1
|
Beltrán-Rivera A, García-Arrarás JE. Cellular dedifferentiation. Revisiting Betty Hay's legacy. Dev Biol 2025; 523:1-8. [PMID: 40164323 DOI: 10.1016/j.ydbio.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
The concept of mature specialized cells and the stability of the differentiated state was fundamentally challenged by Elizabeth Hay's groundbreaking observations on amphibian limb regeneration, published in 1959. Building on previous work by C.S. Thornton, she discovered that muscle cells could dedifferentiate and transform into progenitor cells within the regeneration blastema reshaping our understanding of cell differentiation. This pivotal finding reshaped our understanding of cell differentiation, opening new avenues of research. Though controversial, her findings significantly advanced the fields of cell plasticity and regenerative biology.
Collapse
|
2
|
Sasaki SI, Sumioka T, Yasuda S, Miyajima M, Iwanishi H, Reinach PS, Okada Y, Saika S. Lacking TRPA1 cation channel impairs primary closure of a stromal incision injury in a mouse cornea. J Transl Med 2025:104193. [PMID: 40348381 DOI: 10.1016/j.labinv.2025.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 04/04/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025] Open
Abstract
The cornea is a high sensory, innervated, avascular tissue that consists of epithelium, keratocytes, endothelium, and extracellular matrix. We evaluated the effects of gene knockout of the transient receptor potential ankyrin 1 (TRPA1), a membrane cation channel potentially activated by various external stimuli on the wound-healing process in corneal stroma following an incision injury in mice. TRPA1 protein was detected markedly in corneal epithelium and cells in the stroma in a healthy uninjured wild-type (WT) cornea. Deletion of TRPA1 gene function delayed wound closure of a full-thickness incision injury in corneal stroma. Peak of appearance of Sox10 (Schwann cell marker)-positive and Sox2- or p75- (both repair-type Schwann cell markers) expressing cells, in the healing stroma was at day 2 post-incision injury in a WT mouse, that was delayed in a TRPA1-knockout (KO) mouse during the healing process. Expression of TGFβ1 mRNA was suppressed, in association with reduction of p-Smad3 expression in stromal cells, by TRPA1 gene deletion. We also observed that the loss of TRPA1 suppressed the appearance of myofibroblasts and expression of collagen Ia1 and fibronectin in the healing stroma. In vitro gel culture study showed that chemical TRPA1 inhibition attenuated TGFβ-induced fibroblast contractility. These results indicate that TRPA1 is involved in the process of corneal stromal wound healing in response to tissue laceration in mice. The phenotype was associated with attenuation of generation of repair Schwann cells, of TGFβ signaling in stromal cells, keratocyte-myofibroblast transformation, and collagen type I expression. (241 words).
Collapse
Affiliation(s)
- Shu-Ichiro Sasaki
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Takayoshi Sumioka
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan,.
| | - Shingo Yasuda
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Masayasu Miyajima
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Hiroki Iwanishi
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Peter Sol Reinach
- Department of Ophthalmology and Optometry, Wenzhou Medical University School, Wenzhou, People's Republic of China
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University Kihoku Hospital, Wakayama, Japan
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| |
Collapse
|
3
|
Raymond MJ, Cherubino MA, Vieira WA, Manon S, McCusker CD. Neural regulation of H3K27me3 during the induction of patterning competency in regenerating Axolotl limb cells. Commun Biol 2025; 8:659. [PMID: 40275079 PMCID: PMC12022170 DOI: 10.1038/s42003-025-08084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Limb regeneration in the Mexican axolotl relies on the dedifferentiation of mature limb cells into blastema cells, which gain the ability to respond to patterning signals that guide tissue regeneration. While limb nerves are essential to make the blastema cells competent to pattern, the mechanisms remain unclear due to the complex and overlapping signals in amputated limbs. To overcome this challenge, we developed the Competency Accessory Limb Model (CALM), a simplified limb regeneration assay to study the induction and maintenance of patterning competency. Using CALM, here we show specific temporal windows during which cells acquire competency and associate this state with distinct H3K27me3 chromatin signatures. Furthermore, a combination of FGF and BMP signaling is sufficient to induce patterning competency in limb wound cells, and the ErBB signaling pathway is a downstream epigenetic target of these signals. These findings offer new insights into the molecular regulation of regenerative patterning.
Collapse
Affiliation(s)
- Michael J Raymond
- College of Science and Mathematics, Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA, 02125, USA
| | - Matthew A Cherubino
- College of Science and Mathematics, Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA, 02125, USA
| | - Warren A Vieira
- College of Science and Mathematics, Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA, 02125, USA
| | - Sheyla Manon
- College of Science and Mathematics, Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA, 02125, USA
| | - Catherine D McCusker
- College of Science and Mathematics, Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA, 02125, USA.
| |
Collapse
|
4
|
Palomeque Chávez JC, McGrath M, O'Connor C, Dervan A, Dixon JE, Kearney CJ, Browne S, O'Brien FJ. Development of a VEGF-activated scaffold with enhanced angiogenic and neurogenic properties for chronic wound healing applications. Biomater Sci 2025; 13:1993-2011. [PMID: 40012508 PMCID: PMC11865941 DOI: 10.1039/d4bm01051e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
Chronic wounds remain in a state of disrupted healing, impeding neurite outgrowth from injured nerves and poor development of new blood vessels by angiogenesis. Current therapeutic approaches primarily focus on the restoration of vascularization and overlook the need of nerve regeneration for complete healing. Vascular endothelial growth factor (VEGF) is a critical growth factor supporting angiogenesis in wound healing, promoting vascularization and has also demonstrated neuro-protective capabilities in both central and peripheral nervous system. While the delivery of pro-regenerative recombinant growth factors has shown promise, gene delivery offers greater stability, reduced off-target side effects, diminished cytotoxicity, and lower production costs. In this context, the overarching goal of this study was to develop a VEGF-activated scaffold with the potential to provide a multifaceted response that enhances both angiogenesis and nerve repair in wound healing through the localized delivery of plasmid encoding VEGF (pVEGF) encapsulated within the GET peptide system. Initially, delivery of pVEGF/GET nanoparticles to dermal fibroblasts led to higher VEGF protein expression without a compromise in cell viability. Transfection of dermal fibroblasts and endothelial cells on the VEGF-activated scaffolds resulted in enhanced VEGF expression, improved endothelial cell migration and organization into vascular-like structures. Finally, the VEGF-activated scaffolds consistently displayed enhanced neurogenic ability through improved neurite outgrowth from neural cells in in vitro and ex vivo models. Taken together, the VEGF-activated scaffold demonstrates multifaceted outcomes through the induction of pro-angiogenic and neurogenic responses from dermal, vascular and neural cells, illustrating the potential of this platform for the healing of chronic wounds.
Collapse
Affiliation(s)
- Juan Carlos Palomeque Chávez
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- Kearney Lab, Department of Biomedical Engineering, University of Massachusetts, Armhest, USA
| | - Matthew McGrath
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Cian O'Connor
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Adrian Dervan
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - James E Dixon
- Regenerative Medicine & Cellular Therapies (RMCT), Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Cathal J Kearney
- Kearney Lab, Department of Biomedical Engineering, University of Massachusetts, Armhest, USA
| | - Shane Browne
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Karjalainen J, Hain S, Progatzky F. Glial-immune interactions in barrier organs. Mucosal Immunol 2025; 18:271-278. [PMID: 39716688 DOI: 10.1016/j.mucimm.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Neuro-immune interactions within barrier organs, such as lung, gut, and skin, are crucial in regulating tissue homeostasis, inflammatory responses, and host defence. Our rapidly advancing understanding of peripheral neuroimmunology is transforming the field of barrier tissue immunology, offering a fresh perspective for developing therapies for complex chronic inflammatory disorders affecting barrier organs. However, most studies have primarily examined interactions between the peripheral nervous system and the immune system from a neuron-focused perspective, while glial cells, the nonneuronal cells of the nervous system, have received less attention. Glial cells were long considered as mere bystanders, only supporting their neuronal neighbours, but recent discoveries mainly on enteric glial cells in the intestine have implicated these cells in immune-regulation and inflammatory disease pathogenesis. In this review, we will highlight the bi-directional interactions between peripheral glial cells and the immune system and discuss the emerging immune regulatory functions of glial cells in barrier organs.
Collapse
Affiliation(s)
| | - Sofia Hain
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Fränze Progatzky
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Zhou Y, Li K, Ma Z, Wang L, Chen L, Li W, Wong Z, Wang X, Yang Z, Liao Y, Chen W, Fu G, Ding C, Zou D. Schwann Cell-Secreted S100B Promotes Wound Healing via Paracrine Modulation. J Dent Res 2025; 104:330-340. [PMID: 39711160 DOI: 10.1177/00220345241296103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
As the supply source for gingival grafts, the palatal tissue possesses marked regenerative ability after repeated wounding over the buccal attached gingiva and skin. However, the intrinsic mechanisms are poorly understood. Schwann cells reportedly participate in wound repair of many tissues. Here, we investigate whether Schwann cells play an essential role in the wound healing of palatal mucosa. We performed multiomics analysis in nonhuman primates, integrating scRNA-seq and proteomics analysis, and built wound-healing models in the palatal mucosa and buccal attached gingiva and skin to compare the regeneration among different sites and explore the paracrine role of Schwann cells in the healing of palatal mucosa. With regard to in vivo validation, GelMA hydrogels loaded with conditional medium or exogenous protein were applied in rat and monkey skin. We revealed greater distributions and a lower differentiation state of Schwann cells in the palatal mucosa at baseline. Moreover, S100B levels were significantly greater in the wound healing of palatal mucosa than in the buccal attached gingiva, and Schwann cell-secreted S100B can promote the healing-related capabilities of fibroblasts via paracrine modulation with receptor of advanced glycation end products (RAGE), which activates the crosstalk between NF-κB and Notch signaling, leading to expedited wound closure in vivo. Our work shows that Schwann cells play a crucial role in the wound healing of the palatal mucosa through the S100B/RAGE/NF-κB/Notch paracrine axis. In addition, our data provide novel insights into the therapeutic effects of S100B protein on wound healing.
Collapse
Affiliation(s)
- Y Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - K Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, China; Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi 830000, P. R. China
| | - Z Ma
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - L Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - L Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - W Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Z Wong
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - X Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Z Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Y Liao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - W Chen
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - G Fu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - C Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, China; Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi 830000, P. R. China
- These authors jointly supervised this work: (Duohong Zou), (Chen Ding)
| | - D Zou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- These authors jointly supervised this work: (Duohong Zou), (Chen Ding)
| |
Collapse
|
7
|
Gracia F, Sanchez-Laorden B, Gomez-Sanchez JA. Schwann cells in regeneration and cancer: an epithelial-mesenchymal transition perspective. Open Biol 2025; 15:240337. [PMID: 40037534 DOI: 10.1098/rsob.240337] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/13/2025] [Accepted: 02/09/2025] [Indexed: 03/06/2025] Open
Abstract
In the peripheral nervous system, glial cells, known as Schwann cells (SCs), are responsible for supporting and maintaining nerves. One of the most important characteristics of SCs is their remarkable plasticity. In various injury contexts, SCs undergo a reprogramming process that generates specialized cells to promote tissue regeneration and repair. However, in pathological conditions, this same plasticity and regenerative potential can be hijacked. Different studies highlight the activation of the epithelial-mesenchymal transition (EMT) as a driver of SC phenotypic plasticity. Although SCs are not epithelial, their neural crest origin makes EMT activation crucial for their ability to adopt repair phenotypes, mirroring the plasticity observed during development. These adaptive processes are essential for regeneration. However, EMT activation in SCs-derived tumours enhances cancer progression and aggressiveness. Furthermore, in the tumour microenvironment (TME), SCs also acquire activated phenotypes that contribute to tumour migration and invasion by activating EMT in cancer cells. In this review, we will discuss how EMT impacts SC plasticity and function from development and tissue regeneration to pathological conditions, such as cancer.
Collapse
Affiliation(s)
- Francisco Gracia
- Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, 03550, Spain
| | | | - Jose A Gomez-Sanchez
- Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, 03550, Spain
- Instituto de Investigacion Sanitaria y Biomedica de Alicante (ISABIAL), Alicante 03010, Spain
| |
Collapse
|
8
|
Zhao X, Yao M, Wang Y, Feng C, Yang Y, Tian L, Bao C, Li X, Zhu X, Zhang X. Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7223-7250. [PMID: 39869030 DOI: 10.1021/acsami.4c16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The skeleton is highly innervated by numerous nerve fibers. These nerve fibers, in addition to transmitting information within the bone and mediating bone sensations, play a crucial role in regulating bone tissue formation and regeneration. Traditional bone tissue engineering (BTE) often fails to achieve satisfactory outcomes when dealing with large-scale bone defects, which is frequently related to the lack of effective reconstruction of the neurovascular network. In recent years, increasing research has revealed the critical role of nerves in bone metabolism. Nerve fibers regulate bone cells through neurotransmitters, neuropeptides, and peripheral glial cells. Furthermore, nerves also coordinate with the vascular and immune systems to jointly construct a microenvironment favorable for bone regeneration. As a signaling driver of bone formation, neuroregulation spans the entire process of bone physiological activities from the embryonic formation to postmaturity remodeling and repair. However, there is currently a lack of comprehensive summaries of these regulatory mechanisms. Therefore, this review sketches out the function of nerves during bone formation and regeneration. Then, we elaborate on the mechanisms of neurovascular coupling and neuromodulation of bone immunity. Finally, we discuss several novel strategies for neuro-bone tissue engineering (NBTE) based on neuroregulation of bone, focusing on the coordinated regeneration of nerve and bone tissue.
Collapse
Affiliation(s)
- Xiangrong Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Meilin Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuyi Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cong Feng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Luoqiang Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
9
|
Zhang L, Xie J, Dai W, Lu B, Yi S. Schwann cells in regeneration and cancer. Front Pharmacol 2025; 16:1506552. [PMID: 39981185 PMCID: PMC11840318 DOI: 10.3389/fphar.2025.1506552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
Schwann cells are specific peripheral glial cells with remarkable plasticity following peripheral nerve injury. Injury responses stimulate c-Jun activation in Schwann cells, drive epithelial-mesenchymal transition and cellular phenotypic changes, and induce the generation of reprogrammed repair Schwann cells to orchestrate peripheral nerve regeneration process. Schwann cells and/or Schwann cell-derived molecules are commonly used as supporting cells and/or neurotrophic factors to construct Schwann cell-based tissue-engineered nerve grafts for repairing severe peripheral nerve injury with long defects. Transplantation of Schwann cells and/or Schwann cell-derived molecules also serves as a helpful approach for the treatment of other injured tissues, such as the spinal cord, skin, digit tip, and bone. Schwann cells are not only associated with tissue regeneration but also involved in tumorigenesis and tumor progression. Schwann cells are the major cellular component of neurofibromatosis type 1 and the sole cell type in neurofibromatosis type 2 and schwannomatosis. In addition, Schwann cells also function as an important player in the tumor microenvironment and aid in the growth and invasiveness of many other solid cancers. In the present review, we outline the physiological and pathological activities of Schwann cells and discuss the functional roles of Schwann cells in homeostasis, regeneration, and cancer.
Collapse
Affiliation(s)
- Lan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Jiale Xie
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Wenyu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Bing Lu
- Department of Clinical Biobank and Institute of Oncology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
10
|
Shen X, Zhang H, Song Z, Dong Y, Ge X, Jin S, Guo S, Zhang P, Fu Y, Zhu Y, Xiao N, Wang D, Cheng J, Xu R, Jiang H. Enhancer-driven Shh signaling promotes glia-to-mesenchyme transition during bone repair. Bone Res 2025; 13:16. [PMID: 39865079 PMCID: PMC11770102 DOI: 10.1038/s41413-024-00396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/19/2024] [Accepted: 12/01/2024] [Indexed: 01/28/2025] Open
Abstract
Plp1-lineage Schwann cells (SCs) of peripheral nerve play a critical role in vascular remodeling and osteogenic differentiation during the early stage of bone healing, and the abnormal plasticity of SCs would jeopardize the bone regeneration. However, how Plp1-lineage cells respond to injury and initiate the vascularized osteogenesis remains incompletely understood. Here, by employing single-cell transcriptional profiling combined with lineage-specific tracing models, we uncover that Plp1-lineage cells undergoing injury-induced glia-to-MSCs transition contributed to osteogenesis and revascularization in the initial stage of bone injury. Importantly, our data demonstrated that the Sonic hedgehog (Shh) signaling was responsible for the transition process initiation, which was strongly activated by c-Jun/SIRT6/BAF170 complex-driven Shh enhancers. Collectively, these findings depict an injury-specific niche signal-mediated Plp1-lineage cells transition towards Gli1+ MSCs and may be instructive for approaches to promote bone regeneration during aging or other bone diseases.
Collapse
Affiliation(s)
- Xin Shen
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Hang Zhang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Zesheng Song
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Yangjiele Dong
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Xiao Ge
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Shenghao Jin
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Songsong Guo
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Ping Zhang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Yu Fu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Yuchi Zhu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Na Xiao
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Dongmiao Wang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Jie Cheng
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China
| | - Rongyao Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China.
| | - Hongbing Jiang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu Province, China.
| |
Collapse
|
11
|
Su Y, Liu T, Zhao M, Wu D, Wang Y, Wu X. Isoviolanthin promotes Schwann cells activity in peripheral nerve regeneration via Fhl3-mediated epithelial-mesenchymal transition-like process: An in vitro study. Heliyon 2025; 11:e41087. [PMID: 39811297 PMCID: PMC11731196 DOI: 10.1016/j.heliyon.2024.e41087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025] Open
Abstract
Schwann cells, as crucial regenerative cells, possess the ability to facilitate axon growth following peripheral nerve injury. However, the regeneration efficiency dominated by Schwann cells is impaired by factors such as the severity of peripheral nervous injury, aging, and metabolic disease. Cause the limitations of clinical treatments, it is necessary to urgently search for new substances that could reinforce the functionality of Schwann cells and promote nerve regeneration. We represented the first evidence that isoviolanthin possesses the capability to enhance Schwann cell proliferation and migration. Then, transcriptome sequencing was employed to examine the Differential Expressed Genes (DEGs), resulting in the identification of 193 DEGs. Following this, the expression levels of the top 5 up-regulated genes were confirmed through RT-qPCR, with Fhl3 demonstrating the most significant up-regulation. Schwann cells were transduced with virus particles made in HEK-293T/17 cells by transfection with lentivirus packaging plasmids containing Fhl3. A notable enhancement in Schwann cell proliferation and migration was observed following transduction. Furthermore, the Fhl3-up group exhibited a significant upregulation of Vimentin expression compared to the control group. These results suggested that isoviolanthin plays a positive role in enhancing Schwann cells' activity via increasing Fhl3 expression, and the mechanism may be related to the EMT(epithelial-mesenchymal transition)-like process.
Collapse
Affiliation(s)
- Yajuan Su
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tiantian Liu
- Department of Orthopedic Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Minjun Zhao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dandan Wu
- Department of Orthopedic Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Yuehua Wang
- Department of Neurosurgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Xubo Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Orthopedic Rehabilitation, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| |
Collapse
|
12
|
Cariba S, Srivastava A, Bronsema K, Kouthouridis S, Zhang B, Payne SL. Innervated Coculture Device to Model Peripheral Nerve-Mediated Fibroblast Activation. ACS Biomater Sci Eng 2024; 10:7566-7576. [PMID: 39601321 PMCID: PMC11633653 DOI: 10.1021/acsbiomaterials.4c01482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Cutaneous wound healing is a complex process involving various cellular and molecular interactions, resulting in the formation of a collagen-rich scar with imperfect function and morphology. Dermal fibroblasts are crucial to successful wound healing, migrating to the wound site where they are activated to provide extracellular matrix remodeling and wound closure. Peripheral nerves have been shown to play an important role in wound healing, with loss or damage to these nerves often leading to impaired healing and the formation of chronic nonhealing wounds. Previous research has suggested that sensory nerves secrete trophic factors that can regulate wound healing, including fibroblast activation; however, the direct cell-cell interaction between nerves and fibroblasts has not been extensively studied. To address this knowledge gap, we developed an in vitro co-culture model using a device called the IFlowPlate. This model supports the long-term viability of multiple cell types while allowing for direct contact between sensory nerve cells and dermal fibroblasts. Using the IFlowPlate, we demonstrate that co-culture of dorsal root ganglia with dermal fibroblasts increases fibroblast proliferation, collagen and α-smooth muscle actin expression, and secretion of pro-wound healing factors, suggesting that nerves can promote wound healing by modulating fibroblast activation. The IFlowPlate offers a user-friendly and high-throughput platform to study the in vitro interactions between nerves and a variety of cell types that can be applied to wound healing and other important biological processes.
Collapse
Affiliation(s)
- Solsa Cariba
- Department
of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Avika Srivastava
- Department
of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Kendra Bronsema
- Department
of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Sonya Kouthouridis
- Department
of Chemical Engineering, McMaster University, Hamilton L8S 4L8, Canada
| | - Boyang Zhang
- Department
of Chemical Engineering, McMaster University, Hamilton L8S 4L8, Canada
- School
of Biomedical Engineering, McMaster University, Hamilton L8S 4L8, Canada
| | - Samantha L. Payne
- Department
of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| |
Collapse
|
13
|
Ba H, Guo Q, Shang Y, Hu P, Ma C, Li J, Coates DE, Li C. Insights into the molecular characteristics of embryonic cranial neural crest cells and their derived mesenchymal cell pools. Commun Biol 2024; 7:1347. [PMID: 39424998 PMCID: PMC11489408 DOI: 10.1038/s42003-024-07056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Neural crest cells (NCCs) are central to vertebrate embryonic development, giving rise to diverse cell types with unique migratory and differentiation capacities. This study examines the molecular characteristics of cranial neural crest cell (CNCC)-derived mesenchymal cells, specifically those from teeth which in deer show continuous but limited growth, and antlers, which exhibit remarkable regenerative capabilities. Here, through single-cell RNA sequencing analysis, we uncover shared gene expression profiles between adult antlerogenic and dental mesenchymal cells, indicating common developmental pathways. We identify a striking resemblance in transcriptomic features between antlerogenic progenitor cells and dental pulp mesenchymal cells. Comparative analysis of CNCC-derived and non-CNCC-derived mesenchymal cell pools across species reveals core signature genes associated with CNCCs and their derivatives, delineating essential connections between CNCCs and CNCC-derived adult mesenchymal pools. Furthermore, whole-genome DNA methylation analysis unveils hypomethylation of CNCC derivate signature genes in regenerative antlerogenic periosteum, implying a role in maintaining multipotency. These findings offer crucial insights into the developmental biology and regenerative potential of CNCC-derived mesenchymal cells, laying a foundation for innovative therapeutic strategies in tissue regeneration.
Collapse
Affiliation(s)
- Hengxing Ba
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China.
| | - Qianqian Guo
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China
| | - Yudong Shang
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China
| | - Pengfei Hu
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China
| | - Chao Ma
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China
| | - Jiping Li
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China
| | - Dawn Elizabeth Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Chunyi Li
- Jilin Provincial Key Laboratory of Deer Antler Biology, Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 130600, Changchun, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
14
|
Brown RI, Barber HM, Kucenas S. Satellite glial cell manipulation prior to axotomy enhances developing dorsal root ganglion central branch regrowth into the spinal cord. Glia 2024; 72:1766-1784. [PMID: 39141572 PMCID: PMC11325082 DOI: 10.1002/glia.24581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 08/16/2024]
Abstract
The central and peripheral nervous systems (CNS and PNS, respectively) exhibit remarkable diversity in the capacity to regenerate following neuronal injury with PNS injuries being much more likely to regenerate than those that occur in the CNS. Glial responses to damage greatly influence the likelihood of regeneration by either promoting or inhibiting axonal regrowth over time. However, despite our understanding of how some glial lineages participate in nerve degeneration and regeneration, less is known about the contributions of peripheral satellite glial cells (SGC) to regeneration failure following central axon branch injury of dorsal root ganglia (DRG) sensory neurons. Here, using in vivo, time-lapse imaging in larval zebrafish coupled with laser axotomy, we investigate the role of SGCs in axonal regeneration. In our studies we show that SGCs respond to injury by relocating their nuclei to the injury site during the same period that DRG neurons produce new central branch neurites. Laser ablation of SGCs prior to axon injury results in more neurite growth attempts and ultimately a higher rate of successful central axon regrowth, implicating SGCs as inhibitors of regeneration. We also demonstrate that this SGC response is mediated in part by ErbB signaling, as chemical inhibition of this receptor results in reduced SGC motility and enhanced central axon regrowth. These findings provide new insights into SGC-neuron interactions under injury conditions and how these interactions influence nervous system repair.
Collapse
Affiliation(s)
- Robin I Brown
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Heather M Barber
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Cell & Developmental Biology Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
15
|
Poss KD, Tanaka EM. Hallmarks of regeneration. Cell Stem Cell 2024; 31:1244-1261. [PMID: 39163854 PMCID: PMC11410156 DOI: 10.1016/j.stem.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Regeneration is a heroic biological process that restores tissue architecture and function in the face of day-to-day cell loss or the aftershock of injury. Capacities and mechanisms for regeneration can vary widely among species, organs, and injury contexts. Here, we describe "hallmarks" of regeneration found in diverse settings of the animal kingdom, including activation of a cell source, initiation of regenerative programs in the source, interplay with supporting cell types, and control of tissue size and function. We discuss these hallmarks with an eye toward major challenges and applications of regenerative biology.
Collapse
Affiliation(s)
- Kenneth D Poss
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Elly M Tanaka
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
16
|
Youssef KK, Nieto MA. Epithelial-mesenchymal transition in tissue repair and degeneration. Nat Rev Mol Cell Biol 2024; 25:720-739. [PMID: 38684869 DOI: 10.1038/s41580-024-00733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Epithelial-mesenchymal transitions (EMTs) are the epitome of cell plasticity in embryonic development and cancer; during EMT, epithelial cells undergo dramatic phenotypic changes and become able to migrate to form different tissues or give rise to metastases, respectively. The importance of EMTs in other contexts, such as tissue repair and fibrosis in the adult, has become increasingly recognized and studied. In this Review, we discuss the function of EMT in the adult after tissue damage and compare features of embryonic and adult EMT. Whereas sustained EMT leads to adult tissue degeneration, fibrosis and organ failure, its transient activation, which confers phenotypic and functional plasticity on somatic cells, promotes tissue repair after damage. Understanding the mechanisms and temporal regulation of different EMTs provides insight into how some tissues heal and has the potential to open new therapeutic avenues to promote repair or regeneration of tissue damage that is currently irreversible. We also discuss therapeutic strategies that modulate EMT that hold clinical promise in ameliorating fibrosis, and how precise EMT activation could be harnessed to enhance tissue repair.
Collapse
Affiliation(s)
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain.
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.
| |
Collapse
|
17
|
Xu M, Zhu M, Qin Q, Xing X, Archer M, Ramesh S, Cherief M, Li Z, Levi B, Clemens TL, James AW. Neuronal regulation of bone and tendon injury repair: a focused review. J Bone Miner Res 2024; 39:1045-1060. [PMID: 38836494 DOI: 10.1093/jbmr/zjae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Beyond the sensation of pain, peripheral nerves have been shown to play crucial roles in tissue regeneration and repair. As a highly innervated organ, bone can recover from injury without scar formation, making it an interesting model in which to study the role of nerves in tissue regeneration. As a comparison, tendon is a musculoskeletal tissue that is hypo-innervated, with repair often resulting in scar formation. Here, we reviewed the significance of innervation in 3 stages of injury repair (inflammatory, reparative, and remodeling) in 2 commonly injured musculoskeletal tissues: bone and tendon. Based on this focused review, we conclude that peripheral innervation is essential for phases of proper bone and tendon repair, and that nerves may dynamically regulate the repair process through interactions with the injury microenvironment via a variety of neuropeptides or neurotransmitters. A deeper understanding of neuronal regulation of musculoskeletal repair, and the crosstalk between nerves and the musculoskeletal system, will enable the development of future therapies for tissue healing.
Collapse
Affiliation(s)
- Mingxin Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Manyu Zhu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Sowmya Ramesh
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Benjamin Levi
- Department of Surgery, University of Texas Southwestern, Dallas, TX 75390, United States
| | - Thomas L Clemens
- Department of Orthopaedics, University of Maryland, Baltimore, MD 21205, United States
- Department of Research Services, Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, United States
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
18
|
Aztekin C. Mechanisms of regeneration: to what extent do they recapitulate development? Development 2024; 151:dev202541. [PMID: 39045847 DOI: 10.1242/dev.202541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
One of the enduring debates in regeneration biology is the degree to which regeneration mirrors development. Recent technical advances, such as single-cell transcriptomics and the broad applicability of CRISPR systems, coupled with new model organisms in research, have led to the exploration of this longstanding concept from a broader perspective. In this Review, I outline the historical parallels between development and regeneration before focusing on recent research that highlights how dissecting the divergence between these processes can uncover previously unreported biological mechanisms. Finally, I discuss how these advances position regeneration as a more dynamic and variable process with expanded possibilities for morphogenesis compared with development. Collectively, these insights into mechanisms that orchestrate morphogenesis may reshape our understanding of the evolution of regeneration, reveal hidden biology activated by injury, and offer non-developmental strategies for restoring lost or damaged organs and tissues.
Collapse
Affiliation(s)
- Can Aztekin
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Perrin S, Protic S, Bretegnier V, Laurendeau I, de Lageneste OD, Panara N, Ruckebusch O, Luka M, Masson C, Maillard T, Coulpier F, Pannier S, Wicart P, Hadj-Rabia S, Radomska KJ, Zarhrate M, Ménager M, Vidaud D, Topilko P, Parfait B, Colnot C. MEK-SHP2 inhibition prevents tibial pseudarthrosis caused by NF1 loss in Schwann cells and skeletal stem/progenitor cells. Sci Transl Med 2024; 16:eadj1597. [PMID: 38924432 DOI: 10.1126/scitranslmed.adj1597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/15/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Congenital pseudarthrosis of the tibia (CPT) is a severe pathology marked by spontaneous bone fractures that fail to heal, leading to fibrous nonunion. Half of patients with CPT are affected by the multisystemic genetic disorder neurofibromatosis type 1 (NF1) caused by mutations in the NF1 tumor suppressor gene, a negative regulator of RAS-mitogen-activated protein kinase (MAPK) signaling pathway. Here, we analyzed patients with CPT and Prss56-Nf1 knockout mice to elucidate the pathogenic mechanisms of CPT-related fibrous nonunion and explored a pharmacological approach to treat CPT. We identified NF1-deficient Schwann cells and skeletal stem/progenitor cells (SSPCs) in pathological periosteum as affected cell types driving fibrosis. Whereas NF1-deficient SSPCs adopted a fibrotic fate, NF1-deficient Schwann cells produced critical paracrine factors including transforming growth factor-β and induced fibrotic differentiation of wild-type SSPCs. To counteract the elevated RAS-MAPK signaling in both NF1-deficient Schwann cells and SSPCs, we used MAPK kinase (MEK) and Src homology 2 containing protein tyrosine phosphatase 2 (SHP2) inhibitors. Combined MEK-SHP2 inhibition in vivo prevented fibrous nonunion in the Prss56-Nf1 knockout mouse model, providing a promising therapeutic strategy for the treatment of fibrous nonunion in CPT.
Collapse
Affiliation(s)
- Simon Perrin
- Université Paris Est Creteil, INSERM, IMRB, 94000 Creteil, France
| | - Sanela Protic
- Université Paris Est Creteil, INSERM, IMRB, 94000 Creteil, France
| | | | - Ingrid Laurendeau
- INSERM UMR S1016, Institut Cochin, Université Paris Cité, 75014 Paris, France
| | | | - Nicolas Panara
- INSERM UMR S1016, Institut Cochin, Université Paris Cité, 75014 Paris, France
| | - Odile Ruckebusch
- Université Paris Est Creteil, INSERM, IMRB, Plateforme de Cytométrie en flux, 94000 Creteil, France
| | - Marine Luka
- Paris Cité University, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Cécile Masson
- Bioinformatics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163, 75015 Paris, France
- INSERM US24/CNRS UAR3633, Paris Cité University, 75015 Paris, France
| | - Théodora Maillard
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université Paris Cité, F-75014 Paris, France
| | - Fanny Coulpier
- Université Paris Est Creteil, INSERM, IMRB, 94000 Creteil, France
| | - Stéphanie Pannier
- Department of Pediatric Orthopedic Surgery and Traumatology, Necker-Enfants Malades Hospital, AP-HP, Paris Cité University, 75015 Paris, France
| | - Philippe Wicart
- Department of Pediatric Orthopedic Surgery and Traumatology, Necker-Enfants Malades Hospital, AP-HP, Paris Cité University, 75015 Paris, France
| | - Smail Hadj-Rabia
- Department of Dermatology, Reference Center for Rare Skin Diseases (MAGEC), Imagine Institute, Necker-Enfants Malades Hospital, AP-HP, Paris Cité University, 75015 Paris, France
| | | | - Mohammed Zarhrate
- INSERM US24/CNRS UAR3633, Paris Cité University, 75015 Paris, France
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163, 75015 Paris, France
| | - Mickael Ménager
- Paris Cité University, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Dominique Vidaud
- INSERM UMR S1016, Institut Cochin, Université Paris Cité, 75014 Paris, France
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université Paris Cité, F-75014 Paris, France
| | - Piotr Topilko
- Université Paris Est Creteil, INSERM, IMRB, 94000 Creteil, France
| | - Béatrice Parfait
- INSERM UMR S1016, Institut Cochin, Université Paris Cité, 75014 Paris, France
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université Paris Cité, F-75014 Paris, France
| | - Céline Colnot
- Université Paris Est Creteil, INSERM, IMRB, 94000 Creteil, France
| |
Collapse
|
20
|
Xu M, Thottappillil N, Cherief M, Li Z, Zhu M, Xing X, Gomez-Salazar M, Mwirigi JM, Sankaranarayanan I, Tavares-Ferreira D, Zhang C, Wang XW, Archer M, Guan Y, Tower RJ, Cahan P, Price TJ, Clemens TL, James AW. Mapping Somatosensory Afferent Circuitry to Bone Identifies Neurotrophic Signals Required for Fracture Healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597786. [PMID: 38895367 PMCID: PMC11185682 DOI: 10.1101/2024.06.06.597786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The profound pain accompanying bone fracture is mediated by somatosensory neurons, which also appear to be required to initiate bone regeneration following fracture. Surprisingly, the precise neuroanatomical circuitry mediating skeletal nociception and regeneration remains incompletely understood. Here, we characterized somatosensory dorsal root ganglia (DRG) afferent neurons innervating murine long bones before and after experimental long bone fracture in mice. Retrograde labeling of DRG neurons by an adeno-associated virus with peripheral nerve tropism showed AAV-tdT signal. Single cell transcriptomic profiling of 6,648 DRG neurons showed highest labeling across CGRP+ neuron clusters (6.9-17.2%) belonging to unmyelinated C fibers, thinly myelinated Aδ fibers and Aβ-Field LTMR (9.2%). Gene expression profiles of retrograde labeled DRG neurons over multiple timepoints following experimental stress fracture revealed dynamic changes in gene expression corresponding to the acute inflammatory ( S100a8 , S100a9 ) and mechanical force ( Piezo2 ). Reparative phase after fracture included morphogens such as Tgfb1, Fgf9 and Fgf18 . Two methods to surgically or genetically denervate fractured bones were used in combination with scRNA-seq to implicate defective mesenchymal cell proliferation and osteodifferentiation as underlying the poor bone repair capacity in the presence of attenuated innervation. Finally, multi-tissue scRNA-seq and interactome analyses implicated neuron-derived FGF9 as a potent regulator of fracture repair, a finding compatible with in vitro assessments of neuron-to-skeletal mesenchyme interactions.
Collapse
|
21
|
Stassart RM, Gomez-Sanchez JA, Lloyd AC. Schwann Cells as Orchestrators of Nerve Repair: Implications for Tissue Regeneration and Pathologies. Cold Spring Harb Perspect Biol 2024; 16:a041363. [PMID: 38199866 PMCID: PMC11146315 DOI: 10.1101/cshperspect.a041363] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Peripheral nerves exist in a stable state in adulthood providing a rapid bidirectional signaling system to control tissue structure and function. However, following injury, peripheral nerves can regenerate much more effectively than those of the central nervous system (CNS). This multicellular process is coordinated by peripheral glia, in particular Schwann cells, which have multiple roles in stimulating and nurturing the regrowth of damaged axons back to their targets. Aside from the repair of damaged nerves themselves, nerve regenerative processes have been linked to the repair of other tissues and de novo innervation appears important in establishing an environment conducive for the development and spread of tumors. In contrast, defects in these processes are linked to neuropathies, aging, and pain. In this review, we focus on the role of peripheral glia, especially Schwann cells, in multiple aspects of nerve regeneration and discuss how these findings may be relevant for pathologies associated with these processes.
Collapse
Affiliation(s)
- Ruth M Stassart
- Paul-Flechsig-Institute of Neuropathology, University Clinic Leipzig, Leipzig 04103, Germany
| | - Jose A Gomez-Sanchez
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante 03010, Spain
- Instituto de Neurociencias CSIC-UMH, Sant Joan de Alicante 03550, Spain
| | - Alison C Lloyd
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
22
|
Li C, Zhu A, Yang L, Wang X, Guo Z. Advances in magnetoelectric composites for promoting bone regeneration: a review. J Mater Chem B 2024; 12:4361-4374. [PMID: 38639047 DOI: 10.1039/d3tb02617e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Repair of large bone defects is one of the clinical problems that have not yet been fully solved. The dynamic balance of bone tissue is regulated by many biological, chemical and physical environmental factors. Simulating the microenvironment of bone tissue in the physiological state through biomimetic materials is an important development direction of tissue engineering in recent years. With the deepening of research, it has been found that when bone tissue is damaged, its surrounding magnetoelectric microenvironment is subsequently destroyed, and providing a magnetoelectric microenvironment in the biomimetic state will be beneficial to promote bone repair. This review describes the piezoelectric effect of natural bone tissue with magnetoelectric stimulation for bone regeneration, provides a detailed account of the historical development of magnetoelectric composites and the current magnetoelectric composites that are most commonly utilized in the field of tissue engineering. Besides, the hypothesized mechanistic pathways through which magnetoelectric composite materials promote bone regeneration are critically examined, including the enhancement of osteogenesis, promotion of cell adhesion and angiogenesis, modulation of bone immunity, and promotion of nerve regeneration.
Collapse
Affiliation(s)
- Chengyu Li
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China.
| | - Andi Zhu
- Department of Implantology and Prosthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China
| | - Liqing Yang
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China.
| | - Xinyi Wang
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China.
| | - Zehong Guo
- Department of Periodontology and Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China.
| |
Collapse
|
23
|
Tan FH, Bronner ME. Regenerative loss in the animal kingdom as viewed from the mouse digit tip and heart. Dev Biol 2024; 507:44-63. [PMID: 38145727 PMCID: PMC10922877 DOI: 10.1016/j.ydbio.2023.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The myriad regenerative abilities across the animal kingdom have fascinated us for centuries. Recent advances in developmental, molecular, and cellular biology have allowed us to unearth a surprising diversity of mechanisms through which these processes occur. Developing an all-encompassing theory of animal regeneration has thus proved a complex endeavor. In this chapter, we frame the evolution and loss of animal regeneration within the broad developmental constraints that may physiologically inhibit regenerative ability across animal phylogeny. We then examine the mouse as a model of regeneration loss, specifically the experimental systems of the digit tip and heart. We discuss the digit tip and heart as a positionally-limited system of regeneration and a temporally-limited system of regeneration, respectively. We delve into the physiological processes involved in both forms of regeneration, and how each phase of the healing and regenerative process may be affected by various molecular signals, systemic changes, or microenvironmental cues. Lastly, we also discuss the various approaches and interventions used to induce or improve the regenerative response in both contexts, and the implications they have for our understanding regenerative ability more broadly.
Collapse
Affiliation(s)
- Fayth Hui Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
24
|
Simkin J, Aloysius A, Adam M, Safaee F, Donahue RR, Biswas S, Lakhani Z, Gensel JC, Thybert D, Potter S, Seifert AW. Tissue-resident macrophages specifically express Lactotransferrin and Vegfc during ear pinna regeneration in spiny mice. Dev Cell 2024; 59:496-516.e6. [PMID: 38228141 PMCID: PMC10922778 DOI: 10.1016/j.devcel.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/30/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Abstract
The details of how macrophages control different healing trajectories (regeneration vs. scar formation) remain poorly defined. Spiny mice (Acomys spp.) can regenerate external ear pinnae tissue, whereas lab mice (Mus musculus) form scar tissue in response to an identical injury. Here, we used this dual species system to dissect macrophage phenotypes between healing modes. We identified secreted factors from activated Acomys macrophages that induce a pro-regenerative phenotype in fibroblasts from both species. Transcriptional profiling of Acomys macrophages and subsequent in vitro tests identified VEGFC, PDGFA, and Lactotransferrin (LTF) as potential pro-regenerative modulators. Examining macrophages in vivo, we found that Acomys-resident macrophages secreted VEGFC and LTF, whereas Mus macrophages do not. Lastly, we demonstrate the requirement for VEGFC during regeneration and find that interrupting lymphangiogenesis delays blastema and new tissue formation. Together, our results demonstrate that cell-autonomous mechanisms govern how macrophages react to the same stimuli to differentially produce factors that facilitate regeneration.
Collapse
Affiliation(s)
- Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; Department of Orthopaedic Surgery, LSU Health-New Orleans, New Orleans, LA 70112, USA.
| | - Ajoy Aloysius
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Mike Adam
- Department of Pediatrics, University of Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, OH 45229, USA
| | - Fatemeh Safaee
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Renée R Donahue
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Shishir Biswas
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Zohaib Lakhani
- Department of Orthopaedic Surgery, LSU Health-New Orleans, New Orleans, LA 70112, USA
| | - John C Gensel
- Department of Physiology, University of Kentucky, Lexington, KY 40506, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA
| | - David Thybert
- European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Steven Potter
- Department of Pediatrics, University of Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, OH 45229, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
25
|
Noble A, Qubrosi R, Cariba S, Favaro K, Payne SL. Neural dependency in wound healing and regeneration. Dev Dyn 2024; 253:181-203. [PMID: 37638700 DOI: 10.1002/dvdy.650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
In response to injury, humans and many other mammals form a fibrous scar that lacks the structure and function of the original tissue, whereas other vertebrate species can spontaneously regenerate damaged tissues and structures. Peripheral nerves have been identified as essential mediators of wound healing and regeneration in both mammalian and nonmammalian systems, interacting with the milieu of cells and biochemical signals present in the post-injury microenvironment. This review examines the diverse functions of peripheral nerves in tissue repair and regeneration, specifically during the processes of wound healing, blastema formation, and organ repair. We compare available evidence in mammalian and nonmammalian models, identifying critical nerve-mediated mechanisms for regeneration and providing future perspectives toward integrating these mechanisms into a therapeutic framework to promote regeneration.
Collapse
Affiliation(s)
- Alexandra Noble
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Rozana Qubrosi
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Solsa Cariba
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kayla Favaro
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Samantha L Payne
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
26
|
Fontenas L. Glial plasticity at nervous system transition zones. Biol Open 2023; 12:bio060037. [PMID: 37787575 PMCID: PMC10562931 DOI: 10.1242/bio.060037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
The central and peripheral nervous systems (CNS and PNS, respectively) are two separate yet connected domains characterized by molecularly distinct cellular components that communicate via specialized structures called transition zones to allow information to travel from the CNS to the periphery, and vice versa. Until recently, nervous system transition zones were thought to be selectively permeable only to axons, and the establishment of the territories occupied by glial cells at these complex regions remained poorly described and not well understood. Recent work now demonstrates that transition zones are occupied by dynamic glial cells and are precisely regulated over the course of nervous system development. This review highlights recent work on glial cell migration in and out of the spinal cord, at motor exit point (MEP) and dorsal root entry zone (DREZ) transition zones, in the physiological and diseased nervous systems. These cells include myelinating glia (oligodendrocyte lineage cells, Schwann cells and motor exit point glia), exit glia, perineurial cells that form the perineurium along spinal nerves, as well as professional and non-professional phagocytes (microglia and neural crest cells).
Collapse
Affiliation(s)
- Laura Fontenas
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
27
|
Floriddia E. In conversation with Freda Miller. Nat Neurosci 2023; 26:1653-1656. [PMID: 37709994 DOI: 10.1038/s41593-023-01440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
|
28
|
Hassan MG, Horenberg AL, Coler-Reilly A, Grayson WL, Scheller EL. Role of the Peripheral Nervous System in Skeletal Development and Regeneration: Controversies and Clinical Implications. Curr Osteoporos Rep 2023; 21:503-518. [PMID: 37578676 PMCID: PMC10543521 DOI: 10.1007/s11914-023-00815-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE OF REVIEW This review examines the diverse functional relationships that exist between the peripheral nervous system (PNS) and bone, including key advances over the past century that inform our efforts to translate these discoveries for skeletal repair. RECENT FINDINGS The innervation of the bone during development, homeostasis, and regeneration is highly patterned. Consistent with this, there have been nearly 100 studies over the past century that have used denervation approaches to isolate the effects of the different branches of the PNS on the bone. Overall, a common theme of balance emerges whereby an orchestration of both local and systemic neural functions must align to promote optimal skeletal repair while limiting negative consequences such as pain. An improved understanding of the functional bidirectional pathways linking the PNS and bone has important implications for skeletal development and regeneration. Clinical advances over the next century will necessitate a rigorous identification of the mechanisms underlying these effects that is cautious not to oversimplify the in vivo condition in diverse states of health and disease.
Collapse
Affiliation(s)
- Mohamed G Hassan
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA
| | - Allison L Horenberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Ariella Coler-Reilly
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA
| | - Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Erica L Scheller
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University, 660 South Euclid Avenue, Campus Box 8301, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University, MO, St. Louis, USA.
- Department of Cell Biology and Physiology, Washington University, MO, St. Louis, USA.
| |
Collapse
|
29
|
Kashio S, Masuda S, Miura M. Involvement of neuronal tachykinin-like receptor at 86C in Drosophila disc repair via regulation of kynurenine metabolism. iScience 2023; 26:107553. [PMID: 37636053 PMCID: PMC10457576 DOI: 10.1016/j.isci.2023.107553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 05/15/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Neurons contribute to the regeneration of projected tissues; however, it remains unclear whether they are involved in the non-innervated tissue regeneration. Herein, we showed that a neuronal tachykinin-like receptor at 86C (TkR86C) is required for the repair of non-innervated wing discs in Drosophila. Using a genetic tissue repair system in Drosophila larvae, we performed genetic screening for G protein-coupled receptors to search for signal mediatory systems for remote tissue repair. An evolutionarily conserved neuroinflammatory receptor, TkR86C, was identified as the candidate receptor. Neuron-specific knockdown of TkR86C impaired disc repair without affecting normal development. We investigated the humoral metabolites of the kynurenine (Kyn) pathway regulated in the fat body because of their role as tissue repair-mediating factors. Neuronal knockdown of TkR86C hampered injury-dependent changes in the expression of vermillion in the fat body and humoral Kyn metabolites. Our data indicate the involvement of TkR86C neurons upstream of Kyn metabolism in non-autonomous tissue regeneration.
Collapse
Affiliation(s)
- Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu Masuda
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
30
|
Wang T, Li W, Zhang Y, Xu X, Qiang L, Miao W, Yue X, Jiao X, Zhou X, Ma Z, Li S, Ding M, Zhu J, Yang C, Wang H, Li T, Sun X, Wang J. Bioprinted constructs that simulate nerve-bone crosstalk to improve microenvironment for bone repair. Bioact Mater 2023; 27:377-393. [PMID: 37122897 PMCID: PMC10131128 DOI: 10.1016/j.bioactmat.2023.02.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/10/2023] [Accepted: 02/13/2023] [Indexed: 05/02/2023] Open
Abstract
Crosstalk between nerves and bone is essential for bone repair, for which Schwann cells (SCs) are crucial in the regulation of the microenvironment. Considering that exosomes are critical paracrine mediators for intercellular communication that exert important effects in tissue repair, the aim of this study is to confirm the function and molecular mechanisms of Schwann cell-derived exosomes (SC-exos) on bone regeneration and to propose engineered constructs that simulate SC-mediated nerve-bone crosstalk. SCs promoted the proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs) through exosomes. Subsequent molecular mechanism studies demonstrated that SC-exos promoted BMSC osteogenesis by regulating the TGF-β signaling pathway via let-7c-5p. Interestingly, SC-exos promoted the migration and tube formation performance of endothelial progenitor cells. Furthermore, the SC-exos@G/S constructs were developed by bioprinting technology that simulated SC-mediated nerve-bone crosstalk and improved the bone regeneration microenvironment by releasing SC-exos, exerting the regulatory effect of SCs in the microenvironment to promote innervation, vascularization, and osteogenesis and thus effectively improving bone repair in a cranial defect model. This study demonstrates the important role and underlying mechanism of SCs in regulating bone regeneration through SC-exos and provides a new engineered strategy for bone repair.
Collapse
Affiliation(s)
- Tianchang Wang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wentao Li
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, No.49, North Garden Road, Haidian District, Beijing, 100191, China
- Peking University Institute of Sports Medicine, No.49, North Garden Road, Haidian District, Beijing, 100191, China
| | - Yuxin Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Xiang Xu
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Lei Qiang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Weiqiang Miao
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xiaokun Yue
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xin Jiao
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xianhao Zhou
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shuai Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou, 310003, China
| | - Muliang Ding
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, 410001, Hunan, China
| | - Junfeng Zhu
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Hui Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201210, China
| | - Tao Li
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665, Kongjiang Road, Shanghai, 200092, China
| | - Xin Sun
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Institute of Rehabilitation Medicine, School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201210, China
| |
Collapse
|
31
|
Heredia JE, Jung M, Balestrini A, Doerr J, Paler-Martinez A, Mozzarelli A, Riol-Blanco L, Kaminker JS, Ding N. Single-Cell Transcriptomic Analysis Links Nonmyelinating Schwann Cells to Proinflammatory Response in the Lung. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:844-852. [PMID: 37477665 PMCID: PMC10450159 DOI: 10.4049/jimmunol.2200946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
The lung is a barrier tissue with constant exposure to the inhaled environment. Therefore, innate immunity against particulates and pathogens is of critical importance to maintain tissue homeostasis. Although the lung harbors both myelinating and nonmyelinating Schwann cells (NMSCs), NMSCs represent the most abundant Schwann cell (SC) population in the lung. However, their contribution to lung physiology remains largely unknown. In this study, we used the human glial fibrillary acidic protein promoter driving tdTomato expression in mice to identify SCs in the peripheral nervous system and determine their location within the lung. Single-cell transcriptomic analysis revealed the existence of two NMSC populations (NMSC1 and NMSC2) that may participate in pathogen recognition. We demonstrated that these pulmonary SCs produce chemokines and cytokines upon LPS stimulation using in vitro conditions. Furthermore, we challenged mouse lungs with LPS and found that NMSC1 exhibits an enriched proinflammatory response among all SC subtypes. Collectively, these findings define the molecular profiles of lung SCs and suggest a potential role for NMSCs in lung inflammation.
Collapse
Affiliation(s)
- Jose E. Heredia
- Department of Discovery Immunology, Genentech, South San Francisco, CA
| | - Min Jung
- Department of OMNI Bioinformatics, Genentech, South San Francisco, CA
| | | | - Jonas Doerr
- Department of Pathology, Genentech, South San Francisco, CA
| | | | | | | | | | - Ning Ding
- Department of Discovery Immunology, Genentech, South San Francisco, CA
| |
Collapse
|
32
|
Jones E, McLaughlin KA. A Novel Perspective on Neuronal Control of Anatomical Patterning, Remodeling, and Maintenance. Int J Mol Sci 2023; 24:13358. [PMID: 37686164 PMCID: PMC10488252 DOI: 10.3390/ijms241713358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
While the nervous system may be best known as the sensory communication center of an organism, recent research has revealed a myriad of multifaceted roles for both the CNS and PNS from early development to adult regeneration and remodeling. These systems work to orchestrate tissue pattern formation during embryonic development and continue shaping pattering through transitional periods such as metamorphosis and growth. During periods of injury or wounding, the nervous system has also been shown to influence remodeling and wound healing. The neuronal mechanisms responsible for these events are largely conserved across species, suggesting this evidence may be important in understanding and resolving many human defects and diseases. By unraveling these diverse roles, this paper highlights the necessity of broadening our perspective on the nervous system beyond its conventional functions. A comprehensive understanding of the complex interactions and contributions of the nervous system throughout development and adulthood has the potential to revolutionize therapeutic strategies and open new avenues for regenerative medicine and tissue engineering. This review highlights an important role for the nervous system during the patterning and maintenance of complex tissues and provides a potential avenue for advancing biomedical applications.
Collapse
Affiliation(s)
| | - Kelly A. McLaughlin
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA;
| |
Collapse
|
33
|
Tajer B, Savage AM, Whited JL. The salamander blastema within the broader context of metazoan regeneration. Front Cell Dev Biol 2023; 11:1206157. [PMID: 37635872 PMCID: PMC10450636 DOI: 10.3389/fcell.2023.1206157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Throughout the animal kingdom regenerative ability varies greatly from species to species, and even tissue to tissue within the same organism. The sheer diversity of structures and mechanisms renders a thorough comparison of molecular processes truly daunting. Are "blastemas" found in organisms as distantly related as planarians and axolotls derived from the same ancestral process, or did they arise convergently and independently? Is a mouse digit tip blastema orthologous to a salamander limb blastema? In other fields, the thorough characterization of a reference model has greatly facilitated these comparisons. For example, the amphibian Spemann-Mangold organizer has served as an amazingly useful comparative template within the field of developmental biology, allowing researchers to draw analogies between distantly related species, and developmental processes which are superficially quite different. The salamander limb blastema may serve as the best starting point for a comparative analysis of regeneration, as it has been characterized by over 200 years of research and is supported by a growing arsenal of molecular tools. The anatomical and evolutionary closeness of the salamander and human limb also add value from a translational and therapeutic standpoint. Tracing the evolutionary origins of the salamander blastema, and its relatedness to other regenerative processes throughout the animal kingdom, will both enhance our basic biological understanding of regeneration and inform our selection of regenerative model systems.
Collapse
Affiliation(s)
| | | | - Jessica L. Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
34
|
Feinberg K, Tajdaran K, Mirmoeini K, Daeschler SC, Henriquez MA, Stevens KE, Mulenga CM, Hussain A, Hamrah P, Ali A, Gordon T, Borschel GH. The Role of Sensory Innervation in Homeostatic and Injury-Induced Corneal Epithelial Renewal. Int J Mol Sci 2023; 24:12615. [PMID: 37628793 PMCID: PMC10454376 DOI: 10.3390/ijms241612615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The cornea is the window through which we see the world. Corneal clarity is required for vision, and blindness occurs when the cornea becomes opaque. The cornea is covered by unique transparent epithelial cells that serve as an outermost cellular barrier bordering between the cornea and the external environment. Corneal sensory nerves protect the cornea from injury by triggering tearing and blink reflexes, and are also thought to regulate corneal epithelial renewal via unknown mechanism(s). When protective corneal sensory innervation is absent due to infection, trauma, intracranial tumors, surgery, or congenital causes, permanent blindness results from repetitive epithelial microtraumas and failure to heal. The condition is termed neurotrophic keratopathy (NK), with an incidence of 5:10,000 people worldwide. In this report, we review the currently available therapeutic solutions for NK and discuss the progress in our understanding of how the sensory nerves induce corneal epithelial renewal.
Collapse
Affiliation(s)
- Konstantin Feinberg
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kiana Tajdaran
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kaveh Mirmoeini
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Simeon C. Daeschler
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Hospital, Department of Plastic and Hand Surgery, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Mario A. Henriquez
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Katelyn E. Stevens
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chilando M. Mulenga
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Arif Hussain
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Pedram Hamrah
- Cornea Service, New England Eye Center, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, USA
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Asim Ali
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Tessa Gordon
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Gregory H. Borschel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
35
|
Chen Q, Miao Y, Xu Z, Zhang R, Yi S. miR-140 and miR-200 regulate the migratory heterogeneity of location-specific Schwann cell population. J Neurochem 2023; 166:692-704. [PMID: 37171465 DOI: 10.1111/jnc.15844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/14/2023] [Accepted: 04/30/2023] [Indexed: 05/13/2023]
Abstract
Schwann cells are functional cells in nerve regeneration and are commonly used as seed cells in tissue engineering. Enhanced Schwann cell migration capacity improves recovery effects, and thus, the identification of Schwann cells with greater migration ability is of great importance. In the present study, we examined the biological activities of Schwann cells collected from rat sciatic nerves (SN) and dorsal root ganglia (DRG). Observations from transwell migration assay and wound healing assay demonstrate that DRG Schwann cells migrate at a faster speed as compared with SN Schwann cells. Sequencing and bioinformatics suggest that differentially expressed genes between SN and DRG Schwann cells are associated with cell motility and migration. miR-140 and miR-200, two microRNAs (miRNAs) that are highly expressed in SN Schwann cells negatively influence Schwann cell migration and thus may be key regulators of Schwann cell phenotype. Igsf10, Plxna2, and Lcp1 are screened as candidate downstream targets of miR-140 and miR-200 based on bioinformatic analysis and their expression correlation with miRNAs. Our comparative analysis displays the unique characteristics of Schwann cells in different anatomical localizations and demonstrates that DRG Schwann cells are suitable seed cells for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Qianqian Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Yang Miao
- Department of Pharmacy, The First People's Hospital of Yancheng, Yancheng, China
| | - Zhipeng Xu
- Department of Urology, Affiliated People's Hospital of Jiangsu University, Zhenjiang First People's Hospital, Zhenjiang, China
| | - Ruirui Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
36
|
Li C. Deer antler renewal gives insights into mammalian epimorphic regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:26. [PMID: 37490254 PMCID: PMC10368610 DOI: 10.1186/s13619-023-00169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/02/2023] [Indexed: 07/26/2023]
Abstract
Deer antlers are the only known mammalian organ that, once lost, can fully grow back naturally. Hence, the antler offers a unique opportunity to learn how nature has solved the problem of mammalian epimorphic regeneration (EpR). Comprehensive comparisons amongst different types of EpR reveal that antler renewal is fundamentally different from that in lower vertebrates such as regeneration of the newt limb. Surprisingly, antler renewal is comparable to wound healing over a stump of regeneration-incompetent digit/limb, bone fracture repair, and to a lesser extent to digit tip regeneration in mammals. Common to all these mammalian cases of reaction to the amputation/mechanical trauma is the response of the periosteal cells at the distal end/injury site with formation of a circumferential cartilaginous callus (CCC). Interestingly, whether the CCC can proceed to the next stage to transform to a blastema fully depends on the presence of an interactive partner. The actual form of the partner can vary in different cases with the nail organ in digit tip EpR, the opposing callus in bone fracture repair, and the closely associated enveloping skin in antler regeneration. Due to absence of such an interactive partner, the CCC of a mouse/rat digit/limb stump becomes involuted gradually. Based on these discoveries, we created an interactive partner for the rat digit/limb stump through surgically removal of the interposing layers of loose connective tissue and muscle between the resultant CCC and the enveloping skin after amputation and by forcefully bonding two tissue types tightly together. In so doing partial regeneration of the limb stump occurred. In summary, if EpR in humans is to be realized, then I envisage that it would be more likely in a manner akin to antler regeneration rather to that of lower vertebrates such as newt limbs.
Collapse
Affiliation(s)
- Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600, China.
- Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600, China.
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130000, China.
| |
Collapse
|
37
|
Jou V, Lehoczky JA. Toeing the line between regeneration and fibrosis. Front Cell Dev Biol 2023; 11:1217185. [PMID: 37325560 PMCID: PMC10267333 DOI: 10.3389/fcell.2023.1217185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Understanding the remarkable capacity of vertebrates to naturally regenerate injured body parts has great importance for potential translation into human therapeutic applications. As compared to other vertebrates, mammals have low regenerative capacity for composite tissues like the limb. However, some primates and rodents can regenerate the distal tips of their digits following amputation, indicating that at least very distal mammalian limb tissues are competent for innate regeneration. It follows that successful digit tip regenerative outcome is highly dependent on the location of the amputation; those proximal to the position of the nail organ do not regenerate and result in fibrosis. This distal regeneration versus proximal fibrosis duality of the mouse digit tip serves as a powerful model to investigate the driving factors in determining each process. In this review, we present the current understanding of distal digit tip regeneration in the context of cellular heterogeneity and the potential for different cell types to function as progenitor cells, in pro-regenerative signaling, or in moderating fibrosis. We then go on to discuss these themes in the context of what is known about proximal digit fibrosis, towards generating hypotheses for these distinct healing processes in the distal and proximal mouse digit.
Collapse
Affiliation(s)
- Vivian Jou
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Jessica A. Lehoczky
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
38
|
Shkhyan R, Flynn C, Lamoure E, Sarkar A, Van Handel B, Li J, York J, Banks N, Van der Horst R, Liu NQ, Lee S, Bajaj P, Vadivel K, Harn HIC, Tassey J, Lozito T, Lieberman JR, Chuong CM, Hurtig MS, Evseenko D. Inhibition of a signaling modality within the gp130 receptor enhances tissue regeneration and mitigates osteoarthritis. Sci Transl Med 2023; 15:eabq2395. [PMID: 36947594 PMCID: PMC10792550 DOI: 10.1126/scitranslmed.abq2395] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 01/17/2023] [Indexed: 03/24/2023]
Abstract
Adult mammals are incapable of multitissue regeneration, and augmentation of this potential may shift current therapeutic paradigms. We found that a common co-receptor of interleukin 6 (IL-6) cytokines, glycoprotein 130 (gp130), serves as a major nexus integrating various context-specific signaling inputs to either promote regenerative outcomes or aggravate disease progression. Via genetic and pharmacological experiments in vitro and in vivo, we demonstrated that a signaling tyrosine 814 (Y814) within gp130 serves as a major cellular stress sensor. Mice with constitutively inactivated Y814 (F814) were resistant to surgically induced osteoarthritis as reflected by reduced loss of proteoglycans, reduced synovitis, and synovial fibrosis. The F814 mice also exhibited enhanced regenerative, not reparative, responses after wounding in the skin. In addition, pharmacological modulation of gp130 Y814 upstream of the SRC and MAPK circuit by a small molecule, R805, elicited a protective effect on tissues after injury. Topical administration of R805 on mouse skin wounds resulted in enhanced hair follicle neogenesis and dermal regeneration. Intra-articular administration of R805 to rats after medial meniscal tear and to canines after arthroscopic meniscal release markedly mitigated the appearance of osteoarthritis. Single-cell sequencing data demonstrated that genetic and pharmacological modulation of Y814 resulted in attenuation of inflammatory gene signature as visualized by the anti-inflammatory macrophage and nonpathological fibroblast subpopulations in the skin and joint tissue after injury. Together, our study characterized a molecular mechanism that, if manipulated, enhances the intrinsic regenerative capacity of tissues through suppression of a proinflammatory milieu and prevents pathological outcomes in injury and disease.
Collapse
Affiliation(s)
- Ruzanna Shkhyan
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Candace Flynn
- Ontario Veterinary College, Department of Clinical Studies, University of Guelph, ON N1G 2W1, Canada
| | - Emma Lamoure
- Ontario Veterinary College, Department of Clinical Studies, University of Guelph, ON N1G 2W1, Canada
| | - Arijita Sarkar
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Benjamin Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Jinxiu Li
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Jesse York
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Nicholas Banks
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Robert Van der Horst
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Nancy Q. Liu
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Siyoung Lee
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Paul Bajaj
- UCLA Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
| | - Kanagasabai Vadivel
- UCLA Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
| | - Hans I.-Chen Harn
- Department of Pathology, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan 701401 Taiwan
| | - Jade Tassey
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Thomas Lozito
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Jay R. Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Mark S. Hurtig
- Ontario Veterinary College, Department of Clinical Studies, University of Guelph, ON N1G 2W1, Canada
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
- Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| |
Collapse
|
39
|
Amano K, Okabe M, Yoshida T, Oba J, Yoshida S, Wakasugi M, Usui A, Nakata Y, Okudera H. Hyperdry Human Amniotic Membrane as a Protective Dressing for Open Wounds With Exposed Bowel in Mice. J Surg Res 2023; 283:898-913. [PMID: 36915018 DOI: 10.1016/j.jss.2022.09.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION An enteroatmospheric fistula forms when the exposed bowel is perforated with chronic enteric fistula formation. Currently, there is no established preventative method for this condition. Hyperdry (HD) amniotic membrane (AM) can promote early granulation tissue formation on the exposed viscera and is suitable for dressing intractable wounds as it possesses anti-inflammatory, antibacterial, and immunomodulatory properties. This study investigated whether HD-AM promotes early formation of blood vessel-containing granulation tissue for enteroatmospheric fistula treatment. METHODS An experimental animal model of an open wound with exposed bowel was developed. A 15 × 20 mm wound was prepared on the abdomen of Institute of Cancer Research mice, and the HD-AM was placed. The mice were assigned to one of the following groups: HD-AM group, in which the stromal layer of the HD-AM was placed in contact with the exposed bowel; HD-AM UD group, in which the epithelial layer of the HD-AM was placed in contact with the exposed bowel; and the HD-AM (-) or control group, in which the HD-AM was not used. RESULTS On postoperative days 7 and 14, granulation tissue thickness significantly increased in the HD-AM and HD-AM UD groups compared with that in the HD-AM (-) group. Macrophages accumulated in the HD-AM epithelium only in the HD-AM group. During HD-AM contact, a subset of invading macrophages switched from M1 to M2 phenotype. CONCLUSIONS HD-AM is a practical wound dressing with its scaffolding function, regulation of TGF β-1 and C-X-C motif chemokine 5 (CXCL-5), and ability to induce M1-to-M2 macrophage conversion.
Collapse
Affiliation(s)
- Koji Amano
- Department of Emergency Surgery, Sakai City Medical Center, Sakai, Osaka, Japan
| | - Motonori Okabe
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama, Japan
| | - Toshiko Yoshida
- Department of Clinical Biomaterial Application, Medical, University of Toyama, Toyama, Japan.
| | - Jiro Oba
- Department of Emergency & Disaster Medicine, Juntendo University School of Medicine/Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Yoshida
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Toyama, Japan
| | - Masahiro Wakasugi
- Department of Emergency and Disaster Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Akihiro Usui
- Department of Emergency Surgery, Sakai City Medical Center, Sakai, Osaka, Japan
| | - Yasuki Nakata
- Department of Emergency Surgery, Sakai City Medical Center, Sakai, Osaka, Japan
| | - Hiroshi Okudera
- Department of Emergency and Disaster Medicine, University of Toyama, Toyama, Toyama, Japan
| |
Collapse
|
40
|
Castilla-Ibeas A, Zdral S, Galán L, Haro E, Allou L, Campa VM, Icardo JM, Mundlos S, Oberg KC, Ros MA. Failure of digit tip regeneration in the absence of Lmx1b suggests Lmx1b functions disparate from dorsoventral polarity. Cell Rep 2023; 42:111975. [PMID: 36641754 DOI: 10.1016/j.celrep.2022.111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Mammalian digit tip regeneration is linked to the presence of nail tissue, but a nail-explicit model is missing. Here, we report that nail-less double-ventral digits of ΔLARM1/2 mutants that lack limb-specific Lmx1b enhancers fail to regenerate. To separate the nail's effect from the lack of dorsoventral (DV) polarity, we also interrogate double-dorsal double-nail digits and show that they regenerate. Thus, DV polarity is not a prerequisite for regeneration, and the nail requirement is supported. Transcriptomic comparison between wild-type and non-regenerative ΔLARM1/2 mutant blastemas reveals differential upregulation of vascularization and connective tissue functional signatures in wild type versus upregulation of inflammation in the mutant. These results, together with the finding of Lmx1b expression in the postnatal dorsal dermis underneath the nail and uniformly in the regenerative blastema, open the possibility of additional Lmx1b roles in digit tip regeneration, in addition to the indirect effect of mediating the formation of the nail.
Collapse
Affiliation(s)
- Alejandro Castilla-Ibeas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Sofía Zdral
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Laura Galán
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Endika Haro
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Lila Allou
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Víctor M Campa
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Jose M Icardo
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Spain
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Kerby C Oberg
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain.
| |
Collapse
|
41
|
Pei F, Ma L, Jing J, Feng J, Yuan Y, Guo T, Han X, Ho TV, Lei J, He J, Zhang M, Chen JF, Chai Y. Sensory nerve niche regulates mesenchymal stem cell homeostasis via FGF/mTOR/autophagy axis. Nat Commun 2023; 14:344. [PMID: 36670126 PMCID: PMC9859800 DOI: 10.1038/s41467-023-35977-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Mesenchymal stem cells (MSCs) reside in microenvironments, referred to as niches, which provide structural support and molecular signals. Sensory nerves are niche components in the homeostasis of tissues such as skin, bone marrow and hematopoietic system. However, how the sensory nerve affects the behavior of MSCs remains largely unknown. Here we show that the sensory nerve is vital for mesenchymal tissue homeostasis and maintenance of MSCs in the continuously growing adult mouse incisor. Loss of sensory innervation leads to mesenchymal disorder and a decrease in MSCs. Mechanistically, FGF1 from the sensory nerve directly acts on MSCs by binding to FGFR1 and activates the mTOR/autophagy axis to sustain MSCs. Modulation of mTOR/autophagy restores the MSCs and rescues the mesenchymal tissue disorder of Fgfr1 mutant mice. Collectively, our study provides insights into the role of sensory nerves in the regulation of MSC homeostasis and the mechanism governing it.
Collapse
Affiliation(s)
- Fei Pei
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Jie Lei
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA, 90033, USA.
| |
Collapse
|
42
|
Tao R, Mi B, Hu Y, Lin S, Xiong Y, Lu X, Panayi AC, Li G, Liu G. Hallmarks of peripheral nerve function in bone regeneration. Bone Res 2023; 11:6. [PMID: 36599828 PMCID: PMC9813170 DOI: 10.1038/s41413-022-00240-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
Skeletal tissue is highly innervated. Although different types of nerves have been recently identified in the bone, the crosstalk between bone and nerves remains unclear. In this review, we outline the role of the peripheral nervous system (PNS) in bone regeneration following injury. We first introduce the conserved role of nerves in tissue regeneration in species ranging from amphibians to mammals. We then present the distribution of the PNS in the skeletal system under physiological conditions, fractures, or regeneration. Furthermore, we summarize the ways in which the PNS communicates with bone-lineage cells, the vasculature, and immune cells in the bone microenvironment. Based on this comprehensive and timely review, we conclude that the PNS regulates bone regeneration through neuropeptides or neurotransmitters and cells in the peripheral nerves. An in-depth understanding of the roles of peripheral nerves in bone regeneration will inform the development of new strategies based on bone-nerve crosstalk in promoting bone repair and regeneration.
Collapse
Affiliation(s)
- Ranyang Tao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China
| | - Xuan Lu
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, 02215, MA, USA
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China.
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, P. R. China.
| |
Collapse
|
43
|
Zhang X, Xiong Q, Lin W, Wang Q, Zhang D, Xu R, Zhou X, Zhang S, Peng L, Yuan Q. Schwann Cells Contribute to Alveolar Bone Regeneration by Promoting Cell Proliferation. J Bone Miner Res 2023; 38:119-130. [PMID: 36331097 DOI: 10.1002/jbmr.4735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The plasticity of Schwann cells (SCs) following nerve injury is a critical feature in the regeneration of peripheral nerves as well as surrounding tissues. Here, we show a pivotal role of Schwann cell-derived cells in alveolar bone regeneration through the specific ablation of proteolipid protein 1 (Plp)-expressing cells and the transplantation of teased nerve fibers and associated cells. With inducible Plp specific genetic tracing, we observe that Plp+ cells migrate into wounded alveolar defect and dedifferentiate into repair SCs. Notably, these cells barely transdifferentiate into osteogenic cell lineage in both SCs tracing model and transplant model, but secret factors to enhance the proliferation of alveolar skeletal stem cells (aSSCs). As to the mechanism, this effect is associated with the upregulation of extracellular matrix (ECM) receptors and receptor tyrosine kinases (RTKs) signaling and the downstream extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and the phosphoinositide 3-kinase-protein kinase B (PI3K-Akt) pathway. Collectively, our data demonstrate that SCs dedifferentiate after neighboring alveolar bone injury and contribute to bone regeneration mainly by a paracrine function. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Xiaohan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiuchan Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Danting Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyi Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiwen Zhang
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Peng
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis 2023; 176:105952. [PMID: 36493976 DOI: 10.1016/j.nbd.2022.105952] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The glial cell of the peripheral nervous system (PNS), the Schwann cell (SC), counts among the most multifaceted cells of the body. During development, SCs secure neuronal survival and participate in axonal path finding. Simultaneously, they orchestrate the architectural set up of the developing nerves, including the blood vessels and the endo-, peri- and epineurial layers. Perinatally, in rodents, SCs radially sort and subsequently myelinate individual axons larger than 1 μm in diameter, while small calibre axons become organised in non-myelinating Remak bundles. SCs have a vital role in maintaining axonal health throughout life and several specialized SC types perform essential functions at specific locations, such as terminal SC at the neuromuscular junction (NMJ) or SC within cutaneous sensory end organs. In addition, neural crest derived satellite glia maintain a tight communication with the soma of sensory, sympathetic, and parasympathetic neurons and neural crest derivatives are furthermore an indispensable part of the enteric nervous system. The remarkable plasticity of SCs becomes evident in the context of a nerve injury, where SC transdifferentiate into intriguing repair cells, which orchestrate a regenerative response that promotes nerve repair. Indeed, the multiple adaptations of SCs are captivating, but remain often ill-resolved on the molecular level. Here, we summarize and discuss the knowns and unknowns of the vast array of functions that this single cell type can cover in peripheral nervous system development, maintenance, and repair.
Collapse
|
45
|
Zhou S, Wan L, Liu X, Hu D, Lu F, Chen X, Liang F. Diminished schwann cell repair responses play a role in delayed diabetes-associated wound healing. Front Physiol 2022; 13:814754. [PMID: 36620211 PMCID: PMC9813439 DOI: 10.3389/fphys.2022.814754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus is the most common metabolic disease associated with impaired wound healing. Recently, Schwann cells (SCs), the glia of the peripheral nervous system, have been suggested to accelerate normal skin wound healing. However, the roles of SCs in diabetic wound healing are not fully understood. In this study, Full-thickness wounds were made in the dorsal skin of C57/B6 mice and db/db (diabetic) mice. Tissue samples were collected at different time points, and immunohistochemical and immunofluorescence analyses were performed to detect markers of de-differentiated SCs, including myelin basic protein, Sox 10, p75, c-Jun, and Ki67. In addition, in vitro experiments were performed using rat SC (RSC96) and murine fibroblast (L929) cell lines to examine the effects of high glucose conditions (50 mM) on the de-differentiation of SCs and the paracrine effects of SCs on myofibroblast formation. Here, we found that, compared with that in normal mice, wound healing was delayed and SCs failed to rapidly activate a repair program after skin wound injury in diabetic mice. Furthermore, we found that SCs from diabetic mice displayed functional impairments in cell de-differentiation, cell-cycle re-entry, and cell migration. In vitro, hyperglycemia impaired RSC 96 cell de-differentiation, cell-cycle re-entry, and cell migration, as well as their paracrine effects on myofibroblast formation, including the secretion of TGF-β and Timp1. These results suggest that delayed wound healing in diabetes is due in part to a diminished SC repair response and attenuated paracrine effects on myofibroblast formation.
Collapse
Affiliation(s)
- Shaolong Zhou
- Aesthetic Medical School, Yichun University, Yichun, China
| | - Lingling Wan
- School of Chemical and Biological Engineering, Yichun University, Yichun, China,Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xu Liu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Delin Hu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Feng Lu, ; Fangguo Liang, ; Xihang Chen,
| | - Xihang Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Feng Lu, ; Fangguo Liang, ; Xihang Chen,
| | - Fangguo Liang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Feng Lu, ; Fangguo Liang, ; Xihang Chen,
| |
Collapse
|
46
|
Mahmud N, Eisner C, Purushothaman S, Storer MA, Kaplan DR, Miller FD. Nail-associated mesenchymal cells contribute to and are essential for dorsal digit tip regeneration. Cell Rep 2022; 41:111853. [PMID: 36543145 DOI: 10.1016/j.celrep.2022.111853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/05/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Here, we ask why the nail base is essential for mammalian digit tip regeneration, focusing on the inductive nail mesenchyme. We identify a transcriptional signature for these cells that includes Lmx1b and show that the Lmx1b-expressing nail mesenchyme is essential for blastema formation. We use a combination of Lmx1bCreERT2-based lineage-tracing and single-cell transcriptional analyses to show that the nail mesenchyme contributes cells for two pro-regenerative mechanisms. One group of cells maintains their identity and regenerates the new nail mesenchyme. A second group contributes specifically to the dorsal blastema, loses their nail mesenchyme phenotype, acquires a blastema transcriptional state that is highly similar to blastema cells of other origins, and ultimately contributes to regeneration of the dorsal but not ventral dermis and bone. Thus, the regenerative necessity for an intact nail base is explained, at least in part, by a requirement for the inductive nail mesenchyme.
Collapse
Affiliation(s)
- Neemat Mahmud
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1A8, Canada
| | - Christine Eisner
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sruthi Purushothaman
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mekayla A Storer
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada
| | - David R Kaplan
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z, Canada
| | - Freda D Miller
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z, Canada.
| |
Collapse
|
47
|
Yang Y, Yuan L, Cao H, Guo J, Zhou X, Zeng Z. Application and Molecular Mechanisms of Extracellular Vesicles Derived from Mesenchymal Stem Cells in Osteoporosis. Curr Issues Mol Biol 2022; 44:6346-6367. [PMID: 36547094 PMCID: PMC9776574 DOI: 10.3390/cimb44120433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Osteoporosis (OP) is a chronic bone disease characterized by decreased bone mass, destroyed bone microstructure, and increased bone fragility. Accumulative evidence shows that extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) (MSC-EVs), especially exosomes (Exos), exhibit great potential in the treatment of OP. However, the research on MSC-EVs in the treatment of OP is still in the initial stage. The potential mechanism has not been fully clarified. Therefore, by reviewing the relevant literature of MSC-EVs and OP in recent years, we summarized the latest application of bone targeted MSC-EVs in the treatment of OP and further elaborated the potential mechanism of MSC-EVs in regulating bone formation, bone resorption, bone angiogenesis, and immune regulation through internal bioactive molecules to alleviate OP, providing a theoretical basis for the related research of MSC-EVs in the treatment of OP.
Collapse
Affiliation(s)
- Yajing Yang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Lei Yuan
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
48
|
Yang L, Chen Y, Liu H, Liu Y, Yuan F, Li Q, Lin G. Evi5 is required for Xenopus limb and tail regeneration. Front Cell Dev Biol 2022; 10:1027666. [PMID: 36605717 PMCID: PMC9809974 DOI: 10.3389/fcell.2022.1027666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Amphibians such as salamanders and the African clawed frog Xenopus are great models for regeneration studies because they can fully regenerate their lost organs. While axolotl can regenerate damaged organs throughout its lifetime, Xenopus has a limited regeneration capacity after metamorphosis. The ecotropic viral integrative factor 5 (Evi5) is of great interest because its expression is highly upregulated in the limb blastema of axolotls, but remains unchanged in the fibroblastema of post-metamorphic frogs. Yet, its role in regeneration-competent contexts in Xenopus has not been fully analyzed. Here we show that Evi5 is upregulated in Xenopus tadpoles after limb and tail amputation, as in axolotls. Down-regulation of Evi5 with morpholino antisense oligos (Mo) impairs limb development and limb blastema formation in Xenopus tadpoles. Mechanistically, we show that Evi5 knockdown significantly reduces proliferation of limb blastema cells and causes apoptosis, blocking the formation of regeneration blastema. RNA-sequencing analysis reveals that in addition to reduced PDGFα and TGFβ signaling pathways that are required for regeneration, evi5 Mo downregulates lysine demethylases Kdm6b and Kdm7a. And knockdown of Kdm6b or Kdm7a causes defective limb regeneration. Evi5 knockdown also impedes tail regeneration in Xenopus tadpoles and axolotl larvae, suggesting a conserved function of Evi5 in appendage regeneration. Thus, our results demonstrate that Evi5 plays a critical role in appendage regeneration in amphibians.
Collapse
|
49
|
Chau MJ, Quintero JE, Blalock E, Byrum S, Mackintosh SG, Samaan C, Gerhardt GA, van Horne CG. Transection injury differentially alters the proteome of the human sural nerve. PLoS One 2022; 17:e0260998. [PMID: 36417411 PMCID: PMC9683555 DOI: 10.1371/journal.pone.0260998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
Regeneration after severe peripheral nerve injury is often poor. Knowledge of human nerve regeneration and the growth microenvironment is greatly lacking. We aimed to identify the regenerative proteins in human peripheral nerve by comparing the proteome before and after a transection injury. In a unique study design, we collected closely matched samples of naïve and injured sural nerve. Naïve and injured (two weeks after injury) samples were analyzed using mass spectrometry and immunoassays. We found significantly altered levels following the nerve injury. Mass spectrometry revealed that injury samples had 568 proteins significantly upregulated and 471 significantly downregulated compared to naïve samples (q-value ≤ 0.05 and Z ≥ |2| (log2)). We used Gene Ontology (GO) pathway overrepresentation analysis to highlight groups of proteins that were significantly upregulated or downregulated with injury-induced degeneration and regeneration. Significant protein changes in key pathways were identified including growth factor levels, Schwann cell de-differentiation, myelination downregulation, epithelial-mesenchymal transition (EMT), and axonal regeneration pathways. The proteomes of the uninjured nerve compared to the degenerating/regenerating nerve may reveal biomarkers to aid in the development of repair strategies such as infusing supplemental trophic factors and in monitoring neural tissue regeneration.
Collapse
Affiliation(s)
- Monica J. Chau
- Brain Restoration Center, College of Medicine, University of Kentucky, Lexington, KY, United States of America
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Jorge E. Quintero
- Brain Restoration Center, College of Medicine, University of Kentucky, Lexington, KY, United States of America
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY, United States of America
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Eric Blalock
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Stephanie Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Christopher Samaan
- Brain Restoration Center, College of Medicine, University of Kentucky, Lexington, KY, United States of America
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Greg A. Gerhardt
- Brain Restoration Center, College of Medicine, University of Kentucky, Lexington, KY, United States of America
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY, United States of America
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States of America
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Craig G. van Horne
- Brain Restoration Center, College of Medicine, University of Kentucky, Lexington, KY, United States of America
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY, United States of America
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States of America
- * E-mail:
| |
Collapse
|
50
|
Kaucka M, Joven Araus A, Tesarova M, Currie JD, Boström J, Kavkova M, Petersen J, Yao Z, Bouchnita A, Hellander A, Zikmund T, Elewa A, Newton PT, Fei JF, Chagin AS, Fried K, Tanaka EM, Kaiser J, Simon A, Adameyko I. Altered developmental programs and oriented cell divisions lead to bulky bones during salamander limb regeneration. Nat Commun 2022; 13:6949. [PMID: 36376278 PMCID: PMC9663504 DOI: 10.1038/s41467-022-34266-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
There are major differences in duration and scale at which limb development and regeneration proceed, raising the question to what extent regeneration is a recapitulation of development. We address this by analyzing skeletal elements using a combination of micro-CT imaging, molecular profiling and clonal cell tracing. We find that, in contrast to development, regenerative skeletal growth is accomplished based entirely on cartilage expansion prior to ossification, not limiting the transversal cartilage expansion and resulting in bulkier skeletal parts. The oriented extension of salamander cartilage and bone appear similar to the development of basicranial synchondroses in mammals, as we found no evidence for cartilage stem cell niches or growth plate-like structures during neither development nor regeneration. Both regenerative and developmental ossification in salamanders start from the cortical bone and proceeds inwards, showing the diversity of schemes for the synchrony of cortical and endochondral ossification among vertebrates.
Collapse
Affiliation(s)
- Marketa Kaucka
- Max Planck Institute for Evolutionary Biology, Plön, 24306, Germany
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institute, Stockholm, 17165, Sweden
| | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, Brno, 61200, Czech Republic
| | - Joshua D Currie
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | - Johan Boström
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, 1090, Austria
| | - Michaela Kavkova
- Central European Institute of Technology, Brno University of Technology, Brno, 61200, Czech Republic
| | - Julian Petersen
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, 1090, Austria
- Department of Orthodontics, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | - Zeyu Yao
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institute, Stockholm, 17165, Sweden
| | - Anass Bouchnita
- Department of Information Technology, Uppsala University, Uppsala, Sweden
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX, 79902, USA
| | - Andreas Hellander
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, 61200, Czech Republic
| | - Ahmed Elewa
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institute, Stockholm, 17165, Sweden
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Phillip T Newton
- Department of Women's and Children's Health, Karolinska Institute, Solna, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Solna, Sweden
| | - Ji-Feng Fei
- The Research Institute of Molecular Pathology (IMP), Vienna, 1030, Austria
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17165, Sweden
- Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Göteborg, 41346, Sweden
| | - Kaj Fried
- Department of Neuroscience, Biomedicum, Karolinska Institute, Stockholm, 17165, Sweden
| | - Elly M Tanaka
- The Research Institute of Molecular Pathology (IMP), Vienna, 1030, Austria
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, 61200, Czech Republic
| | - András Simon
- Department of Cell and Molecular Biology, Biomedicum, Karolinska Institute, Stockholm, 17165, Sweden.
| | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, 1090, Austria.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17165, Sweden.
| |
Collapse
|