and intensity of the substrate under specific optical excitation conditions, which leads to distinguished different enhancement effects of the structure on molecular Raman signals. In this paper, first, the gold species growth method was used to prepare the silver-coated gold nanocubes (Au@Ag NCs) with regular morphology and uniform size, and then the two-phase and three-phase liquid-liquid self-assembly and evaporation-induced self-assembly methods were used to obtain the substrate structure with different NC arrangement patterns. The optimal arrangement of NCs was found by transverse comparison of Raman signal detection of probe molecules with the same concentration. Subsequently, surface-enhanced Raman scattering (SERS) measurements of Rhodamine (Rh6G) and aspartame (APM) were carried out. Furthermore, the finite element method (FEM) was employed to calculate the local electromagnetic fields of the substrates with different Au@Ag NC arrangements, and the calculated results were in agreement with the experimental results. The experimental results show that the SERS-active substrate was largely associated with the different arrangements of Au@Ag NCs, and the island membrane Au@Ag NCs array substrate obtained by evaporation-induced self-assembly can generate a strong local electromagnetic field due to the edge and corner bonding gap between the tightly arranged NCs; this endows the substrate with benign sensitivity and reproducibility and has great potential in molecular detection, biosensing, and food safety monitoring.
Collapse
Affiliation(s)
- Jun Dong
- School
of Electronic Engineering, Xi’an
University of Posts and Telecommunications, Xi’an 710121, China
| | - Chengyuan Yang
- School
of Electronic Engineering, Xi’an
University of Posts and Telecommunications, Xi’an 710121, China
| | - Haoran Wu
- School
of Electronic Engineering, Xi’an
University of Posts and Telecommunications, Xi’an 710121, China
| | - Qianying Wang
- School
of Electronic Engineering, Xi’an
University of Posts and Telecommunications, Xi’an 710121, China
| | - Yi Cao
- School
of Electronic Engineering, Xi’an
University of Posts and Telecommunications, Xi’an 710121, China
| | - Qingyan Han
- School
of Electronic Engineering, Xi’an
University of Posts and Telecommunications, Xi’an 710121, China
| | - Wei Gao
- School
of Electronic Engineering, Xi’an
University of Posts and Telecommunications, Xi’an 710121, China
| | - Yongkai Wang
- School
of Electronic Engineering, Xi’an
University of Posts and Telecommunications, Xi’an 710121, China
| | - Jianxia Qi
- School
of Science, Xi’an University of Posts
and Telecommunications, Xi’an 710121, China
| | - Mengtao Sun
- School
of Mathematics and Physics, University of
Science and Technology Beijing, Beijing 100083, China
- Collaborative
Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
27
|
Emerging trends in point-of-care sensors for illicit drugs analysis. Talanta 2022; 238:123048. [PMID: 34801905 DOI: 10.1016/j.talanta.2021.123048] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/18/2022]
Abstract
Consumption of illicit narcotic drugs and fatal or criminal activities under their influence has become an utmost concern worldwide. These drugs influence an individual's feelings, perceptions, and emotions by altering the state of consciousness and thus can result in serious safety breaches at critical workplaces. Point-of-care drug-testing devices have become the need-of-the-hour for many sections such as the law enforcement agencies, the workplaces, etc. for safety and security. This review focuses on the recent progress on various electrochemical and optical nanosensors developed for the analysis of the most common illicit drugs (or their metabolites) such as tetrahydrocannabinol (THC), cocaine (COC), opioids (OPs), amphetamines & methamphetamine, and benzodiazepine (BZDs). The paper also highlights the sensitivity and selectivity of various sensing modalities along with evolving parameters such as real-time monitoring and measurement via a smart user interface. An overall outlook of recent technological advances in point of care (POC) devices and guided insights and directions for future research is presented.
Collapse
|
28
|
Pang R, Zhu Q, Wei J, Meng X, Wang Z. Enhancement of the Detection Performance of Paper-Based Analytical Devices by Nanomaterials. Molecules 2022; 27:508. [PMID: 35056823 PMCID: PMC8779822 DOI: 10.3390/molecules27020508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 12/01/2022] Open
Abstract
Paper-based analytical devices (PADs), including lateral flow assays (LFAs), dipstick assays and microfluidic PADs (μPADs), have a great impact on the healthcare realm and environmental monitoring. This is especially evident in developing countries because PADs-based point-of-care testing (POCT) enables to rapidly determine various (bio)chemical analytes in a miniaturized, cost-effective and user-friendly manner. Low sensitivity and poor specificity are the main bottlenecks associated with PADs, which limit the entry of PADs into the real-life applications. The application of nanomaterials in PADs is showing great improvement in their detection performance in terms of sensitivity, selectivity and accuracy since the nanomaterials have unique physicochemical properties. In this review, the research progress on the nanomaterial-based PADs is summarized by highlighting representative recent publications. We mainly focus on the detection principles, the sensing mechanisms of how they work and applications in disease diagnosis, environmental monitoring and food safety management. In addition, the limitations and challenges associated with the development of nanomaterial-based PADs are discussed, and further directions in this research field are proposed.
Collapse
Affiliation(s)
- Renzhu Pang
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Jia Wei
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Xianying Meng
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- School of Applied Chemical Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
29
|
Tian X, Fan Q, Guo J, Yu Q, Xu L, Kong X. Surface-enhanced Raman scattering of flexible cotton fiber-Ag for rapid adsorption and detection of malachite green in fish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120174. [PMID: 34284280 DOI: 10.1016/j.saa.2021.120174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The residual of malachite green (MG) in fish is one of the major food safety concerns for consumers. It is important to develop simple and instant analytical methods to identify MG residues in fish. We fabricated flexible cotton surface-enhanced Raman scattering substrate, which offers good flexibility, uniformity and excellent adsorption capability. The UV-vis DRS spectra, transmission electron microscopy and scanning electron elemental mapping images shown that the Ag NPs were closely packed on the surface of cotton fiber. The adsorption feature of cotton fiber could adsorb MG from solution and surface of fish. The Quick Easy Cheap Effective Rugged and Safe (QuEChERS) sample preparation method was used to adsorb MG in fish for SERS sensing. The limit of detection of MG in fish using this developed method was as low as 0.05 ppm. The QuEChERS-SERS analysis method exhibits the capability for multiplex detecting mixture of MG and Dimetridazole at different ratios (5 ppm, 1/400 and 1/4000) from fish. The results indicated that the cotton fiber-Ag composite was suitable employed as SERS substrate for simple and instant detecting trace contaminants in food.
Collapse
Affiliation(s)
- Xiaoran Tian
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Qinzhen Fan
- College of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Lingzi Xu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| |
Collapse
|
30
|
Khan MJ, Rai A, Ahirwar A, Sirotiya V, Mourya M, Mishra S, Schoefs B, Marchand J, Bhatia SK, Varjani S, Vinayak V. Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations. Bioengineered 2021; 12:9531-9549. [PMID: 34709977 PMCID: PMC8810035 DOI: 10.1080/21655979.2021.1996748] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae have been recognized as one of the most efficient microorganisms to remediate industrial effluents. Among microalgae diatoms are silica shelled unicellular eukaryotes, found in all types of water bodies and flourish very well even in wastewater. They have their silica cell wall made up of nano arrayed pores arranged in a uniform fashion. Therefore, they act as smart nanocontainers to adsorb various trace metals, dyes, polymers, and drugs which are hazardous to human as well to aquatic life. The beautiful nanoarchitecture in diatoms allows them to easily bind to ligands of choice to form a nanocomposite structure with the pollutants which can be a chemical or biological component. Such naturally available diatom nanomaterials are economical and highly sensitive compared to manmade artificial silica nanomaterials to help in facile removal of the toxic pollutants from wastewater. This review is thus focused on employing diatoms to remediate various pollutants such as heavy metals, dyes, hydrocarbons detected in the wastewater. It also includes different microalgae as biosensors for determination of pollutants in effluents and the perspectives for nanotechnological applications in the field of remediating pollutants through microalgae. The review also discusses in length the hurdles and perspectives of employing microalgae in wastewater remediation.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Anshuman Rai
- School of Engineering, Department of Biotechnology, Mmu, Deemed University, Ambala,India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Megha Mourya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Sudhanshu Mishra
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | | | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| |
Collapse
|
31
|
McNeill L, Megson D, Linton PE, Norrey J, Bradley L, Sutcliffe OB, Shaw KJ. Lab-on-a-Chip approaches for the detection of controlled drugs, including new psychoactive substances: A systematic review. Forensic Chem 2021. [DOI: 10.1016/j.forc.2021.100370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Liu S, Guo J, Hinestroza JP, Kong X, Yu Q. Fabrication of plasmonic absorbent cotton as a SERS substrate for adsorption and detection of harmful ingredients in food. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Zhang B, Hou X, Zhen C, Wang AX. Sub-Part-Per-Billion Level Sensing of Fentanyl Residues from Wastewater Using Portable Surface-Enhanced Raman Scattering Sensing. BIOSENSORS-BASEL 2021; 11:bios11100370. [PMID: 34677326 PMCID: PMC8534101 DOI: 10.3390/bios11100370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
Abstract
Detection of illicit drug residues from wastewater provides a new route toward community-level assessment of drug abuse that is critical to public health. However, traditional chemistry analytical tools such as high-performance liquid chromatography in tandem with mass spectrometry (HPLC-MS) cannot meet the large-scale testing requirement in terms of cost, promptness, and convenience of use. In this article, we demonstrated ultra-sensitive and portable surface-enhanced Raman scattering sensing (SERS) of fentanyl, a synthetic opioid, from sewage water and achieved quantitative analysis through principal component analysis and partial least-squares regression. The SERS substrates adopted in this application were synthesized by in situ growth of silver nanoparticles on diatomaceous earth films, which show ultra-high sensitivity down to 10 parts per trillion in artificially contaminated tap water in the lab using a commercial portable Raman spectrometer. Based on training data from artificially contaminated tap water, we predicted the fentanyl concentration in the sewage water from a wastewater treatment plant to be 0.8 parts per billion (ppb). As a comparison, the HPLC-MS confirmed the fentanyl concentration was below 1 ppb but failed to provide a specific value of the concentration since the concentration was too low. In addition, we further proved the validity of our SERS sensing technique by comparing SERS results from multiple sewage water treatment plants, and the results are consistent with the public health data from our local health authority. Such SERS sensing technique with ultra-high sensitivity down to sub-ppb level proved its feasibility for point-of-care detection of illicit drugs from sewage water, which is crucial to assess public health.
Collapse
|
34
|
Zhang S, Xu Z, Guo J, Wang H, Ma Y, Kong X, Fan H, Yu Q. Layer-by-Layer Assembly of Polystyrene/Ag for a Highly Reproducible SERS Substrate and Its Use for the Detection of Food Contaminants. Polymers (Basel) 2021; 13:3270. [PMID: 34641085 PMCID: PMC8512144 DOI: 10.3390/polym13193270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022] Open
Abstract
Polystyrene (PS) spheres were prepared through an emulsifier-free emulsion polymerization method, in which the reaction time, ionic strength, concentrations of copolymer were studied in detail. The resulting PS microspheres and Ag nanoparticles were used to construct a surface enhanced Raman scattering (SERS) substrate by a layer-by-layer assembly method. A relatively uniform distribution of PS/Ag in the films was obtained, and the multilayer substrate presented excellent SERS reproducibility and a tunable enhancement effect. The SERS substrate was used for detecting harmful pesticides (malachite green and dimetridazole) in food samples, with a limit of detection as low as 3.5 ppb. The obtained plasmonic composite has a promising future in the field of SERS sensing.
Collapse
Affiliation(s)
- Sihan Zhang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (S.Z.); (Z.X.); (H.F.)
| | - Zhihua Xu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (S.Z.); (Z.X.); (H.F.)
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China;
| | - Haiying Wang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 210037, China;
| | - Yibo Ma
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland;
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (S.Z.); (Z.X.); (H.F.)
| | - Hongtao Fan
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (S.Z.); (Z.X.); (H.F.)
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (S.Z.); (Z.X.); (H.F.)
| |
Collapse
|
35
|
Diatom Frustule Array for Flow-Through Enhancement of Fluorescent Signal in a Microfluidic Chip. MICROMACHINES 2021; 12:mi12091017. [PMID: 34577659 PMCID: PMC8469004 DOI: 10.3390/mi12091017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Diatom frustules are a type of natural biomaterials that feature regular shape and intricate hierarchical micro/nano structures. They have shown excellent performance in biosensing, yet few studies have been performed on flow-through detection. In this study, diatom frustules were patterned into step-through holes and bonded with silicon substrate to form an open-ended filtration array. Then they were fixed into a microfluidic chip with a smartphone-based POCT. Human IgG and FITC-labeled goat–anti-human IgG were adopted to investigate the adsorption enhancement when analyte flowed through diatom frustules. The results indicated up to 16-fold enhancement of fluorescent signal sensitivity for the flow-through mode compared with flow-over mode, at a low concentration of 10.0 μg/mL. Moreover, the maximum flow rate reached 2.0 μL/s, which resulted in a significant decrease in the testing time in POCT. The adsorption simulation results of diatom array embedded in the microchannel shows good agreement with experimental results, which further proves the filtration enrichment effect of the diatom array. The methods put forward in this study may open a new window for the application of diatom frustules in biosensing platforms.
Collapse
|
36
|
Tian X, Zhai P, Guo J, Yu Q, Xu L, Yu X, Wang R, Kong X. Fabrication of plasmonic cotton gauze-Ag composite as versatile SERS substrate for detection of pesticides residue. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119766. [PMID: 33872951 DOI: 10.1016/j.saa.2021.119766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Plasmonic cotton gauze-Ag composite were fabricated through a simple, instant and cost-effective way, in which the Ag NPs were immobilized on the surface of cotton gauze through in-situ growth process. The in-situ growth of Ag NPs was started from electroless-immobilized Ag seeds on the surface of cotton fiber, which could form numerous hot spots for SERS compared with current method. The cotton gauze-Ag composite was employed as versatile substrate in surface-enhanced Raman scattering (SERS) spectroscopy. The plasmonic cotton gauze-Ag exhibited excellent uniformity, temporal stability and enhanced effect for SERS measurement. The detection limit of P-aminothiopheno (PATP) was 10-8 M. Furthermore, the plasmonic cotton gauze-Ag composite presented excellent flexibility and adsorption capability, which enable to adsorb and detect pesticide residue from irregular surface of cucumber directly by simple swabbing process, the detection limit could achieve 0.1 ppm. The cotton gauze-Ag composite also shown excellent selectivity is SERS sensing. The fabrication method could be simply extended to other cellulose compound, such as absorbent cotton, paper and even for natural fibers. This study proposed a new method for fabricating the cost-effective, eco-friendly and flexible SERS substrates.
Collapse
Affiliation(s)
- Xiaoran Tian
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Peng Zhai
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| | - Lingzi Xu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Xinghua Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Rui Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| |
Collapse
|
37
|
Li M, Zhang X. Nanostructure-Based Surface-Enhanced Raman Spectroscopy Techniques for Pesticide and Veterinary Drug Residues Screening. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:194-205. [PMID: 32939593 DOI: 10.1007/s00128-020-02989-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Pesticide and veterinary drug residues in food and environment pose a threat to human health, and a rapid, super-sensitive, accurate and cost-effective analysis technique is therefore highly required to overcome the disadvantages of conventional techniques based on mass spectrometry. Recently, the surface-enhanced Raman spectroscopy (SERS) technique emerges as a potential promising analytical tool for rapid, sensitive and selective detections of environmental pollutants, mostly owing to its possible simplified sample pretreatment, gigantic detectable signal amplification and quick target analyte identification via finger-printing SERS spectra. So theoretically the SERS detection technology has inherent advantages over other competitors especially in complex environmental matrices. The progress in nanostructure SERS substrates and portable Raman appliances will promote this novel detection technology to play an important role in future rapid on-site assay. This paper reviews the advances in nanostructure-based SERS substrates, sensors and relevant portable integrated systems for environmental analysis, highlights the potential applications in the detections of synthetic chemicals such as pesticide and veterinary drug residues, and also discusses the challenges of SERS detection technique for actual environmental monitoring in the future.
Collapse
Affiliation(s)
- Mingtao Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Xiang Zhang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
38
|
Chen YC, Hong SW, Wu HH, Wang YL, Chen YF. Rapid Formation of Nanoclusters for Detection of Drugs in Urine Using Surface-Enhanced Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1789. [PMID: 34361175 PMCID: PMC8308440 DOI: 10.3390/nano11071789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023]
Abstract
We developed a method based on surface-enhanced Raman spectroscopy (SERS) and a sample pretreatment process for rapid, sensitive, reproducible, multiplexed, and low-cost detection of illegal drugs in urine. The abuse of new psychoactive substances (NPS) has become an increasingly serious problem in many countries. However, immunoassay-based screening kits for NPS are usually not available because of the lack of corresponding antibodies. SERS has a great potential for rapid detection of NPS because it can simultaneously detect multiple kinds of drugs without the use of antibodies. To achieve highly sensitive SERS detection of drugs, sodium bromide was first employed to induce the rapid formation of Ag nanoclusters by aggregating silver nanoparticles (AgNPs) in the extracted sample solution. SERS measurements were performed immediately after the sample pretreatment without incubation. The three-dimensional SERS hot spots were believed to form significantly within the nanoclusters, providing strong SERS enhancement effects. The displacement of citrate molecules on the surfaces of the AgNPs by bromide ions helped increase the adsorption of drug molecules, increasing their areal density. We demonstrated the simultaneous detection of two kinds of NPS, methcathinone and 4-methylmethcathinone, in urine at a concentration as low as 0.01 ppm.
Collapse
Affiliation(s)
- Yun-Chu Chen
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-C.C.); (S.-W.H.); (H.-H.W.)
| | - Shang-Wen Hong
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-C.C.); (S.-W.H.); (H.-H.W.)
| | - Huang-Hesin Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-C.C.); (S.-W.H.); (H.-H.W.)
| | - Yuh-Lin Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan;
| | - Yih-Fan Chen
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (Y.-C.C.); (S.-W.H.); (H.-H.W.)
| |
Collapse
|
39
|
Fabrication and Application of SERS-Active Cellulose Fibers Regenerated from Waste Resource. Polymers (Basel) 2021; 13:polym13132142. [PMID: 34209824 PMCID: PMC8272151 DOI: 10.3390/polym13132142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 12/30/2022] Open
Abstract
The flexible SERS substrate were prepared base on regenerated cellulose fibers, in which the Au nanoparticles were controllably assembled on fiber through electrostatic interaction. The cellulose fiber was regenerated from waste paper through the dry-jet wet spinning method, an eco-friendly and convenient approach by using ionic liquid. The Au NPs could be controllably distributed on the surface of fiber by adjusting the conditions during the process of assembling. Finite-difference time-domain theoretical simulations verified the intense local electromagnetic fields of plasmonic composites. The flexible SERS fibers show excellent SERS sensitivity and adsorption capability. A typical Raman probe molecule, 4-Mercaptobenzoicacid (4-MBA), was used to verify the SERS cellulose fibers, the sensitivity could achieve to 10−9 M. The flexible SERS fibers were successfully used for identifying dimetridazole (DMZ) from aqueous solution. Furthermore, the flexible SERS fibers were used for detecting DMZ from the surface of fish by simply swabbing process. It is clear that the fabricated plasmonic composite can be applied for the identifying toxins and chemicals.
Collapse
|
40
|
Sun Z, Kang C, Fang X, Liu H, Guo J, Zhang X. A SERS-active capillary for direct molecular trace detection in liquids. NANOSCALE ADVANCES 2021; 3:2617-2622. [PMID: 36134153 PMCID: PMC9418469 DOI: 10.1039/d1na00082a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/07/2021] [Indexed: 06/15/2023]
Abstract
The development of Surface Enhanced Raman Scattering (SERS) promotes the wide application of Raman spectroscopy in chemical and biomolecular detection. SERS detection relies on analytes in close contact with the metallic surface, and therefore direct molecular trace detection in the liquid phase is difficult. In this paper, static liquid phase SERS detection was performed simply using a capillary without pre-functionalization. Gold nanoparticles (AuNPs) with an optimized size ensure localized surface plasmons in resonance with the exciting laser light. Grazing incidence and multimode interference in the capillary ensure that the longitudinal Raman signal is effectively excited and accumulated. An enhancement factor as high as 108 and a detection limit of 10-9 M of crystal violet in aqueous solution have been achieved.
Collapse
Affiliation(s)
- Zhoutao Sun
- Institute of Information Photonics Technology and Faculty of Science, Beijing University of Technology Beijing 100124 China
| | - Chen Kang
- Institute of Information Photonics Technology and Faculty of Science, Beijing University of Technology Beijing 100124 China
| | - Xiaohui Fang
- Institute of Information Photonics Technology and Faculty of Science, Beijing University of Technology Beijing 100124 China
| | - Hongmei Liu
- Institute of Information Photonics Technology and Faculty of Science, Beijing University of Technology Beijing 100124 China
| | - Jinxin Guo
- Institute of Information Photonics Technology and Faculty of Science, Beijing University of Technology Beijing 100124 China
| | - Xinping Zhang
- Institute of Information Photonics Technology and Faculty of Science, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
41
|
Han S, Zhang C, Lin S, Sha X, Hasi W. Sensitive and reliable identification of fentanyl citrate in urine and serum using chloride ion-treated paper-based SERS substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119463. [PMID: 33493937 DOI: 10.1016/j.saa.2021.119463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Recently, the phenomenon of fentanyls overdose leading to death is emerging in an endless stream. There is an urgent requirement to quickly identify fentanyl content in body fluids for medical and judicial purposes. With this in mind, we present a paper-based SERS substrate decorated with uniform gold nanospheres treated by chloride ion for the detection of fentanyl citrate in urine and serum. In particular, the paper-based SERS sensor was prepared by liquid/liquid self-assembly technique and chloride ion was introduced to clean and modify the substrate surface, which improved the sensitivity of the solid substrate with an enhancement factor (EF) as high as 1.64 × 105. Moreover, the uniformity of each paper-based substrate and the repeatability on different batches of substrate were excellent, and there was no obvious change in the intensity response of Raman spectra within a month. As a result, the quantitative analysis of fentanyl citrate in artificial urine and rat serum were performed based on the modified paper-based substrate with the limit of detection as low as 0.59 μg/mL and 2.78 μg/mL, respectively. Both the concentrations of the two biological samples with the Raman signal intensity were linearly plotted and the recovery of the spiked samples with different concentrations was collected to verify the accuracy of the quantitative curves. All the results suggest that this work makes SERS method available for the rapid identification and quantitative analysis of illicit drug in the real biological samples.
Collapse
Affiliation(s)
- Siqingaowa Han
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, PR China; Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia, Tongliao 028007, PR China
| | - Chen Zhang
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, PR China
| | - Shuang Lin
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, PR China; School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, PR China.
| | - Xuanyu Sha
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, PR China
| | - Wuliji Hasi
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, PR China.
| |
Collapse
|
42
|
Shafiei N, Nasrollahzadeh M, Iravani S. Green Synthesis of Silica and Silicon Nanoparticles and Their Biomedical and Catalytic Applications. COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1904912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nasrin Shafiei
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | | | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
43
|
Abstract
Miniaturization is an important trend in modern analytical instrument development, including miniaturized gas chromatography and liquid chromatography, as well as micro bore columns and capillary-to-microfluidics-based platforms. Apart from the miniaturization of the separation column, which is the core part of a chromatographic system, other parts of the system, including the sampler, pumping system, gradient generation, and detection systems, have been miniaturized. Miniaturized liquid chromatography significantly reduces solvent and sample consumption while providing comparable or even better separation efficiency. When liquid chromatography is coupled with mass spectroscopy, a low flow rate can increase the ionization efficiency, leading to enhanced sensitivity of the mass spectrometer. In contrast, normal-scale liquid chromatography suffers from its relatively high volumetric flow rate, which challenges the scanning frequency of the mass spectrometer. On the other hand because of the small sample size, other detection strategies such as spectrometric methods cannot provide sufficient sensitivity and limits of detection. In this sense, mass spectrometry has become the detection method of choice for micro-scale liquid-phase chromatography. Miniaturized liquid chromatography can diminish sample dilution efficiently when extremely small amounts of samples are used. The main driving force for this miniaturization trend, especially in liquid-phase separations, is the desperate need for microscale analyses of biological and clinical samples, given these samples are precious and the sample size is usually very small. At present, microscale liquid-phase chromatography is the only method of choice for such small, precious, and highly informative samples. The miniaturization of liquid chromatography systems, especially chromatographic columns, would be advantageous to the modularization and integration of liquid chromatography instrumental systems. Chip liquid chromatography is an integration of chromatography columns, liquid control systems, and detection methods on a single microfluidic chip. Chip liquid chromatography is an excellent format for the miniaturization of liquid chromatography systems, and it has already attracted significant attention from academia and industry. However, this attempt is challenging, and great effort is required on fundamental techniques, such as the substrate material of the microfluidic chip, structure of the micro-chromatography column, fluid control method, and detection methods, in order to make the chips suitable for liquid chromatography. Currently, the major problem in chip liquid chromatography is that the properties of the chip substrate materials cannot meet the requirements for further miniaturization and integration of chip liquid chromatography. The strength of the existing chip substrate materials is generally below 60 MPa, and the material properties limit further advances in the miniaturization and integration of chromatographic chips. Therefore, new chip substrate materials and the standard of chip channel design such as channel size and channel structure should be the key for further development of chip liquid chromatography. Mainstream instrumentation companies as well as new start-up innovation companies are now undertaking efforts toward the development of microchip liquid chromatographic products. Agilent, the first instrumentation company that introduced commercial microchip liquid chromatographic columns to the market, has led this field. Apart from microchip-based columns, Agilent introduced trap columns for different kinds of biological molecules as well as gradient generation systems for microchip-based liquid phase chromatography. Recently, another start-up company introduced microchip columns based on the in situ microfabrication of the column bed rather than packing the column with a particulate material. Such developments in microfabrication may further propel the advancement of micro-scale liquid-phase chromatography to an unprecedented level, which is beyond the conventional components and materials employed in normal-scale liquid chromatography. This review introduces the recent research progress in microchip liquid chromatography technologies, and briefly discusses the current state of commercialization of microchips for liquid chromatography by major instrumentation companies.
Collapse
Affiliation(s)
- Hanrong WEN
- 厦门大学化学化工学院, 福建 厦门 361005
- College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jue ZHU
- 厦门大学化学化工学院, 福建 厦门 361005
- College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bo ZHANG
- 厦门大学化学化工学院, 福建 厦门 361005
- College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
44
|
Dhanker R, Hussain T, Tyagi P, Singh KJ, Kamble SS. The Emerging Trend of Bio-Engineering Approaches for Microbial Nanomaterial Synthesis and Its Applications. Front Microbiol 2021; 12:638003. [PMID: 33796089 PMCID: PMC8008120 DOI: 10.3389/fmicb.2021.638003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Micro-organisms colonized the world before the multi-cellular organisms evolved. With the advent of microscopy, their existence became evident to the mankind and also the vast processes they regulate, that are in direct interest of the human beings. One such process that intrigued the researchers is the ability to grow in presence of toxic metals. The process seemed to be simple with the metal ions being sequestrated into the inclusion bodies or cell surfaces enabling the conversion into nontoxic nanostructures. However, the discovery of genome sequencing techniques highlighted the genetic makeup of these microbes as a quintessential aspect of these phenomena. The findings of metal resistance genes (MRG) in these microbes showed a rather complex regulation of these processes. Since most of these MRGs are plasmid encoded they can be transferred horizontally. With the discovery of nanoparticles and their many applications from polymer chemistry to drug delivery, the demand for innovative techniques of nanoparticle synthesis increased dramatically. It is now established that microbial synthesis of nanoparticles provides numerous advantages over the existing chemical methods. However, it is the explicit use of biotechnology, molecular biology, metabolic engineering, synthetic biology, and genetic engineering tools that revolutionized the world of microbial nanotechnology. Detailed study of the micro and even nanolevel assembly of microbial life also intrigued biologists and engineers to generate molecular motors that mimic bacterial flagellar motor. In this review, we highlight the importance and tremendous hidden potential of bio-engineering tools in exploiting the area of microbial nanoparticle synthesis. We also highlight the application oriented specific modulations that can be done in the stages involved in the synthesis of these nanoparticles. Finally, the role of these nanoparticles in the natural ecosystem is also addressed.
Collapse
Affiliation(s)
- Raunak Dhanker
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| | - Touseef Hussain
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Priyanka Tyagi
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| | - Kawal Jeet Singh
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Shashank S. Kamble
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| |
Collapse
|
45
|
Xia L, Li G. Recent progress of microfluidics in surface-enhanced Raman spectroscopic analysis. J Sep Sci 2021; 44:1752-1768. [PMID: 33630352 DOI: 10.1002/jssc.202001196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022]
Abstract
Surface-enhanced Raman spectroscopy is a significant analytical tool capable of fingerprint identification of molecule in a rapid and ultrasensitive manner. However, it is still hard to meet the requirements of practical sample analysis. The introduction of microfluidics can effectively enhance the performance of surface-enhanced Raman spectroscopy in complex sample analysis including reproducibility, selectivity, sensitivity, and speed. This review summarizes the recent progress of microfluidics in surface-enhanced Raman spectroscopic analysis through four combination approaches. First, microfluidic synthetic techniques offer uniform nano-/microparticle fabrication approaches for reproductive surface-enhanced Raman spectroscopic analysis. Second, the integration of microchip and surface-enhanced Raman spectroscopic substrate provides advanced devices for sensitive and efficient detection. Third, microfluidic sample preparations enable rapid separation and preconcentration of analyte prior to surface-enhanced Raman spectroscopic detection. Fourth, highly integrated microfluidic devices can be employed to realize multistep surface-enhanced Raman spectroscopic analysis containing material fabrication, sample preparation, and detection processes. Furthermore, the challenges and outlooks of the application of microfluidics in surface-enhanced Raman spectroscopic analysis are discussed.
Collapse
Affiliation(s)
- Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
46
|
Affiliation(s)
- Danni Zhong
- The Fourth Affiliated Hospital Zhejiang University School of Medicine Jinhua China
- Institute of Translational Medicine Zhejiang University Hangzhou China
| | - Zhen Du
- Institute of Translational Medicine Zhejiang University Hangzhou China
| | - Min Zhou
- The Fourth Affiliated Hospital Zhejiang University School of Medicine Jinhua China
- Institute of Translational Medicine Zhejiang University Hangzhou China
- State Key Laboratory of Modern Optical Instrumentations Zhejiang University Hangzhou China
| |
Collapse
|
47
|
Shen Z, Fan Q, Yu Q, Wang R, Wang H, Kong X. Facile detection of carbendazim in food using TLC-SERS on diatomite thin layer chromatography. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119037. [PMID: 33086143 DOI: 10.1016/j.saa.2020.119037] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
This work aims to isolate and detect pesticide (carbendazim) residue in real food samples: orange juice and kale leaves. The combination of on-chip thin layer chromatography (TLC) and surface enhanced Raman scattering (SERS) spectroscopy was used for the separating and detecting of carbendazim (MBC) from the complex food sample. In order to achieve on-site detection of MBC from real food sample, the portable Raman spectrometer was coupled with TLC-SERS. The porous stationary phase composed of diatomite biosilica is beneficial for SERS enhancement and eluent migration. The experiments exhibited that the diatomite chip was suitable for TLC separation and has not shown SERS background and provided excellent separation efficiency, 10-8 M silver colloids were appropriate for the SERS measurement on TLC chip. The food sample was directly spotted onto the diatomite chip for TLC separation without any pretreatment. The separation and detection process were finished in less than 5 min, the mixture of pyrimethanil, pymetrozine and MBC could be distinguished simultaneously by TLC-SERS at one diatomite chip. The MBC in orange juice and kale were successfully detected, and a limit of detection (LOD) less than 2 ppm could be achieved.
Collapse
Affiliation(s)
- Zhengdong Shen
- School of Petrochemical Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China
| | - Qinzhen Fan
- College of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China.
| | - Rui Wang
- School of Petrochemical Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China
| | - Huan Wang
- School of Petrochemical Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China.
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, PR China.
| |
Collapse
|
48
|
Shen Z, Wang H, Yu Q, Li Q, Lu X, Kong X. On-site separation and identification of polycyclic aromatic hydrocarbons from edible oil by TLC-SERS on diatomite photonic biosilica plate. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
49
|
Wu J, Feng Y, Zhang L, Wu W. Nanocellulose-based Surface-enhanced Raman spectroscopy sensor for highly sensitive detection of TNT. Carbohydr Polym 2020; 248:116766. [DOI: 10.1016/j.carbpol.2020.116766] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022]
|
50
|
Liu G, Liu Y, Zhang M, Pettersson F, Toivakka M. Fabrication of All-Solid Organic Electrochromic Devices on Absorptive Paper Substrates Utilizing a Simplified Lateral Architecture. MATERIALS 2020; 13:ma13214839. [PMID: 33138248 PMCID: PMC7662603 DOI: 10.3390/ma13214839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022]
Abstract
Poly(3,4-ethylenedioxythiophene) doped with the polymer anion poly(styrenesulfonate), PEDOT:PSS, is a common electrochromic material used in the preparation of electrochromic devices (ECDs). In this paper, the PEDOT:PSS doped with a solvent was used both as the electrode and the electrochromic functional layer for fabrication of ECDs on absorptive paper surfaces. The doped PEDOT:PSS dispersion was assessed for the film-forming evenness, sheet resistance and conductivity, and the performance of prepared ECDs for their color contrast and switching dynamics. The ECD performance is discussed in relation to the absorptive characteristics of the substrates. The results indicate that it is feasible to prepare ECDs onto absorptive substrates, despite the partial polymer material imbibition into them. The extent of polymer absorption influences the ECD performance: an increased absorption reduces the color contrast but speeds up the color switching. The electrochemical properties of the used solid electrolyte were found to be crucial for functioning of the ECDs. Insufficient ion transport and associated high resistance led to failure of the devices.
Collapse
Affiliation(s)
- Guodong Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper-based Functional Materials of China National Light Industry, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi’an 710021, China
- Correspondence: (G.L.); (M.Z.)
| | - Yu Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper-based Functional Materials of China National Light Industry, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Meiyun Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper-based Functional Materials of China National Light Industry, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi’an 710021, China
- Correspondence: (G.L.); (M.Z.)
| | - Fredrik Pettersson
- Department of Natural Sciences/Physics, Åbo Akademi University, Porthaninkatu 3, FI-20500 Turku, Finland;
| | - Martti Toivakka
- Laboratory of Natural Materials Technology, Center for Functional Materials (FunMat), Åbo Akademi University, Porthaninkatu 3, FI-20500 Turku, Finland;
| |
Collapse
|