1
|
Hsu FY, Yen YP, Fan HC, Chang M, Chen JA. Sertm2 is a conserved micropeptide that promotes GDNF-mediated motor neuron subtype specification. EMBO Rep 2025; 26:2013-2043. [PMID: 40108406 PMCID: PMC12018958 DOI: 10.1038/s44319-025-00400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 03/22/2025] Open
Abstract
Small open-reading frame-encoded micropeptides within long noncoding RNAs (lncRNAs) are often overlooked due to their small size and low abundance. However, emerging evidence links these micropeptides to various biological pathways, though their roles in neural development and neurodegeneration remain unclear. Here, we investigate the function of murine micropeptide Sertm2, encoded by the lncRNA A730046J19Rik, during spinal motor neuron (MN) development. Sertm2 is predicted to be a conserved transmembrane protein found in both mouse and human, with subcellular analysis revealing that it is enriched in the cytoplasm and neurites. By generating C terminally Flag-tagged Sertm2 and expressing it from the A730046J19Rik locus, we demonstrate that the Sertm2 micropeptide localizes in spinal MNs in mice. The GDNF signaling-induced Etv4+ motor pool is impaired in Sertm2 knockout mice, which display motor nerve arborization defects that culminate in impaired motor coordination and muscle weakness. Similarly, human SERTM2 knockout iPSC-derived MNs also display reduced ETV4+ motor pools, highlighting that Sertm2 is a novel, evolutionarily conserved micropeptide essential for maintaining GDNF-induced MN subtype identity.
Collapse
Affiliation(s)
- Fang-Yu Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, 10617, Taiwan
| | - Ya-Ping Yen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hung-Chi Fan
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Mien Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan.
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, 10617, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
2
|
Şenkal-Turhan S, Bulut-Okumuş E, Şahin F, Yavuz Y, Yılmaz B, Şişli HB, Kalaycı S, Özgün HB, Ömeroğlu Ulu Z, Akkuş Süt P, Doğan A. Derivation of functional neurons from induced pluripotent stem cells using a simple neuromesodermal progenitor generation and rapid spinal cord neuron differentiation process. Hum Cell 2025; 38:69. [PMID: 40080267 DOI: 10.1007/s13577-025-01200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
To generate spinal cord neurons from pluripotent stem cells via neuromesodermal progenitors (NMPs) is not only an important step for regenerative purposes but also required for human developmental research. This study describes a protocol to obtain spinal cord neurons in culture using induced pluripotent stem-cell-derived NMPs. The protocol starts with a 3D culture of NMPs and continues with the transfer of 3D NMPs to monolayer culture in which retinoic acid and sonic hedgehog pathways were triggered sequentially. The established protocol enabled generation of spinal cord neurons with active calcium signaling, electrophysiological activity, axon elongation capacity, and synaptic vesicle trafficking. The expression profile of marker proteins, including β-Tubulin, NeuroD1, Pax6, NeuN, Mnx-1, Isl1, Isl2, Map2, NF, Sox2 was detected to explore the production of developmental regulatory transcription factors and terminal differentiation markers in a time-dependent manner. Cells during differentiation process acquired a fully neural phenotype, which was confirmed by RNA sequencing at the molecular level. The protein expression profile showed neural differentiation induction pathways based on LS-MS/MS analysis. Since NMPs differentiate into spinal cord neuron cells at the developmental stage, the results of this study highlight the further potential of NMP-derived spinal cord neurons in disease modeling and treatment in the clinics.
Collapse
Affiliation(s)
- Selinay Şenkal-Turhan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Ezgi Bulut-Okumuş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Yavuz Yavuz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Bayram Yılmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
- Izmir Biomedicine and Genome Center, Izmir, Türkiye
- Department of Physiology, Faculty of Medicine, Dokuz Eylül University, Izmir, Türkiye
| | - Hatice Burcu Şişli
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Sadık Kalaycı
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Hüseyin Buğra Özgün
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
- Pharmacy, Ataşehir Memorial Hospital, Istanbul, Türkiye
| | - Zehra Ömeroğlu Ulu
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Pınar Akkuş Süt
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye.
| |
Collapse
|
3
|
Grass T, Dokuzluoglu Z, Rodríguez-Muela N. Neuromuscular Organoids to Study Spinal Cord Development and Disease. Methods Mol Biol 2024. [PMID: 39570548 DOI: 10.1007/7651_2024_574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Many aspects of neurodegenerative disease pathology remain unresolved. Why do certain neuronal subpopulations acquire vulnerability to stress or mutations in ubiquitously expressed genes, while others remain resilient? Do these neurons harbor intrinsic marks that make them prone to degeneration? Do these diseases have a neurodevelopmental component? Lacking this fundamental knowledge hampers the discovery of efficacious treatments. While it is well established that human organoids enable the modeling of brain-related diseases, we still lack an organoid model that recapitulates the regionalization complexity and physiology of the spinal cord. Here, we describe an advanced experimental protocol to generate neuromuscular organoids composed of a wide rostro-caudal (RC) diversity of spinal motor neurons (spMNs) and mesodermal progenitor-derived muscle cells. This model therefore allows for the robust and reproducible study of neuromuscular unit development and disease.
Collapse
Affiliation(s)
- Tobias Grass
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Zeynep Dokuzluoglu
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Natalia Rodríguez-Muela
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany.
- Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden, Dresden, Germany.
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
4
|
Bryson JB, Kourgiantaki A, Jiang D, Demosthenous A, Greensmith L. An optogenetic cell therapy to restore control of target muscles in an aggressive mouse model of amyotrophic lateral sclerosis. eLife 2024; 12:RP88250. [PMID: 38236205 PMCID: PMC10945574 DOI: 10.7554/elife.88250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Breakdown of neuromuscular junctions (NMJs) is an early pathological hallmark of amyotrophic lateral sclerosis (ALS) that blocks neuromuscular transmission, leading to muscle weakness, paralysis and, ultimately, premature death. Currently, no therapies exist that can prevent progressive motor neuron degeneration, muscle denervation, or paralysis in ALS. Here, we report important advances in the development of an optogenetic, neural replacement strategy that can effectively restore innervation of severely affected skeletal muscles in the aggressive SOD1G93A mouse model of ALS, thus providing an interface to selectively control the function of targeted muscles using optical stimulation. We also identify a specific approach to confer complete survival of allogeneic replacement motor neurons. Furthermore, we demonstrate that an optical stimulation training paradigm can prevent atrophy of reinnervated muscle fibers and results in a tenfold increase in optically evoked contractile force. Together, these advances pave the way for an assistive therapy that could benefit all ALS patients.
Collapse
Affiliation(s)
- J Barney Bryson
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Alexandra Kourgiantaki
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Dai Jiang
- Department of Electronic and Electrical Engineering, University College London, London, United Kingdom
| | - Andreas Demosthenous
- Department of Electronic and Electrical Engineering, University College London, London, United Kingdom
| | - Linda Greensmith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
5
|
Taylor R, Houart C. Optimized Primary Culture of Neuronal Populations for Subcellular Omics Applications. Methods Mol Biol 2024; 2707:113-124. [PMID: 37668908 DOI: 10.1007/978-1-0716-3401-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Primary cell culture is an invaluable method frequently used to overcome challenges associated with in vivo experiments. In zebrafish research, in vivo live imaging experiments are routine owing to the high optical transparency of embryos, and, as a result, primary cell culture has been less utilized. However, the approach still boasts powerful advantages, emphasizing the importance of sophisticated zebrafish cell culture protocols. Here, we present an enhanced protocol for the generation of primary cell cultures by dissociation of 24 hpf zebrafish embryos. We include a novel cell culture medium recipe specifically favoring neuronal growth and survival, enabling relatively long-term culture. We outline primary zebrafish neuronal culture on glass coverslips, as well as in transwell inserts which allow isolation of neurite tissue for experiments such as investigating subcellular transcriptomes.
Collapse
Affiliation(s)
- Richard Taylor
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| | - Corinne Houart
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
6
|
Yang M, Liu M, Sánchez YF, Avazzadeh S, Quinlan LR, Liu G, Lu Y, Yang G, O'Brien T, Henshall DC, Hardiman O, Shen S. A novel protocol to derive cervical motor neurons from induced pluripotent stem cells for amyotrophic lateral sclerosis. Stem Cell Reports 2023; 18:1870-1883. [PMID: 37595581 PMCID: PMC10545486 DOI: 10.1016/j.stemcr.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
Sporadic amyotrophic lateral sclerosis (sALS) is the majority of ALS, and the lack of appropriate disease models has hindered its research. Induced pluripotent stem cell (iPSC) technology now permits derivation of iPSCs from somatic cells of sALS patients to investigate disease phenotypes and mechanisms. Most existing differentiation protocols are time-consuming or low efficient in generating motor neurons (MNs). Here we report a rapid and simple protocol to differentiate MNs in monolayer culture using small molecules, which led to nearly pure neural stem cells in 6 days, robust OLIG2+ pMNs (73%-91%) in 12 days, enriched CHAT+ cervical spinal MNs (sMNs) (88%-97%) in 18 days, and functionally mature sMNs in 28 days. This simple and reproducible protocol permitted the identification of hyperexcitability phenotypes in our sALS iPSC-derived sMNs, and its application in neurodegenerative diseases should facilitate in vitro disease modeling, drug screening, and the development of cell therapy.
Collapse
Affiliation(s)
- Meimei Yang
- Regenerative Medicine Institute, School of Medicine, University of Galway, H91 W2TY Galway, Ireland; FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases and Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Min Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yajaira Feller Sánchez
- Cellular Physiology Research Laboratory and CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Sahar Avazzadeh
- Cellular Physiology Research Laboratory and CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Leo R Quinlan
- Cellular Physiology Research Laboratory and CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Hebei Key Laboratory of Heart and Metabolism, Hebei Engineering Research Center of Intelligent Medical Clinical Application, Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, Hebei, China
| | - Yin Lu
- College of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Guangming Yang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Timothy O'Brien
- Regenerative Medicine Institute, School of Medicine, University of Galway, H91 W2TY Galway, Ireland
| | - David C Henshall
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases and Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; Department of Physiology and Medical Physics, RCSI University of Medicine & Health Sciences, D02 YN77 Dublin, Ireland.
| | - Orla Hardiman
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases and Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, University of Galway, H91 W2TY Galway, Ireland; FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases and Department of Physiology & Medical Physics, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland.
| |
Collapse
|
7
|
León M, Prieto J, Molina-Navarro MM, García-García F, Barneo-Muñoz M, Ponsoda X, Sáez R, Palau F, Dopazo J, Izpisua Belmonte JC, Torres J. Rapid degeneration of iPSC-derived motor neurons lacking Gdap1 engages a mitochondrial-sustained innate immune response. Cell Death Discov 2023; 9:217. [PMID: 37393339 DOI: 10.1038/s41420-023-01531-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Charcot-Marie-Tooth disease is a chronic hereditary motor and sensory polyneuropathy targeting Schwann cells and/or motor neurons. Its multifactorial and polygenic origin portrays a complex clinical phenotype of the disease with a wide range of genetic inheritance patterns. The disease-associated gene GDAP1 encodes for a mitochondrial outer membrane protein. Mouse and insect models with mutations in Gdap1 have reproduced several traits of the human disease. However, the precise function in the cell types affected by the disease remains unknown. Here, we use induced-pluripotent stem cells derived from a Gdap1 knockout mouse model to better understand the molecular and cellular phenotypes of the disease caused by the loss-of-function of this gene. Gdap1-null motor neurons display a fragile cell phenotype prone to early degeneration showing (1) altered mitochondrial morphology, with an increase in the fragmentation of these organelles, (2) activation of autophagy and mitophagy, (3) abnormal metabolism, characterized by a downregulation of Hexokinase 2 and ATP5b proteins, (4) increased reactive oxygen species and elevated mitochondrial membrane potential, and (5) increased innate immune response and p38 MAP kinase activation. Our data reveals the existence of an underlying Redox-inflammatory axis fueled by altered mitochondrial metabolism in the absence of Gdap1. As this biochemical axis encompasses a wide variety of druggable targets, our results may have implications for developing therapies using combinatorial pharmacological approaches and improving therefore human welfare. A Redox-immune axis underlying motor neuron degeneration caused by the absence of Gdap1. Our results show that Gdap1-/- motor neurons have a fragile cellular phenotype that is prone to degeneration. Gdap1-/- iPSCs differentiated into motor neurons showed an altered metabolic state: decreased glycolysis and increased OXPHOS. These alterations may lead to hyperpolarization of mitochondria and increased ROS levels. Excessive amounts of ROS might be the cause of increased mitophagy, p38 activation and inflammation as a cellular response to oxidative stress. The p38 MAPK pathway and the immune response may, in turn, have feedback mechanisms, leading to the induction of apoptosis and senescence, respectively. CAC, citric acid cycle; ETC, electronic transport chain; Glc, glucose; Lac, lactate; Pyr, pyruvate.
Collapse
Affiliation(s)
- Marian León
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
| | - Javier Prieto
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - María Micaela Molina-Navarro
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
| | - Francisco García-García
- Unidad de Bioinformática y Bioestadística, Centro de Investigación Príncipe Felipe, 46012, València, Spain
| | - Manuela Barneo-Muñoz
- Unitat Predepartamental de Medicina, Universidad Jaume I, Castellón de la Plana, Castellón, Spain
| | - Xavier Ponsoda
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
| | - Rosana Sáez
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain
| | - Francesc Palau
- Institut de Recerca and Hospital San Joan de Déu, 08950, Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Joaquín Dopazo
- CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 41013, Sevilla, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Altos Labs, 5510 Morehouse Drive, San Diego, CA, 92121, USA
| | - Josema Torres
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Burjassot, 46100, València, Spain.
- Instituto de Investigación Sanitaria (INCLIVA), 46010, València, Spain.
| |
Collapse
|
8
|
Davis D, Vajaria R, Delivopoulos E, Vasudevan N. Localisation of oestrogen receptors in stem cells and in stem cell-derived neurons of the mouse. J Neuroendocrinol 2023; 35:e13220. [PMID: 36510342 PMCID: PMC10909416 DOI: 10.1111/jne.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
Oestrogen receptors (ER) transduce the effects of the endogenous ligand, 17β-estradiol in cells to regulate a number of important processes such as reproduction, neuroprotection, learning and memory and anxiety. The ERα or ERβ are classical intracellular nuclear hormone receptors while some of their variants or novel proteins such as the G-protein coupled receptor (GPCR), GPER1/GPR30 are reported to localise in intracellular as well as plasma membrane locations. Although the brain is an important target for oestrogen with oestrogen receptors expressed differentially in various nuclei, subcellular organisation and crosstalk between these receptors is under-explored. Using an adapted protocol that is rapid, we first generated neurons from mouse embryonic stem cells. Our immunocytochemistry approach shows that the full length ERα (ERα-66) and for the first time, that an ERα variant, ERα-36, as well as GPER1 is present in embryonic stem cells. In addition, these receptors typically decrease their nuclear localisation as neuronal maturation proceeds. Finally, although these ERs are present in many subcellular compartments such as the nucleus and plasma membrane, we show that they are specifically not colocalised with each other, suggesting that they initiate distinct signalling pathways.
Collapse
Affiliation(s)
- DeAsia Davis
- School of Biological Sciences, University of Reading, Reading, UK
| | - Ruby Vajaria
- School of Biological Sciences, University of Reading, Reading, UK
| | | | | |
Collapse
|
9
|
Akter M, Ding B. Modeling Movement Disorders via Generation of hiPSC-Derived Motor Neurons. Cells 2022; 11:3796. [PMID: 36497056 PMCID: PMC9737271 DOI: 10.3390/cells11233796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Generation of motor neurons (MNs) from human-induced pluripotent stem cells (hiPSCs) overcomes the limited access to human brain tissues and provides an unprecedent approach for modeling MN-related diseases. In this review, we discuss the recent progression in understanding the regulatory mechanisms of MN differentiation and their applications in the generation of MNs from hiPSCs, with a particular focus on two approaches: induction by small molecules and induction by lentiviral delivery of transcription factors. At each induction stage, different culture media and supplements, typical growth conditions and cellular morphology, and specific markers for validation of cell identity and quality control are specifically discussed. Both approaches can generate functional MNs. Currently, the major challenges in modeling neurological diseases using iPSC-derived neurons are: obtaining neurons with high purity and yield; long-term neuron culture to reach full maturation; and how to culture neurons more physiologically to maximize relevance to in vivo conditions.
Collapse
Affiliation(s)
| | - Baojin Ding
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| |
Collapse
|
10
|
Cooper F, Tsakiridis A. Towards clinical applications of in vitro-derived axial progenitors. Dev Biol 2022; 489:110-117. [PMID: 35718236 DOI: 10.1016/j.ydbio.2022.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022]
Abstract
The production of the tissues that make up the mammalian embryonic trunk takes place in a head-tail direction, via the differentiation of posteriorly-located axial progenitor populations. These include bipotent neuromesodermal progenitors (NMPs), which generate both spinal cord neurectoderm and presomitic mesoderm, the precursor of the musculoskeleton. Over the past few years, a number of studies have described the derivation of NMP-like cells from mouse and human pluripotent stem cells (PSCs). In turn, these have greatly facilitated the establishment of PSC differentiation protocols aiming to give rise efficiently to posterior mesodermal and neural cell types, which have been particularly challenging to produce using previous approaches. Moreover, the advent of 3-dimensional-based culture systems incorporating distinct axial progenitor-derived cell lineages has opened new avenues toward the functional dissection of early patterning events and cell vs non-cell autonomous effects. Here, we provide a brief overview of the applications of these cell types in disease modelling and cell therapy and speculate on their potential uses in the future.
Collapse
Affiliation(s)
- Fay Cooper
- Centre for Stem Cell Biology, School of Bioscience, The University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom; Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, School of Bioscience, The University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom; Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom.
| |
Collapse
|
11
|
Expression Profiles of HOXC6 Predict the Survival of Glioblastoma Patients and Correlate with Cell Cycle. JOURNAL OF ONCOLOGY 2022; 2022:8656865. [PMID: 35432534 PMCID: PMC9007636 DOI: 10.1155/2022/8656865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/14/2021] [Accepted: 03/13/2022] [Indexed: 12/05/2022]
Abstract
The goal of this study was to investigate the homeobox (HOX) gene expression status and its prognostic value in glioblastoma multiforme (GBM) and to uncover the biological processes related to its expression. The prognostic value of HOX genes in GBM was systematically investigated by a genome-wide analysis of HOX gene expression profiles in GBM patient samples in The Cancer Genome Atlas (TCGA) project (microarray dataset) and validation datasets. Using the differentially expressed gene (DEG) analysis and a Cox regression model, we discovered that the HOXC6 could stratify patients into significantly different survival (p = 0.0012, log-rank test) groups in the training cohort. TCGA RNA-seq and GSE16011 datasets were used for validation. Multivariate Cox and stratification analysis indicated that HOXC6 was an independent prognostic factor after adjusting for other clinical covariates. Bioinformatic analysis suggested that the HOXC6 might be involved in the cell cycle-related biological processes and pathways that are well established in the context of glioblastoma tumorigenesis. We further explored the bioinformatic implications by gene set enrichment analysis (GSEA). Tumor cell biology experiments verified the role of HOXC6 in proliferation and cell cycle progression. In conclusion, HOXC6 might be a candidate biomarker gene for individual treatment optimization of glioblastoma. HOXC6 expression has a significant prognostic value and is related to the cell cycle process in glioblastoma.
Collapse
|
12
|
Bazarek S, Johnston BR, Sten M, Mandeville R, Eggan K, Wainger BJ, Brown JM. Spinal motor neuron transplantation to enhance nerve reconstruction strategies: Towards a cell therapy. Exp Neurol 2022; 353:114054. [PMID: 35341748 DOI: 10.1016/j.expneurol.2022.114054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022]
Abstract
Nerve transfers have become a powerful intervention to restore function following devastating paralyzing injuries. A major limitation to peripheral nerve repair and reconstructive strategies is the progressive, fibrotic degeneration of the distal nerve and denervated muscle, eventually precluding recovery of these targets and thus defining a time window within which reinnervation must occur. One proven strategy in the clinic has been the sacrifice and transfer of an adjacent distal motor nerve to provide axons to occupy, and thus preserve (or "babysit"), the target muscle. However, available nearby nerves are limited in severe brachial plexus or spinal cord injury. An alternative and novel proposition is the transplantation of spinal motor neurons (SMNs) derived from human induced pluripotent stem cells (iPSCs) into the target nerve to extend their axons to occupy and preserve the targets. These cells could potentially be delivered through minimally invasive or percutaneous techniques. Several reports have demonstrated survival, functional innervation, and muscular preservation following transplantation of SMNs into rodent nerves. Advances in the generation, culture, and differentiation of human iPSCs now offer the possibility for an unlimited supply of clinical grade SMNs. This review will discuss the previous reports of peripheral SMN transplantation, outline key considerations, and propose next steps towards advancing this approach to clinic. Stem cells have garnered great enthusiasm for their potential to revolutionize medicine. However, this excitement has often led to premature clinical studies with ill-defined cell products and mechanisms of action, particularly in spinal cord injury. We believe the peripheral transplantation of a defined SMN population to address neuromuscular degeneration will be transformative in augmenting current reconstructive strategies. By thus removing the current barriers of time and distance, this strategy would dramatically enhance the potential for reconstruction and functional recovery in otherwise hopeless paralyzing injuries. Furthermore, this strategy may be used as a permanent axon replacement following destruction of lower motor neurons and would enable exogenous stimulation options, such as pacing of transplanted SMN axons in the phrenic nerve to avoid mechanical ventilation in high cervical cord injury or amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Stanley Bazarek
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Benjamin R Johnston
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Margaret Sten
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Ross Mandeville
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Kevin Eggan
- BioMarin Pharmaceutical Inc., San Rafael, CA, United States of America
| | - Brian J Wainger
- Departments of Neurology and Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America.
| | - Justin M Brown
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
13
|
Needham J, Metzis V. Heads or tails: Making the spinal cord. Dev Biol 2022; 485:80-92. [DOI: 10.1016/j.ydbio.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/15/2021] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
|
14
|
Giacomelli E, Vahsen BF, Calder EL, Xu Y, Scaber J, Gray E, Dafinca R, Talbot K, Studer L. Human stem cell models of neurodegeneration: From basic science of amyotrophic lateral sclerosis to clinical translation. Cell Stem Cell 2022; 29:11-35. [PMID: 34995492 PMCID: PMC8785905 DOI: 10.1016/j.stem.2021.12.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neurodegenerative diseases are characterized by progressive cell loss leading to disruption of the structure and function of the central nervous system. Amyotrophic lateral sclerosis (ALS) was among the first of these disorders modeled in patient-specific iPSCs, and recent findings have translated into some of the earliest iPSC-inspired clinical trials. Focusing on ALS as an example, we evaluate the status of modeling neurodegenerative diseases using iPSCs, including methods for deriving and using disease-relevant neuronal and glial lineages. We further highlight the remaining challenges in exploiting the full potential of iPSC technology for understanding and potentially treating neurodegenerative diseases such as ALS.
Collapse
Affiliation(s)
- Elisa Giacomelli
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Björn F Vahsen
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Elizabeth L Calder
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Yinyan Xu
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Jakub Scaber
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Elizabeth Gray
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ruxandra Dafinca
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kevin Talbot
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA.
| |
Collapse
|
15
|
Olmsted ZT, Stigliano C, Marzullo B, Cibelli J, Horner PJ, Paluh JL. Fully Characterized Mature Human iPS- and NMP-Derived Motor Neurons Thrive Without Neuroprotection in the Spinal Contusion Cavity. Front Cell Neurosci 2022; 15:725195. [PMID: 35046774 PMCID: PMC8762343 DOI: 10.3389/fncel.2021.725195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/04/2021] [Indexed: 11/21/2022] Open
Abstract
Neural cell interventions in spinal cord injury (SCI) have focused predominantly on transplanted multipotent neural stem/progenitor cells (NSPCs) for animal research and clinical use due to limited information on survival of spinal neurons. However, transplanted NSPC fate is unpredictable and largely governed by injury-derived matrix and cytokine factors that are often gliogenic and inflammatory. Here, using a rat cervical hemicontusion model, we evaluate the survival and integration of hiPSC-derived spinal motor neurons (SMNs) and oligodendrocyte progenitor cells (OPCs). SMNs and OPCs were differentiated in vitro through a neuromesodermal progenitor stage to mimic the natural origin of the spinal cord. We demonstrate robust survival and engraftment without additional injury site modifiers or neuroprotective biomaterials. Ex vivo differentiated neurons achieve cervical spinal cord matched transcriptomic and proteomic profiles, meeting functional electrophysiology parameters prior to transplantation. These data establish an approach for ex vivo developmentally accurate neuronal fate specification and subsequent transplantation for a more streamlined and predictable outcome in neural cell-based therapies of SCI.
Collapse
Affiliation(s)
- Zachary T. Olmsted
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, United States
| | - Cinzia Stigliano
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, United States
| | - Brandon Marzullo
- SUNY Buffalo Genomics and Bioinformatics Core, New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States
| | - Jose Cibelli
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Philip J. Horner
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, United States
| | - Janet L. Paluh
- Nanobioscience Constellation, Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, United States
- *Correspondence: Janet L. Paluh
| |
Collapse
|
16
|
Dasen JS. Establishing the Molecular and Functional Diversity of Spinal Motoneurons. ADVANCES IN NEUROBIOLOGY 2022; 28:3-44. [PMID: 36066819 DOI: 10.1007/978-3-031-07167-6_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spinal motoneurons are a remarkably diverse class of neurons responsible for facilitating a broad range of motor behaviors and autonomic functions. Studies of motoneuron differentiation have provided fundamental insights into the developmental mechanisms of neuronal diversification, and have illuminated principles of neural fate specification that operate throughout the central nervous system. Because of their relative anatomical simplicity and accessibility, motoneurons have provided a tractable model system to address multiple facets of neural development, including early patterning, neuronal migration, axon guidance, and synaptic specificity. Beyond their roles in providing direct communication between central circuits and muscle, recent studies have revealed that motoneuron subtype-specific programs also play important roles in determining the central connectivity and function of motor circuits. Cross-species comparative analyses have provided novel insights into how evolutionary changes in subtype specification programs may have contributed to adaptive changes in locomotor behaviors. This chapter focusses on the gene regulatory networks governing spinal motoneuron specification, and how studies of spinal motoneurons have informed our understanding of the basic mechanisms of neuronal specification and spinal circuit assembly.
Collapse
Affiliation(s)
- Jeremy S Dasen
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Wind M, Tsakiridis A. In Vitro Generation of Posterior Motor Neurons from Human Pluripotent Stem Cells. Curr Protoc 2021; 1:e244. [PMID: 34547185 DOI: 10.1002/cpz1.244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability to generate spinal cord motor neurons from human pluripotent stem cells (hPSCs) is of great use for modelling motor neuron-based diseases and cell-replacement therapies. A key step in the design of hPSC differentiation strategies aiming to produce motor neurons involves induction of the appropriate anteroposterior (A-P) axial identity, an important factor influencing motor neuron subtype specification, functionality, and disease vulnerability. Most current protocols for induction of motor neurons from hPSCs produce predominantly cells of a mixed hindbrain/cervical axial identity marked by expression of Hox paralogous group (PG) members 1-5, but are inefficient in generating high numbers of more posterior thoracic/lumbosacral Hox PG(8-13)+ spinal cord motor neurons. Here, we describe a protocol for efficient generation of thoracic spinal cord cells and motor neurons from hPSCs. This step-wise protocol relies on the initial generation of a neuromesodermal-potent axial progenitor population, which is differentiated first to produce posterior ventral spinal cord progenitors and subsequently to produce posterior motor neurons exhibiting a predominantly thoracic axial identity. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Differentiation of neuromesodermal progenitors Basic Protocol 2: Posterior ventral spinal cord progenitor differentiation Basic Protocol 3: Posterior motor neuron differentiation.
Collapse
Affiliation(s)
- Matt Wind
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
18
|
Gupta S, Butler SJ. Getting in touch with your senses: Mechanisms specifying sensory interneurons in the dorsal spinal cord. WIREs Mech Dis 2021; 13:e1520. [PMID: 34730293 PMCID: PMC8459260 DOI: 10.1002/wsbm.1520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 11/18/2022]
Abstract
The spinal cord is functionally and anatomically divided into ventrally derived motor circuits and dorsally derived somatosensory circuits. Sensory stimuli originating either at the periphery of the body, or internally, are relayed to the dorsal spinal cord where they are processed by distinct classes of sensory dorsal interneurons (dIs). dIs convey sensory information, such as pain, heat or itch, either to the brain, and/or to the motor circuits to initiate the appropriate response. They also regulate the intensity of sensory information and are the major target for the opioid analgesics. While the developmental mechanisms directing ventral and dorsal cell fates have been hypothesized to be similar, more recent research has suggested that dI fates are specified by novel mechanisms. In this review, we will discuss the molecular events that specify dorsal neuronal patterning in the spinal cord, thereby generating diverse dI identities. We will then discuss how this molecular understanding has led to the development of robust stem cell methods to derive multiple spinal cell types, including the dIs, and the implication of these studies for treating spinal cord injuries and neurodegenerative diseases. This article is categorized under: Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Sandeep Gupta
- Department of NeurobiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Samantha J. Butler
- Department of NeurobiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Intellectual and Developmental Disabilities Research CenterUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
19
|
Azar J, Bahmad HF, Daher D, Moubarak MM, Hadadeh O, Monzer A, Al Bitar S, Jamal M, Al-Sayegh M, Abou-Kheir W. The Use of Stem Cell-Derived Organoids in Disease Modeling: An Update. Int J Mol Sci 2021; 22:7667. [PMID: 34299287 PMCID: PMC8303386 DOI: 10.3390/ijms22147667] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Organoids represent one of the most important advancements in the field of stem cells during the past decade. They are three-dimensional in vitro culturing models that originate from self-organizing stem cells and can mimic the in vivo structural and functional specificities of body organs. Organoids have been established from multiple adult tissues as well as pluripotent stem cells and have recently become a powerful tool for studying development and diseases in vitro, drug screening, and host-microbe interaction. The use of stem cells-that have self-renewal capacity to proliferate and differentiate into specialized cell types-for organoids culturing represents a major advancement in biomedical research. Indeed, this new technology has a great potential to be used in a multitude of fields, including cancer research, hereditary and infectious diseases. Nevertheless, organoid culturing is still rife with many challenges, not limited to being costly and time consuming, having variable rates of efficiency in generation and maintenance, genetic stability, and clinical applications. In this review, we aim to provide a synopsis of pluripotent stem cell-derived organoids and their use for disease modeling and other clinical applications.
Collapse
Affiliation(s)
- Joseph Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Hisham F. Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Darine Daher
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Maya M. Moubarak
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Ola Hadadeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Alissar Monzer
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Samar Al Bitar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Mohamed Jamal
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 66566, United Arab Emirates
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi 2460, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| |
Collapse
|
20
|
Global Transcriptional Analyses of the Wnt-Induced Development of Neural Stem Cells from Human Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms22147473. [PMID: 34299091 PMCID: PMC8308016 DOI: 10.3390/ijms22147473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
The differentiation of human pluripotent stem cells (hPSCs) to neural stem cells (NSCs) is the key initial event in neurogenesis and is thought to be dependent on the family of Wnt growth factors, their receptors and signaling proteins. The delineation of the transcriptional pathways that mediate Wnt-induced hPSCs to NSCs differentiation is vital for understanding the global genomic mechanisms of the development of NSCs and, potentially, the creation of new protocols in regenerative medicine. To understand the genomic mechanism of Wnt signaling during NSCs development, we treated hPSCs with Wnt activator (CHIR-99021) and leukemia inhibitory factor (LIF) in a chemically defined medium (N2B27) to induce NSCs, referred to as CLNSCs. The CLNSCs were subcultured for more than 40 passages in vitro; were positive for AP staining; expressed neural progenitor markers such as NESTIN, PAX6, SOX2, and SOX1; and were able to differentiate into three neural lineage cells: neurons, astrocytes, and oligodendrocytes in vitro. Our transcriptome analyses revealed that the Wnt and Hedgehog signaling pathways regulate hPSCs cell fate decisions for neural lineages and maintain the self-renewal of CLNSCs. One interesting network could be the deregulation of the Wnt/β-catenin signaling pathway in CLNSCs via the downregulation of c-MYC, which may promote exit from pluripotency and neural differentiation. The Wnt-induced spinal markers HOXA1-4, HOXA7, HOXB1-4, and HOXC4 were increased, however, the brain markers FOXG1 and OTX2, were absent in the CLNSCs, indicating that CLNSCs have partial spinal cord properties. Finally, a CLNSC simple culture condition, when applied to hPSCs, supports the generation of NSCs, and provides a new and efficient cell model with which to untangle the mechanisms during neurogenesis.
Collapse
|
21
|
Murray AF, Delivopoulos E. Adhesion and Growth of Neuralized Mouse Embryonic Stem Cells on Parylene-C/SiO 2 Substrates. MATERIALS 2021; 14:ma14123174. [PMID: 34207642 PMCID: PMC8226677 DOI: 10.3390/ma14123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022]
Abstract
Neuronal patterning on microfabricated architectures has developed rapidly over the past few years, together with the emergence of soft biocompatible materials and tissue engineering scaffolds. Previously, we introduced a patterning technique based on serum and the biopolymer parylene-C, achieving highly compliant growth of primary neurons and astrocytes on different geometries. Here, we expanded this technique and illustrated that neuralized cells derived from mouse embryonic stem cells (mESCs) followed stripes of variable widths with conformity equal to or higher than that of primary neurons and astrocytes. Our results indicate the presence of undifferentiated mESCs, which also conformed to the underlying patterns to a high degree. This is an exciting and unexpected outcome, as molecular mechanisms governing cell and ECM protein interactions are different in stem cells and primary cells. Our study enables further investigations into the development and electrophysiology of differentiating patterned neural stem cells.
Collapse
Affiliation(s)
- Alan F. Murray
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK;
| | - Evangelos Delivopoulos
- School of Biological Sciences, University of Reading, Reading RG6 6DH, UK
- Correspondence: ; Tel.: +44-11-8378-8615
| |
Collapse
|
22
|
Mouilleau V, Vaslin C, Robert R, Gribaudo S, Nicolas N, Jarrige M, Terray A, Lesueur L, Mathis MW, Croft G, Daynac M, Rouiller-Fabre V, Wichterle H, Ribes V, Martinat C, Nedelec S. Dynamic extrinsic pacing of the HOX clock in human axial progenitors controls motor neuron subtype specification. Development 2021; 148:148/6/dev194514. [PMID: 33782043 DOI: 10.1242/dev.194514] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022]
Abstract
Rostro-caudal patterning of vertebrates depends on the temporally progressive activation of HOX genes within axial stem cells that fuel axial embryo elongation. Whether the pace of sequential activation of HOX genes, the 'HOX clock', is controlled by intrinsic chromatin-based timing mechanisms or by temporal changes in extrinsic cues remains unclear. Here, we studied HOX clock pacing in human pluripotent stem cell-derived axial progenitors differentiating into diverse spinal cord motor neuron subtypes. We show that the progressive activation of caudal HOX genes is controlled by a dynamic increase in FGF signaling. Blocking the FGF pathway stalled induction of HOX genes, while a precocious increase of FGF, alone or with GDF11 ligand, accelerated the HOX clock. Cells differentiated under accelerated HOX induction generated appropriate posterior motor neuron subtypes found along the human embryonic spinal cord. The pacing of the HOX clock is thus dynamically regulated by exposure to secreted cues. Its manipulation by extrinsic factors provides synchronized access to multiple human neuronal subtypes of distinct rostro-caudal identities for basic and translational applications.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Vincent Mouilleau
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France.,I-STEM, UMR 861, Inserm, UEPS, 91100 Corbeil-Essonnes, France
| | - Célia Vaslin
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Rémi Robert
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Simona Gribaudo
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Nour Nicolas
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Université Paris Diderot, Sorbonne Paris Cité, Université Paris-Sud, Université Paris-Saclay, Fontenay aux Roses F-92265, France
| | - Margot Jarrige
- I-STEM, UMR 861, Inserm, UEPS, 91100 Corbeil-Essonnes, France
| | - Angélique Terray
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Léa Lesueur
- I-STEM, UMR 861, Inserm, UEPS, 91100 Corbeil-Essonnes, France
| | - Mackenzie W Mathis
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY 10032, USA
| | - Gist Croft
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY 10032, USA
| | - Mathieu Daynac
- Institut du Fer à Moulin, 75005 Paris, France.,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Virginie Rouiller-Fabre
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation, UMR 967, INSERM, CEA/DSV/iRCM/SCSR, Université Paris Diderot, Sorbonne Paris Cité, Université Paris-Sud, Université Paris-Saclay, Fontenay aux Roses F-92265, France
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neuroscience, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY 10032, USA
| | - Vanessa Ribes
- Université de Paris, CNRS, Institut Jacques Monod, 15 rue Hélène Brion, 75013 Paris, France
| | - Cécile Martinat
- I-STEM, UMR 861, Inserm, UEPS, 91100 Corbeil-Essonnes, France
| | - Stéphane Nedelec
- Institut du Fer à Moulin, 75005 Paris, France .,Inserm, UMR-S 1270, 75005 Paris, France.,Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| |
Collapse
|
23
|
Wind M, Gogolou A, Manipur I, Granata I, Butler L, Andrews PW, Barbaric I, Ning K, Guarracino MR, Placzek M, Tsakiridis A. Defining the signalling determinants of a posterior ventral spinal cord identity in human neuromesodermal progenitor derivatives. Development 2021; 148:dev194415. [PMID: 33658223 PMCID: PMC8015249 DOI: 10.1242/dev.194415] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
The anteroposterior axial identity of motor neurons (MNs) determines their functionality and vulnerability to neurodegeneration. Thus, it is a crucial parameter in the design of strategies aiming to produce MNs from human pluripotent stem cells (hPSCs) for regenerative medicine/disease modelling applications. However, the in vitro generation of posterior MNs corresponding to the thoracic/lumbosacral spinal cord has been challenging. Although the induction of cells resembling neuromesodermal progenitors (NMPs), the bona fide precursors of the spinal cord, offers a promising solution, the progressive specification of posterior MNs from these cells is not well defined. Here, we determine the signals guiding the transition of human NMP-like cells toward thoracic ventral spinal cord neurectoderm. We show that combined WNT-FGF activities drive a posterior dorsal pre-/early neural state, whereas suppression of TGFβ-BMP signalling pathways promotes a ventral identity and neural commitment. Based on these results, we define an optimised protocol for the generation of thoracic MNs that can efficiently integrate within the neural tube of chick embryos. We expect that our findings will facilitate the comparison of hPSC-derived spinal cord cells of distinct axial identities.
Collapse
Affiliation(s)
- Matthew Wind
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
- Department of Neuroscience, Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Antigoni Gogolou
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
- Department of Neuroscience, Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Ichcha Manipur
- Computational and Data Science Laboratory, High Performance Computing and Networking Institute, National Research Council of Italy, Napoli 80131, Italy
| | - Ilaria Granata
- Computational and Data Science Laboratory, High Performance Computing and Networking Institute, National Research Council of Italy, Napoli 80131, Italy
| | - Larissa Butler
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - Peter W Andrews
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - Ivana Barbaric
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - Ke Ning
- Department of Neuroscience, Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | | | - Marysia Placzek
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
- Department of Biomedical Science and Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
- Department of Neuroscience, Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
24
|
de Leeuw VC, Pennings JLA, Hessel EVS, Piersma AH. Exploring the biological domain of the neural embryonic stem cell test (ESTn): Morphogenetic regulators, Hox genes and cell types, and their usefulness as biomarkers for embryotoxicity screening. Toxicology 2021; 454:152735. [PMID: 33636252 DOI: 10.1016/j.tox.2021.152735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/25/2021] [Accepted: 02/20/2021] [Indexed: 11/25/2022]
Abstract
Animal-free assessment of compound-induced developmental neurotoxicity will most likely be based on batteries of multiple in vitro tests. The optimal battery is built by combining tests with complementary biological domains that together ideally cover all relevant toxicity pathways. Thus, biological domain definition, i.e. which biological processes and cell types are represented, is an important assay characteristic for determining the place of assays in testing strategies. The murine neural embryonic stem cell test (ESTn) is employed to predict the developmental neurotoxicity of compounds. The aim of this study was to explore the biological domain of ESTn according to three groups of biomarker genes of early (neuro)development: morphogenetic regulators, Hox genes and cell type markers for the ectodermal and neural lineages. These biomarker groups were selected based on their crucial regulatory role in (neuro)development. Analysis of these genes in a series of previously generated whole transcriptome datasets of ESTn showed that at day 7 in culture cell differentiation resembled hindbrain/branchial/thoracic development between E6.5-E12.5 in vivo, with subsequent development into a mixed cell culture containing different neural subtypes, astrocytes and oligodendrocytes by day 13. In addition, the selected biomarkers showed common and distinct responses to compound exposure. Monitoring the biological domain of ESTn through gene expression patterns of morphogenetic regulators, Hox genes and cell type markers proved instrumental in providing mechanistic understanding of compound effects on neural differentiation in ESTn, and can aid in positioning of the test in a battery of complementary in vitro tests in integrated approaches to testing and assessment.
Collapse
Affiliation(s)
- Victoria C de Leeuw
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
25
|
Wymeersch FJ, Wilson V, Tsakiridis A. Understanding axial progenitor biology in vivo and in vitro. Development 2021; 148:148/4/dev180612. [PMID: 33593754 DOI: 10.1242/dev.180612] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of the components that make up the embryonic body axis, such as the spinal cord and vertebral column, takes place in an anterior-to-posterior (head-to-tail) direction. This process is driven by the coordinated production of various cell types from a pool of posteriorly-located axial progenitors. Here, we review the key features of this process and the biology of axial progenitors, including neuromesodermal progenitors, the common precursors of the spinal cord and trunk musculature. We discuss recent developments in the in vitro production of axial progenitors and their potential implications in disease modelling and regenerative medicine.
Collapse
Affiliation(s)
- Filip J Wymeersch
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Valerie Wilson
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield S10 2TN UK .,Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| |
Collapse
|
26
|
Nedelec S, Martinez-Arias A. In vitro models of spinal motor circuit's development in mammals: achievements and challenges. Curr Opin Neurobiol 2021; 66:240-249. [PMID: 33677159 DOI: 10.1016/j.conb.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
The connectivity patterns of neurons sustaining the functionality of spinal locomotor circuits rely on the specification of hundreds of motor neuron and interneuron subtypes precisely arrayed within the embryonic spinal cord. Knowledge acquired by developmental biologists on the molecular mechanisms underpinning this process in vivo has supported the development of 2D and 3D differentiation strategies to generate spinal neuronal diversity from mouse and human pluripotent stem cells (PSCs). Here, we review recent breakthroughs in this field and the perspectives opened up by models of in vitro embryogenesis to approach the mechanisms underlying neuronal diversification and the formation of functional mouse and human locomotor circuits. Beyond serving fundamental investigations, these new approaches should help engineering neuronal circuits differentially impacted in neuromuscular disorders, such as amyotrophic lateral sclerosis or spinal muscular atrophies, and thus open new avenues for disease modeling and drug screenings.
Collapse
Affiliation(s)
- Stéphane Nedelec
- Institut du Fer à Moulin, 75005, Paris, France; Inserm, UMR-S 1270, 75005 Paris, France; Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France.
| | | |
Collapse
|
27
|
Fannon OM, Bithell A, Whalley BJ, Delivopoulos E. A Fiber Alginate Co-culture Platform for the Differentiation of mESC and Modeling of the Neural Tube. Front Neurosci 2021; 14:524346. [PMID: 33510605 PMCID: PMC7835723 DOI: 10.3389/fnins.2020.524346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 12/04/2020] [Indexed: 12/28/2022] Open
Abstract
Alginate hydrogels are a commonly used substrate for in vitro 3D cell culture. These naturally derived biomaterials are highly tunable, biocompatible, and can be designed to mimic the elastic modulus of the adult brain at 1% w/v solution. Recent studies show that the molecular weight of the alginate can affect cell viability and differentiation. The relationship between the molecular weight, viscosity and ratio of G:M monomers of alginate hydrogels is complex, and the balance between these factors must be carefully considered when deciding on a suitable alginate hydrogel for stem cell research. This study investigates the formation of embryoid bodies (EB) from mouse embryonic stem cells, using low molecular weight (LMW) and high molecular weight (HMW) alginates. The cells are differentiated using a retinoic acid-based protocol, and the resulting aggregates are sectioned and stained for the presence of stem cells and the three germ layers (endoderm, mesoderm, and ectoderm). The results highlight that aggregates within LMW and HMW alginate are true EBs, as demonstrated by positive staining for markers of the three germ layers. Using tubular alginate scaffolds, formed with an adapted gradient maker protocol, we also propose a novel 3D platform for the patterned differentiation of mESCs, based on gradients of retinoic acid produced in situ by lateral motor column (LMC) motor neurons. The end product of our platform will be of great interest as it can be further developed into a powerful model of neural tube development.
Collapse
Affiliation(s)
- Orla M Fannon
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Angela Bithell
- School of Pharmacy, University of Reading, Reading, United Kingdom
| | | | | |
Collapse
|
28
|
Sasai N, Kadoya M, Ong Lee Chen A. Neural induction: Historical views and application to pluripotent stem cells. Dev Growth Differ 2021; 63:26-37. [PMID: 33289091 DOI: 10.1111/dgd.12703] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022]
Abstract
Embryonic stem (ES) cells are a useful experimental material to recapitulate the differentiation steps of early embryos, which are usually invisible and inaccessible from outside of the body, especially in mammals. ES cells have greatly facilitated the analyses of gene expression profiles and cell characteristics. In addition, understanding the mechanisms during neural differentiation is important for clinical purposes, such as developing new therapeutic methods or regenerative medicine. As neurons have very limited regenerative ability, neurodegenerative diseases are usually intractable, and patients suffer from the disease throughout their lifetimes. The functional cells generated from ES cells in vitro could replace degenerative areas by transplantation. In this review, we will first demonstrate the historical views and widely accepted concepts regarding the molecular mechanisms of neural induction and positional information to produce the specific types of neurons in model animals. Next, we will describe how these concepts have recently been applied to the research in the establishment of the methodology of neural differentiation from mammalian ES cells. Finally, we will focus on examples of the applications of differentiation systems to clinical purposes. Overall, the discussion will focus on how historical developmental studies are applied to state-of-the-art stem cell research.
Collapse
Affiliation(s)
- Noriaki Sasai
- Developmental Biomedical Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Minori Kadoya
- Developmental Biomedical Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Agnes Ong Lee Chen
- Developmental Biomedical Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
29
|
Garcia-Diaz A, Efe G, Kabra K, Patel A, Lowry ER, Shneider NA, Corneo B, Wichterle H. Standardized Reporter Systems for Purification and Imaging of Human Pluripotent Stem Cell-derived Motor Neurons and Other Cholinergic Cells. Neuroscience 2020; 450:48-56. [PMID: 32615233 PMCID: PMC7688562 DOI: 10.1016/j.neuroscience.2020.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 01/02/2023]
Abstract
Reliable and consistent pluripotent stem cell reporter systems for efficient purification and visualization of motor neurons are essential reagents for the study of normal motor neuron biology and for effective disease modeling. To overcome the inherent noisiness of transgene-based reporters, we developed a new series of human induced pluripotent stem cell lines by knocking in tdTomato, Cre, or CreERT2 recombinase into the HB9 (MNX1) or VACHT (SLC18A3) genomic loci. The new lines were validated by directed differentiation into spinal motor neurons and immunostaining for motor neuron markers HB9 and ISL1. To facilitate efficient purification of spinal motor neurons, we further engineered the VACHT-Cre cell line with a validated, conditional CD14-GFP construct that allows for both fluorescence-based identification of motor neurons, as well as magnetic-activated cell sorting (MACS) to isolate differentiated motor neurons at scale. The targeting strategies developed here offer a standardized platform for reproducible comparison of motor neurons across independently derived pluripotent cell lines.
Collapse
Affiliation(s)
- Alejandro Garcia-Diaz
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation and Regenerative Medicine (in Neurology), Columbia University Irving Medical Center, New York, NY 10032, USA; The Stem Cell Core Facility, Columbia University Irving Medical Center, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Gizem Efe
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation and Regenerative Medicine (in Neurology), Columbia University Irving Medical Center, New York, NY 10032, USA; The Stem Cell Core Facility, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Khushbu Kabra
- The Stem Cell Core Facility, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Achchhe Patel
- The Stem Cell Core Facility, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Emily R Lowry
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation and Regenerative Medicine (in Neurology), Columbia University Irving Medical Center, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Neil A Shneider
- Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, Eleanor and Lou Gehrig ALS Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Barbara Corneo
- The Stem Cell Core Facility, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation and Regenerative Medicine (in Neurology), Columbia University Irving Medical Center, New York, NY 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
30
|
Bulajić M, Srivastava D, Dasen JS, Wichterle H, Mahony S, Mazzoni EO. Differential abilities to engage inaccessible chromatin diversify vertebrate Hox binding patterns. Development 2020; 147:dev194761. [PMID: 33028607 PMCID: PMC7710020 DOI: 10.1242/dev.194761] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Although Hox genes encode for conserved transcription factors (TFs), they are further divided into anterior, central and posterior groups based on their DNA-binding domain similarity. The posterior Hox group expanded in the deuterostome clade and patterns caudal and distal structures. We aimed to address how similar Hox TFs diverge to induce different positional identities. We studied Hox TF DNA-binding and regulatory activity during an in vitro motor neuron differentiation system that recapitulates embryonic development. We found diversity in the genomic binding profiles of different Hox TFs, even among the posterior group paralogs that share similar DNA-binding domains. These differences in genomic binding were explained by differing abilities to bind to previously inaccessible sites. For example, the posterior group HOXC9 had a greater ability to bind occluded sites than the posterior HOXC10, producing different binding patterns and driving differential gene expression programs. From these results, we propose that the differential abilities of posterior Hox TFs to bind to previously inaccessible chromatin drive patterning diversification.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Milica Bulajić
- Department of Biology, New York University, New York, NY 10003, USA
| | - Divyanshi Srivastava
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neuroscience, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
31
|
Juneja DS, Nasuto S, Delivopoulos E. Deriving Functional Astrocytes from Mouse Embryonic Stem Cells with a Fast and Efficient Protocol. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2994-2996. [PMID: 31946518 DOI: 10.1109/embc.2019.8857058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A growing number of studies highlight the structural and functional diversity of astrocytes throughout the central nervous system. These cells are now seen as heterogeneous as neurons and are implicated in a number of neurological and psychiatric diseases. Efficient generation of diverse subtypes of astrocytes can be a useful tool in investigating synaptogenesis and patterns of activity in developing neural networks. In this study, we developed a protocol for the fast and efficient differentiation of astrocytes from mouse embryonic stem cells, as evidenced by the upregulation of genes related to astrocytic development (Gfap, Aldh1l1). Generated astrocytes exhibit phenotypic diversity, which is demonstrated by the variant expression of markers such as GFAP, ALDH1L1, AQP4 and S100β, amongst subgroups within the same cell population. In addition, astrocytes exhibited differential calcium transients upon stimulation with ATP. Our protocol will facilitate investigations, regarding the involvement of astrocytes in the structural and functional connectivity of neural networks.
Collapse
|
32
|
Juneja DS, Nasuto S, Delivopoulos E. Fast and Efficient Differentiation of Mouse Embryonic Stem Cells Into ATP-Responsive Astrocytes. Front Cell Neurosci 2020; 13:579. [PMID: 32038173 PMCID: PMC6985097 DOI: 10.3389/fncel.2019.00579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
Astrocytes are multifunctional cells in the CNS, involved in the regulation of neurovascular coupling, the modulation of electrolytes, and the cycling of neurotransmitters at synapses. Induction of astrocytes from stem cells remains a largely underdeveloped area, as current protocols are time consuming, lack granularity in astrocytic subtype generation, and often are not as efficient as neural induction methods. In this paper we present an efficient method to differentiate astrocytes from mouse embryonic stem cells. Our technique uses a cell suspension protocol to produce embryoid bodies (EBs) that are neurally inducted and seeded onto laminin coated surfaces. Plated EBs attach to the surface and release migrating cells to their surrounding environment, which are further inducted into the astrocytic lineage, through an optimized, heparin-based media. Characterization and functional assessment of the cells consists of immunofluorescent labeling for specific astrocytic proteins and sensitivity to adenosine triphosphate (ATP) stimulation. Our experimental results show that even at the earliest stages of the protocol, cells are positive for astrocytic markers (GFAP, ALDH1L1, S100β, and GLAST) with variant expression patterns and purinergic receptors (P2Y). Generated astrocytes also exhibit differential Ca2+ transients upon stimulation with ATP, which evolve over the differentiation period. Metabotropic purinoceptors P2Y1R are expressed and we offer preliminary evidence that metabotropic purinoceptors contribute to Ca2+ transients. Our protocol is simple, efficient and fast, facilitating its use in multiple investigations, particularly in vitro studies of engineered neural networks.
Collapse
|
33
|
Trawczynski M, Liu G, David BT, Fessler RG. Restoring Motor Neurons in Spinal Cord Injury With Induced Pluripotent Stem Cells. Front Cell Neurosci 2019; 13:369. [PMID: 31474833 PMCID: PMC6707336 DOI: 10.3389/fncel.2019.00369] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder that damages motor, sensory, and autonomic pathways. Recent advances in stem cell therapy have allowed for the in vitro generation of motor neurons (MNs) showing electrophysiological and synaptic activity, expression of canonical MN biomarkers, and the ability to graft into spinal lesions. Clinical translation, especially the transplantation of MN precursors in spinal lesions, has thus far been elusive because of stem cell heterogeneity and protocol variability, as well as a hostile microenvironment such as inflammation and scarring, which yield inconsistent pre-clinical results without a consensus best-practice therapeutic strategy. Induced pluripotent stem cells (iPSCs) in particular have lower ethical and immunogenic concerns than other stem cells, which could make them more clinically applicable. In this review, we focus on the differentiation of iPSCs into neural precursors, MN progenitors, mature MNs, and MN subtype fates. Previous reviews have summarized MN development and differentiation, but an up-to-date summary of technological and experimental advances holding promise for bench-to-bedside translation, especially those targeting individual MN subtypes in SCI, is currently lacking. We discuss biological mechanisms of MN lineage, recent experimental protocols and techniques for MN differentiation from iPSCs, and transplantation of neural precursors and MN lineage cells in spinal cord lesions to restore motor function. We emphasize efficient, clinically safe, and personalized strategies for the application of MN and their subtypes as therapy in spinal lesions.
Collapse
Affiliation(s)
- Matthew Trawczynski
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Gele Liu
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Brian T David
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
34
|
Hoang PT, Chalif JI, Bikoff JB, Jessell TM, Mentis GZ, Wichterle H. Subtype Diversification and Synaptic Specificity of Stem Cell-Derived Spinal Interneurons. Neuron 2019; 100:135-149.e7. [PMID: 30308166 DOI: 10.1016/j.neuron.2018.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/06/2018] [Accepted: 09/09/2018] [Indexed: 12/25/2022]
Abstract
Neuronal diversification is a fundamental step in the construction of functional neural circuits, but how neurons generated from single progenitor domains acquire diverse subtype identities remains poorly understood. Here we developed an embryonic stem cell (ESC)-based system to model subtype diversification of V1 interneurons, a class of spinal neurons comprising four clades collectively containing dozens of molecularly distinct neuronal subtypes. We demonstrate that V1 subtype diversity can be modified by extrinsic signals. Inhibition of Notch and activation of retinoid signaling results in a switch to MafA clade identity and enriches differentiation of Renshaw cells, a specialized MafA subtype that mediates recurrent inhibition of spinal motor neurons. We show that Renshaw cells are intrinsically programmed to migrate to species-specific laminae upon transplantation and to form subtype-specific synapses with motor neurons. Our results demonstrate that stem cell-derived neuronal subtypes can be used to investigate mechanisms underlying neuronal subtype specification and circuit assembly.
Collapse
Affiliation(s)
- Phuong T Hoang
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation & Regenerative Medicine, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joshua I Chalif
- Departments of Pathology and Cell Biology and Neurology, Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jay B Bikoff
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Thomas M Jessell
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - George Z Mentis
- Departments of Pathology and Cell Biology and Neurology, Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation & Regenerative Medicine, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
35
|
Tung YT, Peng KC, Chen YC, Yen YP, Chang M, Thams S, Chen JA. Mir-17∼92 Confers Motor Neuron Subtype Differential Resistance to ALS-Associated Degeneration. Cell Stem Cell 2019; 25:193-209.e7. [PMID: 31155482 DOI: 10.1016/j.stem.2019.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/14/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
Abstract
Progressive degeneration of motor neurons (MNs) is the hallmark of amyotrophic lateral sclerosis (ALS). Limb-innervating lateral motor column MNs (LMC-MNs) seem to be particularly vulnerable and are among the first MNs affected in ALS. Here, we report association of this differential susceptibility with reduced expression of the mir-17∼92 cluster in LMC-MNs prior to disease onset. Reduced mir-17∼92 is accompanied by elevated nuclear PTEN in spinal MNs of presymptomatic SOD1G93A mice. Selective dysregulation of the mir-17∼92/nuclear PTEN axis in degenerating SOD1G93A LMC-MNs was confirmed in a double-transgenic embryonic stem cell system and recapitulated in human SOD1+/L144F-induced pluripotent stem cell (iPSC)-derived MNs. We further show that overexpression of mir-17∼92 significantly rescues human SOD1+/L144F MNs, and intrathecal delivery of adeno-associated virus (AAV)9-mir-17∼92 improves motor deficits and survival in SOD1G93A mice. Thus, mir-17∼92 may have value as a prognostic marker of MN degeneration and is a candidate therapeutic target in SOD1-linked ALS. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Ying-Tsen Tung
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Kuan-Chih Peng
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yen-Chung Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ya-Ping Yen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Mien Chang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Sebastian Thams
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
36
|
White N, Sakiyama-Elbert SE. Derivation of Specific Neural Populations From Pluripotent Cells for Understanding and Treatment of Spinal Cord Injury. Dev Dyn 2019; 248:78-87. [PMID: 30324766 PMCID: PMC6640631 DOI: 10.1002/dvdy.24680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022] Open
Abstract
Due to the nature of the biological response to traumatic spinal cord injury, there are very limited therapeutic options available to patients. Recent advances in cell transplantation have demonstrated the therapeutic potential of transplanting supportive cell types following spinal cord injury. In particular, pluripotent stem cell derived neural cells are of interest for future investigation. Use of pluripotent stem cells as the source allows many cell types to be produced from a population that can be expanded in vitro. In this review, we will discuss the signaling pathways that have been used to differentiate spinal neural phenotypes from pluripotent stem cells. Additionally, we will highlight methods that have been developed to direct the differentiation of pluripotent stem cells to specific neural fates. Further refinement and elaboration of these techniques might aid in elucidating the multitude of neuronal subtypes endogenous to the spinal cord, as well as produce further therapeutic options for spinal cord injury recovery. Developmental Dynamics 248:78-87, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas White
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | | |
Collapse
|
37
|
Ichida JK, Staats KA, Davis-Dusenbery BN, Clement K, Galloway KE, Babos KN, Shi Y, Son EY, Kiskinis E, Atwater N, Gu H, Gnirke A, Meissner A, Eggan K. Comparative genomic analysis of embryonic, lineage-converted and stem cell-derived motor neurons. Development 2018; 145:dev.168617. [PMID: 30337375 DOI: 10.1242/dev.168617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/15/2018] [Indexed: 01/11/2023]
Abstract
Advances in stem cell science allow the production of different cell types in vitro either through the recapitulation of developmental processes, often termed 'directed differentiation', or the forced expression of lineage-specific transcription factors. Although cells produced by both approaches are increasingly used in translational applications, their quantitative similarity to their primary counterparts remains largely unresolved. To investigate the similarity between in vitro-derived and primary cell types, we harvested and purified mouse spinal motor neurons and compared them with motor neurons produced by transcription factor-mediated lineage conversion of fibroblasts or directed differentiation of pluripotent stem cells. To enable unbiased analysis of these motor neuron types and their cells of origin, we then subjected them to whole transcriptome and DNA methylome analysis by RNA sequencing (RNA-seq) and reduced representation bisulfite sequencing (RRBS). Despite major differences in methodology, lineage conversion and directed differentiation both produce cells that closely approximate the primary motor neuron state. However, we identify differences in Fas signaling, the Hox code and synaptic gene expression between lineage-converted and directed differentiation motor neurons that affect their utility in translational studies.
Collapse
Affiliation(s)
- Justin K Ichida
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA .,Howard Hughes Medical Institute, Stanley Center for Psychiatric Research, Cambridge, MA 02142, USA.,Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kim A Staats
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Brandi N Davis-Dusenbery
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Howard Hughes Medical Institute, Stanley Center for Psychiatric Research, Cambridge, MA 02142, USA
| | - Kendell Clement
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kate E Galloway
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kimberly N Babos
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yingxiao Shi
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Esther Y Son
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Howard Hughes Medical Institute, Stanley Center for Psychiatric Research, Cambridge, MA 02142, USA
| | - Evangelos Kiskinis
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Howard Hughes Medical Institute, Stanley Center for Psychiatric Research, Cambridge, MA 02142, USA
| | - Nicholas Atwater
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Howard Hughes Medical Institute, Stanley Center for Psychiatric Research, Cambridge, MA 02142, USA
| | - Hongcang Gu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexander Meissner
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA .,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Kevin Eggan
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA .,Howard Hughes Medical Institute, Stanley Center for Psychiatric Research, Cambridge, MA 02142, USA
| |
Collapse
|
38
|
Spinal cord organogenesis model reveals role of Flk1 + cells in self-organization of neural progenitor cells into complex spinal cord tissue. Stem Cell Res 2018; 33:156-165. [PMID: 30368192 DOI: 10.1016/j.scr.2018.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/02/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022] Open
Abstract
A platform for studying spinal cord organogenesis in vivo where embryonic stem cell (ESC)-derived neural progenitor cells (NPC) self-organize into spinal cord-like tissue after transplantation in subarachnoid space of the spinal cord has been described. We advance the applicability of this platform by imaging in vivo the formed graft through T2w magnetic resonance imaging (MRI). Furthermore, we used diffusion tensor imaging (DTI) to verify the stereotypical organization of the graft showing that it mimics the host spinal cord. Within the graft white matter (WM) we identified astrocytes that form glial limitans, myelinating oligodendrocytes, and myelinated axons with paranodes. Within the graft grey matter (GM) we identified cholinergic, glutamatergic, serotonergic and dopaminergic neurons. Furthermore, we demonstrate the presence of ESC-derived complex vasculature that includes the presence of blood brain barrier. In addition to the formation of mature spinal cord tissue, we describe factors that drive this process. Specifically, we identify Flk1+ cells as necessary for spinal cord formation, and synaptic connectivity with the host spinal cord and formation of host-graft chimeric vasculature as contributing factors. This model can be used to study spinal cord organogenesis, and as an in vivo drug discovery platform for screening potential therapeutic compounds and their toxicity.
Collapse
|
39
|
Ogura T, Sakaguchi H, Miyamoto S, Takahashi J. Three-dimensional induction of dorsal, intermediate and ventral spinal cord tissues from human pluripotent stem cells. Development 2018; 145:145/16/dev162214. [PMID: 30061169 PMCID: PMC6124545 DOI: 10.1242/dev.162214] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 07/02/2018] [Indexed: 01/09/2023]
Abstract
The spinal cord contains more than 20 distinct subclasses of neurons that form well-organized neural circuits capable of sensing the environment and generating motor behavior. Although recent studies have described the efficient in vitro generation of spinal motor neurons, the induction of the spinal cord as a whole tissue has not been achieved. In the present study, we demonstrate three-dimensional (3D) induction of dorsal spinal cord-like tissues from human pluripotent stem cells. Our 3D spinal cord induction (3-DiSC) condition recapitulates patterning of the developing dorsal spinal cord and enables the generation of four types of dorsal interneuron marker-positive cell populations. By activating Shh signaling, intermediate and ventral spinal cord-like tissues are successfully induced. After dissociation of these tissues, somatosensory neurons and spinal motor neurons are detected and express neurotransmitters in an in vivo manner. Our approach provides a useful experimental tool for the analysis of human spinal cord development and will contribute to research on the formation and organization of the spinal cord, and its application to regenerative medicine.
Collapse
Affiliation(s)
- Takenori Ogura
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 606-8507 Kyoto, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, 606-8507 Kyoto, Japan
| | - Hideya Sakaguchi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 606-8507 Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 606-8507 Kyoto, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 606-8507 Kyoto, Japan .,Department of Neurosurgery, Kyoto University Graduate School of Medicine, 606-8507 Kyoto, Japan
| |
Collapse
|
40
|
D'Elia KP, Dasen JS. Development, functional organization, and evolution of vertebrate axial motor circuits. Neural Dev 2018; 13:10. [PMID: 29855378 PMCID: PMC5984435 DOI: 10.1186/s13064-018-0108-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022] Open
Abstract
Neuronal control of muscles associated with the central body axis is an ancient and essential function of the nervous systems of most animal species. Throughout the course of vertebrate evolution, motor circuits dedicated to control of axial muscle have undergone significant changes in their roles within the motor system. In most fish species, axial circuits are critical for coordinating muscle activation sequences essential for locomotion and play important roles in postural correction. In tetrapods, axial circuits have evolved unique functions essential to terrestrial life, including maintaining spinal alignment and breathing. Despite the diverse roles of axial neural circuits in motor behaviors, the genetic programs underlying their assembly are poorly understood. In this review, we describe recent studies that have shed light on the development of axial motor circuits and compare and contrast the strategies used to wire these neural networks in aquatic and terrestrial vertebrate species.
Collapse
Affiliation(s)
- Kristen P D'Elia
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, 10016, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
41
|
Estevez-Silva MC, Sreeram A, Cuskey S, Fedorchak N, Iyer N, Ashton RS. Single-injection ex ovo transplantation method for broad spinal cord engraftment of human pluripotent stem cell-derived motor neurons. J Neurosci Methods 2018; 298:16-23. [PMID: 29408391 DOI: 10.1016/j.jneumeth.2018.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/15/2017] [Accepted: 01/30/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Transplantation of human pluripotent stem cell (hPSC)-derived neurons into chick embryos is an established preliminary assay to evaluate engraftment potential. Yet, with recent advances in deriving diverse human neuronal subtypes, optimizing and standardizing such transplantation methodology for specific subtypes at their correlated anatomical sites is still required. NEW METHOD We determined the optimal stage of hPSC-derived motor neuron (hMN) differentiation for ex ovo transplantation, and developed a single injection protocol that implants hMNs throughout the spinal cord enabling broad regional engraftment possibilities. RESULTS A single injection into the neural tube lumen yielded a 100% chick embryo survival and successful transplantation rate with MN engraftment observed from the rostral cervical through caudal lumbar spinal cord. Transplantation of HB9+/ChAT- hMN precursors yielded the greatest amount of engraftment compared to Pax6+/Nkx6.1+/Olig2+ progenitors or mature HB9+/ChAT+ hMNs. COMPARISON WITH EXISTING METHOD(S) Our single injection hMN transplant method is the first to standardize the optimal hMN phenotype for chick embryo transplantation, provide a rubric for engraftment quantification, and enable broad engraftment throughout the spinal cord with a single surgical intervention. CONCLUSION Transplantation of HB9+/ChAT- hMN precursors into chick embryos of Hamburger Hamilton (HH) stages 15-18 using a single luminal injection confers a high probability of embryo survival and cell engraftment in diverse regions throughout the spinal cord.
Collapse
Affiliation(s)
- Maria C Estevez-Silva
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Akshitha Sreeram
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Stephanie Cuskey
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Nikolai Fedorchak
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Nisha Iyer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Randolph S Ashton
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
42
|
Abstract
Motor neurons of the spinal cord are responsible for the assembly of neuromuscular connections indispensable for basic locomotion and skilled movements. A precise spatial relationship exists between the position of motor neuron cell bodies in the spinal cord and the course of their axonal projections to peripheral muscle targets. Motor neuron innervation of the vertebrate limb is a prime example of this topographic organization and by virtue of its accessibility and predictability has provided access to fundamental principles of motor system development and neuronal guidance. The seemingly basic binary map established by genetically defined motor neuron subtypes that target muscles in the limb is directed by a surprisingly large number of directional cues. Rather than being simply redundant, these converging signaling pathways are hierarchically linked and cooperate to increase the fidelity of axon pathfinding decisions. A current priority is to determine how multiple guidance signals are integrated by individual growth cones and how they synergize to delineate class-specific axonal trajectories.
Collapse
Affiliation(s)
- Dario Bonanomi
- Molecular Neurobiology Laboratory, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
43
|
Demers CJ, Soundararajan P, Chennampally P, Cox GA, Briscoe J, Collins SD, Smith RL. Development-on-chip: in vitro neural tube patterning with a microfluidic device. Development 2017; 143:1884-92. [PMID: 27246712 PMCID: PMC4920155 DOI: 10.1242/dev.126847] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 03/24/2016] [Indexed: 01/17/2023]
Abstract
Embryogenesis is a highly regulated process in which the precise spatial and temporal release of soluble cues directs differentiation of multipotent stem cells into discrete populations of specialized adult cell types. In the spinal cord, neural progenitor cells are directed to differentiate into adult neurons through the action of mediators released from nearby organizing centers, such as the floor plate and paraxial mesoderm. These signals combine to create spatiotemporal diffusional landscapes that precisely regulate the development of the central nervous system (CNS). Currently, in vivo and ex vivo studies of these signaling factors present some inherent ambiguity. In vitro methods are preferred for their enhanced experimental clarity but often lack the technical sophistication required for biological realism. In this article, we present a versatile microfluidic platform capable of mimicking the spatial and temporal chemical environments found in vivo during neural tube development. Simultaneous opposing and/or orthogonal gradients of developmental morphogens can be maintained, resulting in neural tube patterning analogous to that observed in vivo. Summary: A microfluidic device mimics the spatial and temporal environment of neural tube development in vivo and enables the correct spatial organization of neural tube formation from stem cells in vitro.
Collapse
Affiliation(s)
- Christopher J Demers
- Microinstruments and Systems Laboratory, University of Maine, Orono, ME 04469, USA Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | | | | | - Gregory A Cox
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - James Briscoe
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Scott D Collins
- Microinstruments and Systems Laboratory, University of Maine, Orono, ME 04469, USA Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Rosemary L Smith
- Microinstruments and Systems Laboratory, University of Maine, Orono, ME 04469, USA Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
44
|
Abstract
During vertebrate embryonic development, the spinal cord is formed by the neural derivatives of a neuromesodermal population that is specified at early stages of development and which develops in concert with the caudal regression of the primitive streak. Several processes related to spinal cord specification and maturation are coupled to this caudal extension including neurogenesis, ventral patterning and neural crest specification and all of them seem to be crucially regulated by Fibroblast Growth Factor (FGF) signaling, which is prominently active in the neuromesodermal region and transiently in its derivatives. Here we review the role of FGF signaling in those processes, trying to separate its different functions and highlighting the interactions with other signaling pathways. Finally, these early functions of FGF signaling in spinal cord development may underlay partly its ability to promote regeneration in the lesioned spinal cord as well as its action promoting specific fates in neural stem cell cultures that may be used for therapeutical purposes.
Collapse
Affiliation(s)
- Ruth Diez Del Corral
- Department of Cellular, Molecular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Champalimaud Research, Champalimaud Centre for the UnknownLisbon, Portugal
| | - Aixa V Morales
- Department of Cellular, Molecular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
45
|
MicroRNA filters Hox temporal transcription noise to confer boundary formation in the spinal cord. Nat Commun 2017; 8:14685. [PMID: 28337978 PMCID: PMC5376671 DOI: 10.1038/ncomms14685] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/24/2017] [Indexed: 01/17/2023] Open
Abstract
The initial rostrocaudal patterning of the neural tube leads to differential expression of Hox genes that contribute to the specification of motor neuron (MN) subtype identity. Although several 3' Hox mRNAs are expressed in progenitors in a noisy manner, these Hox proteins are not expressed in the progenitors and only become detectable in postmitotic MNs. MicroRNA biogenesis impairment leads to precocious expression and propagates the noise of Hoxa5 at the protein level, resulting in an imprecise Hoxa5-Hoxc8 boundary. Here we uncover, using in silico simulation, two feed-forward Hox-miRNA loops accounting for the precocious and noisy Hoxa5 expression, as well as an ill-defined boundary phenotype in Dicer mutants. Finally, we identify mir-27 as a major regulator coordinating the temporal delay and spatial boundary of Hox protein expression. Our results provide a novel trans Hox-miRNA circuit filtering transcription noise and controlling the timing of protein expression to confer robust individual MN identity.
Collapse
|
46
|
Niclis JC, Turner C, Durnall J, McDougal S, Kauhausen JA, Leaw B, Dottori M, Parish CL, Thompson LH. Long-Distance Axonal Growth and Protracted Functional Maturation of Neurons Derived from Human Induced Pluripotent Stem Cells After Intracerebral Transplantation. Stem Cells Transl Med 2017; 6:1547-1556. [PMID: 28198124 PMCID: PMC5689777 DOI: 10.1002/sctm.16-0198] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022] Open
Abstract
The capacity for induced pluripotent stem (iPS) cells to be differentiated into a wide range of neural cell types makes them an attractive donor source for autologous neural transplantation therapies aimed at brain repair. Translation to the in vivo setting has been difficult, however, with mixed results in a wide variety of preclinical models of brain injury and limited information on the basic in vivo properties of neural grafts generated from human iPS cells. Here we have generated a human iPS cell line constitutively expressing green fluorescent protein as a basis to identify and characterize grafts resulting from transplantation of neural progenitors into the adult rat brain. The results show that the grafts contain a mix of neural cell types, at various stages of differentiation, including neurons that establish extensive patterns of axonal growth and progressively develop functional properties over the course of 1 year after implantation. These findings form an important basis for the design and interpretation of preclinical studies using human stem cells for functional circuit re‐construction in animal models of brain injury. Stem Cells Translational Medicine2017;6:1547–1556
Collapse
Affiliation(s)
- Jonathan C Niclis
- Florey Institute for Neuroscience and Mental Health, Royal Parade, Parkville, Victoria, Australia
| | - Christopher Turner
- Florey Institute for Neuroscience and Mental Health, Royal Parade, Parkville, Victoria, Australia
| | - Jennifer Durnall
- Florey Institute for Neuroscience and Mental Health, Royal Parade, Parkville, Victoria, Australia
| | - Stuart McDougal
- Florey Institute for Neuroscience and Mental Health, Royal Parade, Parkville, Victoria, Australia
| | - Jessica A Kauhausen
- Florey Institute for Neuroscience and Mental Health, Royal Parade, Parkville, Victoria, Australia
| | - Bryan Leaw
- Florey Institute for Neuroscience and Mental Health, Royal Parade, Parkville, Victoria, Australia
| | - Mirella Dottori
- Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, Royal Parade, Parkville, Victoria, Australia
| | - Clare L Parish
- Florey Institute for Neuroscience and Mental Health, Royal Parade, Parkville, Victoria, Australia
| | - Lachlan H Thompson
- Florey Institute for Neuroscience and Mental Health, Royal Parade, Parkville, Victoria, Australia
| |
Collapse
|
47
|
Sternfeld MJ, Hinckley CA, Moore NJ, Pankratz MT, Hilde KL, Driscoll SP, Hayashi M, Amin ND, Bonanomi D, Gifford WD, Sharma K, Goulding M, Pfaff SL. Speed and segmentation control mechanisms characterized in rhythmically-active circuits created from spinal neurons produced from genetically-tagged embryonic stem cells. eLife 2017; 6. [PMID: 28195039 PMCID: PMC5308898 DOI: 10.7554/elife.21540] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/16/2017] [Indexed: 12/31/2022] Open
Abstract
Flexible neural networks, such as the interconnected spinal neurons that control distinct motor actions, can switch their activity to produce different behaviors. Both excitatory (E) and inhibitory (I) spinal neurons are necessary for motor behavior, but the influence of recruiting different ratios of E-to-I cells remains unclear. We constructed synthetic microphysical neural networks, called circuitoids, using precise combinations of spinal neuron subtypes derived from mouse stem cells. Circuitoids of purified excitatory interneurons were sufficient to generate oscillatory bursts with properties similar to in vivo central pattern generators. Inhibitory V1 neurons provided dual layers of regulation within excitatory rhythmogenic networks - they increased the rhythmic burst frequency of excitatory V3 neurons, and segmented excitatory motor neuron activity into sub-networks. Accordingly, the speed and pattern of spinal circuits that underlie complex motor behaviors may be regulated by quantitatively gating the intra-network cellular activity ratio of E-to-I neurons. DOI:http://dx.doi.org/10.7554/eLife.21540.001 The nerve cells or neurons within an animal’s nervous system connect with one another like the wires in a complex circuit. Each neuron can send and receive signals and a major challenge in neuroscience is to understand how these circuits of neurons behave. To do this, researchers often use genetic tools and computer modeling to map the connections between the cells in a nervous system. However, it remains difficult to predict how an input signal will appear at the output after it passes through a network made of different types of neuron. Brains contain many networks of interconnected neurons. Some of these networks send signals with a rhythmic pattern and typically drive repetitive movements such as breathing and walking. The networks are called central pattern generators (or CPGs for short). They contain both excitatory and inhibitory neurons and can generate rhythmic activity without any additional input. Nevertheless CPGs are not rigid, but can flexibly control when and how fast the muscles are activated to suit the animal's needs. It is thought the circuits are flexible because of the way excitatory and inhibitory neurons interact, but it is not known how these interactions define the behavior of the circuit. Sternfeld et al. have now developed a new method to examine how the neurons that make up a circuit influence its activity. First, embryonic stem cells from mice were coaxed to develop into a number of subtypes of both excitatory and inhibitory neurons in the laboratory. These neurons were used to grow networks of neurons in a dish, named “circuitoids”. The precise combination of subtypes of neuron was deliberately varied between each circuitoid, and Sternfeld et al. then studied how the different circuitoids behaved. Several subtypes of excitatory neurons showed rhythmic bursts of activity, just like simple CPGs. Moreover, the ratio of excitatory to inhibitory neurons in the circuitoids was critical for establishing how fast and synchronized the bursts of activity were across the network. It is possible that the brain also uses this simple strategy of varying the ratio of excitatory to inhibitory neurons in circuits of neurons to generate complex, yet highly flexible, circuits with rhythmic activity. Further work will be needed to test this idea. Finally, other researchers will hopefully be able to use this new approach to construct circuitoids and learn more about how the brain generates and controls rhythmic activity. It might also be possible to one-day transplant similar circuitoids into people to repair injured or diseased parts of a nervous system, or use circuitoids that resemble specific neurological disorders to screen for new treatments. DOI:http://dx.doi.org/10.7554/eLife.21540.002
Collapse
Affiliation(s)
- Matthew J Sternfeld
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.,Biological Sciences Graduate Program, University of California, San Diego, La Jolla, United States
| | - Christopher A Hinckley
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | - Niall J Moore
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | - Matthew T Pankratz
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | - Kathryn L Hilde
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, United States
| | - Shawn P Driscoll
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | - Marito Hayashi
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.,Biological Sciences Graduate Program, University of California, San Diego, La Jolla, United States
| | - Neal D Amin
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, United States.,Medical Scientist Training Program, University of California, San Diego, La Jolla, United States
| | - Dario Bonanomi
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | - Wesley D Gifford
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.,Medical Scientist Training Program, University of California, San Diego, La Jolla, United States.,Neurosciences Graduate Program, University of California, San Diego, La Jolla, United States
| | - Kamal Sharma
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, United States
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Samuel L Pfaff
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| |
Collapse
|
48
|
Iyer NR, Wilems TS, Sakiyama-Elbert SE. Stem cells for spinal cord injury: Strategies to inform differentiation and transplantation. Biotechnol Bioeng 2017; 114:245-259. [PMID: 27531038 PMCID: PMC5642909 DOI: 10.1002/bit.26074] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/20/2016] [Accepted: 08/07/2016] [Indexed: 12/13/2022]
Abstract
The complex pathology of spinal cord injury (SCI), involving a cascade of secondary events and the formation of inhibitory barriers, hampers regeneration across the lesion site and often results in irreversible loss of motor function. The limited regenerative capacity of endogenous cells after SCI has led to a focus on the development of cell therapies that can confer both neuroprotective and neuroregenerative benefits. Stem cells have emerged as a candidate cell source because of their ability to self-renew and differentiate into a multitude of specialized cell types. While ethical and safety concerns impeded the use of stem cells in the past, advances in isolation and differentiation methods have largely mitigated these issues. A confluence of work in stem cell biology, genetics, and developmental neurobiology has informed the directed differentiation of specific spinal cell types. After transplantation, these stem cell-derived populations can replace lost cells, provide trophic support, remyelinate surviving axons, and form relay circuits that contribute to functional recovery. Further refinement of stem cell differentiation and transplantation methods, including combinatorial strategies that involve biomaterial scaffolds and drug delivery, is critical as stem cell-based treatments enter clinical trials. Biotechnol. Bioeng. 2017;114: 245-259. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nisha R Iyer
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St., Stop C0800 BME 3.314, Austin, Texas 78712
| | - Thomas S Wilems
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St., Stop C0800 BME 3.314, Austin, Texas 78712
| | - Shelly E Sakiyama-Elbert
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St., Stop C0800 BME 3.314, Austin, Texas 78712
| |
Collapse
|
49
|
Smith AS, Passey SL, Martin NR, Player DJ, Mudera V, Greensmith L, Lewis MP. Creating Interactions between Tissue-Engineered Skeletal Muscle and the Peripheral Nervous System. Cells Tissues Organs 2016; 202:143-158. [PMID: 27825148 PMCID: PMC5175300 DOI: 10.1159/000443634] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 12/22/2022] Open
Abstract
Effective models of mammalian tissues must allow and encourage physiologically (mimetic) correct interactions between co-cultured cell types in order to produce culture microenvironments as similar as possible to those that would normally occur in vivo. In the case of skeletal muscle, the development of such a culture model, integrating multiple relevant cell types within a biomimetic scaffold, would be of significant benefit for investigations into the development, functional performance, and pathophysiology of skeletal muscle tissue. Although some work has been published regarding the behaviour of in vitro muscle models co-cultured with organotypic slices of CNS tissue or with stem cell-derived neurospheres, little investigation has so far been made regarding the potential to maintain isolated motor neurons within a 3D biomimetic skeletal muscle culture platform. Here, we review the current state of the art for engineering neuromuscular contacts in vitro and provide original data detailing the development of a 3D collagen-based model for the co-culture of primary muscle cells and motor neurons. The devised culture system promotes increased myoblast differentiation, forming arrays of parallel, aligned myotubes on which areas of nerve-muscle contact can be detected by immunostaining for pre- and post-synaptic proteins. Quantitative RT-PCR results indicate that motor neuron presence has a positive effect on myotube maturation, suggesting neural incorporation influences muscle development and maturation in vitro. The importance of this work is discussed in relation to other published neuromuscular co-culture platforms along with possible future directions for the field.
Collapse
Affiliation(s)
- Alec S.T. Smith
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, National Centre for Sport and Exercise Medicine (NCSEM) England, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Department of Bioengineering, University of Washington, Seattle, Wash., USA
| | - Samantha L. Passey
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, National Centre for Sport and Exercise Medicine (NCSEM) England, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Vic., Australia
| | - Neil R.W. Martin
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, National Centre for Sport and Exercise Medicine (NCSEM) England, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Darren J. Player
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, National Centre for Sport and Exercise Medicine (NCSEM) England, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Vivek Mudera
- Division of Surgery and Interventional Science, UCL Institute of Orthopaedics and Musculoskeletal Science, London, UK
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - Mark P. Lewis
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, National Centre for Sport and Exercise Medicine (NCSEM) England, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- *Prof. Mark P. Lewis, School of Sport, Exercise and Health Sciences, Loughborough University, Ashby Road, Loughborough LE11 3TU (UK), E-Mail
| |
Collapse
|
50
|
Delivopoulos E, Shakesheff KM, Peto H. Neuralization of mouse embryonic stem cells in alginate hydrogels under retinoic acid and SAG treatment. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:3525-8. [PMID: 26737053 DOI: 10.1109/embc.2015.7319153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This paper examines the differentiation of a mouse embryonic stem cell line (CGR8) into neurons, under retinoic acid (RA) and smoothened agonist (SAG) treatment. When stem cells underwent through an embryoid body (EB) formation stage, dissociation and seeding on glass coverslips, immunofluorescent labelling for neuronal markers (Nestin, b-Tubulin III, MAP2) revealed the presence of both immature neural progenitors and mature neurons. Undifferentiated CGR8 were also encapsulated in tubular, alginate-gelatin hydrogels and incubated in differentiation media containing retinoic acid (RA) and smoothened agonist (SAG). Cryo-sections of the hydrogel tubes were positive for Nestin, Pax6 and b-Tubulin III, verifying the presence of neurons and neural progenitors. Provided neural induction can be more precisely directed in the tubular hydrogels, these scaffolds will become a powerful model of neural tube development in embryos and will highlight potential strategies for spinal cord regeneration.
Collapse
|