1
|
Ghani F, Zubair AC. Possible impacts of cosmic radiation on leukemia development during human deep space exploration. Leukemia 2025:10.1038/s41375-025-02624-4. [PMID: 40275072 DOI: 10.1038/s41375-025-02624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/14/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
With the advent of deep space exploration and ambitious plans to return humans to the Moon and journey onward to Mars, humans will face exposure to ionizing radiation beyond Earth's atmosphere and magnetosphere. This is particularly concerning for the hematopoietic system that is sensitive to galactic cosmic rays (GCRs) during interplanetary missions. Epidemiological studies and animal studies implicate that exposure to ionizing radiation can cause leukemias, with recent consensus showing that almost all types of leukemias, even chronic lymphocytic leukemia, can be caused by ionizing radiation despite previous controversies. The possible deleterious effects of deep space travel on the formation, development, etiology, and pathophysiology of hematologic malignancies, specifically leukemias, remain largely unclear. The mechanism(s) by which ionizing radiations cause leukemia differs for different leukemia types and is poorly understood in the spaceflight environment, posing a serious health risk for future astronauts. This paper provides a comprehensive review of the various studies and evidence available on Earth and in space assessing the relationship between ionizing radiation and increased risk of leukemia. We also discuss the unique characteristics of leukemia in space, ethical considerations, risk assessments and potential challenges this may bring to astronauts and healthcare professionals as humanity continues to explore the cosmos.
Collapse
Affiliation(s)
- Fay Ghani
- Center for Regenerative Biotherapeutics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Abba C Zubair
- Center for Regenerative Biotherapeutics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
2
|
Miao L, Wang X, Yao M, Tao Y, Han Y. Clinicopathological and prognostic significance of DDX41 mutation in myeloid neoplasms: a systematic review and meta-analysis. Ann Hematol 2025:10.1007/s00277-025-06278-1. [PMID: 40257479 DOI: 10.1007/s00277-025-06278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/18/2025] [Indexed: 04/22/2025]
Abstract
DDX41 is one of the most frequently altered genes in familial acute myeloid leukemia/myelodysplastic syndrome (AML/MDS). Mutation of DDX41 has been widely reported in various types of myeloid neoplasms. This systematic review and meta-analysis were conducted to assess the clinical characteristics and relationship between DDX41 mutations and OS in myeloid neoplasm patients. We thoroughly searched the PubMed, the Cochrane Library, Embase, Web of Science, MEDLINE, and Google Scholar databases. Two reviewers separately reviewed and extracted the data. Twenty studies totaling 9,058 patients have been integrated into the meta-analysis. The extensive pooled analysis showed a significant association between DDX41 mutations and improved OS (HR 0.70, 95% CI 0.52-0.93, P = 0.01). Subgroup analysis confirmed that DDX41 mutation operated to be a reliable positive indicator of OS when subdivided by different types of myeloid neoplasms. In terms of the clinicopathological value, DDX41 mutations were significantly correlated with the male sex. Age, AML prevalence, bone marrow, or white blood cell counts did not correlate with any findings. The top three genetic variants were p.M1I, p.D140fs, and p.R525H. Co-mutations in patients with DDX41 mutations most commonly include the following: additional sex combs-like 1 (ASXL1), DNA methyltransferase 3 A (DNMT3A), tumor protein p53 (TP53), ten-eleven translocation 2 (TET2) and serine/arginine-rich splicing factor 2 (SRSF2). Our results substantiate that DDX41 mutations were associated with significantly good OS and provide more insight into the clinicopathological characteristics of DDX41 mutations in individuals with myeloid neoplasms.
Collapse
Affiliation(s)
- Liying Miao
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Xin Wang
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Minghui Yao
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Yihao Tao
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China
| | - Yangyang Han
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China.
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, 830017, China.
| |
Collapse
|
3
|
Kusne Y, Badar T, Lasho T, Marando L, Mangaonkar AA, Finke C, Foran JM, Al‐Kali A, Palmer J, Arana Yi C, Alkhateeb HB, Gangat N, Viswanatha D, Litzow MR, Chlon T, Ferrer A, Patnaik MM. Prevalence of cytopenia(s) and somatic variants in patients with DDX41 mutant germline predisposition syndrome. Br J Haematol 2025; 206:1109-1120. [PMID: 40040251 PMCID: PMC11985375 DOI: 10.1111/bjh.20018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025]
Abstract
Germline variants in DDX41 (DDX41MT-germline predisposition syndrome [GPS]) are associated with predisposition to haematological malignancies (HM), including lymphoid and myeloid neoplasms (MN). We retrospectively analysed the clinical and molecular features of 195 patients diagnosed and treated at Mayo Clinic with DDX41MT-GPS. Patients with germline DDX41 pathogenic variants (42.3%) and variants of unknown significance (VUS, 57.6%) were included. The median age was 68.6 years (16.2-93.4). Ninety-two per cent were Caucasian, 64.1% were male and 30.8% had a family history of HM. There were 92 distinct germline variants among our cohort, and the most common was p.Met1? (15.9%), followed by p.Asp140Glyfs*2 (9.2%). Clinical diagnoses included asymptomatic carriers (10.2%), clonal cytopenia of undetermined significance (CCUS, 6.1%), myeloproliferative neoplasms (6.7%), myelodysplastic syndrome (40.5%), acute myeloid leukaemia (20.5%), lymphoid neoplasms (9.2%), plasma cell dyscrasias (6.1%) and solid tumours (22.5%). Patients with MN were older (median age 70 vs. 63.5 years) and more likely to be male (M:F ratio 2.3 vs. 1.0) and most patients (78.8%) with MN had a normal karyotype. The most common somatic variants involved DDX41 (34.4%), followed by TET2 (11.2%), DNMT3A (9.6%) and ASXL1 (9.2%). In summary, we have comprehensively described the spectrum of clinical phenotypes within the Mayo Clinic DDX41MT-GPS cohort.
Collapse
Affiliation(s)
- Yael Kusne
- Division of Hematology/OncologyMayo ClinicScottsdaleArizonaUSA
| | - Talha Badar
- Division of Hematology/Oncology and Bone Marrow Transplant ProgramMayo ClinicJacksonvilleFloridaUSA
| | - Terra Lasho
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Ludovica Marando
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | | | - Christy Finke
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - James M. Foran
- Division of Hematology/Oncology and Bone Marrow Transplant ProgramMayo ClinicJacksonvilleFloridaUSA
| | - Aref Al‐Kali
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Jeanne Palmer
- Division of Hematology/OncologyMayo ClinicScottsdaleArizonaUSA
| | | | - Hassan B. Alkhateeb
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Naseema Gangat
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | | | - Mark R. Litzow
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Timothy Chlon
- Division of Experimental Hematology and Cancer BiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Alejandro Ferrer
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| | - Mrinal M. Patnaik
- Division of Hematology, Department of Internal MedicineMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
4
|
Kida J, Chlon TM. Germline DDX41 mutations in myeloid neoplasms: the current clinical and molecular understanding. Curr Opin Hematol 2025; 32:67-76. [PMID: 39564659 PMCID: PMC11781971 DOI: 10.1097/moh.0000000000000854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
PURPOSE OF REVIEW DDX41 mutations are the most common cause of germline predisposition to adult-onset myeloid neoplasms. The unique mutational landscape and clinical features indicate a distinct molecular pathogenesis, but the precise mechanism by which DDX41 mutations cause disease is poorly understood, owing to the multitude of DDX41 functions. In this review, we will update DDX41's known functions, present unique clinical features and treatment considerations, and summarize the current understanding of the molecular pathogenesis of the disease. RECENT FINDINGS Large cohort studies have revealed that germline DDX41 variants are heterozygous and predominantly loss-of-function. Acquired mutation of the contralateral DDX41 allele, typically R525H, is present in more than half of patients at disease onset, which occurs after age 50. DDX41 is essential for hematopoiesis and has versatile functions in RNA metabolism and innate immune sensing. Experimental models have suggested that innate immune activation downstream of defects in R-loop resolution and ribosome biogenesis plays a key role in the pathogenesis. SUMMARY While intensive investigations unveiled a strong genotype-phenotype relationship, the optimal therapeutic approach and long-term outcome are undefined. There is an urgent need to scrutinize the patients at single cell and multiomics level and to advance experimental animal and human models to fully elucidate the molecular pathogenesis.
Collapse
Affiliation(s)
- Junichiro Kida
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology, University of Cincinnati
| | - Timothy M Chlon
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology, University of Cincinnati
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
5
|
Liu YC, Eldomery MK, Maciaszek JL, Klco JM. Inherited Predispositions to Myeloid Neoplasms: Pathogenesis and Clinical Implications. ANNUAL REVIEW OF PATHOLOGY 2025; 20:87-114. [PMID: 39357070 PMCID: PMC12048009 DOI: 10.1146/annurev-pathmechdis-111523-023420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Myeloid neoplasms with and without preexisting platelet disorders frequently develop in association with an underlying germline predisposition. Germline alterations affecting ANKRD26, CEBPA, DDX41, ETV6, and RUNX1 are associated with nonsyndromic predisposition to the development of myeloid neoplasms including acute myeloid leukemia and myelodysplastic syndrome. However, germline predisposition to myeloid neoplasms is also associated with a wide range of other syndromes, including SAMD9/9L associated predisposition, GATA2 deficiency, RASopathies, ribosomopathies, telomere biology disorders, Fanconi anemia, severe congenital neutropenia, Down syndrome, and others. In the fifth edition of the World Health Organization (WHO) series on the classification of tumors of hematopoietic and lymphoid tissues, myeloid neoplasms associated with germline predisposition have been recognized as a separate entity. Here, we review several disorders from this WHO entity as well as other related conditions with an emphasis on the molecular pathogenesis of disease and accompanying somatic alterations. Finally, we provide an overview of establishing the molecular diagnosis of these germline genetic conditions and general recommendations for screening and management of the associated hematologic conditions.
Collapse
Affiliation(s)
- Yen-Chun Liu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Mohammad K Eldomery
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Jamie L Maciaszek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA;
| |
Collapse
|
6
|
Sharma P, McFadden JR, Frost FG, Markello TC, Grange DK, Introne WJ, Gahl WA, Malicdan MCV. Biallelic germline DDX41 variants in a patient with bone dysplasia, ichthyosis, and dysmorphic features. Hum Genet 2024; 143:1445-1457. [PMID: 39453476 PMCID: PMC11576897 DOI: 10.1007/s00439-024-02708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
DDX41 (DEAD‑box helicase 41) is a member of the largest family of RNA helicases. The DEAD-box RNA helicases share a highly conserved core structure and regulate all aspects of RNA metabolism. The functional role of DDX41 in innate immunity is also highly conserved. DDX41 acts as a sensor of viral DNA and activates the STING-TBK1-IRF3-type I IFN signaling pathway. Germline heterozygous variants in DDX41 have been reported in familial myelodysplasia syndrome (MDS)/acute myeloid leukemia (AML) patients; most patients also acquired a somatic variant in the second DDX41 allele. Here, we report a patient who inherited compound heterozygous DDX41 variants and presented with bone dysplasia, ichthyosis, and dysmorphic features. Functional analyses of the patient-derived dermal fibroblasts revealed a reduced abundance of DDX41 and abrogated activation of the IFN genes through the STING-type I interferon pathway. Genome-wide transcriptome analyses in the patient's fibroblasts revealed significant gene dysregulation and changes in the RNA splicing events. The patient's fibroblasts also displayed upregulation of periostin mRNA expression. Using an RNA binding protein assay, we identified DDX41 as a novel regulator of periostin expression. Our results suggest that functional impairment of DDX41, along with dysregulated periostin expression, likely contributes to this patient's multisystem disorder.
Collapse
Affiliation(s)
- Prashant Sharma
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Jason R McFadden
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - F Graeme Frost
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas C Markello
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dorothy K Grange
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Wendy J Introne
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
7
|
Bi H, Ren K, Wang P, Li E, Han X, Wang W, Yang J, Aydemir I, Tao K, Godley L, Liu Y, Shukla V, Bartom ET, Tang Y, Blanc L, Sukhanova M, Ji P. DDX41 dissolves G-quadruplexes to maintain erythroid genome integrity and prevent cGAS-mediated cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617891. [PMID: 39464073 PMCID: PMC11507670 DOI: 10.1101/2024.10.14.617891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Deleterious germline DDX41 variants constitute the most common inherited predisposition disorder linked to myeloid neoplasms (MNs). The role of DDX41 in hematopoiesis and how its germline and somatic mutations contribute to MNs remain unclear. Here we show that DDX41 is essential for erythropoiesis but dispensable for the development of other hematopoietic lineages. Using stage-specific Cre models for erythropoiesis, we reveal that Ddx41 knockout in early erythropoiesis is embryonically lethal, while knockout in late-stage terminal erythropoiesis allows mice to survive with normal blood counts. DDX41 deficiency induces a significant upregulation of G-quadruplexes (G4), noncanonical DNA structures that tend to accumulate in the early stages of erythroid precursors. We show that DDX41 co-localizes with G4 on the erythroid genome. DDX41 directly binds to and dissolves G4, which is significantly compromised in MN-associated DDX41 mutants. Accumulation of G4 by DDX41 deficiency induces erythroid genome instability, defects in ribosomal biogenesis, and upregulation of p53. However, p53 deficiency does not rescue the embryonic death of Ddx41 hematopoietic-specific knockout mice. In parallel, genome instability also activates the cGas-Sting pathway, which is detrimental to survival since cGas-deficient and hematopoietic-specific Ddx41 knockout mice are viable without detectable hematologic phenotypes, although these mice continue to show erythroid ribosomal defects and upregulation of p53. These findings are further supported by data from a DDX41 mutated MN patient and human iPSC-derived bone marrow organoids. Our study establishes DDX41 as a G4 dissolver, essential for erythroid genome stability and suppressing the cGAS-STING pathway.
Collapse
|
8
|
Sheu-Gruttadauria J, Yan X, Stuurman N, Vale RD, Floor SN. Nucleolar dynamics are determined by the ordered assembly of the ribosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.26.559432. [PMID: 37808656 PMCID: PMC10557630 DOI: 10.1101/2023.09.26.559432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Ribosome biogenesis occurs in the nucleolus, a nuclear biomolecular condensate that exhibits dynamic biophysical properties thought to be important for function. However, the relationship between ribosome assembly and nucleolar dynamics is incompletely understood. Here, we present a platform for high-throughput fluorescence recovery after photobleaching (HiT-FRAP), which we use to screen hundreds of genes for their impact on dynamics of the nucleolar scaffold nucleophosmin (NPM1). We find that scaffold dynamics and nucleolar morphology respond to disruptions in key stages of ribosome biogenesis. Accumulation of early ribosomal intermediates leads to nucleolar rigidification while late intermediates lead to increased fluidity. We map these biophysical changes to specific ribosomal intermediates and their affinity for NPM1. We also discover that disrupting mRNA processing impacts nucleolar dynamics and ribosome biogenesis. This work mechanistically ties ribosome assembly to the biophysical features of the nucleolus and enables study of how dynamics relate to function across other biomolecular condensates.
Collapse
Affiliation(s)
- Jessica Sheu-Gruttadauria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Xiaowei Yan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Present address: Department of Dermatology, Stanford, CA, USA
| | - Nico Stuurman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Present address: Altos Labs, Redwood City, CA, USA
| | - Ronald D. Vale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Stephen N. Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
9
|
Kusne Y, Badar T, Lasho T, Ferrer A, Mangaonkar AA, Finke C, Marando L, Foran JM, Al-Kali A, Alkhateeb HB, Chlon T, Patnaik MM. Absence of PNH-clones in DDX41mutant-GPS aids in their distinction from acquired BM failure syndromes. Leuk Res 2024; 145:107561. [PMID: 39182344 DOI: 10.1016/j.leukres.2024.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/09/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Yael Kusne
- Division of Hematology/Oncology, Mayo Clinic, AZ, United States; Division of Hematopathology, Mayo Clinic, MN, United States.
| | - Talha Badar
- Division of Hematology/Oncology and Bone Marrow Transplant Program, Mayo Clinic, FL, United States; Division of Hematopathology, Mayo Clinic, MN, United States
| | - Terra Lasho
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, MN, United States; Division of Hematopathology, Mayo Clinic, MN, United States
| | - Alejandro Ferrer
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, MN, United States; Division of Hematopathology, Mayo Clinic, MN, United States
| | - Abhishek A Mangaonkar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, MN, United States; Division of Hematopathology, Mayo Clinic, MN, United States
| | - Christy Finke
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, MN, United States; Division of Hematopathology, Mayo Clinic, MN, United States
| | - Ludovica Marando
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, MN, United States; Division of Hematopathology, Mayo Clinic, MN, United States
| | - James M Foran
- Division of Hematology/Oncology and Bone Marrow Transplant Program, Mayo Clinic, FL, United States; Division of Hematopathology, Mayo Clinic, MN, United States
| | - Aref Al-Kali
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, MN, United States; Division of Hematopathology, Mayo Clinic, MN, United States
| | - Hassan B Alkhateeb
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, MN, United States; Division of Hematopathology, Mayo Clinic, MN, United States
| | - Timothy Chlon
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, MN, United States; Division of Hematopathology, Mayo Clinic, MN, United States
| |
Collapse
|
10
|
Noguchi K, Suzuki H, Abe R, Horiuchi K, Onoguchi-Mizutani R, Akimitsu N, Ogawa S, Akiyama T, Ike Y, Ino Y, Kimura Y, Ryo A, Doi H, Tanaka F, Suzuki Y, Toyoda A, Yamaguchi Y, Takahashi H. Multi-omics analysis using antibody-based in situ biotinylation technique suggests the mechanism of Cajal body formation. Cell Rep 2024; 43:114734. [PMID: 39283744 DOI: 10.1016/j.celrep.2024.114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 04/30/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Membrane-less subcellular compartments play important roles in various cellular functions. Although techniques exist to identify components of cellular bodies, a comprehensive method for analyzing both static and dynamic states has not been established. Here, we apply an antibody-based in situ biotinylation proximity-labeling technique to identify components of static and dynamic nuclear bodies. Using this approach, we comprehensively identify DNA, RNA, and protein components of Cajal bodies (CBs) and then clarify their interactome. By inhibiting transcription, we capture dynamic changes in CBs. Our analysis reveals that nascent small nuclear RNAs (snRNAs) transcribed in CBs contribute to CB formation by assembling RNA-binding proteins, including frontotemporal dementia-related proteins, RNA-binding motif proteins, and heterogeneous nuclear ribonucleoproteins.
Collapse
Affiliation(s)
- Keisuke Noguchi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Hidefumi Suzuki
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Ryota Abe
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Keiko Horiuchi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Rena Onoguchi-Mizutani
- R&D Department, Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Nobuyoshi Akimitsu
- R&D Department, Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Shintaro Ogawa
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Tomohiko Akiyama
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Yoko Ike
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Yoko Ino
- Advance Medical Research Center, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 216-0004, Japan
| | - Yayoi Kimura
- Advance Medical Research Center, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 216-0004, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 216-0004, Japan; Department of Virology III, National Institute of Infectious Diseases, 4-7-1, Gakuen Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Yuki Yamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, Kanagawa 226-8501, Japan.
| | - Hidehisa Takahashi
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan.
| |
Collapse
|
11
|
Fan J, Li Z, Pei L, Hou Y. Post-transcriptional regulation of DEAD-box RNA helicases in hematopoietic malignancies. Genes Dis 2024; 11:101252. [PMID: 38993792 PMCID: PMC11237855 DOI: 10.1016/j.gendis.2024.101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 07/13/2024] Open
Abstract
Hematopoiesis represents a meticulously regulated and dynamic biological process. Genetic aberrations affecting blood cells, induced by various factors, frequently give rise to hematological tumors. These instances are often accompanied by a multitude of abnormal post-transcriptional regulatory events, including RNA alternative splicing, RNA localization, RNA degradation, and storage. Notably, post-transcriptional regulation plays a pivotal role in preserving hematopoietic homeostasis. The DEAD-Box RNA helicase genes emerge as crucial post-transcriptional regulatory factors, intricately involved in sustaining normal hematopoiesis through diverse mechanisms such as RNA alternative splicing, RNA modification, and ribosome assembly. This review consolidates the existing knowledge on the role of DEAD-box RNA helicases in regulating normal hematopoiesis and underscores the pathogenicity of mutant DEAD-Box RNA helicases in malignant hematopoiesis. Emphasis is placed on elucidating both the positive and negative contributions of DEAD-box RNA helicases within the hematopoietic system.
Collapse
Affiliation(s)
- Jiankun Fan
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhigang Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Li Pei
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Hou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
12
|
Demko N, Geyer JT. Updates on germline predisposition in pediatric hematologic malignancies: What is the role of flow cytometry? CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:331-346. [PMID: 38940080 DOI: 10.1002/cyto.b.22192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Hematologic neoplasms with germline predisposition have been increasingly recognized as a distinct category of tumors over the last few years. As such, this category was added to the World Health Organization (WHO) 4th edition as well as maintained in the WHO 5th edition and International Consensus Classification (ICC) 2022 classification systems. In practice, these tumors require a high index of suspicion and confirmation by molecular testing. Flow cytometry is a cost-effective diagnostic tool that is routinely performed on peripheral blood and bone marrow samples. In this review, we sought to summarize the current body of research correlating flow cytometric immunophenotype to assess its utility in diagnosis of and clinical decision making in germline hematologic neoplasms. We also illustrate these findings using cases mostly from our own institution. We review some of the more commonly mutated genes, including CEBPA, DDX41, RUNX1, ANKRD26, GATA2, Fanconi anemia, Noonan syndrome, and Down syndrome. We highlight that flow cytometry may have a role in the diagnosis (GATA2, Down syndrome) and screening (CEBPA) of some germline predisposition syndromes, although appears to show nonspecific findings in others (DDX41, RUNX1). In many of the others, such as ANKRD26, Fanconi anemia, and Noonan syndrome, further studies are needed to better understand whether specific flow cytometric patterns are observed. Ultimately, we conclude that further studies such as large case series and organized data pipelines are needed in most germline settings to better understand the flow cytometric immunophenotype of these neoplasms.
Collapse
Affiliation(s)
- Nadine Demko
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
- Department of Pathology, McGill University, Montréal, Québec, Canada
| | - Julia T Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
13
|
Ma J, Ross SR. Multifunctional role of DEAD-box helicase 41 in innate immunity, hematopoiesis and disease. Front Immunol 2024; 15:1451705. [PMID: 39185415 PMCID: PMC11341421 DOI: 10.3389/fimmu.2024.1451705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
DEAD-box helicases are multifunctional proteins participating in many aspects of cellular RNA metabolism. DEAD-box helicase 41 (DDX41) in particular has pivotal roles in innate immune sensing and hematopoietic homeostasis. DDX41 recognizes foreign or self-nucleic acids generated during microbial infection, thereby initiating anti-pathogen responses. DDX41 also binds to RNA (R)-loops, structures consisting of DNA/RNA hybrids and a displaced strand of DNA that occur during transcription, thereby maintaining genome stability by preventing their accumulation. DDX41 deficiency leads to increased R-loop levels, resulting in inflammatory responses that likely influence hematopoietic stem and progenitor cell production and development. Beyond nucleic acid binding, DDX41 associates with proteins involved in RNA splicing as well as cellular proteins involved in innate immunity. DDX41 is also a tumor suppressor in familial and sporadic myelodysplastic syndrome/acute myelogenous leukemia (MDS/AML). In the present review, we summarize the functions of DDX helicases in critical biological processes, particularly focusing on DDX41's association with cellular molecules and the mechanisms underlying its roles in innate immunity, hematopoiesis and the development of myeloid malignancies.
Collapse
Affiliation(s)
| | - Susan R. Ross
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| |
Collapse
|
14
|
Stepanchick E, Wilson A, Sulentic AM, Choi K, Hueneman K, Starczynowski DT, Chlon TM. DDX41 haploinsufficiency causes inefficient hematopoiesis under stress and cooperates with p53 mutations to cause hematologic malignancy. Leukemia 2024; 38:1787-1798. [PMID: 38937548 PMCID: PMC11286521 DOI: 10.1038/s41375-024-02304-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Germline heterozygous mutations in DDX41 predispose individuals to hematologic malignancies in adulthood. Most of these DDX41 mutations result in a truncated protein, leading to loss of protein function. To investigate the impact of these mutations on hematopoiesis, we generated mice with hematopoietic-specific knockout of one Ddx41 allele. Under normal steady-state conditions, there was minimal effect on lifelong hematopoiesis, resulting in a mild yet persistent reduction in red blood cell counts. However, stress induced by transplantation of the Ddx41+/- BM resulted in hematopoietic stem/progenitor cell (HSPC) defects and onset of hematopoietic failure upon aging. Transcriptomic analysis of HSPC subsets from the transplanted BM revealed activation of cellular stress responses, including upregulation of p53 target genes in erythroid progenitors. To understand how the loss of p53 affects the phenotype of Ddx41+/- HSPCs, we generated mice with combined Ddx41 and Trp53 heterozygous deletions. The reduction in p53 expression rescued the fitness defects in HSPC caused by Ddx41 heterozygosity. However, the combined Ddx41 and Trp53 mutant mice were prone to developing hematologic malignancies that resemble human myelodysplastic syndrome and acute myeloid leukemia. In conclusion, DDX41 heterozygosity causes dysregulation of the response to hematopoietic stress, which increases the risk of transformation with a p53 mutation.
Collapse
Affiliation(s)
- Emily Stepanchick
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew Wilson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Analise M Sulentic
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
- University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | - Timothy M Chlon
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA.
- University of Cincinnati Cancer Center, Cincinnati, OH, USA.
| |
Collapse
|
15
|
Zhang Y, Chen X, Wang X, Chen J, Du C, Wang J, Liao W. Insights into ionizing radiation-induced bone marrow hematopoietic stem cell injury. Stem Cell Res Ther 2024; 15:222. [PMID: 39039566 PMCID: PMC11265359 DOI: 10.1186/s13287-024-03853-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/13/2024] [Indexed: 07/24/2024] Open
Abstract
With the widespread application of nuclear technology across various fields, ionizing radiation-induced injuries are becoming increasingly common. The bone marrow (BM) hematopoietic tissue is a primary target organ of radiation injury. Recent researches have confirmed that ionizing radiation-induced hematopoietic dysfunction mainly results from BM hematopoietic stem cells (HSCs) injury. Additionally, disrupting and reshaping BM microenvironment is a critical factor impacting both the injury and regeneration of HSCs post radiation. However, the regulatory mechanisms of ionizing radiation injury to BM HSCs and their microenvironment remain poorly understood, and prevention and treatment of radiation injury remain the focus and difficulty in radiation medicine research. In this review, we aim to summarize the effects and mechanisms of ionizing radiation-induced injury to BM HSCs and microenvironment, thereby enhancing our understanding of ionizing radiation-induced hematopoietic injury and providing insights for its prevention and treatment in the future.
Collapse
Affiliation(s)
- Yimin Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xinliang Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xinmiao Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- Department of Hematology, The General Hospital of Western Theater Command, Chengdu, 610008, Sichuan, China
| | - Jun Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Changhong Du
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Weinian Liao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
16
|
Matsui H. DDX41 and its unique contribution to myeloid leukemogenesis. Oncotarget 2024; 15:442-443. [PMID: 38953908 PMCID: PMC11218790 DOI: 10.18632/oncotarget.28603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Indexed: 07/04/2024] Open
Affiliation(s)
- Hirotaka Matsui
- Correspondence to:Hirotaka Matsui, Department of Laboratory Medicine, National Cancer Center Hospital, Tokyo, Japan; Department of Medical Oncology and Translational Research, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan email
| |
Collapse
|
17
|
Hwang WC, Park K, Park S, Cheon NY, Lee JY, Hwang T, Lee S, Lee JM, Ju MK, Lee JR, Kwon YR, Jo WL, Kim M, Kim YJ, Kim H. Impaired binding affinity of YTHDC1 with METTL3/METTL14 results in R-loop accumulation in myelodysplastic neoplasms with DDX41 mutation. Leukemia 2024; 38:1353-1364. [PMID: 38514771 PMCID: PMC11147762 DOI: 10.1038/s41375-024-02228-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
DEAD box helicase 41 (DDX41) mutations are the most prevalent predisposition to familial myelodysplastic syndrome (MDS). However, the precise roles of these variants in the pathogenesis of MDS have yet to be elucidated. Here, we discovered a novel mechanism by which DDX41 contributes to R-loop-induced DNA damage responses (DDR) in cooperation with the m6A-METTL complex (MAC) and YTHDC1 using DDX41 knockout (KO) and DDX41 knock-in (KI, R525H, Y259C) cell lines as well as primary samples from MDS patients. Compared to wild type (WT), DDX41 KO and KI led to increased levels of m6A RNA methylated R-loop. Interestingly, we found that DDX41 regulates m6A/R-loop levels by interacting with MAC components. Further, DDX41 promoted the recruitment of YTHDC1 to R-loops by promoting the binding between METTL3 and YTHDC1, which was dysregulated in DDX41-deficient cells, contributing to genomic instability. Collectively, we demonstrated that DDX41 plays a key role in the physiological control of R-loops in cooperation with MAC and YTHDC1. These findings provide novel insights into how defects in DDX41 influence MDS pathogenesis and suggest potential therapeutic targets for the treatment of MDS.
Collapse
Affiliation(s)
- Won Chan Hwang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Kibeom Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Silvia Park
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Na Young Cheon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Taejoo Hwang
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Semin Lee
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Jong-Mi Lee
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min Kyung Ju
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Joo Rak Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Yong-Rim Kwon
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woo-Lam Jo
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myungshin Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Yoo-Jin Kim
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Hongtae Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea.
| |
Collapse
|
18
|
Szelest M, Giannopoulos K. Biological relevance of alternative splicing in hematologic malignancies. Mol Med 2024; 30:62. [PMID: 38760666 PMCID: PMC11100220 DOI: 10.1186/s10020-024-00839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024] Open
Abstract
Alternative splicing (AS) is a strictly regulated process that generates multiple mRNA variants from a single gene, thus contributing to proteome diversity. Transcriptome-wide sequencing studies revealed networks of functionally coordinated splicing events, which produce isoforms with distinct or even opposing functions. To date, several mechanisms of AS are deregulated in leukemic cells, mainly due to mutations in splicing and/or epigenetic regulators and altered expression of splicing factors (SFs). In this review, we discuss aberrant splicing events induced by mutations affecting SFs (SF3B1, U2AF1, SRSR2, and ZRSR2), spliceosome components (PRPF8, LUC7L2, DDX41, and HNRNPH1), and epigenetic modulators (IDH1 and IDH2). Finally, we provide an extensive overview of the biological relevance of aberrant isoforms of genes involved in the regulation of apoptosis (e. g. BCL-X, MCL-1, FAS, and c-FLIP), activation of key cellular signaling pathways (CASP8, MAP3K7, and NOTCH2), and cell metabolism (PKM).
Collapse
Affiliation(s)
- Monika Szelest
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| |
Collapse
|
19
|
Matsui H, Hirata M. Evaluation of the pathogenic potential of germline DDX41 variants in hematopoietic neoplasms using the ACMG/AMP guidelines. Int J Hematol 2024; 119:552-563. [PMID: 38492200 DOI: 10.1007/s12185-024-03728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/18/2024]
Abstract
Clinical use of gene panel testing for hematopoietic neoplasms in areas, such as diagnosis, prognosis prediction, and exploration of treatment options, has increased in recent years. The keys to interpreting gene variants detected in gene panel testing are to distinguish between germline and somatic variants and accurately determine whether the detected variants are pathogenic. If a variant is suspected to be a pathogenic germline variant, it is essential to confirm its consistency with the disease phenotype and gather a thorough family history. Donor eligibility must also be considered, especially if the patient's variant is also detected in the expected donor for hematopoietic stem cell transplantation. However, determining the pathogenicity of gene variants is often complicated, given the current limited availability of databases covering germline variants of hematopoietic neoplasms. This means that hematologists will frequently need to interpret gene variants themselves. Here, we outline how to assess the pathogenicity of germline variants according to criteria from the American College of Medical Genetics and Genomics/Association for Molecular Pathology standards and guidelines for the interpretation of variants using DDX41, a gene recently shown to be closely associated with myeloid neoplasms with a germline predisposition, as an example.
Collapse
Affiliation(s)
- Hirotaka Matsui
- Department of Laboratory Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
- Department of Medical Oncology and Translational Research, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Makoto Hirata
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
20
|
Zhu J, Fan J, Xie T, Zhao H, Lu R, Zhang Y, Li Y, Xie X, Wan D, Jiang Z, He F, Guo R. Venetoclax combined chemotherapy versus chemotherapy alone for acute myeloid leukemia: a systematic review and meta-analysis. Front Oncol 2024; 14:1361988. [PMID: 38595818 PMCID: PMC11002170 DOI: 10.3389/fonc.2024.1361988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Objective To compare the efficacy and safety of venetoclax (VEN) in combination with chemotherapy (chemo) versus chemo alone in the treatment of acute myeloid leukemia (AML). Method To compare the efficacy and/or safety of VEN+chemo versus chemotherapy alone for AML, PubMed, Embase, Web of Science, and the Cochrane Library were used to searching up to June 2023. Comparisons included complete remission (CR), CR with incomplete hematologic recovery (CRi), morphologic leukemia-free state (MLFS), overall response rate (ORR), and adverse events (AEs). Result A total of 9 articles were included, including 3124 patients. The baseline characteristics between two patient groups were similar. The combined analysis showed that compared with the group receiving chemo alone, the VEN+chemo group exhibited higher rates of CR, CRi, MLFS and ORR. Additionally, the VEN+chemo group had longer event-free survival (EFS) and overall survival (OS) durations. The incidence rates of AEs and serious AEs (SAEs) were similar between the two groups, but the early 30-day mortality rate was lower in the VEN+chemo group than in the chemo alone group. Conclusion The VEN+chemo therapy demonstrates significant efficacy and safety profile in AML patients. However, more prospective studies are needed in the future to provide more accurate and robust evidence for treatment selection in patients. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023439288, identifier CRD42023439288.
Collapse
Affiliation(s)
- Jingkui Zhu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jixin Fan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tiantian Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiqiu Zhao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Runqing Lu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yinyin Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinsheng Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dingming Wan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei He
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Vu GT, Awad V, Norberto MF, Bowman TV, Trompouki E. Nucleic acid-induced inflammation on hematopoietic stem cells. Exp Hematol 2024; 131:104148. [PMID: 38151171 PMCID: PMC11061806 DOI: 10.1016/j.exphem.2023.104148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Hematopoiesis, the process of generating blood cells, starts during development with the primitive, pro-definitive, and definitive hematopoietic waves. The first two waves will generate erythrocytes and myeloid cells, although the definitive wave will give rise to hematopoietic stem cells (HSCs) that are multipotent and can produce most of the blood cells in an adult. Although HSCs are highly proliferative during development, during adulthood they remain quiescent in the bone marrow. Inflammatory signaling in the form of interferons, interleukins, tumor necrosis factors, and others is well-established to influence both developmental and adult hematopoiesis. Here we discuss the role of specific inflammatory pathways that are induced by sensing nucleic acids. We discuss the role of RNA-sensing members of the Toll-like, Rig-I-like, nucleotide-binding oligomerization domain (NOD)-like, and AIM2-like protein kinase receptors and the DNA-sensing receptors, DEAD-Box helicase 41 (DDX41) and cGAS. The main downstream pathways of these receptors are discussed, as well as their influence on developmental and adult hematopoiesis, including hematopoietic pathologies.
Collapse
Affiliation(s)
- Giang To Vu
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France
| | - Valerie Awad
- Department of Developmental and Molecular Biology and Gottesman Institute of Stem Cell Biology and Regenerative Medicine Bronx, Albert Einstein College of Medicine, NY
| | - Maria Feliz Norberto
- Department of Developmental and Molecular Biology and Gottesman Institute of Stem Cell Biology and Regenerative Medicine Bronx, Albert Einstein College of Medicine, NY
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology and Gottesman Institute of Stem Cell Biology and Regenerative Medicine Bronx, Albert Einstein College of Medicine, NY; Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY.
| | - Eirini Trompouki
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France.
| |
Collapse
|
22
|
Cobaleda C, Godley LA, Nichols KE, Wlodarski MW, Sanchez-Garcia I. Insights into the Molecular Mechanisms of Genetic Predisposition to Hematopoietic Malignancies: The Importance of Gene-Environment Interactions. Cancer Discov 2024; 14:396-405. [PMID: 38426560 PMCID: PMC10913756 DOI: 10.1158/2159-8290.cd-23-1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 03/02/2024]
Abstract
SUMMARY The recognition of host genetic factors underlying susceptibility to hematopoietic malignancies has increased greatly over the last decade. Historically, germline predisposition was thought to primarily affect the young. However, emerging data indicate that hematopoietic malignancies that develop in people of all ages across the human lifespan can derive from germline predisposing conditions and are not exclusively observed in younger individuals. The age at which hematopoietic malignancies manifest appears to correlate with distinct underlying biological pathways. Progression from having a deleterious germline variant to being diagnosed with overt malignancy involves complex, multistep gene-environment interactions with key external triggers, such as infection and inflammatory stimuli, driving clonal progression. Understanding the mechanisms by which predisposed clones transform under specific pressures may reveal strategies to better treat and even prevent hematopoietic malignancies from occurring.Recent unbiased genome-wide sequencing studies of children and adults with hematopoietic malignancies have revealed novel genes in which disease-causing variants are of germline origin. This paradigm shift is spearheaded by findings in myelodysplastic syndrome/acute myeloid leukemia (MDS/AML) as well as acute lymphoblastic leukemia, but it also encompasses other cancer types. Although not without challenges, the field of genetic cancer predisposition is advancing quickly, and a better understanding of the genetic basis of hematopoietic malignancies risk affects therapeutic decisions as well as genetic counseling and testing of at-risk family members.
Collapse
Affiliation(s)
- Cesar Cobaleda
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM, CSIC-UAM), Madrid, Spain
| | - Lucy A. Godley
- Division of Hematology/Oncology, Department of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Kim E. Nichols
- Division of Cancer Predisposition, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Marcin W. Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Isidro Sanchez-Garcia
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
23
|
Winstone L, Jung Y, Wu Y. DDX41: exploring the roles of a versatile helicase. Biochem Soc Trans 2024; 52:395-405. [PMID: 38348889 PMCID: PMC10903454 DOI: 10.1042/bst20230725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/29/2024]
Abstract
DDX41 is a DEAD-box helicase and is conserved across species. Mutations in DDX41 have been associated with myeloid neoplasms, including myelodysplastic syndrome and acute myeloid leukemia. Though its pathogenesis is not completely known, DDX41 has been shown to have many cellular roles, including in pre-mRNA splicing, innate immune sensing, ribosome biogenesis, translational regulation, and R-loop metabolism. In this review, we will summarize the latest understandings regarding the various roles of DDX41, as well as highlight challenges associated with drug development to target DDX41. Overall, understanding the molecular and cellular mechanisms of DDX41 could help develop novel therapeutic options for DDX41 mutation-related hematologic malignancies.
Collapse
Affiliation(s)
- Lacey Winstone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Yohan Jung
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
24
|
Arai H, Matsui H, Chi S, Utsu Y, Masuda S, Aotsuka N, Minami Y. Germline Variants and Characteristic Features of Hereditary Hematological Malignancy Syndrome. Int J Mol Sci 2024; 25:652. [PMID: 38203823 PMCID: PMC10779750 DOI: 10.3390/ijms25010652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Due to the proliferation of genetic testing, pathogenic germline variants predisposing to hereditary hematological malignancy syndrome (HHMS) have been identified in an increasing number of genes. Consequently, the field of HHMS is gaining recognition among clinicians and scientists worldwide. Patients with germline genetic abnormalities often have poor outcomes and are candidates for allogeneic hematopoietic stem cell transplantation (HSCT). However, HSCT using blood from a related donor should be carefully considered because of the risk that the patient may inherit a pathogenic variant. At present, we now face the challenge of incorporating these advances into clinical practice for patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) and optimizing the management and surveillance of patients and asymptomatic carriers, with the limitation that evidence-based guidelines are often inadequate. The 2016 revision of the WHO classification added a new section on myeloid malignant neoplasms, including MDS and AML with germline predisposition. The main syndromes can be classified into three groups. Those without pre-existing disease or organ dysfunction; DDX41, TP53, CEBPA, those with pre-existing platelet disorders; ANKRD26, ETV6, RUNX1, and those with other organ dysfunctions; SAMD9/SAMD9L, GATA2, and inherited bone marrow failure syndromes. In this review, we will outline the role of the genes involved in HHMS in order to clarify our understanding of HHMS.
Collapse
Affiliation(s)
- Hironori Arai
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Hirotaka Matsui
- Department of Laboratory Medicine, National Cancer Center Hospital, Tsukiji, Chuoku 104-0045, Japan;
- Department of Medical Oncology and Translational Research, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8665, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Shinichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| |
Collapse
|
25
|
Mendoza H, Siddon AJ. Molecular Techniques and Gene Mutations in Myelodysplastic Syndromes. Clin Lab Med 2023; 43:549-563. [PMID: 37865502 DOI: 10.1016/j.cll.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Sequencing technology, particularly next-generation sequencing, has highlighted the importance of gene mutations in myelodysplastic syndromes (MDSs). Mutations affecting DNA methylation, chromatin modification, RNA splicing, cohesin complex, and other pathways are present in most MDS cases and often have prognostic and clinical implications. Updated international diagnostic guidelines as well as the new International Prognostic Scoring System-Molecular incorporate molecular data into the diagnosis and prognostication of MDS. With whole-genome sequencing predicted to become the future standard of genetic evaluation, it is likely that MDS diagnosis and management will become increasingly personalized based on an individual's clinical and genomic profile.
Collapse
Affiliation(s)
- Hadrian Mendoza
- Department of Internal Medicine, Yale School of Medicine, PO Box 208030, New Haven, CT 06520, USA
| | - Alexa J Siddon
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
26
|
Badar T, Nanaa A, Foran JM, Viswanatha D, Al-Kali A, Lasho T, Finke C, Alkhateeb HB, He R, Gangat N, Shah M, Tefferi A, Mangaonkar AA, Litzow MR, Ongie LJ, Chlon T, Ferrer A, Patnaik MM. Clinical and molecular correlates of somatic and germline DDX41 variants in patients and families with myeloid neoplasms. Haematologica 2023; 108:3033-3043. [PMID: 37199125 PMCID: PMC10620593 DOI: 10.3324/haematol.2023.282867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023] Open
Abstract
The diagnosis of germline predisposition to myeloid neoplasms (MN) secondary to DDX41 variants is currently hindered by the long latency period, variable family histories and the frequent occurrence of DDX41 variants of uncertain significance (VUS). We reviewed 4,524 consecutive patients who underwent targeted sequencing for suspected or known MN and analyzed the clinical impact and relevance of DDX41VUS in comparison to DDX41path variants. Among 107 patients (44 [0.9%] DDX41path and 63 DDX41VUS [1.4%; 11 patients with both DDX41path and DDX41VUS]), we identified 17 unique DDX41path and 45 DDX41VUS variants: 24 (23%) and 77 (72%) patients had proven and presumed germline DDX41 variants, respectively. The median age was similar between DDX41path and DDX41VUS (66 vs. 62 years; P=0.41). The median variant allele frequency (VAF) (47% vs. 48%; P=0.62), frequency of somatic myeloid co-mutations (34% vs 25%; P= 0.28), cytogenetic abnormalities (16% vs. 12%; P=>0.99) and family history of hematological malignancies (20% vs. 33%; P=0.59) were comparable between the two groups. Time to treatment in months (1.53 vs. 0.3; P=0.16) and proportion of patients progressing to acute myeloid leukemia (14% vs. 11%; P=0.68), were similar. The median overall survival in patients with high-risk myelodysplastic syndrome/acute myloid leukemia was 63.4 and 55.7 months in the context of DDX41path and DDX41VUS, respectively (P=0.93). Comparable molecular profiles and clinical outcomes among DDX41path and DDX41VUS patients highlights the need for a comprehensive DDX41 variant interrogation/classification system, to improve surveillance and management strategies in patients and families with germline DDX41 predisposition syndromes.
Collapse
Affiliation(s)
- Talha Badar
- Division of Hematology-Oncology and Bone Marrow Transplant Program, Mayo Clinic, Jacksonville, FL 32224.
| | - Ahmad Nanaa
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA; John H. Stroger, Jr. Hospital of Cook County, Chicago, IL 60612
| | - James M Foran
- Division of Hematology-Oncology and Bone Marrow Transplant Program, Mayo Clinic, Jacksonville, FL 32224
| | | | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, MN 55905
| | - Terra Lasho
- Division of Hematology, Mayo Clinic, Rochester, MN 55905
| | - Christy Finke
- Division of Hematology, Mayo Clinic, Rochester, MN 55905
| | | | - Rong He
- Division of Hematopathology, Mayo Clinic, Rochester, MN 55905
| | - Naseema Gangat
- Division of Hematology, Mayo Clinic, Rochester, MN 55905
| | - Mithun Shah
- Division of Hematology, Mayo Clinic, Rochester, MN 55905
| | - Ayalew Tefferi
- Division of Hematology, Mayo Clinic, Rochester, MN 55905
| | | | - Mark R Litzow
- Division of Hematology, Mayo Clinic, Rochester, MN 55905
| | | | - Timothy Chlon
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, 45229
| | | | | |
Collapse
|
27
|
Olkinuora A, Nieminen TT, Douglas S, Kauppinen A, Kontro M, Väänänen J, Kankainen M, Ristimäki A, Mäkinen M, Lahermo P, Heckman C, Saarela J, Salonen M, Lepistö A, Järvinen H, Mecklin JP, Kilpivaara O, Wartiovaara-Kautto U, Porkka K, Peltomäki P. Identification of DHX40 as a candidate susceptibility gene for colorectal and hematological neoplasia. Leukemia 2023; 37:2301-2305. [PMID: 37696923 PMCID: PMC10624609 DOI: 10.1038/s41375-023-02021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/15/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Affiliation(s)
- Alisa Olkinuora
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland.
| | - Taina T Nieminen
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland.
| | - Suvi Douglas
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Anni Kauppinen
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
| | - Mika Kontro
- Department of Hematology, Helsinki University Hospital, Comprehensive Cancer Center and University of Helsinki, 00014, Helsinki, Finland
- HiLIFE Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, 00014, Helsinki, Finland
| | - Juho Väänänen
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Matti Kankainen
- HUSLAB Laboratory of Genetics, HUS Diagnostic Center, HUS, Helsinki University Hospital, 00029, Helsinki, Finland
- Hematology Research Unit Helsinki, University of Helsinki, 00014, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014, Helsinki, Finland
| | - Ari Ristimäki
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00014, Helsinki, Finland
| | - Markus Mäkinen
- Research Unit of Cancer and Translational Medicine, Department of Pathology, 90014, University of Oulu, and Department of Pathology, Oulu University Hospital, OYS, 90029, Oulu, Finland
| | - Päivi Lahermo
- HiLIFE Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
| | - Caroline Heckman
- HiLIFE Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Janna Saarela
- HiLIFE Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
- Centre for Molecular Medicine Norway, NCMM, University of Oslo, 0318, Oslo, Norway
| | - Milla Salonen
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - Anna Lepistö
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Department of Abdominal Surgery, Helsinki University Hospital and University of Helsinki, 00014, Helsinki, Finland
| | - Heikki Järvinen
- Department of Abdominal Surgery, Helsinki University Hospital and University of Helsinki, 00014, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Department of Education & Research and Surgery, Jyväskylä Central Hospital, 40620, Jyväskylä, Finland
- Department of Sports & Health Sciences, Jyväskylä University, 40014, Jyväskylä, Finland
| | - Outi Kilpivaara
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- HUSLAB Laboratory of Genetics, HUS Diagnostic Center, HUS, Helsinki University Hospital, 00029, Helsinki, Finland
| | - Ulla Wartiovaara-Kautto
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Department of Hematology, Helsinki University Hospital, Comprehensive Cancer Center and University of Helsinki, 00014, Helsinki, Finland
| | - Kimmo Porkka
- Department of Hematology, Helsinki University Hospital, Comprehensive Cancer Center and University of Helsinki, 00014, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland.
- HUSLAB Laboratory of Genetics, HUS Diagnostic Center, HUS, Helsinki University Hospital, 00029, Helsinki, Finland.
| |
Collapse
|
28
|
Chlon TM, Patnaik MM. Germline DDX41 mutant predisposition syndromes: Slow driver states to hematological malignancies. Am J Hematol 2023; 98:1673-1676. [PMID: 37705260 DOI: 10.1002/ajh.27091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Affiliation(s)
- Timothy M Chlon
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
29
|
Xie Z, Starczynowski DT. Are DDX41 variants of unknown significance and pathogenic variants created equal? Haematologica 2023; 108:2883-2885. [PMID: 37317927 PMCID: PMC10620556 DOI: 10.3324/haematol.2023.283416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Affiliation(s)
- Zhuoer Xie
- Malignant Hematology Department, H. Lee Moffitt Cancer Center and Research Institute, FL.
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, USA; Department of Cancer Biology, University of Cincinnati, Cincinnati, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, USA; University of Cincinnati Cancer Center, Cincinnati
| |
Collapse
|
30
|
Bataller A, Loghavi S, Gerstein Y, Bazinet A, Sasaki K, Chien KS, Hammond D, Montalban-Bravo G, Borthakur G, Short N, Issa GC, Kadia TM, Daver N, Tang G, Quesada A, Patel KP, Ravandi F, Fiskus W, Mill CP, Kantarjian HM, Bhalla K, Garcia-Manero G, Oran B, DiNardo CD. Characteristics and clinical outcomes of patients with myeloid malignancies and DDX41 variants. Am J Hematol 2023; 98:1780-1790. [PMID: 37665752 PMCID: PMC11770637 DOI: 10.1002/ajh.27070] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
DDX41 is the most frequently mutated gene in myeloid neoplasms associated with germline predisposition including myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). We analyzed 3795 patients with myeloid neoplasms and identified 151 (4%) with DDX41 variants and a diagnosis of AML (n = 96), MDS (n = 52), and chronic myelomonocytic leukemia (n = 3). The most frequent DDX41 variants were the somatic variant p.R525H, followed by the germline variants p.M1I and p.D140fs. Most neoplasms had a normal karyotype (59%) and the most frequent co-mutations were TP53 (16%) and ASXL1 (15%). 30% of patients had no concomitant mutations besides DDX41 mutation. Patients with myeloid malignancies and DDX41 variants responded well to therapy, with an overall response rate for patients with treatment naïve AML and MDS of 87% and 84%, respectively. The median overall survival (mOS) of patients with treatment-naïve AML or MDS was 49 and 71 months, respectively. Patients with AML treated with low-intensity regimens including venetoclax had an improved survival (2-year OS 91% vs. 60%, p = .02) and lower cumulative incidence of relapse compared to those treated without venetoclax (10% vs. 56%, p = .03). In the 33% of patients receiving hematopoietic stem cell transplantation, the 2-year OS was 80% and 85% for AML and MDS, respectively.
Collapse
MESH Headings
- Humans
- DEAD-box RNA Helicases/genetics
- Male
- Female
- Middle Aged
- Aged
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/therapy
- Myelodysplastic Syndromes/mortality
- Adult
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/mortality
- Aged, 80 and over
- Sulfonamides/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Mutation
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/therapy
- Leukemia, Myelomonocytic, Chronic/mortality
- Treatment Outcome
- Young Adult
- Germ-Line Mutation
- Tumor Suppressor Protein p53/genetics
- Repressor Proteins/genetics
Collapse
Affiliation(s)
- Alex Bataller
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sanam Loghavi
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yoheved Gerstein
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexandre Bazinet
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kelly S. Chien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Danielle Hammond
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ghayas C. Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan M. Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guilin Tang
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andres Quesada
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keyur P. Patel
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Warren Fiskus
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cristopher P. Mill
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop M. Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kapil Bhalla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Betul Oran
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney D. DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
31
|
Muto T, Walker CS, Agarwal P, Vick E, Sampson A, Choi K, Niederkorn M, Ishikawa C, Hueneman K, Varney M, Starczynowski DT. Inactivation of p53 provides a competitive advantage to del(5q) myelodysplastic syndrome hematopoietic stem cells during inflammation. Haematologica 2023; 108:2715-2729. [PMID: 37102608 PMCID: PMC10542836 DOI: 10.3324/haematol.2022.282349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Inflammation is associated with the pathogenesis of myelodysplastic syndromes (MDS) and emerging evidence suggests that MDS hematopoietic stem and progenitor cells (HSPC) exhibit an altered response to inflammation. Deletion of chromosome 5 (del(5q)) is the most common chromosomal abnormality in MDS. Although this MDS subtype contains several haploinsufficient genes that impact innate immune signaling, the effects of inflammation on del(5q) MDS HSPC remains undefined. Utilizing a model of del(5q)-like MDS, inhibiting the IRAK1/4-TRAF6 axis improved cytopenias, suggesting that activation of innate immune pathways contributes to certain clinical features underlying the pathogenesis of low-risk MDS. However, low-grade inflammation in the del(5q)-like MDS model did not contribute to more severe disease but instead impaired the del(5q)-like HSPC as indicated by their diminished numbers, premature attrition and increased p53 expression. Del(5q)-like HSPC exposed to inflammation became less quiescent, but without affecting cell viability. Unexpectedly, the reduced cellular quiescence of del(5q) HSPC exposed to inflammation was restored by p53 deletion. These findings uncovered that inflammation confers a competitive advantage of functionally defective del(5q) HSPC upon loss of p53. Since TP53 mutations are enriched in del(5q) AML following an MDS diagnosis, increased p53 activation in del(5q) MDS HSPC due to inflammation may create a selective pressure for genetic inactivation of p53 or expansion of a pre-existing TP53-mutant clone.
Collapse
Affiliation(s)
- Tomoya Muto
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Hematology, Chiba University Hospital, Chiba.
| | - Callum S Walker
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Puneet Agarwal
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Eric Vick
- Division of Hematology and Oncology, University of Cincinnati, Cincinnati, OH
| | - Avery Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Madeline Niederkorn
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Chiharu Ishikawa
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Melinda Varney
- Department of Pharmaceutical Science and Research, Marshall University, Huntington, WV
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; UC Cancer Center, Cincinnati, OH.
| |
Collapse
|
32
|
Georgoulis V, Koumpis E, Hatzimichael E. The Role of Non-Coding RNAs in Myelodysplastic Neoplasms. Cancers (Basel) 2023; 15:4810. [PMID: 37835504 PMCID: PMC10571949 DOI: 10.3390/cancers15194810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Myelodysplastic syndromes or neoplasms (MDS) are a heterogeneous group of myeloid clonal disorders characterized by peripheral blood cytopenias, blood and marrow cell dysplasia, and increased risk of evolution to acute myeloid leukemia (AML). Non-coding RNAs, especially microRNAs and long non-coding RNAs, serve as regulators of normal and malignant hematopoiesis and have been implicated in carcinogenesis. This review presents a comprehensive summary of the biology and role of non-coding RNAs, including the less studied circRNA, siRNA, piRNA, and snoRNA as potential prognostic and/or predictive biomarkers or therapeutic targets in MDS.
Collapse
Affiliation(s)
- Vasileios Georgoulis
- Department of Haematology, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece; (V.G.); (E.K.)
| | - Epameinondas Koumpis
- Department of Haematology, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece; (V.G.); (E.K.)
| | - Eleftheria Hatzimichael
- Department of Haematology, University Hospital of Ioannina, Faculty of Medicine, University of Ioannina, 45 500 Ioannina, Greece; (V.G.); (E.K.)
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19 107, USA
| |
Collapse
|
33
|
Smith JR, Dowling JW, McFadden MI, Karp A, Schwerk J, Woodward JJ, Savan R, Forero A. MEF2A suppresses stress responses that trigger DDX41-dependent IFN production. Cell Rep 2023; 42:112805. [PMID: 37467105 PMCID: PMC10652867 DOI: 10.1016/j.celrep.2023.112805] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 05/17/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Cellular stress in the form of disrupted transcription, loss of organelle integrity, or damage to nucleic acids can elicit inflammatory responses by activating signaling cascades canonically tasked with controlling pathogen infections. These stressors must be kept in check to prevent unscheduled activation of interferon, which contributes to autoinflammation. This study examines the role of the transcription factor myocyte enhancing factor 2A (MEF2A) in setting the threshold of transcriptional stress responses to prevent R-loop accumulation. Increases in R-loops lead to the induction of interferon and inflammatory responses in a DEAD-box helicase 41 (DDX41)-, cyclic GMP-AMP synthase (cGAS)-, and stimulator of interferon genes (STING)-dependent manner. The loss of MEF2A results in the activation of ATM and RAD3-related (ATR) kinase, which is also necessary for the activation of STING. This study identifies the role of MEF2A in sustaining transcriptional homeostasis and highlights the role of ATR in positively regulating R-loop-associated inflammatory responses.
Collapse
Affiliation(s)
- Julian R Smith
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Jack W Dowling
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew I McFadden
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew Karp
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Discovery PREP, The Ohio State University, Columbus, OH 43210, USA
| | - Johannes Schwerk
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Joshua J Woodward
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Ram Savan
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Adriana Forero
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Cancer Biology Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
34
|
Tierens A, Kagotho E, Shinriki S, Seto A, Smith AC, Care M, Maze D, Sibai H, Yee KW, Schuh AC, Kim DDH, Gupta V, Minden MD, Matsui H, Capo-Chichi JM. Biallelic disruption of DDX41 activity is associated with distinct genomic and immunophenotypic hallmarks in acute leukemia. Front Oncol 2023; 13:1153082. [PMID: 37434984 PMCID: PMC10331015 DOI: 10.3389/fonc.2023.1153082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/20/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Inherited DDX41 mutations cause familial predisposition to hematologic malignancies including acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), with the majority of DDX41 mutated MDS/AMLs described to date harboring germline DDX41 and co-occurring somatic DDX41 variants. DDX41-AMLs were shown to share distinguishing clinical features such as a late AML onset and an indolent disease associated with a favorable outcome. However, genotype-phenotype correlation in DDX41-MDS/AMLs remain poorly understood. Methods Here, we studied the genetic profile, bone marrow morphology and immunophenotype of 51 patients with DDX41 mutations. We further assessed the functional impact of ten previously uncharacterized DDX41 variants of uncertain significance. Results Our results demonstrate that MDS/AML cases harboring two DDX41 variants share specific clinicopathologic hallmarks that are not seen in other patients with monoallelic DDX41 related hematologic malignancies. We further showed that the features seen in these individuals with two DDX41 variants were concordant with biallelic DDX41 disruption. Discussion Here, we expand on previous clinicopathologic findings on DDX41 mutated hematologic malignancies. Functional analyses conducted in this study unraveled previously uncharacterized DDX41 alleles and further illustrate the implication of biallelic disruption in the pathophysiology of this distinct AML entity.
Collapse
Affiliation(s)
- Anne Tierens
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Kagotho
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Nairobi, Kenya
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Andrew Seto
- Division of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Adam C. Smith
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Melanie Care
- Division of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Dawn Maze
- Department of Medicine Medical Oncology and Hematology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Hassan Sibai
- Department of Medicine Medical Oncology and Hematology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Karen W. Yee
- Department of Medicine Medical Oncology and Hematology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Andre C. Schuh
- Department of Medicine Medical Oncology and Hematology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Dennis Dong Hwan Kim
- Department of Medicine Medical Oncology and Hematology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Vikas Gupta
- Department of Medicine Medical Oncology and Hematology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Mark D. Minden
- Department of Medicine Medical Oncology and Hematology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - José-Mario Capo-Chichi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| |
Collapse
|
35
|
Challakkara MF, Chhabra R. snoRNAs in hematopoiesis and blood malignancies: A comprehensive review. J Cell Physiol 2023; 238:1207-1225. [PMID: 37183323 DOI: 10.1002/jcp.31032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
Small nucleolar RNAs (snoRNAs) are noncoding RNA molecules of highly variable size, usually ranging from 60 to 150 nucleotides. They are classified into H/ACA box snoRNAs, C/D box snoRNAs, and scaRNAs. Their functional profile includes biogenesis of ribosomes, processing of rRNAs, 2'-O-methylation and pseudouridylation of RNAs, alternative splicing and processing of mRNAs and the generation of small RNA molecules like miRNA. The snoRNAs have been observed to have an important role in hematopoiesis and malignant hematopoietic conditions including leukemia, lymphoma, and multiple myeloma. Blood malignancies arise in immune system cells or the bone marrow due to chromosome abnormalities. It has been estimated that annually over 1.25 million cases of blood cancer occur worldwide. The snoRNAs often show a differential expression profile in blood malignancies. Recent reports associate the abnormal expression of snoRNAs with the inhibition of apoptosis, uncontrolled cell proliferation, angiogenesis, and metastasis. This implies that targeting snoRNAs could be a potential way to treat hematologic malignancies. In this review, we describe the various functions of snoRNAs, their role in hematopoiesis, and the consequences of their dysregulation in blood malignancies. We also evaluate the potential of the dysregulated snoRNAs as biomarkers and therapeutic targets for blood malignancies.
Collapse
Affiliation(s)
- Mohamed Fahad Challakkara
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
36
|
O’Connor TE, Shaw R, Madero-Marroquin R, Roloff GW. Clinical considerations at the intersection of hematopoietic cell transplantation and hereditary hematopoietic malignancy. Front Oncol 2023; 13:1180439. [PMID: 37251919 PMCID: PMC10213438 DOI: 10.3389/fonc.2023.1180439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
In recent years, advances in genetics and the integration of clinical-grade next-generation sequencing (NGS) assays into patient care have facilitated broader recognition of hereditary hematopoietic malignancy (HHM) among clinicians, in addition to the identification and characterization of novel HHM syndromes. Studies on genetic risk distribution within affected families and unique considerations of HHM biology represent exciting areas of translational research. More recently, data are now emerging pertaining to unique aspects of clinical management of malignancies arising in the context of pathogenic germline mutations, with particular emphasis on chemotherapy responsiveness. In this article, we explore considerations surrounding allogeneic transplantation in the context of HHMs. We review pre- and post-transplant patient implications, including genetic testing donor selection and donor-derived malignancies. Additionally, we consider the limited data that exist regarding the use of transplantation in HHMs and safeguards that might be pursued to mitigate transplant-related toxicities.
Collapse
Affiliation(s)
- Timothy E. O’Connor
- Department of Medicine, Loyola University Medical Center, Maywood, IL, United States
| | - Reid Shaw
- Department of Medicine, Loyola University Medical Center, Maywood, IL, United States
| | | | - Gregory W. Roloff
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
37
|
Huo L, Zhang Z, Zhou H, Xie J, Jiang A, Wang Q, Ding Z, Dai H, Liu D, Wu N, Qiu Q, Ma L, Wang M, Wang W, Xue S, Chen Z, Wu D, Yao H, Chen S, Shen H. Causative germline variant p.Y259C of DDX41 recurrently identified in acute lymphoblastic leukaemia. Br J Haematol 2023. [PMID: 37144604 DOI: 10.1111/bjh.18848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Affiliation(s)
- Li Huo
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Zhibo Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Haixia Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Jundan Xie
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Airui Jiang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Qian Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Zixuan Ding
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Haiping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Dandan Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Ni Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Qiaocheng Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Liang Ma
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Man Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Wenjuan Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Shengli Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Zixing Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Hong Yao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Hongjie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
38
|
Gener-Ricos G, Gerstein YS, Hammond D, DiNardo CD. Germline Predisposition to Myelodysplastic Syndromes. Cancer J 2023; 29:143-151. [PMID: 37195770 DOI: 10.1097/ppo.0000000000000660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ABSTRACT While germline predisposition to myelodysplastic syndromes is well-established, knowledge has advanced rapidly resulting in more cases of inherited hematologic malignancies being identified. Understanding the biological features and main clinical manifestations of hereditary hematologic malignancies is essential to recognizing and referring patients with myelodysplastic syndrome, who may underlie inherited predisposition, for appropriate genetic evaluation. Importance lies in individualized genetic counseling along with informed treatment decisions, especially with regard to hematopoietic stem cell transplant-related donor selection. Future studies will improve comprehension of these disorders, enabling better management of affected patients and their families.
Collapse
Affiliation(s)
| | - Yoheved S Gerstein
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | |
Collapse
|
39
|
Al-Kali A, Nanaa A, Viswanatha D, He R, Nguyen P, Jevremovic D, Foran JM, Yi CA, Greipp PT, Gangat N, Patnaik M, Tefferi A, Litzow MR, Mangaonkar AA, Shah MV, Badar T, Alkhateeb HB. Observation and treatment in DDX41-mutated acute myeloid leukemia and myelodysplastic syndrome. Blood Cancer J 2023; 13:49. [PMID: 37032414 PMCID: PMC10083167 DOI: 10.1038/s41408-023-00818-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Ahmad Nanaa
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
- John H. Stroger, Jr. Hospital of Cook County, Chicago, IL, 60612, USA
| | - David Viswanatha
- Division of Hematopathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Rong He
- Division of Hematopathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Phuong Nguyen
- Division of Hematopathology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - James M Foran
- Division of Hematology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | | | - Naseema Gangat
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mrinal Patnaik
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ayalew Tefferi
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mark R Litzow
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | - Talha Badar
- Division of Hematology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | |
Collapse
|
40
|
Cai X, Wang H, Han Y, Huang H, Qian P. The essential roles of small non-coding RNAs and RNA modifications in normal and malignant hematopoiesis. Front Mol Biosci 2023; 10:1176416. [PMID: 37065445 PMCID: PMC10102602 DOI: 10.3389/fmolb.2023.1176416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Hematopoietic stem cells (HSCs) developing from mesoderm during embryogenesis are important for the blood circulatory system and immune system. Many factors such as genetic factors, chemical exposure, physical radiation, and viral infection, can lead to the dysfunction of HSCs. Hematological malignancies (involving leukemia, lymphoma, and myeloma) were diagnosed in more than 1.3 million people globally in 2021, taking up 7% of total newly-diagnosed cancer patients. Although many treatments like chemotherapy, bone marrow transplantation, and stem cell transplantation have been applied in clinical therapeutics, the average 5-year survival rate for leukemia, lymphoma, and myeloma is about 65%, 72%, and 54% respectively. Small non-coding RNAs play key roles in a variety of biological processes, including cell division and proliferation, immunological response and cell death. With the development of technologies in high-throughput sequencing and bioinformatic analysis, there is emerging research about modifications on small non-coding RNAs, as well as their functions in hematopoiesis and related diseases. In this study, we summarize the updated information of small non-coding RNAs and RNA modifications in normal and malignant hematopoiesis, which sheds lights into the future application of HSCs into the treatment of blood diseases.
Collapse
Affiliation(s)
- Xinyi Cai
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Hui Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
- *Correspondence: Pengxu Qian,
| |
Collapse
|
41
|
Gurnari C, Xie Z, Zeidan AM. How I Manage Transplant Ineligible Patients with Myelodysplastic Neoplasms. Clin Hematol Int 2023; 5:8-20. [PMID: 36574201 PMCID: PMC10063738 DOI: 10.1007/s44228-022-00024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/14/2022] [Indexed: 12/28/2022] Open
Abstract
Myelodysplastic neoplasms, formerly known as myelodysplastic syndromes (MDS), represent a group of clonal disorders characterized by a high degree of clinical and molecular heterogeneity, and an invariable tendency to progress to acute myeloid leukemia. MDS typically present in the elderly with cytopenias of different degrees and bone marrow dysplasia, the hallmarks of the disease. Allogeneic hematopoietic stem cell transplant is the sole curative approach to date. Nonetheless, given the disease's demographics, only a minority of patients can benefit from this procedure. Currently used prognostic schemes such as the Revised International Prognostic Scoring System (R-IPSS), and most recently the molecular IPSS (IPSS-M), guide clinical management by dividing MDS into two big categories: lower- and higher-risk cases, based on a cut-off score of 3.5. The main clinical problem of the lower-risk group is represented by the management of cytopenias, whereas the prevention of secondary leukemia progression is the goal for the latter. Herein, we discuss the non-transplant treatment of MDS, focusing on current practice and available therapeutic options, while also presenting new investigational agents potentially entering the MDS therapeutic arsenal in the near future.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Zhuoer Xie
- Department of Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Medicine, Yale School of Medicine, and Yale Cancer Center, New Haven, CT, USA.
| |
Collapse
|
42
|
Naineni SK, Robert F, Nagar B, Pelletier J. Targeting DEAD-box RNA helicases: The emergence of molecular staples. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1738. [PMID: 35581936 DOI: 10.1002/wrna.1738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/29/2022]
Abstract
RNA helicases constitute a large family of proteins that play critical roles in mediating RNA function. They have been implicated in all facets of gene expression pathways involving RNA, from transcription to processing, transport and translation, and storage and decay. There is significant interest in developing small molecule inhibitors to RNA helicases as some family members have been documented to be dysregulated in neurological and neurodevelopment disorders, as well as in cancers. Although different functional properties of RNA helicases offer multiple opportunities for small molecule development, molecular staples have recently come to the forefront. These bifunctional molecules interact with both protein and RNA components to lock them together, thereby imparting novel gain-of-function properties to their targets. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sai Kiran Naineni
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Bhushan Nagar
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Saygin C, Roloff G, Hahn CN, Chhetri R, Gill S, Elmariah H, Talati C, Nunley E, Gao G, Kim A, Bishop M, Kosuri S, Das S, Singhal D, Venugopal P, Homan CC, Brown A, Scott HS, Hiwase D, Godley LA. Allogeneic hematopoietic stem cell transplant outcomes in adults with inherited myeloid malignancies. Blood Adv 2023; 7:549-554. [PMID: 36001442 PMCID: PMC9979761 DOI: 10.1182/bloodadvances.2022008172] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
There is increasing recognition that pathogenic germ line variants drive the development of hematopoietic cancers in many individuals. Currently, patients with hereditary hematologic malignancies (HHMs) receive similar standard therapies and hematopoietic stem cell transplant (HSCT) approaches as those with sporadic disease. We hypothesize that patients with myeloid malignancies and deleterious germ line predisposition variants have different posttransplant outcomes than those without such alleles. We studied 472 patients with myeloid neoplasms, of whom 26% had deleterious germ line variants and 34% underwent HSCT. Deleterious germ line variants in CHEK2 and DDX41 were most commonly seen in American and Australian cohorts, respectively. Patients with deleterious germ line DDX41 variants had a higher incidence of severe (stage 3-4) acute graft-versus-host disease (GVHD) (38%) than recipients with deleterious CHEK2 variants (0%), other HHM variants (12%), or patients without such germ line variants (9%) (P = .002). Importantly, the use of posttransplant cyclophosphamide reduced the risk of severe acute GVHD in patients receiving HSCT for deleterious germ line DDX41-associated myeloid neoplasms (0% vs 53%, P = .03). Based on these results, we advocate the use of posttransplant cyclophosphamide when individuals with deleterious germ line DDX41 variants undergo allogeneic HSCT for myeloid malignancies, even when transplantation has been performed using wild-type donors.
Collapse
Affiliation(s)
- Caner Saygin
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL
| | - Gregory Roloff
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL
| | - Christopher N. Hahn
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Rakchha Chhetri
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Saar Gill
- Division of Hematology-Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Hany Elmariah
- Department of Blood & Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Chetasi Talati
- Department of Blood & Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Emma Nunley
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL
| | - Guimin Gao
- Department of Public Health Sciences, The University of Chicago, Chicago, IL
| | - Aelin Kim
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL
| | - Michael Bishop
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL
| | - Satyajit Kosuri
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL
| | - Soma Das
- Department of Human Genetics, The University of Chicago, Chicago, IL
| | - Deepak Singhal
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Royal Adelaide Hospital, Central Adelaide Health Network, Adelaide, SA, Australia
| | - Parvathy Venugopal
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Claire C. Homan
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Anna Brown
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Hamish S. Scott
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Devendra Hiwase
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Royal Adelaide Hospital, Central Adelaide Health Network, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Lucy A. Godley
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL
- Department of Human Genetics, The University of Chicago, Chicago, IL
| |
Collapse
|
44
|
Tungalag S, Shinriki S, Hirayama M, Nagamachi A, Kanai A, Inaba T, Matsui H. Ribosome profiling analysis reveals the roles of DDX41 in translational regulation. Int J Hematol 2023; 117:876-888. [PMID: 36780110 DOI: 10.1007/s12185-023-03558-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
DDX41 mutation has been observed in myeloid malignancies including myelodysplastic syndromes and acute myeloid leukemia, but the underlying causative mechanisms of these diseases have not been fully elucidated. The DDX41 protein is an ATP-dependent RNA helicase with roles in RNA metabolism. We previously showed that DDX41 is involved in ribosome biogenesis by promoting the processing of newly transcribed pre-ribosomal RNA. To build on this finding, in this study, we leveraged ribosome profiling technology to investigate the involvement of DDX41 in translation. We found that DDX41 knockdown resulted in both translationally increased and decreased transcripts. Both gene set enrichment analysis and gene ontology analysis indicated that ribosome-associated genes were translationally promoted after DDX41 knockdown, in part because these transcripts had significantly shorter transcript length and higher transcriptional and translational levels. In addition, we found that transcripts with 5'-terminal oligopyrimidine motifs tended to be translationally upregulated when the DDX41 level was low. Our data suggest that a translationally regulated feedback mechanism involving DDX41 may exist for ribosome biogenesis.
Collapse
Affiliation(s)
- Saruul Tungalag
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Mayumi Hirayama
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.,Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiko Nagamachi
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akinori Kanai
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
45
|
|
46
|
Kim K, Ong F, Sasaki K. Current Understanding of DDX41 Mutations in Myeloid Neoplasms. Cancers (Basel) 2023; 15:344. [PMID: 36672294 PMCID: PMC9857085 DOI: 10.3390/cancers15020344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
The DEAD-box RNA helicase 41 gene, DDX41, is frequently mutated in hereditary myeloid neoplasms, identified in 2% of entire patients with AML/MDS. The pathogenesis of DDX41 mutation is related to the defect in the gene's normal functions of RNA and innate immunity. About 80% of patients with germline DDX41 mutations have somatic mutations in another allele, resulting in the biallelic DDX41 mutation. Patients with the disease with DDX41 mutations reportedly often present with the higher-grade disease, but there are conflicting reports about its impact on survival outcomes. Recent studies using larger cohorts reported a favorable outcome with a better response to standard therapies in patients with DDX41 mutations to patients without DDX41 mutations. For stem-cell transplantation, it is important for patients with DDX41 germline mutations to identify family donors early to improve outcomes. Still, there is a gap in knowledge on whether germline DDX41 mutations and its pathology features can be targetable for treatment, and what constitutes an appropriate screening/surveillance strategy for identified carriers. This article reviews our current understanding of DDX41 mutations in myeloid neoplasms in pathologic and clinical features and their clinical implications.
Collapse
Affiliation(s)
| | | | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
47
|
Kim JA, Shen S, Matson DR, Lovrien LN, Smith-Simmer KJ, Keles S, Churpek JE, Bresnick EH. Discriminating activities of DEAD-Box Helicase 41 from myeloid malignancy-associated germline variants by genetic rescue. Leukemia 2023; 37:235-239. [PMID: 36347925 PMCID: PMC9981304 DOI: 10.1038/s41375-022-01753-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jeong-Ah Kim
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Siqi Shen
- Department of Biostatistics and Biomedical Informatics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Daniel R Matson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Lauren N Lovrien
- Division of Hematology, Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kelcy J Smith-Simmer
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sunduz Keles
- Department of Biostatistics and Biomedical Informatics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jane E Churpek
- Division of Hematology, Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
48
|
The role of post-transcriptional modifications during development. Biol Futur 2022:10.1007/s42977-022-00142-3. [PMID: 36481986 DOI: 10.1007/s42977-022-00142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
AbstractWhile the existence of post-transcriptional modifications of RNA nucleotides has been known for decades, in most RNA species the exact positions of these modifications and their physiological function have been elusive until recently. Technological advances, such as high-throughput next-generation sequencing (NGS) methods and nanopore-based mapping technologies, have made it possible to map the position of these modifications with single nucleotide accuracy, and genetic screens have uncovered the “writer”, “reader” and “eraser” proteins that help to install, interpret and remove such modifications, respectively. These discoveries led to intensive research programmes with the aim of uncovering the roles of these modifications during diverse biological processes. In this review, we assess novel discoveries related to the role of post-transcriptional modifications during animal development, highlighting how these discoveries can affect multiple aspects of development from fertilization to differentiation in many species.
Collapse
|
49
|
Weinreb JT, Bowman TV. Clinical and mechanistic insights into the roles of DDX41 in haematological malignancies. FEBS Lett 2022; 596:2736-2745. [PMID: 36036093 PMCID: PMC9669125 DOI: 10.1002/1873-3468.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022]
Abstract
DEAD-box Helicase 41 (DDX41) is a member of the DExD/H-box helicase family that has a variety of cellular functions. Of note, germline and somatic mutations in the DDX41 gene are prevalently found in myeloid malignancies. Here, we present a comprehensive and analytic review covering relevant clinical, translational and basic science findings on DDX41. We first describe the initial characterisation of DDX41 mutations in patients affected by myelodysplastic syndromes, their associated clinical characteristics, and current treatment modalities. We then cover the known cellular functions of DDX41, spanning from its discovery in Drosophila as a neuroregulator through its more recently described roles in inflammatory signalling, R-loop metabolism and snoRNA processing. We end with a summary of the identified basic functions of DDX41 that when perturbed may contribute to the underlying pathology of haematologic neoplasms.
Collapse
Affiliation(s)
- Joshua T. Weinreb
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA
- Albert Einstein College of Medicine, Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
| | - Teresa V. Bowman
- Albert Einstein College of Medicine, Department of Developmental and Molecular Biology, Bronx, NY, USA
- Albert Einstein College of Medicine, Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Bronx, NY, USA
- Albert Einstein College of Medicine and the Montefiore Medical Center, Department of Oncology, Bronx, NY, USA
| |
Collapse
|
50
|
Proteomic and phosphoproteomic landscapes of acute myeloid leukemia. Blood 2022; 140:1533-1548. [PMID: 35895896 PMCID: PMC9523374 DOI: 10.1182/blood.2022016033] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/14/2022] [Indexed: 01/21/2023] Open
Abstract
We have developed a deep-scale proteome and phosphoproteome database from 44 representative acute myeloid leukemia (AML) patients from the LAML TCGA dataset and 6 healthy bone marrow-derived controls. After confirming data quality, we orthogonally validated several previously undescribed features of AML revealed by the proteomic data. We identified examples of posttranscriptionally regulated proteins both globally (ie, in all AML samples) and also in patients with recurrent AML driver mutations. For example, samples with IDH1/2 mutations displayed elevated levels of the 2-oxoglutarate-dependent histone demethylases KDM4A/B/C, despite no changes in messenger RNA levels for these genes; we confirmed this finding in vitro. In samples with NPMc mutations, we identified several nuclear importins with posttranscriptionally increased protein abundance and showed that they interact with NPMc but not wild-type NPM1. We identified 2 cell surface proteins (CD180 and MRC1/CD206) expressed on AML blasts of many patients (but not healthy CD34+ stem/progenitor cells) that could represent novel targets for immunologic therapies and confirmed these targets via flow cytometry. Finally, we detected nearly 30 000 phosphosites in these samples; globally, AML samples were associated with the abnormal phosphorylation of specific residues in PTPN11, STAT3, AKT1, and PRKCD. FLT3-TKD samples were associated with increased phosphorylation of activating tyrosines on the cytoplasmic Src-family tyrosine kinases FGR and HCK and related signaling proteins. PML-RARA-initiated AML samples displayed a unique phosphorylation signature, and TP53-mutant samples showed abundant phosphorylation of serine-183 on TP53 itself. This publicly available database will serve as a foundation for further investigations of protein dysregulation in AML pathogenesis.
Collapse
|