1
|
Sharma D, Czarnota GJ. Using ultrasound and microbubble to enhance the effects of conventional cancer therapies in clinical settings. Cancer Metastasis Rev 2025; 44:39. [PMID: 40088396 PMCID: PMC11910443 DOI: 10.1007/s10555-025-10255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/20/2025] [Indexed: 03/17/2025]
Abstract
It has been demonstrated in preclinical research that the administration of microbubbles with ultrasound can augment the proapoptotic sphingolipid pathway and enhance chemotherapy or radiation therapy-induced vascular endothelial disruption resulting in enhanced tumor cell death. Specifically, ultrasound-stimulated microbubbles (USMB) can increase blood vessel permeability facilitating the release of therapeutic substances in the target area. USMB can also serve as a potential radiation enhancing therapy as USMB exposure increases tumor cell death significantly as observed in preclinical models. Clinical studies have found the combination of USMB and these existing cancer therapies to be safe and also to be associated with greater tumor responses. USMB-based treatment can be applicable in a clinical setting using either ultrasound imaging or magnetic resonance imaging (MRI) guidance for precise treatment. In the latter, the ultrasound device is integrated into the MRI system platform for sonication to facilitate microbubble stimulation. In this review, we concisely present findings related to USMB and existing cancer therapies (chemotherapy and radiation therapy) in clinical trial settings. The possible underlying mechanism involved in USMB-enhanced chemotherapy or radiotherapy enhancement is also discussed. Lastly, the study concludes with some limitations and an examination of the future direction of these combined therapies.
Collapse
Affiliation(s)
- Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
- Departments of Medical Biophysics, and Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
- Departments of Medical Biophysics, and Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Vlastou E, Kougioumtzopoulou A, Platoni K, Georgakopoulos I, Lagopati N, Kouloulias V, Zygogianni A. The Emerging Role of Nanoparticles Combined with Either Radiotherapy or Hyperthermia in Head and Neck Cancer: A Current Review. Cancers (Basel) 2025; 17:899. [PMID: 40075746 PMCID: PMC11899074 DOI: 10.3390/cancers17050899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Head and neck cancer (HNC) includes various malignancies and represents the seventh most common cancer worldwide. The early diagnosis of HNC results in a 70-90% five-year survival rate, which declines with locally advanced stages of disease. Current care employs a multimodal strategy encompassing surgery, radiation therapy (RT), chemotherapy, and immunotherapy, while treatment options vary according to the stage, tumor features, and patient characteristics. About 75% of patients with HNC will benefit from RT, either as a primary treatment or as adjuvant therapy following surgical resection. Technological improvements in RT, such as intensity-modulated RT (IMRT) and image-guided RT (IGRT), have enhanced tumor targeting and minimized adjacent healthy tissue irradiation while also expanding RT to the recurrent or metastatic setting. Innovative therapeutic strategies for HNC integrate RT with immunotherapy, gene therapy, molecular targeted therapy, photodynamic therapy, photothermal therapy, and nanoparticles (NPs), with the objective of optimizing tumor control while reducing damage to normal tissues. NPs are emerging as possible radiosensitizers in HNC treatment, enhancing the efficacy of RT, chemotherapy, and immunotherapy. In vivo and in vitro studies on the irradiation of tumors containing gold (Au), gadolinium (Gd), and hafnium oxide (HfO2) NPs show promising results in enhancing tumor destruction and survival rates, indicating their potential for clinical application. Hyperthermia, investigated as an adjunct treatment, potentially improves outcomes when combined with RT or chemotherapy, with advancements in nanotechnology renewing interest in this approach in HNC. At present, NBTXR3 is the sole NP that is being investigated in clinical trials for the enhancement of HNC RT.
Collapse
Affiliation(s)
- Elena Vlastou
- Radiotherapy Department, General Children’s Hospital ‘Pan. & Aglaia Kyriakou’, 11527 Athens, Greece;
| | - Andromachi Kougioumtzopoulou
- Department of Clinical Radiation Oncology, “ATTIKON” General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Haidari, Greece; (A.K.); (K.P.)
| | - Kalliopi Platoni
- Department of Clinical Radiation Oncology, “ATTIKON” General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Haidari, Greece; (A.K.); (K.P.)
| | - Ioannis Georgakopoulos
- Radiotherapy Unit, 1st Radiology Department, ‘Aretaieion’ University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.G.); (A.Z.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vasileios Kouloulias
- Department of Clinical Radiation Oncology, “ATTIKON” General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Haidari, Greece; (A.K.); (K.P.)
| | - Anna Zygogianni
- Radiotherapy Unit, 1st Radiology Department, ‘Aretaieion’ University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.G.); (A.Z.)
| |
Collapse
|
3
|
Khan MQ, Alvi MA, Nawaz HH, Umar M. Cancer Treatment Using Nanofibers: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1305. [PMID: 39120410 PMCID: PMC11314412 DOI: 10.3390/nano14151305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Currently, the number of patients with cancer is expanding consistently because of a low quality of life. For this reason, the therapies used to treat cancer have received a lot of consideration from specialists. Numerous anticancer medications have been utilized to treat patients with cancer. However, the immediate utilization of anticancer medicines leads to unpleasant side effects for patients and there are many restrictions to applying these treatments. A number of polymers like cellulose, chitosan, Polyvinyl Alcohol (PVA), Polyacrylonitrile (PAN), peptides and Poly (hydroxy alkanoate) have good properties for the treatment of cancer, but the nanofibers-based target and controlled drug delivery system produced by the co-axial electrospinning technique have extraordinary properties like favorable mechanical characteristics, an excellent release profile, a high surface area, and a high sponginess and are harmless, bio-renewable, biofriendly, highly degradable, and can be produced very conveniently on an industrial scale. Thus, nanofibers produced through coaxial electrospinning can be designed to target specific cancer cells or tissues. By modifying the composition and properties of the nanofibers, researchers can control the release kinetics of the therapeutic agent and enhance its accumulation at the tumor site while minimizing systemic toxicity. The core-shell structure of coaxial electrospun nanofibers allows for a controlled and sustained release of therapeutic agents over time. This controlled release profile can improve the efficacy of cancer treatment by maintaining therapeutic drug concentrations within the tumor microenvironment for an extended period.
Collapse
Affiliation(s)
- Muhammad Qamar Khan
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Abbas Alvi
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Hafiza Hifza Nawaz
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK;
| | - Muhammad Umar
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
4
|
Oda M, Yamamoto H, Kawakami T. Maintenance of homeostasis by TLR4 ligands. Front Immunol 2024; 15:1286270. [PMID: 38715610 PMCID: PMC11074394 DOI: 10.3389/fimmu.2024.1286270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/11/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy is renowned for its capacity to elicit anti-infective and anti-cancer effects by harnessing immune responses to microbial components and bolstering innate healing mechanisms through a cascade of immunological reactions. Specifically, mammalian Toll-like receptors (TLRs) have been identified as key receptors responsible for detecting microbial components. The discovery of these mammalian Toll-like receptors has clarified antigen recognition by the innate immune system. It has furnished a molecular foundation for comprehending the interplay between innate immunity and its anti-tumor or anti-infective capabilities. Moreover, accumulating evidence highlights the crucial role of TLRs in maintaining tissue homeostasis. It has also become evident that TLR-expressing macrophages play a central role in immunity by participating in the clearance of foreign substances, tissue repair, and the establishment of new tissue. This macrophage network, centered on macrophages, significantly contributes to innate healing. This review will primarily delve into innate immunity, specifically focusing on substances targeting TLR4.
Collapse
Affiliation(s)
- Masataka Oda
- Control of Innate Immunity, Technology Research Association, Takamatsu, Kagawa, Japan
| | - Hirofumi Yamamoto
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Takashige Kawakami
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| |
Collapse
|
5
|
Goel A, Rastogi A, Jain M, Niveriya K. RNA-based Therapeutics: Past, Present and Future Prospects, Challenges in Cancer Treatment. Curr Pharm Biotechnol 2024; 25:2125-2137. [PMID: 38347795 DOI: 10.2174/0113892010291042240130171709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 09/10/2024]
Abstract
It is becoming more and harder in today's climate to disregard the impact of cancer on social health. Even though a significant amount of money is spent annually on cancer research, it still ranks as the second leading cause of death worldwide. Additionally, only about half of the patients suffering from complex forms of cancer survive a year after receiving traditional cancer therapies. A method for silencing genes is called RNA interference (RNAi). Such a method is very effective in focusing on genes linked to cancer. Most gene products implicated in cancer have recently been used as RNA interference (RNAi) therapeutic targets. According to the findings from this research, RNAi application is necessary for today's cancer treatment to target functioning carcinogenic molecules and tumor resistance to chemotherapy and radiation. Proapoptotic and antiproliferative activity has been reported from previous research studies on cell culture systems, animal models, and clinical trials through the knockdown of gene products from RNAi technology. Numerous novel RNAi-based medications are now in the clinical trial stages thanks to the discovery of the RNAi mechanism and advancements in the area. In the future, genomic-based personalized medicines can be developed through this RNAi therapy. Hopefully, cancer sufferers will find this sort of therapy to be one of the most effective ones. Various kinds of RNA-based treatments, such as aptamers, small interfering RNAs, microRNAs, antisense oligonucleotides, and messenger RNA, are covered in broad terms in this study. We also present an overview of the RNA-based therapies that have received regulatory approval in the past or are now undergoing clinical studies.
Collapse
Affiliation(s)
- Anjana Goel
- Department of Biotechnology, GLA University, Mathura, India
| | - Amisha Rastogi
- Department of Biotechnology, GLA University, Mathura, India
| | - Mansi Jain
- Department of Biotechnology, GLA University, Mathura, India
| | | |
Collapse
|
6
|
Ling P, Yang P, Zhang Q, Tang C, Gao X, Wang L, Xu W. pH-Responsive Multifunctional Nanoplatforms with Reactive Oxygen Species-Controlled Release of CO for Enhanced Oncotherapy. ACS APPLIED BIO MATERIALS 2023; 6:5708-5715. [PMID: 37990995 DOI: 10.1021/acsabm.3c00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Recently, various nanomaterials have drawn increasing attention for enhanced tumor therapy. However, a lack of tumor uptake and insufficient generation of cytotoxic agents have largely limited the antitumor efficacy in vivo. Herein, a multifunctional nanoplatform (IL@CPPor(CO)) was constructed with pH-responsive copper peroxide nanoparticles (CPNP) that are capable of self-supplying H2O2, a radical-sensitive carbonic oxide (CO) donor (Fe3(CO)12), photosensitizer Iridium(III) meso-tetra (N-methyl-4-pyridyl)porphyrin pentachloride (IrPor), and ionic liquid (IL) for enhanced oncotherapy. Under acidic conditions, the CPNP could decompose to release H2O2 and Cu2+. The concomitant generation of H2O2 could efficiently trigger Fe3(CO)12 to release the CO in situ. On the other hand, Cu2+ possesses both glutathione depletion and Fenton-like properties. In addition, IrPor has both peroxidase-like activity and photosensitizer properties to produce reactive oxygen species (ROS) in tumors. The released ROS could trigger the rapid intracellular release of CO. More importantly, released CO and ROS could promote cell apoptosis and improve the therapeutic efficacy. Moreover, due to the pH-dependent ROS generation property, the IL@CPPor(CO) exhibited high tumor accumulation, low toxicity, and good biocompatibility, which enabled effective tumor growth inhibition with minimal side effects in vivo. This work provides a novel multifunctional nanoplatform that combined photodynamic therapy with CDT and CO to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Pinghua Ling
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Pei Yang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qiang Zhang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs and Institute of Synthesis and Application of Medical Materials, Department of Pharmacy, Wannan Medical College, Wuhu 241002, P. R. China
| | - Chuanye Tang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xianping Gao
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Linyu Wang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wenwen Xu
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
7
|
Berger JM, Preusser M, Berghoff AS, Bergen ES. Malignant ascites: Current therapy options and treatment prospects. Cancer Treat Rev 2023; 121:102646. [PMID: 39492370 DOI: 10.1016/j.ctrv.2023.102646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Ascites formation is a common complication of cancer with a significant symptomatic burden for patients. Malignant ascites (MA) is defined by the presence of tumor cells within the ascitic fluid. It does not only cause substantial morbidity, but is also associated with impaired survival. Considering the frequent occurrence of MA, it still represents a clinical challenge for physicians with limited therapy options, mainly comprising of the treatment of the primary tumor and effusion drainage. Particularly the lack of pathophysiological insight limits the development of effective, causative therapies. Causes of MA development such as lymphatic vessel obstruction and the effects of tumor secreted vascular endothelial growth factor (VEGF) have been known for decades. Novel research suggests that the intraperitoneal immune system may also induce and maintain MA accumulation. In this review, we assess current knowledge on the pathophysiology of MA and summarize available evidence of treatment approaches. Also, factors contributing to ascites formation without proof of tumor cells in the peritoneal cavity, defined as paramalignant ascites, with potential treatment strategies are discussed. We further focus on novel findings in the pathophysiology of MA that might lead to treatment improvement in the near future and discussed relevant knowledge gaps in this field.
Collapse
Affiliation(s)
- Julia M Berger
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anna S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Elisabeth S Bergen
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Dinakaran D, Wilson BC. The use of nanomaterials in advancing photodynamic therapy (PDT) for deep-seated tumors and synergy with radiotherapy. Front Bioeng Biotechnol 2023; 11:1250804. [PMID: 37849983 PMCID: PMC10577272 DOI: 10.3389/fbioe.2023.1250804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
Photodynamic therapy (PDT) has been under development for at least 40 years. Multiple studies have demonstrated significant anti-tumor efficacy with limited toxicity concerns. PDT was expected to become a major new therapeutic option in treating localized cancer. However, despite a shifting focus in oncology to aggressive local therapies, PDT has not to date gained widespread acceptance as a standard-of-care option. A major factor is the technical challenge of treating deep-seated and large tumors, due to the limited penetration and variability of the activating light in tissue. Poor tumor selectivity of PDT sensitizers has been problematic for many applications. Attempts to mitigate these limitations with the use of multiple interstitial fiberoptic catheters to deliver the light, new generations of photosensitizer with longer-wavelength activation, oxygen independence and better tumor specificity, as well as improved dosimetry and treatment planning are starting to show encouraging results. Nanomaterials used either as photosensitizers per se or to improve delivery of molecular photosensitizers is an emerging area of research. PDT can also benefit radiotherapy patients due to its complementary and potentially synergistic mechanisms-of-action, ability to treat radioresistant tumors and upregulation of anti-tumoral immune effects. Furthermore, recent advances may allow ionizing radiation energy, including high-energy X-rays, to replace external light sources, opening a novel therapeutic strategy (radioPDT), which is facilitated by novel nanomaterials. This may provide the best of both worlds by combining the precise targeting and treatment depth/volume capabilities of radiation therapy with the high therapeutic index and biological advantages of PDT, without increasing toxicities. Achieving this, however, will require novel agents, primarily developed with nanomaterials. This is under active investigation by many research groups using different approaches.
Collapse
Affiliation(s)
- Deepak Dinakaran
- National Cancer Institute, National Institute of Health, Bethesda, MD, United States
- Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Brian C. Wilson
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Das SS, Mahapatra SK. Effect of collision, size, and oscillation of RBCs on blood heat transfer in a bifurcated vessel. Comput Methods Biomech Biomed Engin 2023; 26:1620-1634. [PMID: 36214764 DOI: 10.1080/10255842.2022.2130274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/03/2022]
Abstract
This study attempts to analyze the effect of red blood cells (RBCs) on blood heat transfer in a three-dimensional bifurcated vessel when treated with hyperthermia procedure. A two-phase granular model is used in this paper to study the various underlying factors that affect the flow dynamics of RBCs in a blood vessel. Separate cases are analyzed to study the effect of RBC size, RBC-RBC, and RBC-wall collision and oscillation on heat transfer in a three-dimensional bifurcated vessel under pulsatile flow condition. Blood temperature and transient Nusselt number are used as heat transfer representative parameters. A good agreement with the experimental results from the existing literature is observed when the numerical model used in this study is compared for accuracy. From this study, it has been found that an increase in the size of RBCs of a blood disorder patient can decrease the temperature of blood compared to a normal patient when subjected to hyperthermia treatment. A change in the nature of collision between RBCs does not affect the heat transfer of blood under pulsatile flow condition in a bifurcated vessel. Also, an increase in granular temperature or oscillation of RBCs slightly increases the blood temperature when exposed to thermal treatment.
Collapse
|
10
|
Zhu Y, Li Q, Wang C, Hao Y, Yang N, Chen M, Ji J, Feng L, Liu Z. Rational Design of Biomaterials to Potentiate Cancer Thermal Therapy. Chem Rev 2023. [PMID: 36912061 DOI: 10.1021/acs.chemrev.2c00822] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Cancer thermal therapy, also known as hyperthermia therapy, has long been exploited to eradicate mass lesions that are now defined as cancer. With the development of corresponding technologies and equipment, local hyperthermia therapies such as radiofrequency ablation, microwave ablation, and high-intensity focused ultrasound, have has been validated to effectively ablate tumors in modern clinical practice. However, they still face many shortcomings, including nonspecific damages to adjacent normal tissues and incomplete ablation particularly for large tumors, restricting their wide clinical usage. Attributed to their versatile physiochemical properties, biomaterials have been specially designed to potentiate local hyperthermia treatments according to their unique working principles. Meanwhile, biomaterial-based delivery systems are able to bridge hyperthermia therapies with other types of treatment strategies such as chemotherapy, radiotherapy and immunotherapy. Therefore, in this review, we discuss recent progress in the development of functional biomaterials to reinforce local hyperthermia by functioning as thermal sensitizers to endow more efficient tumor-localized thermal ablation and/or as delivery vehicles to synergize with other therapeutic modalities for combined cancer treatments. Thereafter, we provide a critical perspective on the further development of biomaterial-assisted local hyperthermia toward clinical applications.
Collapse
Affiliation(s)
- Yujie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Quguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Chunjie Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Yu Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang, P.R. China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang, P.R. China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| |
Collapse
|
11
|
Foster JM, Zhang C, Rehman S, Sharma P, Alexander HR. The contemporary management of peritoneal metastasis: A journey from the cold past of treatment futility to a warm present and a bright future. CA Cancer J Clin 2023; 73:49-71. [PMID: 35969103 DOI: 10.3322/caac.21749] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/12/2022] [Accepted: 06/15/2022] [Indexed: 01/17/2023] Open
Abstract
Peritoneal metastasis (PM) is often regarded as a less frequent pattern of spread; however, collectively across all spectra of primary tumors, the consequences of PM impact a large population of patients annually. Unlike other modes of metastasis, symptoms at presentation or during the treatment course are common, representing an additional challenge in the management of PM. Early efforts with chemotherapy and incomplete surgical interventions transiently improved symptoms, but durable symptom control and survival extension were rare, which established a perspective of treatment futility for PM through most of the 20th century. Notably, the continued development of better systemic therapy combinations, optimization of cytoreductive surgery (CRS), and rigorous investigation of combining regional therapy-specifically hyperthermic intraperitoneal chemotherapy-with CRS, have resulted in more effective multimodal treatment options for patients with PM. In this article, the authors provide a comprehensive review of the data establishing the contemporary approach for tumors with a high frequency of PM, including appendix, colorectal, mesothelioma, and gastric cancers. The authors also explore the emerging role of adding hyperthermic intraperitoneal chemotherapy to the well established paradigm of CRS and systemic therapy for advanced ovarian cancer, as well as the recent clinical trials identifying the efficacy of poly(adenosine diphosphate ribose) polymerase maintenance therapy. Finally, recent data are included that explore the role of precision medicine technology in PM management that, in the future, may help further improve patient selection, identify the best systemic therapy regimens, detect actionable mutations, and identify new targets for drug development.
Collapse
Affiliation(s)
- Jason M Foster
- Division of Surgical Oncology, Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Chunmeng Zhang
- Division of Surgical Oncology, Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Shahyan Rehman
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey
| | - Prateek Sharma
- Division of Surgical Oncology, Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | |
Collapse
|
12
|
Kattner AA. A concerted effort combating hepatitis. Biomed J 2022; 45:727-732. [PMID: 36216275 PMCID: PMC9661500 DOI: 10.1016/j.bj.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
In this issue of the Biomedical Journal one focus is the research of hepatitis. The reader learns about the connection between hepatitis and thrombocytopenia and a large-scale immunization initiative against hepatitis. Further articles include an overview of mitochondrial bioenergetics, a review of current methods to research neuronal dynamics, a study of the anti-cancer effect of propolis, and the challenges of organ transplants derived from brain dead donors. An insight into kidney disease and types of stroke is provided, as well as imaging techniques that are employed for identifying changes in white matter. Lastly this issue contains the results of a study investigating foot arch development in children, the use of a precision radiation therapy against head and neck carcinoma, and an exchange concerning renal impairment and serum cancer antigen-125.
Collapse
|
13
|
Shivanna AT, Dash BS, Chen JP. Functionalized Magnetic Nanoparticles for Alternating Magnetic Field- or Near Infrared Light-Induced Cancer Therapies. MICROMACHINES 2022; 13:mi13081279. [PMID: 36014201 PMCID: PMC9413965 DOI: 10.3390/mi13081279] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 05/14/2023]
Abstract
The multi-faceted nature of functionalized magnetic nanoparticles (fMNPs) is well-suited for cancer therapy. These nanocomposites can also provide a multimodal platform for targeted cancer therapy due to their unique magnetic guidance characteristics. When induced by an alternating magnetic field (AMF), fMNPs can convert the magnetostatic energy to heat for magnetic hyperthermia (MHT), as well as for controlled drug release. Furthermore, with the ability to convert near-infrared (NIR) light energy to heat energy, fMNPs have attracted interest for photothermal therapy (PTT). Other than MHT and PTT, fMNPs also have a place in combination cancer therapies, such as chemo-MHT, chemo-PTT, and chemo-PTT-photodynamic therapy, among others, due to their versatile properties. Thus, this review presents multifunctional nanocomposites based on fMNPs for cancer therapies, induced by an AMF or NIR light. We will first discuss the different fMNPs induced with an AMF for cancer MHT and chemo-MHT. Secondly, we will discuss fMNPs irradiated with NIR lasers for cancer PTT and chemo-PTT. Finally, fMNPs used for dual-mode AMF + NIR-laser-induced magneto-photo-hyperthermia (MPHT) will be discussed.
Collapse
Affiliation(s)
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
- Correspondence: ; Tel.: +886-3-2118800
| |
Collapse
|
14
|
Electrospun Silk Fibroin/Polylactic-co-glycolic Acid/Black Phosphorus Nanosheets Nanofibrous Membrane with Photothermal Therapy Potential for Cancer. Molecules 2022; 27:molecules27144563. [PMID: 35889436 PMCID: PMC9317578 DOI: 10.3390/molecules27144563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
Photothermal therapy is a promising treating method for cancers since it is safe and easily controllable. Black phosphorus (BP) nanosheets have drawn tremendous attention as a novel biodegradable thermotherapy material, owing to their excellent biocompatibility and photothermal properties. In this study, silk fibroin (SF) was used to exfoliate BP with long-term stability and good solution-processability. Then, the prepared BP@SF was introduced into fibrous membranes by electrospinning, together with SF and polylactic-co-glycolic acid (PLGA). The SF/PLGA/BP@SF membranes had relatively smooth and even fibers and the maximum stress was 2.92 MPa. Most importantly, the SF/PLGA/BP@SF membranes exhibited excellent photothermal properties, which could be controlled by the BP@SF content and near infrared (NIR) light power. The temperature of SF/PLGA/BP@SF composite membrane was increased by 15.26 °C under NIR (808 nm, 2.5 W/cm2) irradiation for 10 min. The photothermal property of SF/PLGA/BP@SF membranes significantly killed the HepG2 cancer cells in vitro, indicating its good potential for application in local treatment of cancer.
Collapse
|
15
|
Geoghegan R, Ter Haar G, Nightingale K, Marks L, Natarajan S. Methods of monitoring thermal ablation of soft tissue tumors - A comprehensive review. Med Phys 2022; 49:769-791. [PMID: 34965307 DOI: 10.1002/mp.15439] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 11/30/2020] [Accepted: 12/15/2021] [Indexed: 11/12/2022] Open
Abstract
Thermal ablation is a form of hyperthermia in which oncologic control can be achieved by briefly inducing elevated temperatures, typically in the range 50-80°C, within a target tissue. Ablation modalities include high intensity focused ultrasound, radiofrequency ablation, microwave ablation, and laser interstitial thermal therapy which are all capable of generating confined zones of tissue destruction, resulting in fewer complications than conventional cancer therapies. Oncologic control is contingent upon achieving predefined coagulation zones; therefore, intraoperative assessment of treatment progress is highly desirable. Consequently, there is a growing interest in the development of ablation monitoring modalities. The first section of this review presents the mechanism of action and common applications of the primary ablation modalities. The following section outlines the state-of-the-art in thermal dosimetry which includes interstitial thermal probes and radiologic imaging. Both the physical mechanism of measurement and clinical or pre-clinical performance are discussed for each ablation modality. Thermal dosimetry must be coupled with a thermal damage model as outlined in Section 4. These models estimate cell death based on temperature-time history and are inherently tissue specific. In the absence of a reliable thermal model, the utility of thermal monitoring is greatly reduced. The final section of this review paper covers technologies that have been developed to directly assess tissue conditions. These approaches include visualization of non-perfused tissue with contrast-enhanced imaging, assessment of tissue mechanical properties using ultrasound and magnetic resonance elastography, and finally interrogation of tissue optical properties with interstitial probes. In summary, monitoring thermal ablation is critical for consistent clinical success and many promising technologies are under development but an optimal solution has yet to achieve widespread adoption.
Collapse
Affiliation(s)
- Rory Geoghegan
- Department of Urology, University of California Los Angeles, Los Angeles, California, USA
| | - Gail Ter Haar
- Department of Physics, Institute of Cancer Research, University of London, Sutton, UK
| | - Kathryn Nightingale
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Leonard Marks
- Department of Urology, University of California Los Angeles, Los Angeles, California, USA
| | - Shyam Natarajan
- Departments of Urology & Bioengineering, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
16
|
Orel VE, Krotevych M, Dasyukevich O, Rykhalskyi O, Syvak L, Tsvir H, Tsvir D, Garmanchuk L, Orel VВ, Sheina I, Rybka V, Shults NV, Suzuki YJ, Gychka SG. Effects induced by a 50 Hz electromagnetic field and doxorubicin on Walker-256 carcinosarcoma growth and hepatic redox state in rats. Electromagn Biol Med 2021; 40:475-487. [PMID: 34392747 DOI: 10.1080/15368378.2021.1958342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We compare the effects of an extremely low-frequency electromagnetic field (EMF) with the chemotherapeutic agent doxorubicin (DOX) on tumor growth and the hepatic redox state in Walker-256 carcinosarcoma-bearing rats. Animals were divided into five groups with one control (no tumor) and four tumor-bearing groups: no treatment, DOX, DOX combined with EMF and EMF. While DOX and DOX + EMF provided greater inhibition of tumor growth, treatment with EMF alone resulted in some level of antitumor effect (p < .05). Superoxide dismutase, catalase activity and glutathione content were significantly decreased in the liver of tumor-bearing animals as compared with the control group (p < .05). The decreases in antioxidant defenses accompanied histological findings of suspected liver damage. However, hepatic levels of thiobarbituric acid reactive substances, an indicator of lipid peroxidation, were three times lower in EMF and DOX + EMF groups than in no treatment and DOX (p < .05). EMF and DOX + EMF showed significantly lower activity of serum ALT than DOX alone (p < .05). These results indicate that EMF treatment can inhibit tumor growth, causing less pronounced oxidative stress damage to the liver. Therefore, EMF can be used as a therapeutic strategy to influence the hepatic redox state and combat cancer with reduced side-effects.
Collapse
Affiliation(s)
- Valerii E Orel
- Medical Physics and Bioengineering Research Laboratory, National Cancer Institute, Kyiv, Ukraine.,Biomedical Engineering Department, NTUU "Igor Sikorsky KPI", Kyiv, Ukraine
| | - Mykhailo Krotevych
- Research Department of the Pathological Anatomy, National Cancer Institute, Kyiv, Ukraine
| | - Olga Dasyukevich
- Medical Physics and Bioengineering Research Laboratory, National Cancer Institute, Kyiv, Ukraine
| | - Oleksandr Rykhalskyi
- Medical Physics and Bioengineering Research Laboratory, National Cancer Institute, Kyiv, Ukraine
| | - Liubov Syvak
- Research Department of Chemotherapy Solid Tumors, National Cancer Institute, Kyiv, Ukraine
| | | | - Dmytro Tsvir
- Medical Faculty, Bogomolets National Medical University, Kyiv, Ukraine
| | - Lyudmyla Garmanchuk
- Department of Biomedicine, NSC "Institute of Biology and Medicine" of the Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Valerii В Orel
- Biomedical Engineering Department, NTUU "Igor Sikorsky KPI", Kyiv, Ukraine.,Research Department of Radiodiagnostics, National Cancer Institute, Kyiv, Ukraine
| | - Iryna Sheina
- Department of Medical Physics and Biomedical Nanotechnologies, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Vladyslava Rybka
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Nataliia V Shults
- Department of Medical Physics and Biomedical Nanotechnologies, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Yuichiro J Suzuki
- Department of Medical Physics and Biomedical Nanotechnologies, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Sergiy G Gychka
- Department of Pathological Anatomy 2, Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
17
|
Kumari S, Sharma N, Sahi SV. Advances in Cancer Therapeutics: Conventional Thermal Therapy to Nanotechnology-Based Photothermal Therapy. Pharmaceutics 2021; 13:1174. [PMID: 34452135 PMCID: PMC8398544 DOI: 10.3390/pharmaceutics13081174] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
In this review, advancement in cancer therapy that shows a transition from conventional thermal therapies to laser-based photothermal therapies is discussed. Laser-based photothermal therapies are gaining popularity in cancer therapeutics due to their overall outcomes. In photothermal therapy, light is converted into heat to destruct the various types of cancerous growth. The role of nanoparticles as a photothermal agent is emphasized in this review article. Magnetic, as well as non-magnetic, nanoparticles have been effectively used in the photothermal-based cancer therapies. The discussion includes a critical appraisal of in vitro and in vivo, as well as the latest clinical studies completed in this area. Plausible evidence suggests that photothermal therapy is a promising avenue in the treatment of cancer.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104-4495, USA
| | - Nilesh Sharma
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, Bowling Green, KY 42101-1080, USA;
| | - Shivendra V. Sahi
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104-4495, USA
| |
Collapse
|
18
|
A review on the applications of electrospun chitosan nanofibers for the cancer treatment. Int J Biol Macromol 2021; 183:790-810. [PMID: 33965480 DOI: 10.1016/j.ijbiomac.2021.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/24/2021] [Accepted: 05/01/2021] [Indexed: 01/20/2023]
Abstract
In recent years, the incidence of cancer is increasing every day due to poor quality of life (industrialization of life). Therefore, the treatment of cancer has received much attention from therapists. So far, many anticancer drugs have been used to treat cancer patents. However, the direct use of the anticancer drugs has the adverse side effects for patents and several limitations to treat process. Natural chitosan nanofibers prepared by electrospinning method have unique properties such as high surface area, high porosity, suitable mechanical properties, nontoxicity, biocompatibility, biodegradability, biorenewable, low immunogenicity, better clinical functionality, analogue to extracellular model, and easy production in large scale. Therefore, this bio-polymer is a very suitable case to deliver of the anti-cancer drugs to treat cancer patents. In this review summarizes the electrospinning synthesis of chitosan and its therapeutic application for the various cancer treatment.
Collapse
|
19
|
Chall A, Stagg J, Mixson A, Gato E, Quirino RL, Sittaramane V. Ablation of cells in mice using antibody-functionalized multiwalled carbon nanotubes (Ab-MWCNTs) in combination with microwaves. NANOTECHNOLOGY 2021; 32:195102. [PMID: 33540388 DOI: 10.1088/1361-6528/abe32a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This is a proof-of-principle study on the combination of microwaves and multiwalled carbon nanotubes to induce in vivo, localized hyperthermic ablation of cells as a potential methodology for the treatment of localized tumors. Compared to conventional methods, the proposed approach can create higher temperatures in a rapid and localized fashion, under low radiation levels, eliminating some of the unwanted side effects. Following successful ablation of cancer cells in cell culture and zebrafish tumor-xenograft models, it is hypothesized that a cancer treatment can be developed using safe microwave irradiation for selective ablation of tumor cells in vivo using carbon nanotube-Antibody (CNT-Ab) conjugates as a targeting agent. In this study, mice were used as an animal model for the optimization of the proposed microwave treatment strategy. The safe dose of CNT-Ab and microwave radiation levels for mice were determined. Further, CNT-Ab distribution and toxicology in mice were qualitatively determined for a time span of two weeks following microwave hyperthermia. The results indicate no toxicity associated with the CNT-Ab in the absence of microwaves. CNTs are only found in the proximity of the site of injection and have been shown to effectively cause hyperthermia induced necrosis upon exposure to microwaves with no noticeable damage to other tissues that are not in direct contact with the CNT-Ab. To understand the cellular immune response towards CNT-Abs, transgenic zebrafish with fluorescently labeled macrophages and neutrophils were used to assay for their ability to phagocytize CNT-Ab. Our results indicate that macrophages and neutrophils were able to actively phagocytose CNT-Abs shortly after injection. Taken together, this is the first study to show that CNTs can be used in combination with microwaves to cause targeted ablation of cells in mice without any side effects, which would be ideal for cancer therapies.
Collapse
Affiliation(s)
- Amy Chall
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, United States of America
| | - John Stagg
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, United States of America
| | - Andrew Mixson
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, United States of America
| | - Eric Gato
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, United States of America
| | - Rafael L Quirino
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA 30460, United States of America
| | - Vinoth Sittaramane
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, United States of America
| |
Collapse
|
20
|
Metwally K, Bastiancich C, Correard F, Novell A, Fernandez S, Guillet B, Larrat B, Mensah S, Estève MA, Da Silva A. Development of a multi-functional preclinical device for the treatment of glioblastoma. BIOMEDICAL OPTICS EXPRESS 2021; 12:2264-2279. [PMID: 33996228 PMCID: PMC8086436 DOI: 10.1364/boe.419412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 05/18/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most common and aggressive malignant primary brain tumors in adults. The treatment of GBM is limited by the blood-brain barrier (BBB), which limits the diffusion of appropriate concentrations of therapeutic agents at the tumor site. Among experimental therapies, photo-thermal therapy (PTT) mediated by nanoparticles is a promising strategy. To propose a preclinical versatile research instrument for the development of new PTT for GBM, a multipurpose integrated preclinical device was developed. The setup is able to perform: i) BBB permeabilization by focused ultrasound sonication (FUS); ii) PTT with continuous wave laser; iii) in situ temperature monitoring with photo-acoustic (PA) measurements. In vivo preliminary subcutaneous and transcranial experiments were conducted on healthy or tumor-bearing mice. Transcranial FUS-induced BBB permeabilization was validated using single photon emission computed tomography (SPECT) imaging. PTT capacities were monitored by PA thermometry, and are illustrated through subcutaneous and transcranial in vivo experiments. The results show the therapeutic possibilities and ergonomy of such integrated device as a tool for the validation of future treatments.
Collapse
Affiliation(s)
- Khaled Metwally
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
- Aix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, France
- Contributed equally to this work
| | - Chiara Bastiancich
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
- Contributed equally to this work
| | - Florian Correard
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
- APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| | - Anthony Novell
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Samantha Fernandez
- Aix-Marseille Univ, Centre Européen de Recherche en Imagerie Médicale (CERIMED), Marseille, France
| | - Benjamin Guillet
- Aix-Marseille Univ, Centre Européen de Recherche en Imagerie Médicale (CERIMED), Marseille, France
- Aix-Marseille Univ, INSERM, INRA, Center de Recherche en Cardiovasculaire et Nutrition (C2VN), Marseille, France
| | - Benoit Larrat
- Univ. Paris Saclay, CNRS, CEA, DRF/JOLIOT/NEUROSPIN/BAOBAB, Gif-sur-Yvette, France
| | - Serge Mensah
- Aix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, France
| | - Marie-Anne Estève
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
- APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| | - Anabela Da Silva
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| |
Collapse
|
21
|
Abstract
The majority of biological processes are regulated by enzymes, precise control over specific enzymes could create the potential for controlling cellular processes remotely. We show that the thermophilic enzyme thermolysin can be remotely activated in 17.76 MHz radiofrequency (RF) fields when covalently attached to 6.1 nm gold coated magnetite nanoparticles. Without raising the bulk solution temperature, we observe enzyme activity as if the solution was 16 ± 2 °C warmer in RF fields-an increase in enzymatic rate of 129 ± 8%. Kinetics studies show that the activity increase of the enzyme is consistent with the induced fit of a hot enzyme with cold substrate.
Collapse
|
22
|
McCormick JJ, Dokladny K, Moseley PL, Kenny GP. Autophagy and heat: a potential role for heat therapy to improve autophagic function in health and disease. J Appl Physiol (1985) 2021; 130:1-9. [DOI: 10.1152/japplphysiol.00542.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a crucial cell survival mechanism that involves the degradation and recycling of old or damaged organelles and proteins to maintain cellular homeostasis. Impairments in autophagy are central to the pathogenesis of many conditions including metabolic and neurodegenerative disorders, cardiovascular and pulmonary diseases, diabetes, and aging. Although various pharmacological agents may be able to stimulate autophagic function, to our knowledge, few interventions exist that have been deemed safe and effective in humans. An emerging body of evidence suggests that targeting the autophagic pathway via passive heating (heat therapy) may stimulate autophagic function. Therefore, the primary focus of the present review is to analyze the mechanisms in which passive heating induces autophagy as defined by in vitro and in vivo (animal and human) models. Our secondary focus is to examine the implications of utilizing passive heating to restore dysfunctional autophagy in chronic disease and aging. Finally, we discuss potential therapeutic strategies to implement passive heating to stimulate autophagic function in humans.
Collapse
Affiliation(s)
- James J. McCormick
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Karol Dokladny
- Department of Internal Medicine, The University of New Mexico, Albuquerque, New Mexico
| | - Pope L. Moseley
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Cellular thermogenesis compensates environmental temperature fluctuations for maintaining intracellular temperature. Biochem Biophys Res Commun 2020; 533:70-76. [PMID: 32928506 DOI: 10.1016/j.bbrc.2020.08.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 11/23/2022]
Abstract
Temperature governs states and dynamics of all biological molecules, and several cellular processes are often heat sources and/or sinks. Technical achievement of intracellular thermometry enables us to measure intracellular temperature, and it can offer novel perspectives in biology and medicine. However, little is known that changes of intracellular temperature throughout the cell-cycle and the manner of which cells regulates their thermogenesis in response to fluctuation of the environmental temperature. Here, cell-cycle-dependent changes of intracellular temperature were reconstructed from the snapshots of cell population at single-cell resolution using ergodic analysis for asynchronously cultured HeLa cells expressing a genetically encoded thermometry. Intracellular temperature is highest at G1 phase, and it gradually decreases along cell-cycle progression and increases abruptly during mitosis. Cells easily heated up are harder to cool down and vice versa, especially at G1/S phases. Together, intracellular thermogenesis depends on cell-cycle phases and it maintains intracellular temperature through compensating environmental temperature fluctuations.
Collapse
|
24
|
Cao Q, Wang W, Zhou M, Huang Q, Wen X, Zhao J, Shi S, Geng K, Li F, Hatakeyama H, Xu C, Piwnica-Worms D, Peng W, Zhou D, Sood AK, Li C. Induction of antitumor immunity in mice by the combination of nanoparticle-based photothermolysis and anti-PD-1 checkpoint inhibition. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2020; 25:102169. [PMID: 32059873 PMCID: PMC7181381 DOI: 10.1016/j.nano.2020.102169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/23/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023]
Abstract
Generation of durable tumor-specific immune response without isolation and expansion of dendritic cells or T cells ex vivo remains a challenge. In this study, we investigated the impact of nanoparticle-mediated photothermolysis in combination with checkpoint inhibition on the induction of systemic antitumor immunity. Photothermolysis based on near-infrared light-absorbing copper sulfide nanoparticles and 15-ns laser pulses combined with the immune checkpoint inhibitor anti-PD-1 antibody (αPD-1) increased tumor infiltration by antigen-presenting cells and CD8-positive T lymphocytes in the B16-OVA mouse model. Moreover, combined photothermolysis, polymeric conjugate of the Toll-like receptor 9 agonist CpG, and αPD-1 significantly prolonged mouse survival after re-inoculation of tumor cells at a distant site compared to individual treatments alone in the poorly immunogenic syngeneic ID8-ip1-Luc ovarian tumor model. Thus, photothermolysis is a promising interventional technique that synergizes with Toll-like receptor 9 agonists and immune checkpoint inhibitors to enhance the abscopal effect in tumors.
Collapse
Affiliation(s)
- Qizhen Cao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wanqin Wang
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Zhou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qian Huang
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoxia Wen
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Zhao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sixiang Shi
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ku Geng
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fenge Li
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroto Hatakeyama
- Departments of Gynecologic Oncology & Reproductive Medicine and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chunyu Xu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weiyi Peng
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dapeng Zhou
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Departments of Gynecologic Oncology & Reproductive Medicine and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chun Li
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
25
|
Shirkavand A, Nazif HR. Numerical study on the effects of blood perfusion and body metabolism on the temperature profile of human forearm in hyperthermia conditions. J Therm Biol 2019; 84:339-350. [PMID: 31466772 DOI: 10.1016/j.jtherbio.2019.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 11/30/2022]
Abstract
The development of mathematical models for describing the thermal behavior of living tissues under normal or hyperthermia conditions is of increasing importance. In this research, a 3D forearm model based on anthropometric measurement of 25 samples in Tehran, Iran was developed. The tissue temperature distribution is obtained via the Finite Volume Method (FVM) by considering the appropriate boundary conditions, blood perfusion, body metabolism, and the application of hyperthermia conditions on the tissue. The Pennes Bioheat Transfer Equation (PBHTE) is considered in this regard. Also, various thermophysical properties are assumed for the model in order to clarify the effects of such parameters on the tissue temperature distribution. The results of this study indicate that it is possible to provide the desired conditions for many therapeutic processes by controlling the parameters such as blood perfusion, body metabolism and the type of external heat source applied on the tissue. Generally, by decreasing the body metabolism, increasing the blood perfusion rate in tissue and applying a fluctuating heat flux, instead of uniform heat flux on the surface of the forearm skin, it is possible to provide the hyperthermia conditions without causing damages such as burn injuries to the other parts of the tissue. By using the results of this study, the appropriate conditions of hyperthermia can be obtained.
Collapse
Affiliation(s)
- Abolfazl Shirkavand
- Department of Mechanical Engineering, Imam Khomeini International University, Qazvin, Iran.
| | - Hamid Reza Nazif
- Department of Mechanical Engineering, Imam Khomeini International University, Qazvin, Iran.
| |
Collapse
|
26
|
Hadjianfar M, Semnani D, Varshosaz J. An investigation on polycaprolactone/chitosan/Fe
3
O
4
nanofibrous composite used for hyperthermia. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mehdi Hadjianfar
- Department of Textile EngineeringIsfahan University of Technology Isfahan Iran
| | - Dariush Semnani
- Department of Textile EngineeringIsfahan University of Technology Isfahan Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research CenterIsfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
27
|
De Matteis V, Cascione M, De Giorgi ML, Leporatti S, Rinaldi R. Encapsulation of Thermo-Sensitive Lauric Acid in Silica Shell: A Green Derivate for Chemo-Thermal Therapy in Breast Cancer Cell. Molecules 2019; 24:E2034. [PMID: 31141939 PMCID: PMC6600235 DOI: 10.3390/molecules24112034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/21/2019] [Accepted: 05/25/2019] [Indexed: 11/29/2022] Open
Abstract
Lauric acid is a green derivate that is abundant in some seeds such as coconut oil where it represents the most relevant fatty acid. Some studies have emphasized its anticancer effect due to apoptosis induction. In addition, the lauric acid is a Phase Change Material having a melting temperature of about 43.2 °C: this property makes it a powerful tool in cancer treatment by hyperthermal stress, generally induced at 43 °C. However, the direct use of lauric acid can have some controversial effects, and it can undergo degradation phenomena in the extracellular environment. For this reason, we have encapsulated lauric acid in a silica shell with a one-step and reproducible synthetic route in order to obtain a monodispersed SiO2@LA NPs with a good encapsulation efficiency. We have used these NPs to expose breast cancer cell lines (MCF-7) at different concentrations in combination with hyperthermal treatment. Uptake, viability, oxidative stress induction, caspases levels, and morphometric parameters were analyzed. These nanovectors showed double action in anticancer treatments thanks to the synergic effect of temperature and lauric acid activity.
Collapse
Affiliation(s)
- Valeria De Matteis
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Via per Arnesano, 73100 Lecce, Italy.
| | - Mariafrancesca Cascione
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Via per Arnesano, 73100 Lecce, Italy.
| | - Maria Luisa De Giorgi
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Via per Arnesano, 73100 Lecce, Italy.
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia, via Monteroni, c/o Campus Ecotekne, 73100 Lecce, Italy.
| | - Rosaria Rinaldi
- Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, Via per Arnesano, 73100 Lecce, Italy.
| |
Collapse
|
28
|
Abdi Goushbolagh N, Keshavarz M, Zare MH, Bahreyni-Toosi MH, Kargar M, Farhood B. Photosensitizer effects of MWCNTs-COOH particles on CT26 fibroblastic cells exposed to laser irradiation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1326-1334. [DOI: 10.1080/21691401.2019.1593997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nouraddin Abdi Goushbolagh
- Medical Physics Department, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Keshavarz
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Zare
- Medical Physics Department, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Radiotherapy Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Masoud Kargar
- Medical Physics Department, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
29
|
Martina K, Serpe L, Cavalli R, Cravotto G. Enabling technologies for the preparation of multifunctional “bullets” for nanomedicine. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2018.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent advances in nanotechnology, including modern enabling techniques that can improve synthetic preparation and drug formulations, have opened up new frontiers in nanomedicine with the development of nanoscale carriers and assemblies. The use of delivery platforms has attracted attention over the past decade as researchers shift their focus away from the development of new drug candidates, and toward new means with which to deliver therapeutic and/or diagnostic agents. This work will explore a transdisciplinary approach for the production of a number of nanomaterials, nanocomplexes and nanobubbles and their application in a variety of potential biological and theranostic protocols. Particular attention will be paid to nanobubbles, stimuli responsive nanoparticles and cyclodextrin grafted nanosystems produced under non-conventional conditions, such as microwave and ultrasound irradiation. Besides nanoparticles preparation, ultrasound can also act as an enabling technology when activating sensitive nanobubbles and nanoparticles.
Collapse
Affiliation(s)
- K. Martina
- Department of Drug Science & Technology, Centre for Nanostructured Interfaces and Surfaces (NIS), University of Turin, Turin, Italy
| | - L. Serpe
- Department of Drug Science & Technology, Centre for Nanostructured Interfaces and Surfaces (NIS), University of Turin, Turin, Italy
| | - R. Cavalli
- Department of Drug Science & Technology, Centre for Nanostructured Interfaces and Surfaces (NIS), University of Turin, Turin, Italy
| | - G. Cravotto
- Department of Drug Science & Technology, Centre for Nanostructured Interfaces and Surfaces (NIS), University of Turin, Turin, Italy
| |
Collapse
|
30
|
Costa DF, Mendes LP, Torchilin VP. The effect of low- and high-penetration light on localized cancer therapy. Adv Drug Deliv Rev 2019; 138:105-116. [PMID: 30217518 DOI: 10.1016/j.addr.2018.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/30/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022]
Abstract
The design of a delivery system allowing targeted and controlled drug release has been considered one of the main strategies used to provide individualized cancer therapy, to improve survival statistics, and to enhance quality-of-life. External stimuli including low- and high-penetration light have been shown to have the ability to turn drug delivery on and off in a non-invasive remotely-controlled fashion. The success of this approach has been closely related to the development of a variety of drug delivery systems - from photosensitive liposomes to gold nanocages - and relies on multiple mechanisms of drug release activation. In this review, we make reference to the two extremes of the light spectrum and their potential as triggers for the delivery of antitumor drugs, along with the most recent achievements in preclinical trials and the challenges to an efficient translation of this technology to the clinical setting.
Collapse
|
31
|
Wan J, Geng S, Zhao H, Peng X, Xu J, Wei M, Mao J, Zhou Y, Zhu Q, Zhao Y, Yang X. Precise synchronization of hyperthermia-chemotherapy: photothermally induced on-demand release from injectable hydrogels of gold nanocages. NANOSCALE 2018; 10:20020-20032. [PMID: 30351339 DOI: 10.1039/c8nr06851h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Though a therapeutic sequence plays a key role in tumor therapy, little attention has been paid to its influence on multimodal combined therapy. Herein, we developed gold nanocages (GNC@PNA-hls) decorated with two kinds of temperature sensitive p(N-isopropyl-acrylamide-acrylic acid) copolymers (PNA-hs and PNA-ls) for precise antitumor coordination of thermo-chemotherapy. Doxorubicin-loaded GNC@PNA-hls (Dox-GNC@PNA-hls) showed a steady photothermally induced on-demand release under multiple near-infrared (NIR) irradiations. In vitro evaluations indicated that concurrent thermo-chemotherapy treatments (Dox - L) showed the best antitumor effect, compared with the sequence of either doxorubicin treatment followed by NIR radiation (Dox + L) or NIR radiation followed by doxorubicin treatment (L + Dox). The in vivo antitumor efficacy also indicated that the tumor volume was totally suppressed (ca. 0.14 cm3) by the treatment of Dox-GNC@PNA-hls with NIR radiation for 14 days. These results indicated that Dox-GNC@PNA-hls could achieve precise synchronization between hyperthermia and chemotherapy, and effectively enhance their antitumor efficacy.
Collapse
Affiliation(s)
- Jiangshan Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pierini F, Nakielski P, Urbanek O, Pawłowska S, Lanzi M, De Sio L, Kowalewski TA. Polymer-Based Nanomaterials for Photothermal Therapy: From Light-Responsive to Multifunctional Nanoplatforms for Synergistically Combined Technologies. Biomacromolecules 2018; 19:4147-4167. [DOI: 10.1021/acs.biomac.8b01138] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | | | - Massimiliano Lanzi
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum-University of Bologna, 40136 Bologna, Italy
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | | |
Collapse
|
33
|
A parametric study of thermal therapy of skin tissue. J Therm Biol 2017; 63:92-103. [DOI: 10.1016/j.jtherbio.2016.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 01/27/2023]
|
34
|
Collins CB, McCoy RS, Ackerson BJ, Collins GJ, Ackerson CJ. Radiofrequency heating pathways for gold nanoparticles. NANOSCALE 2014; 6:8459-72. [PMID: 24962620 PMCID: PMC4624276 DOI: 10.1039/c4nr00464g] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry which may affect thermal dissipation include the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell. Aspects of RF which may affect thermal dissipation include power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments.
Collapse
Affiliation(s)
- C B Collins
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | | | | | | | | |
Collapse
|
35
|
Dumke JC, Qureshi A, Hamdan S, Rupnik K, El-Zahab B, Hayes DJ, Warner IM. In vitro activity studies of hyperthermal near-infrared nanoGUMBOS in MDA-MB-231 breast cancer cells. Photochem Photobiol Sci 2014; 13:1270-80. [DOI: 10.1039/c4pp00030g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanoparticles devised entirely of ionic liquid-like materials called GUMBOS created a localized hyperthermal effect within breast cancer cells concurrent with near-infrared laser excitation.
Collapse
Affiliation(s)
| | - Ammar Qureshi
- Department of Biological and Agricultural Engineering
- Louisiana State University
- Baton Rouge, USA
| | - Suzana Hamdan
- Department of Chemistry
- Louisiana State University
- Baton Rouge, USA
| | - Kresimir Rupnik
- Department of Chemistry
- Louisiana State University
- Baton Rouge, USA
| | - Bilal El-Zahab
- Department of Chemistry
- Louisiana State University
- Baton Rouge, USA
| | - Daniel J. Hayes
- Department of Biological and Agricultural Engineering
- Louisiana State University
- Baton Rouge, USA
| | - Isiah M. Warner
- Department of Chemistry
- Louisiana State University
- Baton Rouge, USA
| |
Collapse
|
36
|
Goya GF, Asín L, Ibarra MR. Cell death induced by AC magnetic fields and magnetic nanoparticles: Current state and perspectives. Int J Hyperthermia 2013; 29:810-8. [DOI: 10.3109/02656736.2013.838646] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
37
|
Sanghera SS, Skitzki JJ. Targeting the heat shock response in cancer: tipping the balance in transformed cells. Surg Oncol Clin N Am 2013; 22:665-84. [PMID: 24012394 DOI: 10.1016/j.soc.2013.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The elucidation of the heat shock response (HSR) as a mediator of cellular stress has created a framework for understanding how these processes may promote tumorigenesis. Furthermore, the identification of specific components of the HSR and how they are co-opted by cancer cells has led to the discovery of new therapeutic targets. A wide range of small molecule inhibitors of the HSR are in various stages of development for clinical application in patients with cancer. The introduction of these novel small molecule inhibitors offers the opportunity for synergy with existing therapies and the potential for highly targeted treatments.
Collapse
Affiliation(s)
- Sartaj S Sanghera
- Department of Surgical Oncology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | |
Collapse
|
38
|
Hyperthermia sensitizes Rhizopus oryzae to posaconazole and itraconazole action through apoptosis. Antimicrob Agents Chemother 2013; 57:4360-8. [PMID: 23817366 DOI: 10.1128/aac.00571-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The high mortality rate of mucormycosis with currently available monotherapy has created interest in studying novel strategies for antifungal agents. With the exception of amphotericin B (AMB), the triazoles (posaconazole [PCZ] and itraconazole [ICZ]) are fungistatic in vitro against Rhizopus oryzae . We hypothesized that growth at a high temperature (42°C) results in fungicidal activity of PCZ and ICZ that is mediated through apoptosis. R. oryzae had high MIC values for PCZ and ICZ (16 to 64 μg/ml) at 25°C; in contrast, the MICs for PCZ and ICZ were significantly lower at 37°C (8 to 16 μg/ml) and 42°C (0.25 to 1 μg/ml). Furthermore, PCZ and ICZ dose-dependent inhibition of germination was more pronounced at 42°C than at 37°C. In addition, intracellular reactive oxygen species (ROS) increased significantly when fungi were exposed to antifungals at 42°C. Characteristic cellular changes of apoptosis in R. oryzae were induced by the accumulation of intracellular reactive oxygen species. Cells treated with PCZ or ICZ in combination with hyperthermia (42°C) exhibited characteristic markers of early apoptosis: phosphatidylserine externalization visualized by annexin V staining, membrane depolarization visualized by bis-[1,3-dibutylbarbituric acid] trimethine oxonol (DiBAC) staining, and increased metacaspase activity. Moreover, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay and DAPI (4',6-diamidino-2-phenylindole) staining demonstrated DNA fragmentation and condensation, respectively. The addition of N-acetylcysteine increased fungal survival, prevented apoptosis, reduced ROS accumulation, and decreased metacaspase activation. We concluded that hyperthermia, either alone or in the presence of PCZ or ICZ, induces apoptosis in R. oryzae. Local thermal delivery could be a therapeutically useful adjunct strategy for these refractory infections.
Collapse
|