1
|
Bi W, Butardo V, Sha G, Zhang H, Wu X, Wang L. Microbial degradation and pollutant control in aerobic composting and anaerobic digestion of organic wastes: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 204:114894. [PMID: 40408805 DOI: 10.1016/j.wasman.2025.114894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/21/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025]
Abstract
Aerobic composting (AC) and anaerobic digestion (AD) are promising technologies for organic waste treatment, but their efficiency and safety are influenced by complex waste composition and persistent contaminants. This review identifies the advances in understanding microbial community dynamics, enzymatic degradation pathways, and the fate of contaminants during AC and AD processes. The findings indicate that substrate composition shapes dominant microbial populations and their degradative enzymes, with this correlation potentially useful for predicting functional microbial communities. Additionally, AC shows advantages in antibiotic elimination while AD excels in heavy metal immobilization, with both contributing to removing certain antibiotic resistance genes (ARGs). The strategic manipulation of environmental conditions, particularly temperature and oxygen levels, can drive microbial succession to optimize organic matter decomposition while minimizing ARG proliferation. Economic analyses reveal that AC offers lower operational costs and AD generates valuable by-products with potential energy recovery from organic waste. Case studies indicate that integrating both technologies can overcome individual limitations and enhance degradation efficiency compared to conventional single-technology approaches. This work proposes a comprehensive framework for developing coupled AC-AD systems to achieve more efficient and safer organic waste valorization than conventional single-technology approaches. This review has important implications for advancing sustainable waste management practices and mitigating the spread of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Wenhui Bi
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia; College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan, Shandong 250100, China
| | - Vito Butardo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Guomeng Sha
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Hong Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiuyun Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
2
|
Hassan S, Bali BS, Muneer W, Yaseen A, Bhat S, Zaman M, Ganiee SA, Shah AJ, Ganai BA. A review on amino acids as proxies for organic matter degradation in aquatic ecosystems: implications for nutrient cycling, climate change, and ecosystem management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3593-3616. [PMID: 39873875 DOI: 10.1007/s11356-025-35949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
The fate and degradation of organic matter in aquatic systems is a vital link in nutrient cycling and sedimentation processes influenced by exogenous and endogenous factors, such as inputs from upstream sources, sediment suspension, and the decomposition of aquatic organisms. The interplay of organic carbon, microbes, and environmental factors shapes the distribution and degradation of organic matter. Characterizing the source distribution of sedimentary organic matter in aquatic systems using novel proxies can unravel new insights into the mechanisms that control its dispersal, preservation and fate, which is essential to understanding the global carbon and nitrogen cycles. Therefore, the present review critically investigated amino acids as crucial markers for assessing the degradation status in lacustrine and marine sediments and highlighted the pivotal function of biotic and abiotic determinants that influence the mineralization of organic matter. The review thoroughly discussed studies on the spatio-temporal distribution patterns of amino acids and their bio-refractory nature to overcome the challenges in evaluating sediment organic matter degradation in aquatic systems. Recognizing the paramount impact of climate change on aquatic ecosystems, the review further elucidated how integrating amino acid-based data into climate models is essential for predicting complex interplay between degradation processes and evolving environmental dynamics. Finally, the specific needs for further research and recommendations for developing efficient and sustainable strategies to study organic matter degradation were highlighted. The present review will deliver fresh inferences to researchers, ecologists, and policymakers for a better understanding of source distribution and degradation status of organic matter for evidence-based conservation and management strategies.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Bikram Singh Bali
- Department of Earth Science, University of Kashmir, Srinagar, 190006, India
| | - Wani Muneer
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Aarif Yaseen
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Sabreena Bhat
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Muzafar Zaman
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Shahid Ahmad Ganiee
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Abdul Jalil Shah
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| |
Collapse
|
3
|
Finley BK, Enalls BC, de Raad M, Al Said M, Chen M, Joyner DC, Hazen TC, Northen TR, Chakraborty R. Unraveling the influence of microbial necromass on subsurface microbiomes: metabolite utilization and community dynamics. ISME COMMUNICATIONS 2025; 5:ycaf006. [PMID: 39991274 PMCID: PMC11843093 DOI: 10.1093/ismeco/ycaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025]
Abstract
The role of microbial necromass (nonliving microbial biomass), a significant component of belowground organic carbon, in nutrient cycling and its impact on the dynamics of microbial communities in subsurface systems remains poorly understood. It is currently unclear whether necromass metabolites from various microbes are different, whether certain groups of metabolites are preferentially utilized over others, or whether different microbial species respond to various necromass metabolites. In this study, we aimed to fill these knowledge gaps by designing enrichments with necromass as the sole nutrient source for subsurface microbial communities. We used the soluble fraction of necromass from bacterial isolates belonging to Arthrobacter, Agrobacterium, and Pseudomonas genera, and our results indicate that metabolite composition of necromass varied slightly across different strains but generally included amino acids, organic acids, and nucleic acid constituents. Arthrobacter-derived necromass appeared more recalcitrant. Necromass metabolites enriched diverse microbial genera, particularly Massilia sp. responded quickly regardless of the necromass source. Despite differences in necromass utilization, microbial community composition converged rapidly over time across the three different necromass amendments. Uracil, xanthine, valine, and phosphate-containing isomers were generally depleted over time, indicating microbial assimilation for maintenance and growth. However, numerous easily assimilable metabolites were not significantly depleted, suggesting efficient necromass recycling and the potential for necromass stabilization in systems. This study highlights the dynamic interactions between microbial necromass metabolites and subsurface microbial communities, revealing both selective utilization and rapid community and necromass convergence regardless of the necromass source.
Collapse
Affiliation(s)
- Brianna K Finley
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Brandon C Enalls
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Markus de Raad
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Mariam Al Said
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Mingfei Chen
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Dominique C Joyner
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Genomics Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Romy Chakraborty
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| |
Collapse
|
4
|
L’Espérance E, Bouyoucef LS, Dozois JA, Yergeau E. Tipping the plant-microbe competition for nitrogen in agricultural soils. iScience 2024; 27:110973. [PMID: 39391734 PMCID: PMC11466649 DOI: 10.1016/j.isci.2024.110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Nitrogen (N) is the most limiting nutrient in agroecosystems, and its indiscriminate application is at the center of the environmental challenges facing agriculture. To solve this dilemma, crops' nitrogen use efficiency (NUE) needs to increase - in other words, more of the applied nitrogen needs to reach humans. Microbes are the key to cracking this problem. Microbes use nitrogen as an energy source, an electron acceptor, or incorporate it in their biomass. These activities change the form and availability of nitrogen for crops' uptake, impacting its NUE, yields and produce quality. Plants (and microbes) have, however, evolved many mechanisms to compete for soil nitrogen. Understanding and harnessing these competitive mechanisms would enable us to tip the nitrogen balance to the advantage of crops. We will review these competitive mechanisms and highlight some approaches that were applied to reduce microbial competition for N in an agricultural context.
Collapse
Affiliation(s)
- Emmy L’Espérance
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V1B7, Canada
| | - Lilia Sabrina Bouyoucef
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V1B7, Canada
| | - Jessica A. Dozois
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V1B7, Canada
| | - Etienne Yergeau
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V1B7, Canada
| |
Collapse
|
5
|
Liddicoat C, Edwards RA, Roach M, Robinson JM, Wallace KJ, Barnes AD, Brame J, Heintz-Buschart A, Cavagnaro TR, Dinsdale EA, Doane MP, Eisenhauer N, Mitchell G, Rai B, Ramesh SA, Breed MF. Bioenergetic mapping of 'healthy microbiomes' via compound processing potential imprinted in gut and soil metagenomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173543. [PMID: 38821286 DOI: 10.1016/j.scitotenv.2024.173543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Despite mounting evidence of their importance in human health and ecosystem functioning, the definition and measurement of 'healthy microbiomes' remain unclear. More advanced knowledge exists on health associations for compounds used or produced by microbes. Environmental microbiome exposures (especially via soils) also help shape, and may supplement, the functional capacity of human microbiomes. Given the synchronous interaction between microbes, their feedstocks, and micro-environments, with functional genes facilitating chemical transformations, our objective was to examine microbiomes in terms of their capacity to process compounds relevant to human health. Here we integrate functional genomics and biochemistry frameworks to derive new quantitative measures of in silico potential for human gut and environmental soil metagenomes to process a panel of major compound classes (e.g., lipids, carbohydrates) and selected biomolecules (e.g., vitamins, short-chain fatty acids) linked to human health. Metagenome functional potential profile data were translated into a universal compound mapping 'landscape' based on bioenergetic van Krevelen mapping of function-level meta-compounds and corresponding functional relative abundances, reflecting imprinted genetic capacity of microbiomes to metabolize an array of different compounds. We show that measures of 'compound processing potential' associated with human health and disease (examining atherosclerotic cardiovascular disease, colorectal cancer, type 2 diabetes and anxious-depressive behavior case studies), and displayed seemingly predictable shifts along gradients of ecological disturbance in plant-soil ecosystems (three case studies). Ecosystem quality explained 60-92 % of variation in soil metagenome compound processing potential measures in a post-mining restoration case study dataset. With growing knowledge of the varying proficiency of environmental microbiota to process human health associated compounds, we might design environmental interventions or nature prescriptions to modulate our exposures, thereby advancing microbiota-oriented approaches to human health. Compound processing potential offers a simplified, integrative approach for applying metagenomics in ongoing efforts to understand and quantify the role of microbiota in environmental- and human-health.
Collapse
Affiliation(s)
- Craig Liddicoat
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia.
| | - Robert A Edwards
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Michael Roach
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Jake M Robinson
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Kiri Joy Wallace
- Environmental Research Institute, University of Waikato, Hamilton, Aotearoa, New Zealand
| | - Andrew D Barnes
- Environmental Research Institute, University of Waikato, Hamilton, Aotearoa, New Zealand
| | - Joel Brame
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Anna Heintz-Buschart
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Timothy R Cavagnaro
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Elizabeth A Dinsdale
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Michael P Doane
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv), 04103 Leipzig, Germany; Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Grace Mitchell
- Environmental Research Institute, University of Waikato, Hamilton, Aotearoa, New Zealand; Manaaki Whenua - Landcare Research, Hamilton, Aotearoa, New Zealand
| | - Bibishan Rai
- Environmental Research Institute, University of Waikato, Hamilton, Aotearoa, New Zealand
| | - Sunita A Ramesh
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
6
|
Salas E, Gorfer M, Bandian D, Eichorst SA, Schmidt H, Horak J, Rittmann SKMR, Schleper C, Reischl B, Pribasnig T, Jansa J, Kaiser C, Wanek W. Reevaluation and novel insights into amino sugar and neutral sugar necromass biomarkers in archaea, bacteria, fungi, and plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167463. [PMID: 37793447 DOI: 10.1016/j.scitotenv.2023.167463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
Soil microbial necromass is an important contributor to soil organic matter (>50%) and it is largely composed of microbial residues. In soils, fragmented cell wall residues are mostly found in their polysaccharide forms of fungal chitin and bacterial peptidoglycan. Microbial necromass biomarkers, particularly amino sugars (AS) such as glucosamine (GlcN) and muramic acid (MurA) have been used to trace fungal and bacterial residues in soils, and to distinguish carbon (C) found in microbial residues from non-microbial organic C. Neutral sugars (NS), particularly the hexose/pentose ratio, have also been proposed as tracers of plant polysaccharides in soils. In our study, we extended the range of biomarkers to include AS and NS compounds in the biomass of 120 species belonging to archaea, bacteria, fungi, or plants. GlcN was the most common AS found in all taxa, contributing 42-91% to total AS content, while glucose was the most common NS found, contributing 56-79% to total NS. We identified talosaminuronic acid, found in archaeal pseudopeptidoglycan, as a new potential biomarker specific for Euryarchaeota. We compared the variability of these compounds between the different taxonomic groups using multivariate approaches, such as non-metric multidimensional scaling (NMDS) and partial least squares discriminant analysis (PLS-DA) and statistically evaluated their biomarker potential via indicator species analysis. Both NMDS and PLS-DA showcased the variability in the AS and NS contents between the different taxonomic groups, highlighting their potential as necromass residue biomarkers and allowing their extension from separating bacterial and fungal necromass to separating microbes from plants. Finally, we estimated new conversion factors where fungal GlcN is converted to fungal C by multiplying by 10 and MurA is converted to bacterial C by multiplying by 54. Conversion factors for talosaminuronic acid and galactosamine are also proposed to allow estimation of archaeal or all-microbial necromass residue C, respectively.
Collapse
Affiliation(s)
- Erika Salas
- Division of Terrestrial Ecosystem Research, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria; Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria.
| | - Markus Gorfer
- AIT Austrian Institute of Technology GmbH, Bioresources, Tulln, Austria
| | - Dragana Bandian
- AIT Austrian Institute of Technology GmbH, Bioresources, Tulln, Austria
| | - Stephanie A Eichorst
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Hannes Schmidt
- Division of Terrestrial Ecosystem Research, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Julia Horak
- Division of Terrestrial Ecosystem Research, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Christa Schleper
- Archaea Biology and Ecogenomics Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Barbara Reischl
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Thomas Pribasnig
- Archaea Biology and Ecogenomics Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Jan Jansa
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Christina Kaiser
- Division of Terrestrial Ecosystem Research, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Wolfgang Wanek
- Division of Terrestrial Ecosystem Research, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Wu Y, Fu C, Peacock CL, Sørensen SJ, Redmile-Gordon MA, Xiao KQ, Gao C, Liu J, Huang Q, Li Z, Song P, Zhu Y, Zhou J, Cai P. Cooperative microbial interactions drive spatial segregation in porous environments. Nat Commun 2023; 14:4226. [PMID: 37454222 PMCID: PMC10349867 DOI: 10.1038/s41467-023-39991-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
The role of microbial interactions and the underlying mechanisms that shape complex biofilm communities are poorly understood. Here we employ a microfluidic chip to represent porous subsurface environments and show that cooperative microbial interactions between free-living and biofilm-forming bacteria trigger active spatial segregation to promote their respective dominance in segregated microhabitats. During initial colonization, free-living and biofilm-forming microbes are segregated from the mixed planktonic inoculum to occupy the ambient fluid and grain surface. Contrary to spatial exclusion through competition, the active spatial segregation is induced by cooperative interactions which improves the fitness of both biofilm and planktonic populations. We further show that free-living Arthrobacter induces the surface colonization by scavenging the biofilm inhibitor, D-amino acids and receives benefits from the public goods secreted by the biofilm-forming strains. Collectively, our results reveal how cooperative microbial interactions may contribute to microbial coexistence in segregated microhabitats and drive subsurface biofilm community succession.
Collapse
Affiliation(s)
- Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Chengxia Fu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Caroline L Peacock
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Marc A Redmile-Gordon
- Department of Environmental Horticulture, Royal Horticultural Society, Wisley, Surrey, GU23 6QB, UK
| | - Ke-Qing Xiao
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Chunhui Gao
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Jun Liu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Zixue Li
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyi Song
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Yongguan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, USA
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
8
|
Chen M, Xu J, Li Z, Li D, Wang Q, Zhou Y, Guo W, Ma D, Zhang J, Zhao B. Long-term nitrogen fertilization-induced enhancements of acid hydrolyzable nitrogen are mainly regulated by the most vital microbial taxa of keystone species and enzyme activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162463. [PMID: 36842593 DOI: 10.1016/j.scitotenv.2023.162463] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
It is well known that nitrogen (N) fertilizer input is required to improve crop productivity, but we lack a comprehensive understanding of how elevated N input changes the formation of soil acid hydrolyzable nitrogen (AHN) by adjusting the most vital microbial taxa of keystone species of microbial communities and enzyme activities. A 15-year field experiment comprising four levels of inorganic N fertilization was conducted to identify the most important bacterial and fungal taxa of the keystone species derived from cooccurrence networks as well as the vital enzyme activities at the bell mouth and maturity stages. Long-term N fertilization significantly increased the levels of AHN along with its four fractions, including amino acid N (AAN), ammonium N (AN), amino sugar N (ASN), and hydrolysable unidentified N (HUN), by 30.1-118.6 %, regardless of growth stage. Some most vital microbial taxa of keystone species and enzyme activities, which changed in response to N fertilization, mainly regulated each ANH fraction, that is, AHN and AN were mainly controlled by the enrichment of Nocardioides and β-1,4-N-acetyl-glucosaminidase (NAG), as well as by the reduction of Anaerolinea and urease (UR), AAN was determined by the enrichment of Hannaella and depletion of Penicillium, ASN was regulated by the enrichment of Hannaella and Arthrobacter, and HUN was influenced by the reduction of Penicillium and enrichment of Nitrosospira. These microbial genera have been found to be involved in dissimilatory nitrate reduction to ammonium (DNRA) and nitrification/denitrification processes and the two enzyme activities involved in organic N degradation and N-releasing processes, suggesting that the formation of AHN fractions was closely associated with specific functional microbial taxa and enzyme activities induced by N fertilization. Our results provide new insights into the associations among increased N input, altered formation of soil organic N, and shifts in microbial communities and enzyme activities.
Collapse
Affiliation(s)
- Meiqi Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jisheng Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zengqiang Li
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Dandan Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingxia Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunpeng Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Guo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Donghao Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Bingzi Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
9
|
Ahuja V, Bhatt AK, Banu JR, Kumar V, Kumar G, Yang YH, Bhatia SK. Microbial Exopolysaccharide Composites in Biomedicine and Healthcare: Trends and Advances. Polymers (Basel) 2023; 15:polym15071801. [PMID: 37050415 PMCID: PMC10098801 DOI: 10.3390/polym15071801] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Microbial exopolysaccharides (EPSs), e.g., xanthan, dextran, gellan, curdlan, etc., have significant applications in several industries (pharma, food, textiles, petroleum, etc.) due to their biocompatibility, nontoxicity, and functional characteristics. However, biodegradability, poor cell adhesion, mineralization, and lower enzyme activity are some other factors that might hinder commercial applications in healthcare practices. Some EPSs lack biological activities that make them prone to degradation in ex vivo, as well as in vivo environments. The blending of EPSs with other natural and synthetic polymers can improve the structural, functional, and physiological characteristics, and make the composites suitable for a diverse range of applications. In comparison to EPS, composites have more mechanical strength, porosity, and stress-bearing capacity, along with a higher cell adhesion rate, and mineralization that is required for tissue engineering. Composites have a better possibility for biomedical and healthcare applications and are used for 2D and 3D scaffold fabrication, drug carrying and delivery, wound healing, tissue regeneration, and engineering. However, the commercialization of these products still needs in-depth research, considering commercial aspects such as stability within ex vivo and in vivo environments, the presence of biological fluids and enzymes, degradation profile, and interaction within living systems. The opportunities and potential applications are diverse, but more elaborative research is needed to address the challenges. In the current article, efforts have been made to summarize the recent advancements in applications of exopolysaccharide composites with natural and synthetic components, with special consideration of pharma and healthcare applications.
Collapse
Affiliation(s)
- Vishal Ahuja
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
- University Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Arvind Kumar Bhatt
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, Himachal Pradesh, India
| | - J. Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610005, Tamil Nadu, India
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, P.O. Box 8600 Forus, 4036 Stavanger, Norway
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea
| |
Collapse
|
10
|
Whalen ED, Grandy AS, Sokol NW, Keiluweit M, Ernakovich J, Smith RG, Frey SD. Clarifying the evidence for microbial- and plant-derived soil organic matter, and the path toward a more quantitative understanding. GLOBAL CHANGE BIOLOGY 2022; 28:7167-7185. [PMID: 36043234 DOI: 10.1111/gcb.16413] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Predicting and mitigating changes in soil carbon (C) stocks under global change requires a coherent understanding of the factors regulating soil organic matter (SOM) formation and persistence, including knowledge of the direct sources of SOM (plants vs. microbes). In recent years, conceptual models of SOM formation have emphasized the primacy of microbial-derived organic matter inputs, proposing that microbial physiological traits (e.g., growth efficiency) are dominant controls on SOM quantity. However, recent quantitative studies have challenged this view, suggesting that plants make larger direct contributions to SOM than is currently recognized by this paradigm. In this review, we attempt to reconcile these perspectives by highlighting that variation across estimates of plant- versus microbial-derived SOM may arise in part from methodological limitations. We show that all major methods used to estimate plant versus microbial contributions to SOM have substantial shortcomings, highlighting the uncertainty in our current quantitative estimates. We demonstrate that there is significant overlap in the chemical signatures of compounds produced by microbes, plant roots, and through the extracellular decomposition of plant litter, which introduces uncertainty into the use of common biomarkers for parsing plant- and microbial-derived SOM, especially in the mineral-associated organic matter (MAOM) fraction. Although the studies that we review have contributed to a deeper understanding of microbial contributions to SOM, limitations with current methods constrain quantitative estimates. In light of recent advances, we suggest that now is a critical time to re-evaluate long-standing methods, clearly define their limitations, and develop a strategic plan for improving the quantification of plant- and microbial-derived SOM. From our synthesis, we outline key questions and challenges for future research on the mechanisms of SOM formation and stabilization from plant and microbial pathways.
Collapse
Affiliation(s)
- Emily D Whalen
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - A Stuart Grandy
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Noah W Sokol
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Marco Keiluweit
- School of Earth & Sustainability and Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jessica Ernakovich
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Richard G Smith
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Serita D Frey
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
11
|
Yuan H, He Z, Chen X, Ge T, Zhang L, Wang J. Rapid, sensitive analysis method for determining the nitrogen stable isotope ratio of total free amino acids in soil. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9390. [PMID: 36056455 DOI: 10.1002/rcm.9390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE The amino acid-nitrogen (AA-N) isotope analysis of naturally abundant or isotope-labeled samples is indispensable for tracing nitrogen transfer in soil nitrogen biogeochemical cycling processes. Despite the usefulness of AA-N isotope analysis, the preparation methods are complex and time-consuming, and necessitate the use of toxic reagents. METHODS We present an improved, rapid method for AA-N isotope analysis with high precision. At a high pH, AA-N was released and oxidized to N2 O using ClO- under vacuum. Additionally, purge-and-trap isotope ratio mass spectrometry was used to analyze N2 O. Moreover, we investigated the effect of various factors on the N2 O conversion process with glycine and applied the results to seven representative single-N AAs (alanine, serine, cysteine, aspartic acid, glutamic acid, leucine, and phenylalanine) and five poly-N AAs (lysine, arginine, histidine, tryptophan, and asparagine), as well as side-chain analogs, blank reagent, and other N forms. RESULTS The concentration of ClO- and the pH were determined to be crucial factors for achieving desirable AA-N to N2 O conversion efficiencies. Glycine-N had the highest N2 O yield of 70%, with isotopic results consistent with those of the reference values at a high precision (within 0.5‰ for natural abundance and 0.01 atom% for 15 N-enrichment) at the nanomolar N level. Additionally, the α-NH2 AAs were labile, and the single-N AAs were more easily converted to N2 O than poly-N AAs. With the exception of γ-aminobutyric acid, the N2 O conversion efficiencies of the side-chain N analogs were very low (below 5%). This method was also applicable to the 15 N analysis of the total free AAs in complex soil samples without interference from analytical blanks and other forms of N. CONCLUSIONS Our method is highly selective for the α-NH2 groups of an amino acid, and the oxidation of the side chain is difficult. In addition, the method is sensitive, rapid, and convenient, and does not require toxic reagents.
Collapse
Affiliation(s)
- Hongzhao Yuan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Mapoling, Changsha, Hunan, China
| | - Zhen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Mapoling, Changsha, Hunan, China
| | - Xiangbi Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Mapoling, Changsha, Hunan, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Liping Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Mapoling, Changsha, Hunan, China
| | - Jiurong Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Mapoling, Changsha, Hunan, China
| |
Collapse
|
12
|
Chen J, Song D, Luan H, Liu D, Wang X, Sun J, Zhou W, Liang G. Living and Dead Microorganisms in Mediating Soil Carbon Stocks Under Long-Term Fertilization in a Rice-Wheat Rotation. Front Microbiol 2022; 13:854216. [PMID: 35756033 PMCID: PMC9230992 DOI: 10.3389/fmicb.2022.854216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Although soil microorganism is an active area of research, we are still in the early stages of understanding how living microorganisms influence the accumulations of soil microbial residues under different agricultural practices. Based on a 39-year fertilization experiment, we characterized the soil microbiota and correlated their compositions to soil microbial residues, which are indicated by amino sugars under a rice-wheat rotation. In the present study, fertilization regimes and crop season all exerted significant impacts on the compositions of soil microbial communities and their residues, although no significant difference in the microbial residues was found between soil depth (0-10 cm vs. 10-20 cm). Compared within fertilization regimes, the long-term fertilization, especially the application of organic manure, stimulated the accumulations of carbon (C) and nitrogen in soils and microbial residues. Upland soils in wheat season accumulated more microbial residues, particularly in fungal residues, than paddy soils in rice season. Our results suggested that the long-term application of organic manure favored the growth of soil microbial communities, and then increased the contents of microbial residues, particularly in fungal residues, leading to an enlargement of soil C pools. The keystone taxa Pseudaleuria identified by network analysis showed a significantly positive potential in soil C sequestration by increasing the accumulation of fungal residues. Thus, this study revealed the strong and close connections between microbial communities and their residues, and provided evidence about the critical role of keystone taxa in regulating C sequestration.
Collapse
Affiliation(s)
- Jie Chen
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dali Song
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haoan Luan
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Donghai Liu
- Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xiubin Wang
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwen Sun
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhou
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guoqing Liang
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Chirality in Organic and Mineral Systems: A Review of Reactivity and Alteration Processes Relevant to Prebiotic Chemistry and Life Detection Missions. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chirality is a central feature in the evolution of biological systems, but the reason for biology’s strong preference for specific chiralities of amino acids, sugars, and other molecules remains a controversial and unanswered question in origins of life research. Biological polymers tend toward homochiral systems, which favor the incorporation of a single enantiomer (molecules with a specific chiral configuration) over the other. There have been numerous investigations into the processes that preferentially enrich one enantiomer to understand the evolution of an early, racemic, prebiotic organic world. Chirality can also be a property of minerals; their interaction with chiral organics is important for assessing how post-depositional alteration processes could affect the stereochemical configuration of simple and complex organic molecules. In this paper, we review the properties of organic compounds and minerals as well as the physical, chemical, and geological processes that affect organic and mineral chirality during the preservation and detection of organic compounds. We provide perspectives and discussions on the reactions and analytical techniques that can be performed in the laboratory, and comment on the state of knowledge of flight-capable technologies in current and future planetary missions, with a focus on organics analysis and life detection.
Collapse
|
14
|
Buckeridge KM, Creamer C, Whitaker J. Deconstructing the microbial necromass continuum to inform soil carbon sequestration. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Smith CJ, Chalk PM. Organic N compounds in plant nutrition: have methodologies based on stable isotopes provided unequivocal evidence of direct N uptake? ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2021; 57:333-349. [PMID: 34074191 DOI: 10.1080/10256016.2021.1932871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
During the past two decades, interest has developed in regard to the possibility that plant roots can take up organic N compounds directly, a concept which challenges the conventional wisdom that soil inorganic N forms (NH4+ and NO3-) are the sole primary sources of N absorbed by plant roots. We reviewed the literature based on single or dual (15N, 13C) stable isotope labelling techniques to test the hypothesis of direct uptake. Both isotopically enriched and natural abundance approaches were reviewed. Of the methods examined, the dual enrichment technique, when combined with compound specific and position-specific stable isotope analysis, provided incontrovertible evidence for direct uptake of simple amino acids. We demonstrate that dual labelling lacks overall sensitivity due to the high C concentration in plant tissue relative to N, and the higher natural abundance of 13C cf. 15N, which limits the period of measurement due to isotope dilution, and hence an assessment of the long-term contribution of direct uptake to the N economy of plant communities.
Collapse
Affiliation(s)
| | - Phillip M Chalk
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Australia
| |
Collapse
|
16
|
Daly AB, Jilling A, Bowles TM, Buchkowski RW, Frey SD, Kallenbach CM, Keiluweit M, Mooshammer M, Schimel JP, Grandy AS. A holistic framework integrating plant-microbe-mineral regulation of soil bioavailable nitrogen. BIOGEOCHEMISTRY 2021; 154:211-229. [PMID: 34759436 PMCID: PMC8570341 DOI: 10.1007/s10533-021-00793-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/06/2021] [Indexed: 06/01/2023]
Abstract
UNLABELLED Soil organic nitrogen (N) is a critical resource for plants and microbes, but the processes that govern its cycle are not well-described. To promote a holistic understanding of soil N dynamics, we need an integrated model that links soil organic matter (SOM) cycling to bioavailable N in both unmanaged and managed landscapes, including agroecosystems. We present a framework that unifies recent conceptual advances in our understanding of three critical steps in bioavailable N cycling: organic N (ON) depolymerization and solubilization; bioavailable N sorption and desorption on mineral surfaces; and microbial ON turnover including assimilation, mineralization, and the recycling of microbial products. Consideration of the balance between these processes provides insight into the sources, sinks, and flux rates of bioavailable N. By accounting for interactions among the biological, physical, and chemical controls over ON and its availability to plants and microbes, our conceptual model unifies complex mechanisms of ON transformation in a concrete conceptual framework that is amenable to experimental testing and translates into ideas for new management practices. This framework will allow researchers and practitioners to use common measurements of particulate organic matter (POM) and mineral-associated organic matter (MAOM) to design strategic organic N-cycle interventions that optimize ecosystem productivity and minimize environmental N loss. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10533-021-00793-9.
Collapse
Affiliation(s)
- Amanda B. Daly
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824 USA
| | - Andrea Jilling
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK USA
| | - Timothy M. Bowles
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA USA
| | | | - Serita D. Frey
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824 USA
| | | | - Marco Keiluweit
- School of Earth & Sustainability and Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA USA
| | - Maria Mooshammer
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA USA
| | - Joshua P. Schimel
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA USA
| | - A. Stuart Grandy
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Road, Durham, NH 03824 USA
| |
Collapse
|
17
|
Zhang X, Chen Z, Huo X, Kang J, Zhao S, Peng Y, Deng F, Shen J, Chu W. Application of Fourier transform ion cyclotron resonance mass spectrometry in deciphering molecular composition of soil organic matter: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144140. [PMID: 33293083 DOI: 10.1016/j.scitotenv.2020.144140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Swiftly deciphering soil organic matter (SOM) composition is critical for research on soil degradation and restoration. Recent advances in analytical techniques (e.g., optical methods and mass spectrometry) have expanded our understanding of the composition, origin, and evolution of SOM. In particular, the use of Fourier transform ion cyclotron resonance mass spectrometers (FTICR-MS) makes it possible to interpret SOM compositions at the molecular level. In this review, we discuss extraction, enrichment, and purification methods for SOM using FTICR-MS analysis; summarize ionization techniques, FTICR-MS mechanisms, data analysis methods, and molecular compositions of SOM in different environments (providing new insights into its origin and evolution); and discuss factors affecting its molecular diversity. Our results show that digenesis, combustion, pyrolysis, and biological metabolisms jointly contribute to the molecular diversity of SOM molecules. The SOM thus formed can further undergo photodegradation during transportation from land to fresh water (and subsequently oceans), resulting in the formation of dissolved organic matter (DOM). Better understanding the molecular features of DOM therefore accelerates our understanding of SOM evolution. In addition, we assess the degradation potential of SOM in different environments to better inform soil remediation methods. Finally, we discuss the merits and drawbacks of applying FTICR-MS on the analysis of SOM molecules, along with existing gaps in knowledge, challenges, and new opportunities for research in FTICR-MS applications and SOM identification.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaoyu Huo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shenxin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yutao Peng
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wei Chu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
18
|
Yuan Y, Li Y, Mou Z, Kuang L, Wu W, Zhang J, Wang F, Hui D, Peñuelas J, Sardans J, Lambers H, Wang J, Kuang Y, Li Z, Liu Z. Phosphorus addition decreases microbial residual contribution to soil organic carbon pool in a tropical coastal forest. GLOBAL CHANGE BIOLOGY 2021; 27:454-466. [PMID: 33068453 DOI: 10.1111/gcb.15407] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/03/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
The soil nitrogen (N) and phosphorus (P) availability often constrains soil carbon (C) pool, and elevated N deposition could further intensify soil P limitation, which may affect soil C cycling in these N-rich and P-poor ecosystems. Soil microbial residues may not only affect soil organic carbon (SOC) pool but also impact SOC stability through soil aggregation. However, how soil nutrient availability and aggregate fractions affect microbial residues and the microbial residue contribution to SOC is still not well understood. We took advantage of a 10-year field fertilization experiment to investigate the effects of nutrient additions, soil aggregate fractions, and their interactions on the concentrations of soil microbial residues and their contribution to SOC accumulation in a tropical coastal forest. We found that continuous P addition greatly decreased the concentrations of microbial residues and their contribution to SOC, whereas N addition had no significant effect. The P-stimulated decreases in microbial residues and their contribution to SOC were presumably due to enhanced recycling of microbial residues via increased activity of residue-decomposing enzymes. The interactive effects between soil aggregate fraction and nutrient addition were not significant, suggesting a weak role of physical protection by soil aggregates in mediating microbial responses to altered soil nutrient availability. Our data suggest that the mechanisms driving microbial residue responses to increased N and P availability might be different, and the P-induced decrease in the contribution of microbial residues might be unfavorable for the stability of SOC in N-rich and P-poor tropical forests. Such information is critical for understanding the role of tropical forests in the global carbon cycle.
Collapse
Affiliation(s)
- Ye Yuan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yue Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhijian Mou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Luhui Kuang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjia Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jing Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Faming Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Xiaoliang Research Station of Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | - Josep Peñuelas
- Global Ecology Unit CREAF-CEAB-UAB, CSIC, Cerdanyola del Valles, Spain
- CREAF, Catalonia, Spain
| | - Jordi Sardans
- Global Ecology Unit CREAF-CEAB-UAB, CSIC, Cerdanyola del Valles, Spain
- CREAF, Catalonia, Spain
| | - Hans Lambers
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Department of Plant Nutrition, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plan-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Jun Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuanwen Kuang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhi'an Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhanfeng Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems & CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
19
|
Liang C, Amelung W, Lehmann J, Kästner M. Quantitative assessment of microbial necromass contribution to soil organic matter. GLOBAL CHANGE BIOLOGY 2019; 25:3578-3590. [PMID: 31365780 DOI: 10.1111/gcb.14781] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/02/2019] [Accepted: 07/10/2019] [Indexed: 05/20/2023]
Abstract
Soil carbon transformation and sequestration have received significant interest in recent years due to a growing need for quantitating its role in mitigating climate change. Even though our understanding of the nature of soil organic matter has recently been substantially revised, fundamental uncertainty remains about the quantitative importance of microbial necromass as part of persistent organic matter. Addressing this uncertainty has been hampered by the absence of quantitative assessments whether microbial matter makes up the majority of the persistent carbon in soil. Direct quantitation of microbial necromass in soil is very challenging because of an overlapping molecular signature with nonmicrobial organic carbon. Here, we use a comprehensive analysis of existing biomarker amino sugar data published between 1996 and 2018, combined with novel appropriation using an ecological systems approach, elemental carbon-nitrogen stoichiometry, and biomarker scaling, to demonstrate a suit of strategies for quantitating the contribution of microbe-derived carbon to the topsoil organic carbon reservoir in global temperate agricultural, grassland, and forest ecosystems. We show that microbial necromass can make up more than half of soil organic carbon. Hence, we suggest that next-generation field management requires promoting microbial biomass formation and necromass preservation to maintain healthy soils, ecosystems, and climate. Our analyses have important implications for improving current climate and carbon models, and helping develop management practices and policies.
Collapse
Affiliation(s)
- Chao Liang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Wulf Amelung
- Institute of Crop Science and Resource Conservation - Soil Science and Soil Ecology, University of Bonn, Bonn, Germany
| | - Johannes Lehmann
- School of Integrative Plant Sciences, Soil and Crop Sciences, Cornell University, Ithaca, NY, USA
- Institute for Advanced studies, Technical University Munich, Garching, Germany
| | - Matthias Kästner
- Department of Environmental Biotechnology, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
20
|
Zheng Q, Hu Y, Zhang S, Noll L, Böckle T, Dietrich M, Herbold CW, Eichorst SA, Woebken D, Richter A, Wanek W. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. SOIL BIOLOGY & BIOCHEMISTRY 2019; 136:107521. [PMID: 31700196 PMCID: PMC6837881 DOI: 10.1016/j.soilbio.2019.107521] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Microorganisms are critical in mediating carbon (C) and nitrogen (N) cycling processes in soils. Yet, it has long been debated whether the processes underlying biogeochemical cycles are affected by the composition and diversity of the soil microbial community or not. The composition and diversity of soil microbial communities can be influenced by various environmental factors, which in turn are known to impact biogeochemical processes. The objectives of this study were to test effects of multiple edaphic drivers individually and represented as the multivariate soil environment interacting with microbial community composition and diversity, and concomitantly on multiple soil functions (i.e. soil enzyme activities, soil C and N processes). We employed high-throughput sequencing (Illumina MiSeq) to analyze bacterial/archaeal and fungal community composition by targeting the 16S rRNA gene and the ITS1 region of soils collected from three land uses (cropland, grassland and forest) deriving from two bedrock forms (silicate and limestone). Based on this data set we explored single and combined effects of edaphic variables on soil microbial community structure and diversity, as well as on soil enzyme activities and several soil C and N processes. We found that both bacterial/archaeal and fungal communities were shaped by the same edaphic factors, with most single edaphic variables and the combined soil environment representation exerting stronger effects on bacterial/archaeal communities than on fungal communities, as demonstrated by (partial) Mantel tests. We also found similar edaphic controls on the bacterial/archaeal/fungal richness and diversity. Soil C processes were only directly affected by the soil environment but not affected by microbial community composition. In contrast, soil N processes were significantly related to bacterial/archaeal community composition and bacterial/archaeal/fungal richness/diversity but not directly affected by the soil environment. This indicates direct control of the soil environment on soil C processes and indirect control of the soil environment on soil N processes by structuring the microbial communities. The study further highlights the importance of edaphic drivers and microbial communities (i.e. composition and diversity) on important soil C and N processes.
Collapse
Affiliation(s)
- Qing Zheng
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
| | - Yuntao Hu
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shasha Zhang
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
| | - Lisa Noll
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
| | - Theresa Böckle
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
| | - Marlies Dietrich
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Althanstrasse 14, 1090 Vienna, Austria
| | - Craig W. Herbold
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Althanstrasse 14, 1090 Vienna, Austria
| | - Stephanie A. Eichorst
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Althanstrasse 14, 1090 Vienna, Austria
| | - Dagmar Woebken
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Althanstrasse 14, 1090 Vienna, Austria
| | - Andreas Richter
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
| | - Wolfgang Wanek
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
21
|
An D, Zhang X, Liang F, Xian M, Feng D, Ye Z. Synthesis, surface properties of glucosyl esters from renewable materials for use as biosurfactants. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Zhang S, Zheng Q, Noll L, Hu Y, Wanek W. Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization. SOIL BIOLOGY & BIOCHEMISTRY 2019; 135:304-315. [PMID: 31579295 PMCID: PMC6774787 DOI: 10.1016/j.soilbio.2019.05.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Microbial nitrogen use efficiency (NUE) is the efficiency by which microbes allocate organic N acquired to biomass formation relative to the N in excess of microbial demand released through N mineralization. Microbial NUE thus is critical to estimate the capacity of soil microbes to retain N in soils and thereby affects inorganic N availability to plants and ecosystem N losses. However, how soil temperature and soil moisture/O2 affect microbial NUE to date is not clear. Therefore, two independent incubation experiments were conducted with soils from three land uses (cropland, grassland and forest) on two bedrocks (silicate and limestone). Soils were exposed to 5, 15 and 25 °C overnight at 60% water holding capacity (WHC) or acclimated to 30 and 60% WHC at 21% O2 and to 90% WHC at 1% O2 over one week at 20 °C. Microbial NUE was measured as microbial growth over microbial organic N uptake (the sum of growth N demand and gross N mineralization). Microbial NUE responded positively to temperature increases with Q10 values ranging from 1.30 ± 0.11 to 2.48 ± 0.67. This was due to exponentially increasing microbial growth rates with incubation temperature while gross N mineralization rates were relatively insensitive to temperature increases (Q10 values 0.66 ± 0.30 to 1.63 ± 0.15). Under oxic conditions (21% O2), microbial NUE as well as gross N mineralization were not stimulated by the increase in soil moisture from 30 to 60% WHC. Under suboxic conditions (90% WHC and 1% O2), microbial NUE markedly declined as microbial growth rates were strongly negatively affected due to increasing microbial energy limitation. In contrast, gross N mineralization rates increased strongly as organic N uptake became in excess of microbial growth N demand. Therefore, in the moisture/O2 experiment microbial NUE was mainly regulated by the shift in O2 status (to suboxic conditions) and less affected by increasing water availability per se. These temperature and moisture/O2 effects on microbial organic N metabolism were consistent across the soils differing in bedrock and land use. Overall it has been demonstrated that microbial NUE was controlled by microbial growth, and that NUE controlled gross N mineralization as an overflow metabolism when energy (C) became limiting or N in excess in soils. This study thereby greatly contributes to the understanding of short-term environmental responses of microbial community N metabolism and the regulation of microbial organic-inorganic N transformations in soils.
Collapse
Affiliation(s)
- Shasha Zhang
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Qing Zheng
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Lisa Noll
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Yuntao Hu
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Wolfgang Wanek
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
23
|
Ma H, Gao R, Yin Y, Taqi R, Yang L. Dynamic of inorganic nitrogen and amino sugar to glucosamine addition in forest soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20538-20549. [PMID: 31098915 DOI: 10.1007/s11356-019-05353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Amino sugars (AS) are routinely used as microbial biomarkers to investigate the dynamics of soil carbon (C) and nitrogen (N) under different environments. However, the effect of any AS on soil C and N, or other AS, is not well-defined. In this study, acid soils from Dongbei (D) and Fujian (F) and alkaline soil from Henan (H) were selected to perform an incubation experiment under glucosamine addition for 36 days. In the present study, the dynamics of soil soluble organic C (SOC), NH4+-N, NO3--N, soluble organic N (SON), and four AS: glucosamine (GluN), mannosamine (ManN), galactosamine (GalN), and muramic acid (MurN), were investigated. The results showed that AS was different among the three soils, but had similar dynamics in the same soil. The higher total C and inorganic N in the D and F relative to the H soil were related to the greater AS in two soils. With incubation, AS decreased in D soil and increased in F soil before 1 week, while after 1 week, the inverse dynamics were observed, which suggest that SOC or SOC combined with inorganic N may be a mechanism to adjust the dynamics of C from AS. Overall, glucosamine addition did not significantly affect AS in D, while the reverse was true for F and H soils. Glucosamine addition decreased AS at day 0 for D soil and at day 3 for F and H soils, and increased SOC. The lowered NH4+-N and AS in D soil, but the higher values of these, were observed in F soil after 1 week of incubation. The increase of SON in D soil with glucosamine addition might be due to the depolymerization of soil organic matter (SOM) into SON. However, the decrease of SON in F soil could be attributed to the mineralization of SON.
Collapse
Affiliation(s)
- Hongliang Ma
- Key Laboratory for Humid Subtropical Eco-geographical Process of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China.
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China.
| | - Ren Gao
- Key Laboratory for Humid Subtropical Eco-geographical Process of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Yunfeng Yin
- Key Laboratory for Humid Subtropical Eco-geographical Process of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Raza Taqi
- University of Agriculture Faisalabad, Sub-Campus Burewala, Burewala, 61010, Pakistan
| | - Liuming Yang
- Key Laboratory for Humid Subtropical Eco-geographical Process of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
24
|
Noll L, Zhang S, Zheng Q, Hu Y, Wanek W. Wide-spread limitation of soil organic nitrogen transformations by substrate availability and not by extracellular enzyme content. SOIL BIOLOGY & BIOCHEMISTRY 2019; 133:37-49. [PMID: 31579313 PMCID: PMC6774789 DOI: 10.1016/j.soilbio.2019.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Proteins constitute the single largest soil organic nitrogen (SON) reservoir and its decomposition drives terrestrial N availability. Protein cleavage by extracellular enzymes is the rate limiting step in the soil organic N cycle and can be controlled by extracellular enzyme production or protein availability/stabilization in soil. Both controls can be affected by geology and land use, as well as be vulnerable to changes in soil temperature and moisture/O2. To explore major controls of soil gross protein depolymerization we sampled six soils from two soil parent materials (calcareous and silicate), where each soil type included three land uses (cropland, pasture and forest). Soil samples were subjected to three temperature treatments (5, 15, 25 °C at 60% water-holding capacity (WHC) and aerobic conditions) or three soil moisture/O2 treatments (30 and 60% WHC at 21% O2, 90% WHC at 1% O2, at 20 °C) in short-term experiments. Samples were incubated for one day in the temperature experiment and for one week in the moisture/O2 experiment. Gross protein depolymerization rates were measured by a novel 15N isotope pool dilution approach. The low temperature sensitivity of gross protein depolymerization, the lack of relationship with protease activity and strong effects of soil texture and pH demonstrate that this process is constrained by organo-mineral associations and not by soil enzyme content. This also became apparent from the inverse effects in calcareous and silicate soils caused by water saturation/O2 limitation. We highlight that the specific soil mineralogy influenced the response of gross depolymerization rates to water saturation/O2 limitation, causing (I) increasing gross depolymerization rates due to release of adsorbed proteins by reductive dissolution of Fe- and Mn-oxyhydroxides in calcareous soils and (II) decreasing gross depolymerization rates due to mobilization of coagulating and toxic Al3+ compounds in silicate soils.
Collapse
Affiliation(s)
- Lisa Noll
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Shasha Zhang
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Qing Zheng
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Yuntao Hu
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Wolfgang Wanek
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Noll L, Zhang S, Wanek W. Novel high-throughput approach to determine key processes of soil organic nitrogen cycling: Gross protein depolymerization and microbial amino acid uptake. SOIL BIOLOGY & BIOCHEMISTRY 2019; 130:73-81. [PMID: 31579309 PMCID: PMC6774784 DOI: 10.1016/j.soilbio.2018.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Proteins comprise the largest soil N reservoir but cannot be taken up directly by microorganisms and plants due to size constraints and stabilization of proteins in organo-mineral associations. Therefore the cleavage of this high molecular weight organic N to smaller soluble compounds as amino acids is a key step in the terrestrial N cycle. In the last years two isotope pool dilution approaches have been successfully established to measure gross rates of protein depolymerization and microbial amino acid uptake in soils. However, both require laborious sample preparation and analyses, which limits sample throughput. Therefore, we here present a novel isotope pool dilution approach based on the addition of 15N-labeled amino acids to soils and subsequent concentration and 15N analysis by the oxidation of α-amino groups to NO2 - and further reduction to N2O, followed by purge-and-trap isotope ratio mass spectrometry (PT-IRMS). We applied this method in mesocosm experiments with forest and meadow soils as well as with a cropland soil amended with either organic C (cellulose) or organic N (bovine serum albumin). To measure direct organic N mineralization to NH4 +, the latter was captured in acid traps and analyzed by an elemental analyzer coupled to an isotope ratio mass spectrometer (EA-IRMS). Our results demonstrate that the proposed method provides fast and precise measurements of at%15N even at low amino acid concentrations, allows high sample throughput and enables parallel estimations of instantaneous organic N mineralization rates.
Collapse
Affiliation(s)
- Lisa Noll
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Shasha Zhang
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Wolfgang Wanek
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| |
Collapse
|
26
|
Zheng Q, Hu Y, Zhang S, Noll L, Böckle T, Richter A, Wanek W. Growth explains microbial carbon use efficiency across soils differing in land use and geology. SOIL BIOLOGY & BIOCHEMISTRY 2019; 128:45-55. [PMID: 31579288 PMCID: PMC6774786 DOI: 10.1016/j.soilbio.2018.10.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The ratio of carbon (C) that is invested into microbial growth to organic C taken up is known as microbial carbon use efficiency (CUE), which is influenced by environmental factors such as soil temperature and soil moisture. How microbes will physiologically react to short-term environmental changes is not well understood, primarily due to methodological restrictions. Here we report on two independent laboratory experiments to explore short-term temperature and soil moisture effects on soil microbial physiology (i.e. respiration, growth, CUE, and microbial biomass turnover): (i) a temperature experiment with 1-day pre-incubation at 5, 15 and 25 °C at 60% water holding capacity (WHC), and (ii) a soil moisture/oxygen (O2) experiment with 7-day pre-incubation at 20 °C at 30%, 60% WHC (both at 21% O2) and 90% WHC at 1% O2. Experiments were conducted with soils from arable, pasture and forest sites derived from both silicate and limestone bedrocks. We found that microbial CUE responded heterogeneously though overall positively to short-term temperature changes, and decreased significantly under high moisture level (90% WHC)/suboxic conditions due to strong decreases in microbial growth. Microbial biomass turnover time decreased dramatically with increasing temperature, and increased significantly at high moisture level (90% WHC)/suboxic conditions. Our findings reveal that the responses of microbial CUE and microbial biomass turnover to short-term temperature and moisture/O2 changes depended mainly on microbial growth responses and less on respiration responses to the environmental cues, which were consistent across soils differing in land use and geology.
Collapse
Affiliation(s)
- Qing Zheng
- Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Yuntao Hu
- Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Shasha Zhang
- Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Lisa Noll
- Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Theresa Böckle
- Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Andreas Richter
- Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Wolfgang Wanek
- Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|