1
|
Sun P, Li Q, Gao N, Luo M, Chang W, Liu H, Wang B, Xue Z. Engineering an Ionic Aggregation-Induced Luminescence-Labeled Fluorescence Lateral Flow Immunoassay for C-Reactive Protein in Human Plasma. Anal Chem 2025; 97:565-573. [PMID: 39727299 DOI: 10.1021/acs.analchem.4c04803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The surge of lateral flow immunoassays (LFAs) stimulates researchers to explore the novel vibrant aggregation-induced emission luminogen (AIEgen)-doped nanoparticles to improve the accuracy and reliability of LFAs. However, the loading amount of AIEgens currently used for the LFA in microspheres is limited due to their symmetrical large conjugated skeleton structure, which significantly reduces the fluorescence brightness of the signal reporter in the LFA. Herein, an ionic AIEgens with a donor-acceptor type was developed as the signal reporter of the LFA for C-reactive protein (CRP). Ionic AIEgens are unable to enter the hydrophobic cavity of polystyrene nanoparticles (PS) because of their low hydrophobic nature. By altering ionic AIEgens with extended alkyl chains, it is possible to increase their hydrophobicity, thereby potentially increasing the loading capacity within PS. Notably, the fluorescent nanoparticles (denoted as AIETPANPs) formed by embedding (E)-4-(4-(diphenylamino)styryl)-1-octadecylpyridin-1-ium iodide (TPA) in PS showed orange-red fluorescence emission and have high fluorescence quantum yield. Anti-CRP antibody (mAb1) could be effectively conjugated to the surface of AIETPANPs by an amino-carboxyl reaction, resulting in AIETPANPs-mAb1. The AIETPANPs-mAb1 exhibited a fluorescence emission at 613 nm, a point detectable by the naked eye with minimal background interference. The entire analysis was accomplished in just 10 min, achieving a limit of detection of 4.06 ng/mL for CRP. The AIETPANPs-mAb1-based LFA demonstrates excellent stability and specificity and fully meets the requirements for clinical diagnosis.
Collapse
Affiliation(s)
- Panpan Sun
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University,Lanzhou, Gansu 730070, China
| | - Qian Li
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University,Lanzhou, Gansu 730070, China
| | - Ningshuang Gao
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Mingyue Luo
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University,Lanzhou, Gansu 730070, China
| | - Wenzhuo Chang
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University,Lanzhou, Gansu 730070, China
| | - Haile Liu
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University,Lanzhou, Gansu 730070, China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhonghua Xue
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University,Lanzhou, Gansu 730070, China
| |
Collapse
|
2
|
Yu Y, Zhao L, Xu N, Liu X, Li L, Xu N, Bai X. A smartphone-based enhanced colorimetric immunoassay for the detection of Trichinella spiralis infection. Vet Parasitol 2025; 333:110213. [PMID: 38782651 DOI: 10.1016/j.vetpar.2024.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Trichinellosis is a serious foodborne and zoonotic parasitic disease caused by Trichinella family. At present, the main on-site detection method for Trichinella spiralis (T. spiralis) infection is the lateral flow assay (LFA). Other diagnostic techniques for this parasite cannot be applied to on-site testing due to their reliance on special instruments. Here, we established an ELISA smartphone-based method for detecting anti-T. spiralis antibodies in pig serum. The use of horseradish peroxidase-labeled goat anti-pig IgG-modified gold nanoparticle (AuNPs@HRP-IgG) effectively increased the sensitivity of the method. The entire reaction was carried out at room temperature without the need for special instruments. A low-cost and portable device for imaging and processing experimental data was also developed. Validation analysis revealed that the specificity of the test was 98.89 %, while its sensitivity was 100.00 %. T. spiralis antibodies could be detected in pig serum beginning at 25 dpi after infection with the muscle larvae. This visual immunosensor facilitates on-site detection of T. spiralis, especially in regions lacking specialized laboratory equipment.
Collapse
Affiliation(s)
- Yao Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lianjing Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Nuo Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaolei Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ning Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xue Bai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
3
|
Kant K, Beeram R, Cao Y, Dos Santos PSS, González-Cabaleiro L, García-Lojo D, Guo H, Joung Y, Kothadiya S, Lafuente M, Leong YX, Liu Y, Liu Y, Moram SSB, Mahasivam S, Maniappan S, Quesada-González D, Raj D, Weerathunge P, Xia X, Yu Q, Abalde-Cela S, Alvarez-Puebla RA, Bardhan R, Bansal V, Choo J, Coelho LCC, de Almeida JMMM, Gómez-Graña S, Grzelczak M, Herves P, Kumar J, Lohmueller T, Merkoçi A, Montaño-Priede JL, Ling XY, Mallada R, Pérez-Juste J, Pina MP, Singamaneni S, Soma VR, Sun M, Tian L, Wang J, Polavarapu L, Santos IP. Plasmonic nanoparticle sensors: current progress, challenges, and future prospects. NANOSCALE HORIZONS 2024; 9:2085-2166. [PMID: 39240539 PMCID: PMC11378978 DOI: 10.1039/d4nh00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches.
Collapse
Affiliation(s)
- Krishna Kant
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, UP, India
| | - Reshma Beeram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Paulo S S Dos Santos
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
| | | | - Daniel García-Lojo
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Marta Lafuente
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Yong Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yiyi Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuxiong Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sree Satya Bharati Moram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sanje Mahasivam
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Daniel Quesada-González
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Luis C C Coelho
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- FCUP, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - José M M M de Almeida
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- Department of Physics, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Sergio Gómez-Graña
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Pablo Herves
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - José Luis Montaño-Priede
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Reyes Mallada
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Jorge Pérez-Juste
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - María P Pina
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | | | | |
Collapse
|
4
|
Rojas Martínez V, Lee E, Oh JW. Exploring Plasmonic Standalone Surface-Enhanced Raman Scattering Nanoprobes for Multifaceted Applications in Biomedical, Food, and Environmental Fields. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1839. [PMID: 39591079 PMCID: PMC11597564 DOI: 10.3390/nano14221839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is an innovative spectroscopic technique that amplifies the Raman signals of molecules adsorbed on rough metal surfaces, making it pivotal for single-molecule detection in complex biological and environmental matrices. This review aims to elucidate the design strategies and recent advancements in the application of standalone SERS nanoprobes, with a special focus on quantifiable SERS tags. We conducted a comprehensive analysis of the recent literature, focusing on the development of SERS nanoprobes that employ novel nanostructuring techniques to enhance signal reliability and quantification. Standalone SERS nanoprobes exhibit significant enhancements in sensitivity and specificity due to optimized hot spot generation and improved reporter molecule interactions. Recent innovations include the development of nanogap and core-satellite structures that enhance electromagnetic fields, which are crucial for SERS applications. Standalone SERS nanoprobes, particularly those utilizing indirect detection mechanisms, represent a significant advancement in the field. They hold potential for wide-ranging applications, from disease diagnostics to environmental monitoring, owing to their enhanced sensitivity and ability to operate under complex sample conditions.
Collapse
Affiliation(s)
| | | | - Jeong-Wook Oh
- Department of Chemistry, Hankuk University of Foreign Studies (HUFS), Yongin 17035, Republic of Korea; (V.R.M.); (E.L.)
| |
Collapse
|
5
|
Lee S, Zhao Q, Lee S, Lee Y, Jung I, Park S. Plasmonic Nanotrenches with 1 nm Nanogaps for Surface-Enhanced Raman Scattering-Based Screening of His-Tagged Proteins. NANO LETTERS 2024; 24:12315-12322. [PMID: 39311749 DOI: 10.1021/acs.nanolett.4c03783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
This study represents a highly sensitive and selective approach to protein screening using surface-enhanced Raman scattering (SERS) facilitated by octahedral Au nanotrenches (OANTs). OANTs are a novel class of nanoparticles characterized by narrow, trench-like excavations indented into the eight facets of a Au octahedron. This unique configuration maximizes electromagnetic near-field focusing as the gap distance decreases to ∼1 nm. Owing to geometrical characteristics of the OANTs, near-field focusing can be maximized through the confinement and reflectance of light trapped within the trenches. We used Ni ions and molecular linkers to confer selective binding affinity for His-tagged proteins on the surfaces of the OANTs for SERS-based protein screening. Remarkably, SERS-based protein screening with the surface-modified OANTs yielded outstanding screening capabilities: 100% sensitivity and 100% selectivity in distinguishing His-tagged human serum albumin (HSA) from native HSA. This highlights the significantly enhanced protein screening capabilities achieved through the synergistic combination of SERS and the OANTs.
Collapse
Affiliation(s)
- Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Qiang Zhao
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soohyun Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yujin Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Insub Jung
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Choi N, Zhang Y, Wang Y, Schlücker S. iSERS: from nanotag design to protein assays and ex vivo imaging. Chem Soc Rev 2024; 53:6675-6693. [PMID: 38828554 DOI: 10.1039/d3cs01060k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Proteins are an eminently important class of ubiquitous biomacromolecules with diverse biological functions, and numerous techniques for their detection, quantification, and localisation have been developed. Many of these methods exploit the selectivity arising from molecular recognition of proteins/antigens by immunoglobulins. The combination of surface-enhanced Raman scattering (SERS) with such "immuno"-techniques to immuno-SERS (iSERS) is the central topic of this review, which is focused on colloidal SERS nanotags, i.e., molecularly functionalised noble metal nanoparticles conjugated to antibodies, for their use in protein assays and ex vivo imaging. After contrasting the fundamental differences between label-free SERS and iSERS, including a balanced description of the advantages and drawbacks of the latter, we describe the usual workflow of iSERS experiments. Milestones in the development of the iSERS technology are summarised from a historical perspective. By highlighting selected examples from the literature, we illustrate the conceptual progress that has been achieved in the fields of iSERS-based protein assays and ex vivo imaging. Finally, we attempt to predict what is necessary to fully exploit the transformative potential of the iSERS technology by stimulating the transition from research in academic labs into applications for the benefit of our society.
Collapse
Affiliation(s)
- Namhyun Choi
- Department of Chemistry and Center of Nanointegration Duisburg-Essen (CENIDE) & Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, 45141, Germany.
| | - Yuying Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Sebastian Schlücker
- Department of Chemistry and Center of Nanointegration Duisburg-Essen (CENIDE) & Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, 45141, Germany.
| |
Collapse
|
7
|
Lee S, Lee S, Park W, Lee S, Kwon S, Oh MJ, Haddadnezhad M, Jung I, Kim B, Park J, Shin KS, Lee H, Yoo J, Kim WK, Park S. Plasmonic Annular Nanotrenches with 1 nm Nanogaps for Detection of SARS-CoV-2 Using SERS-Based Immunoassay. NANO LETTERS 2024; 24:4233-4240. [PMID: 38557069 DOI: 10.1021/acs.nanolett.4c00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
This study represents the synthesis of a novel class of nanoparticles denoted as annular Au nanotrenches (AANTs). AANTs are engineered to possess embedded, narrow circular nanogaps with dimensions of approximately 1 nm, facilitating near-field focusing for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via a surface-enhanced Raman scattering (SERS)-based immunoassay. Notably, AANTs exhibited an exceedingly low limit of detection (LOD) of 1 fg/mL for SARS-CoV-2 spike glycoproteins, surpassing the commercially available enzyme-linked immunosorbent assay (ELISA) by 6 orders of magnitude (1 ng/mL from ELISA). To assess the real-world applicability, a study was conducted on 50 clinical samples using an SERS-based immunoassay with AANTs. The results revealed a sensitivity of 96% and a selectivity of 100%, demonstrating the significantly enhanced sensing capabilities of the proposed approach in comparison to ELISA and commercial lateral flow assay kits.
Collapse
Affiliation(s)
- Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seonghyeon Lee
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Woongkyu Park
- Photonics Energy Components Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju 61007, Republic of Korea
| | - Soohyun Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sunwoo Kwon
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Myeong Jin Oh
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Insub Jung
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Institute of Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bohyeon Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jieun Park
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyu Sung Shin
- Laboratory Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| | - Hyungdon Lee
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea
| | - Junsang Yoo
- Department of Molecular Biology, Nuturn Science, Seoul 04418, Republic of Korea
- Laboratory of Regenerative Medicine for Neurodegenerative Disease, Stand Up Therapeutics, Seoul 04418, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Medical Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Hao HL, Zhu J, Weng GJ, Li JJ, Guo YB, Zhao JW. Exclusive Core-Janus Satellite Assembly Based on Au-Ag Janus Self-Aligned Distributions with Abundant Hotspots for Ultrasensitive Detection of CA19-9. ACS Sens 2024; 9:942-954. [PMID: 38295764 DOI: 10.1021/acssensors.3c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The development of surface-enhanced Raman scattering (SERS) probes with high sensitivity and stability is imminent to improve the accuracy of cancer diagnosis. Here, an exclusive core-Janus satellite (CJS) assembly was constructed by a hierarchical assembly strategy in which the Au-Ag Janus satellite is vertically self-aligned on the core surface. In the process, a silica shell template was ingeniously employed to asymmetrically mask the presatellites for the in situ formation of the Janus structure, and a series of Janus satellites with different morphologies were developed by regulating the encapsulated area of the presatellites. The ordered-oriented arrangement of Au-Ag Janus and unique heterojunction morphology permit CJS assemblies, featuring two types of plasmonic nanogaps, including intrananocrevices for individual Janus and internanogaps between neighboring Janus, thereby multiplying the "hotspots" compared to conventional core-monotonous satellites, which contributes to superior SERS activity. As anticipated, the enhancement factor of CJS assemblies was as high as 3.8 × 108. Moreover, it is intriguing that the directional distribution and head physically immobilized by Janus provided uniform and stable SERS signals. The SERS probe based on the CJS assembly for the detection of carbohydrate antigen 19-9 resulted in an ultrahigh sensitivity with a limit of detection of 3.7 × 10-5 IU·mL-1, which is nearly 10 times lower than other SERS probes, and a wide detection range of 3 × 10-5 to 1 × 104 IU·mL-1. The CJS assembly with excellent SERS performance is promising to advance further development of the early diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Hui-Li Hao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu-Bo Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
9
|
Das D, Lin CW, Chuang HS. On-chip screening of SARS-CoV-2 cDNA by LAMP-integrated rotational diffusometry. Talanta 2024; 267:125253. [PMID: 37776805 DOI: 10.1016/j.talanta.2023.125253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/10/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
The unprecedented pandemic has raised the demand for prompt, precise, and large-scale virus detection techniques to control the transmission of contagious illnesses. In this study, a loop-mediated isothermal amplification (LAMP) based on-chip platform was developed to address this challenge using rotational diffusometry and functionalized Janus particles. A recombinant plasmid containing a cDNA sequence of the SARS-CoV-2 non-structural protein 2 (nsp2) gene was employed here as a proof-of-concept for COVID-19 detection. Specifically, designed primers and the functionalized Janus particles were simultaneously loaded on a microfluidic chip to perform the LAMP reaction on a hot plate. The optimal Janus particle concentrations for diffusometric analysis were thoroughly validated, and the performance of the on-chip LAMP reaction was assessed using thermal image analysis. Utilization of the highly sensitive rotational diffusometry achieved a limit of detection of 1 pg/μL in just 10 min with a sample volume of 20 μL. Our method delivered a tenfold higher sensitivity than the conventional method by utilizing only half of its usual required time. Overall, this study proposes a potential nucleic acid (NA) amplification device to aid the rapid diagnosis of various diseases by modifying the primers for different target genes.
Collapse
Affiliation(s)
- Dhrubajyoti Das
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung, 413, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
10
|
Trinh HD, Kim S, Yun S, Huynh LTM, Yoon S. Combinatorial Approach to Find Nanoparticle Assemblies with Maximum Surface-Enhanced Raman Scattering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1805-1814. [PMID: 38001021 DOI: 10.1021/acsami.3c14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Plasmonic nanoparticles exhibit unique properties that distinguish them from other nanomaterials, including vibrant visible colors, the generation of local electric fields, the production of hot charge carriers, and localized heat emission. These properties are particularly enhanced in the narrow nanogaps formed between nanostructures. Therefore, creating nanogaps in a controlled fashion is the key to achieving a fundamental understanding of plasmonic phenomena originating from the nanogaps and developing advanced nanomaterials with enhanced performance for diverse applications. One of the most effective approaches to creating nanogaps is to assemble individual nanoparticles into a clustered structure. In this study, we present a fast, facile, and highly efficient method for preparing core@satellite (CS) nanoassembly structures using gold nanoparticles of various shapes and sizes, including nanospheres, nanocubes (AuNCs), nanorods, and nanotriangular prisms. The sequential assembly of these building blocks on glass substrates allows us to obtain CS nanostructures with a 100% yield within 4 h. Using 9 different building blocks, we successfully produce 16 distinct CS nanoassemblies and systematically investigate the combinations to search for the highest Raman enhancement. We find that the surface-enhanced Raman scattering (SERS) intensity of AuNC@AuNC CS nanoassemblies is 2 orders of magnitude larger than that of other CS nanoassemblies. Theoretical analyses reveal that the intensity and distribution of the electric field induced in the nanogaps by plasmon excitation, as well as the number of molecules in the interfacial region, collectively contribute to the unprecedentedly large SERS enhancement observed for AuNC@AuNC. This study not only presents a novel assembly method that can be extended to produce many other nanoassemblies but also identifies a highly promising SERS material for sensing and diagnostics through a systematic search process.
Collapse
Affiliation(s)
- Hoa Duc Trinh
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Seokheon Kim
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Seokhyun Yun
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Ly Thi Minh Huynh
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Sangwoon Yoon
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| |
Collapse
|
11
|
Li X, Zhang Y, Awais M, Zhang H, Naqvi SMZA, Li L, Xiong Y, Hu J. Analysis and experimental assessment of an optimized SERS substrate used to detect thiabendazole in apples with high sensitivity. Anal Bioanal Chem 2024; 416:497-508. [PMID: 38001372 DOI: 10.1007/s00216-023-05055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Pesticides that linger in the environment and ecosystems for an extended period can cause severe and dangerous health problems in humans. To detect pesticides in foods, the development of high-sensitivity and quick screening technologies was required. This research investigated the performance of Au@Ag NPs with varying thicknesses of the silver shell for detecting trace quantities of thiabendazole (TBZ) in apples using surface-enhanced Raman spectroscopy (SERS). The Au@Ag NPs were synthesized by coating 32 nm gold seeds with different thicknesses of silver shell ranging from 2.4 to 8.7 nm, achieved by adjusting the incorporation of AgNO3 and ascorbic acid. The optimized Au@Ag NPs with a 7.3 nm silver shell demonstrated outstanding SERS activity, high sensitivity, and a detection limit of 0.05 μg/mL for TBZ. The R2 values, representing the goodness of fit, were found to be 0.990 and 0.986 for standard and real TBZ samples, respectively, indicating a strong correlation between the measured signal and the TBZ concentration. The recovery analysis showed a reliable and accurate detection capability (96 to 105%), suggesting good reliability and accuracy of the SERS-based detection using the optimal Au@Ag NPs. Overall, this research highlights the potential of SERS with optimal Au@Ag NPs for rapid and effective monitoring of pesticides in the food industry.
Collapse
Affiliation(s)
- Xiaodong Li
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China
| | - Yanyan Zhang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China
| | - Muhammad Awais
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China
| | - Hao Zhang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China
| | - Syed Muhammad Zaigham Abbas Naqvi
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China
| | - Linze Li
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China
| | - Yani Xiong
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China
| | - Jiandong Hu
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China.
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China.
| |
Collapse
|
12
|
Zheng L, Hu F, Zhao Y, Zhu J, Wang X, Su M, Liu H. Core-Satellite Nanoassemblies as SPR/SERS Dual-Mode Plasmonic Sensors for Sensitively Detecting Ractopamine in Complex Media. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20793-20800. [PMID: 38095450 DOI: 10.1021/acs.jafc.3c06475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Highly sensitive and reliable detection of β-adrenergic agonists is especially necessary due to the illegal abuse of growth-promoting feed additives. Here, we develop a novel surface plasmon resonance/surface-enhanced Raman scattering (SPR/SERS) dual-mode plasmonic sensor based on core-satellite nanoassemblies for the highly sensitive and reliable detection of ractopamine (RAC). The addition of RAC results in the decomposition of core-satellite nanoassemblies and consequently changes the Rayleigh scattering color of dark-field microscopy (DFM) images and the Raman scattering intensity of SERS spectra. The excellent sensitivity, specificity, and uniformity of this strategy were confirmed by detecting RAC in various complex media in the farm-to-table chain, and the limit of detection (LOD) was 0.03 ng/mL in an aqueous solution. In particular, the convenient access to livestock sewage not only ensures animal welfare but also provides great convenience for the market regulation of β-agonists. The success of our on-site strategy only with a portable Raman device promises great application prospects for β-agonist detection.
Collapse
Affiliation(s)
- Liqin Zheng
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Fan Hu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yueyue Zhao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Juanjuan Zhu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xian Wang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Mengke Su
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Honglin Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
13
|
Yun S, Yoon S. Mode-Selective Plasmon Coupling between Au Nanorods and Au Nanospheres. J Phys Chem Lett 2023; 14:10225-10232. [PMID: 37931252 DOI: 10.1021/acs.jpclett.3c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Plasmons play a central role in the properties of gold nanoparticles (AuNPs). Plasmons in a AuNP are influenced by neighboring ones, resulting in hybridized bonding dipole modes and red-shifted resonance peaks in the extinction spectra. Previous studies have mainly focused on plasmon coupling among spherical AuNPs (AuNSs). Here, we explore plasmonic interactions between AuNSs and anisotropic gold nanorods (AuNRs), which have longitudinal (LO) and transverse (TR) plasmon modes. We successfully assemble AuNSs around AuNRs ("AuNR@AuNS"), observing shifts in both the LO and TR modes in the extinction spectra due to directional coupling. Selectively binding AuNSs to the ends of AuNRs ("AuNR═AuNS") leads to predominant plasmon coupling along the LO direction. Our simulation studies reveal that exclusive LO or TR coupling occurs only when AuNSs attach to the center of either the end or the side of AuNRs. This study provides a valuable guideline for selectively exciting plasmons in desired nanogaps when multiple nanogaps are present.
Collapse
Affiliation(s)
- Seokhyun Yun
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea
| | - Sangwoon Yoon
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea
| |
Collapse
|
14
|
Chen J, Yu Q, Lu M, Jeon CS, Pyun SH, Choo J. A strategy to enhance SERS detection sensitivity through the use of SiO 2 beads in a 1536-well plate. Anal Bioanal Chem 2023; 415:5939-5948. [PMID: 37589939 DOI: 10.1007/s00216-023-04896-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023]
Abstract
The development of rapid and accurate assays is crucial to prevent the rapid spread of highly contagious respiratory infections such as coronavirus (COVID-19). Here, we developed a surface-enhanced Raman scattering (SERS)-enzyme-linked immunosorbent assay (ELISA) method that allows for the screening of multiple patient samples with high sensitivity on a 1536-well plate. As the well number on the ELISA well plate increases from 96 to 1536, the throughput of the assay increases but the sensitivity decreases due to the low number of biomarkers and the increase in non-specific binding species. To address this problem, silica (SiO2) beads were used to increase the surface-to-volume ratio and the loading density of biomarkers, thereby enhancing sensitivity. Using a three-dimensional gold nanoparticle (AuNP)@SiO2 SERS assay platform on a 1536-well plate, an immunoassay for the nucleocapsid protein biomarker of SARS-CoV-2 was performed and the limit of detection (LoD) decreased from 273 to 7.83 PFU/mL compared to using a two-dimensional assay platform with AuNPs. The proposed AuNPs@SiO2 SERS immunoassay (SERS-IA) platform is expected to dramatically decrease the false-negative diagnostic rate of the currently used lateral flow assay (LFA) or ELISA by enabling the positive diagnosis of patients with low virus concentrations.
Collapse
Affiliation(s)
- Jiadong Chen
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Mengdan Lu
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Chang Su Jeon
- R&D Center, Speclipse Inc., Seongnam, 13461, South Korea
| | - Sung Hyun Pyun
- R&D Center, Speclipse Inc., Seongnam, 13461, South Korea.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
15
|
Wu Y, Yu Q, Joung Y, Jeon CS, Lee S, Pyun SH, Joo SW, Chen L, Choo J. Highly Uniform Self-Assembly of Gold Nanoparticles by Butanol-Induced Dehydration and Its SERS Applications in SARS-CoV-2 Detection. Anal Chem 2023; 95:12710-12718. [PMID: 37594054 DOI: 10.1021/acs.analchem.3c01348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
We report the development of a reproducible and highly sensitive surface-enhanced Raman scattering (SERS) substrate using a butanol-induced self-assembly of gold nanoparticles (AuNPs) and its application as a rapid diagnostic platform for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The butanol-induced self-assembly process was used to generate a uniform assembly of AuNPs, with multiple hotspots, to achieve high reproducibility. When an aqueous droplet containing AuNPs and target DNAs was dropped onto a butanol droplet, butanol-induced dehydration occurred, enriching the target DNAs around the AuNPs and increasing the loading density of the DNAs on the AuNP surface. The SERS substrate was evaluated by using Raman spectroscopy, which showed strong electromagnetic enhancement of the Raman signals. The substrate was then tested for the detection of SARS-CoV-2 using SERS, and a very low limit of detection (LoD) of 3.1 × 10-15 M was obtained. This provides sufficient sensitivity for the SARS-CoV-2 screening assay, and the diagnostic time is significantly reduced as no thermocycling steps are required. This study demonstrates a method for the butanol-induced self-assembly of AuNPs and its application as a highly sensitive and reproducible SERS substrate for the rapid detection of SARS-CoV-2. The results suggest the potential of this approach for developing rapid diagnostic platforms for other biomolecules and infectious diseases.
Collapse
Affiliation(s)
- Yixuan Wu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Chang Su Jeon
- R&D Center, Speclipse Inc., Seongnam 13461, South Korea
| | - Seunghyun Lee
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan 15588, South Korea
| | | | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
16
|
Ionescu RE. Updates on the Biofunctionalization of Gold Nanoparticles for the Rapid and Sensitive Multiplatform Diagnosis of SARS-CoV-2 Virus and Its Proteins: From Computational Models to Validation in Human Samples. Int J Mol Sci 2023; 24:ijms24119249. [PMID: 37298201 DOI: 10.3390/ijms24119249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Since the outbreak of the pandemic respiratory virus SARS-CoV-2 (COVID-19), academic communities and governments/private companies have used several detection techniques based on gold nanoparticles (AuNPs). In this emergency context, colloidal AuNPs are highly valuable easy-to-synthesize biocompatible materials that can be used for different functionalization strategies and rapid viral immunodiagnosis. In this review, the latest multidisciplinary developments in the bioconjugation of AuNPs for the detection of SARS-CoV-2 virus and its proteins in (spiked) real samples are discussed for the first time, with reference to the optimal parameters provided by three approaches: one theoretical, via computational prediction, and two experimental, using dry and wet chemistry based on single/multistep protocols. Overall, to achieve high specificity and low detection limits for the target viral biomolecules, optimal running buffers for bioreagent dilutions and nanostructure washes should be validated before conducting optical, electrochemical, and acoustic biosensing investigations. Indeed, there is plenty of room for improvement in using gold nanomaterials as stable platforms for ultrasensitive and simultaneous "in vitro" detection by the untrained public of the whole SARS-CoV-2 virus, its proteins, and specific developed IgA/IgM/IgG antibodies (Ab) in bodily fluids. Hence, the lateral flow assay (LFA) approach is a quick and judicious solution to combating the pandemic. In this context, the author classifies LFAs according to four generations to guide readers in the future development of multifunctional biosensing platforms. Undoubtedly, the LFA kit market will continue to improve, adapting researchers' multidetection platforms for smartphones with easy-to-analyze results, and establishing user-friendly tools for more effective preventive and medical treatments.
Collapse
Affiliation(s)
- Rodica Elena Ionescu
- Light, Nanomaterials and Nanotechnology (L2n) Laboratory, CNRS EMR 7004, University of Technology of Troyes, 12 Rue Marie Curie, CS 42060, CEDEX, 10004 Troyes, France
| |
Collapse
|