1
|
Walsh AE, Lukens JR. Harnessing microglia-based cell therapies for the treatment of neurodegenerative diseases. Curr Opin Immunol 2025; 94:102552. [PMID: 40138748 DOI: 10.1016/j.coi.2025.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Given the growing evidence linking microglia to the onset and progression of various neurodegenerative diseases, these brain-resident macrophages have emerged as a promising cell type for targeted therapeutic interventions. This review highlights recent studies that utilized innovative, microglia-focused strategies for the treatment of diverse neurodegenerative disorders including lysosomal storage disorders, granulin frontotemporal dementia, and Alzheimer's disease. Cutting-edge therapeutic strategies range from replacing faulty microglia with peripheral macrophage precursors or induced human pluripotent stem cell-derived microglia to engineering microglia that target toxic aggregates or deliver remediating payloads. We also examine the potential limitations as well as the clinical benefits of these strategies.
Collapse
Affiliation(s)
- Adeline E Walsh
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA; Molecular Physiology and Biological Physics Graduate Program, UVA, Charlottesville, VA 22908, USA; Biotechnology Training Program, UVA, Charlottesville, VA 22908, USA
| | - John R Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA; Molecular Physiology and Biological Physics Graduate Program, UVA, Charlottesville, VA 22908, USA; Biotechnology Training Program, UVA, Charlottesville, VA 22908, USA.
| |
Collapse
|
2
|
Li Y, Fan Q, Pang R, Cai L, Qi J, Chen W, Zhang Y, Chen C, Yu W, Li P. Semaglultide targets Spp1 + microglia/macrophage to attenuate neuroinflammation following perioperative stroke. J Neuroinflammation 2025; 22:143. [PMID: 40426210 PMCID: PMC12117698 DOI: 10.1186/s12974-025-03465-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Peripheral surgery evokes neuroimmune activation in the central nervous system and modulates immune cell polarization in the ischemic brain. However, the phenotypic change of microglia and myeloid cells within post-surgical ischemic brain tissue remain poorly defined. Using an integrated approach that combines single-cell RNA sequencing with comprehensive biological analysis in a perioperative ischemic stroke (PIS) model, we identified a distinct Spp1-positive macrophage/microglia (Spp1+ Mac/MG) subgroup that exhibit enriched anti-inflammatory pathways with distinct lipid metabolic reprogrammed profile. Moreover, using immunofluorescence staining, we identified the expression of Glucagon-like peptide-1 receptor (GLP1R) in Spp1+F4/80+ cells and Spp1+Iba-1+ cells. Intraperitoneal administration of semaglutide, a GLP1R agonist clinically approved for the treatment of type 2 diabetes mellitus, resulted in a significant reduction of cerebral infarct volume in PIS mice compared to that in ischemic stroke (IS) mice. Meanwhile, semaglutide treatment also increased the proportion of Spp1+Edu+Iba-1+ cells 3 days after PIS. Using high-parameter flow cytometry, immunofluorescence staining and RNA sequencing, we demonstrated that semaglutide treatment significantly attenuated the expression of neuroinflammatory markers in mice following PIS. We also found that semaglutide treatment significantly ameliorated sensorimotor dysfunction up to 3 days after PIS in mice. Our current finding reveal a novel protective Spp1+Mac/MG subset after PIS and demonstrated that it can be upregulated by semaglutide. We propose that targeting Spp1+Mac/MG subsets using semaglutide could serve as a promising strategy to attenuate the exacerbated neuroinflammation in PIS.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Qiuyue Fan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Rui Pang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Ling Cai
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Jie Qi
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Weijie Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Yueman Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Chen Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China.
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China.
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China.
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Frosch M, Prinz M. Niche-specific therapeutic targeting of myeloid cells in the central nervous system. Immunity 2025; 58:1101-1119. [PMID: 40324377 DOI: 10.1016/j.immuni.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 05/07/2025]
Abstract
The central nervous system (CNS) can be subdivided into distinct anatomical and functional compartments, including the parenchyma, perivascular space, leptomeninges, and dura mater, etc. Each compartment hosts distinct immune cell populations, such as monocytes and diverse macrophages, which play critical roles in local tissue homeostasis and regional disease pathogenesis. Advances in single-cell technologies have revealed complex immune cell compositions and functions in these anatomical regions. This review summarizes the latest approaches for modulating myeloid cell subsets in a compartment-specific manner, including cellular strategies such as stem cell therapy, ex vivo gene treatment, bone marrow transplantation, as well as non-cellular strategies like antibodies, small molecules, and viral gene delivery to augment CNS immune responses and improve disease outcomes. We also discuss the challenges and requirements of translating targeting strategies from mice to humans.
Collapse
Affiliation(s)
- Maximilian Frosch
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Lee SS, Martinez Peña EG, Willis AA, Wang CC, Haddad NR, Garza LA. Cell Therapy and the Skin: Great Potential but in Need of Optimization. J Invest Dermatol 2025; 145:1033-1038. [PMID: 39530953 PMCID: PMC12018158 DOI: 10.1016/j.jid.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024]
Abstract
Cell therapy is rapidly growing owing to its therapeutic potential for diseases with currently poor outcomes. Cell therapy encompasses both nonengineered and engineered cells and possesses unique abilities such as sense-and-respond functions and long-term engraftment for persistent curative potential. Cell therapy capabilities have expanded to address a wide spectrum of diseases, and our review is focused on dermatological applications. The use of fibroblasts and keratinocytes as cell therapy has shown promise in skin disorders such as epidermolysis bullosa. Future efforts include testing the ability of fibroblasts to reprogram nonvolar to volar skin to reduce stump dermatoses in patients with limb loss using prosthetics.
Collapse
Affiliation(s)
- Sam S Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | - Aiden A Willis
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chen Chia Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nina Rossa Haddad
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Luis A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
5
|
Sun J, Teng F, Cao Y, Pei H, Ma L, Wei W, Li H. Peripheral blood immune cell phenotypes and Alzheimer's disease: A mediation Mendelian randomization study. J Alzheimers Dis 2025; 105:622-633. [PMID: 40232262 DOI: 10.1177/13872877251330503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
BackgroundAlzheimer's disease (AD) is a debilitating neurodegenerative disorder. Although peripheral immune cells have been implicated in the pathology of AD, the causal relationship between peripheral blood immune cells and AD remains to be fully elucidated.ObjectiveTo examine the association between peripheral blood immune cell phenotypes and AD, mediated by peripheral blood metabolite, a two-step Mendelian randomization (MR) analysis was performed.MethodsSummary statistics were obtained from the two largest independent cohorts. We explored bidirectional univariable MR analysis to explore causal associations and assessed the mediated proportion of peripheral blood metabolite phenotypes.ResultsThe proportion of IgD + CD38- B cells (Bm1) were found to increase the risk of AD in both the FinnGen database (p = 0.033) and the UK Biobank (p = 0.034). Conversely, hematopoietic stem cells were associated with a decreased risk of AD in the FinnGen database (p = 0.045) and the UK Biobank (p = 0.017). Mediation analysis revealed indirect effects of the proportion of Bm1 on AD through cysteine levels (β = 5 × 10-3), Acetylcarnitine (C2) to propionylcarnitine (C3) ratio (β = 4.5 × 10-3), and Gamma-glutamyl-alpha-lysine levels (β = 2.6 × 10-3), with mediated proportion of 19.4%, 16.9% and 9.6% of the total effect, respectively. Additionally, hematopoietic stem cells influenced AD through Glycolithocholate sulfate levels (β = 1.5 × 10-3), with a mediated proportion of 3.5%.ConclusionsOur findings demonstrate that two peripheral blood immune cell phenotypes impact the risk of AD. These immune cells may influence AD through various peripheral blood metabolite, identifying potential intervention targets for individuals at risk.
Collapse
Affiliation(s)
- Jiahui Sun
- Wangjing Hospital of China Academy of Chinese Medicine Sciences, Beijing, China
| | - Fei Teng
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yu Cao
- Xiyuan Hospital of China Academy of Chinese Medicine Sciences, Beijing, China
| | - Hui Pei
- Xiyuan Hospital of China Academy of Chinese Medicine Sciences, Beijing, China
| | - Lina Ma
- Xiyuan Hospital of China Academy of Chinese Medicine Sciences, Beijing, China
| | - Wei Wei
- Wangjing Hospital of China Academy of Chinese Medicine Sciences, Beijing, China
| | - Hao Li
- Wangjing Hospital of China Academy of Chinese Medicine Sciences, Beijing, China
| |
Collapse
|
6
|
Chen D, Wang C, Chen X, Li J, Chen S, Li Y, Ma F, Li T, Zou M, Li X, Huang X, Zhang YW, Zhao Y, Bu G, Zheng H, Chen XF, Zhang J, Zhong L. Brain-wide microglia replacement using a nonconditioning strategy ameliorates pathology in mouse models of neurological disorders. Sci Transl Med 2025; 17:eads6111. [PMID: 40305572 DOI: 10.1126/scitranslmed.ads6111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/08/2025] [Accepted: 02/26/2025] [Indexed: 05/02/2025]
Abstract
Growing genetic and pathological evidence has identified microglial dysfunction as a key contributor to the pathogenesis and progression of various neurological disorders, positioning microglia replacement as a promising therapeutic strategy. Traditional bone marrow transplantation (BMT) methods for replenishing brain microglia have limitations, including low efficiency and the potential for brain injury because of preconditioning regimens, such as irradiation or chemotherapy. Moreover, BM-derived cells that migrate to the brain do not recapitulate the phenotypic and functional properties of resident microglia. Here, we present a microglia transplantation strategy devoid of any conditioning, termed "tricyclic microglial depletion for transplantation" (TCMDT). This approach leverages three cycles of microglial depletion using the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX3397, creating an optimal window for efficient engraftment of exogenous microglia. Transplantation of primary cultured microglia by TCMDT successfully restored the identity and functions of endogenous microglia. To evaluate the therapeutic potential of TCMDT, we applied this strategy to two distinct mouse models of neurologic disorder. In a Sandhoff disease model, a neurodegenerative lysosomal storage disorder caused by hexosaminidase subunit beta (Hexb) deficiency, TCMDT effectively replaced deficient microglia, attenuating neurodegeneration and improving motor performance. Similarly, in an Alzheimer's disease (AD)-related amyloid mouse model carrying the triggering receptor expressed on myeloid cells 2 (Trem2) R47H mutation, our transplantation strategy rescued microglial dysfunction and mitigated AD-related pathology. Overall, our study introduces TCMDT as a practical, efficient, and safe approach for microglia replacement, suggesting therapeutic potential for treating neurological disorders associated with microglial dysfunction.
Collapse
Affiliation(s)
- Dadian Chen
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Chen Wang
- Department of Neurology and Department of Neuroscience, Xiamen Medical Quality Control Center for Neurology, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Xi Chen
- Department of Neurosurgery, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiayu Li
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Shuai Chen
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yanzhong Li
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Fangling Ma
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Tingting Li
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengling Zou
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xin Li
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaohua Huang
- Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yun-Wu Zhang
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yingjun Zhao
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Guojun Bu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Honghua Zheng
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiao-Fen Chen
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518063, China
| | - Jie Zhang
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Li Zhong
- Xiamen Key Laboratory of Brain Center, First Affiliated Hospital of Xiamen University and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong 518063, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
7
|
Papetti AV, Jin M, Ma Z, Stillitano AC, Jiang P. Chimeric brain models: Unlocking insights into human neural development, aging, diseases, and cell therapies. Neuron 2025:S0896-6273(25)00256-9. [PMID: 40300597 DOI: 10.1016/j.neuron.2025.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/07/2025] [Accepted: 03/31/2025] [Indexed: 05/01/2025]
Abstract
Human-rodent chimeric brain models serve as a unique platform for investigating the pathophysiology of human cells within a living brain environment. These models are established by transplanting human tissue- or human pluripotent stem cell (hPSC)-derived macroglial, microglial, or neuronal lineage cells, as well as cerebral organoids, into the brains of host animals. This approach has opened new avenues for exploring human brain development, disease mechanisms, and regenerative processes. Here, we highlight recent advancements in using chimeric models to study human neural development, aging, and disease. Additionally, we explore the potential applications of these models for studying human glial cell-replacement therapies, studying in vivo human glial-to-neuron reprogramming, and harnessing single-cell omics and advanced functional assays to uncover detailed insights into human neurobiology. Finally, we discuss strategies to enhance the precision and translational relevance of these models, expanding their impact in stem cell and neuroscience research.
Collapse
Affiliation(s)
- Ava V Papetti
- Department of Cell Biology and Neuroscience, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - Ziyuan Ma
- Department of Cell Biology and Neuroscience, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - Alessandro C Stillitano
- Department of Cell Biology and Neuroscience, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA.
| |
Collapse
|
8
|
Chadarevian JP, Davtyan H, Chadarevian AL, Nguyen J, Capocchi JK, Le L, Escobar A, Chadarevian T, Mansour K, Deynega E, Mgerian M, Tu C, Kiani Shabestari S, Carlen-Jones W, Eskandari-Sedighi G, Hasselmann J, Spitale RC, Blurton-Jones M. Harnessing human iPSC-microglia for CNS-wide delivery of disease-modifying proteins. Cell Stem Cell 2025:S1934-5909(25)00099-2. [PMID: 40233761 DOI: 10.1016/j.stem.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/03/2024] [Accepted: 03/17/2025] [Indexed: 04/17/2025]
Abstract
Widespread delivery of therapeutic proteins to the brain remains challenging. To determine whether human induced pluripotent stem cell (iPSC)-microglia (iMG) could enable brain-wide and pathology-responsive delivery of therapeutic cargo, we utilized CRISPR gene editing to engineer iMG to express the Aβ-degrading enzyme neprilysin under control of the plaque-responsive promoter, CD9. To further determine whether increased engraftment enhances efficacy, we utilized a CSF1R-inhibitor resistance approach. Interestingly, both localized and brain-wide engraftment in Alzheimer's disease (AD) mice reduced multiple biochemical measures of pathology. However, within the plaque-dense subiculum, reductions in plaque load, dystrophic neurites, and astrogliosis and preservation of neuronal density were only achieved following widespread microglial engraftment. Lastly, we examined chimeric models of breast cancer brain metastases and demyelination, demonstrating that iMG adopt diverse transcriptional responses to differing neuropathologies, which could be harnessed to enable widespread and pathology-responsive delivery of therapeutics to the CNS.
Collapse
Affiliation(s)
- Jean Paul Chadarevian
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Hayk Davtyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Alina L Chadarevian
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Jasmine Nguyen
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Joia K Capocchi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Lauren Le
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Adrian Escobar
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Talar Chadarevian
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Kimiya Mansour
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Ekaterina Deynega
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Michael Mgerian
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Christina Tu
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Sepideh Kiani Shabestari
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - William Carlen-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Ghazaleh Eskandari-Sedighi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Jonathan Hasselmann
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
9
|
Wang Y, Cao Y, Xie W, Guo Y, Cai J, Huang T, Li P. Advances in clinical translation of stem cell-based therapy in neurological diseases. J Cereb Blood Flow Metab 2025; 45:600-616. [PMID: 39883811 PMCID: PMC11783424 DOI: 10.1177/0271678x251317374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Stem cell-based therapies have raised considerable interest to develop regenerative treatment for neurological disorders with high disability. In this review, we focus on recent preclinical and clinical evidence of stem cell therapy in the treatment of degenerative neurological diseases and discuss different cell types, delivery routes and biodistribution of stem cell therapy. In addition, recent advances of mechanistic insights of stem cell therapy, including functional replacement by exogenous cells, immunomodulation and paracrine effects of stem cell therapies are also demonstrated. Finally, we also highlight the adjunction approaches that has been implemented to augment their reparative function, survival and migration to target specific tissue, including stem cell preconditioning, genetical engineering, co-transplantation and combined therapy.
Collapse
Affiliation(s)
- Yu Wang
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yirong Cao
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Wanqing Xie
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Yunlu Guo
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Jiayi Cai
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Huang
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Peiying Li
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| |
Collapse
|
10
|
Cai J, Liu Y, Fan H. Review on pathogenesis and treatment of Alzheimer's disease. Dev Dyn 2025; 254:296-309. [PMID: 39651698 DOI: 10.1002/dvdy.762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/11/2024] Open
Abstract
The rising incidence of Alzheimer's disease (AD) and the associated economic impacts has prompted a global focus in the field. In recent years, there has been a growing understanding of the pathogenic mechanisms of AD, including the aggregation of β-amyloid, hyperphosphorylated tau, and neuroinflammation. These processes collectively lead to neurodegeneration and cognitive decline, which ultimately results in the loss of autonomy in patients. Currently, there are three main types of AD treatments: clinical tools, pharmacological treatment, and material interventions. This review provides a comprehensive analysis of the underlying etiology and pathogenesis of AD, as well as an overview of the current prevalence of AD treatments. We believe this article can help deepen our understanding of the AD mechanism, and facilitate the clinical translation of scientific research or therapies, to address this global problem of AD.
Collapse
Affiliation(s)
- Jinxia Cai
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yanqing Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| |
Collapse
|
11
|
Rao C, Semrau S, Fossati V. Decoding microglial functions in Alzheimer's disease: insights from human models. Trends Immunol 2025; 46:310-323. [PMID: 40113535 PMCID: PMC11993344 DOI: 10.1016/j.it.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Microglia, key orchestrators of the brain's immune responses, play a pivotal role in the progression of Alzheimer's disease (AD). Emerging human models, including stem cell-derived microglia and cerebral organoids, are transforming our understanding of microglial contributions to AD pathology. In this review, we highlight how these models have uncovered human-specific microglial responses to amyloid plaques and their regulation of neuroinflammation, which are not recapitulated in animal models. We also illustrate how advanced human models that better mimic brain physiology and AD pathology are providing unprecedented insights into the multifaceted roles of microglia. These innovative approaches, combined with sophisticated technologies for cell editing and analysis, are shaping AD research and opening new avenues for therapeutic interventions targeting microglia.
Collapse
Affiliation(s)
- Chandrika Rao
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Stefan Semrau
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY, USA.
| |
Collapse
|
12
|
Yu J, Ji L, Liu Y, Wang X, Wang J, Liu C. Bone-brain interaction: mechanisms and potential intervention strategies of biomaterials. Bone Res 2025; 13:38. [PMID: 40097409 PMCID: PMC11914511 DOI: 10.1038/s41413-025-00404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/02/2024] [Accepted: 12/31/2024] [Indexed: 03/19/2025] Open
Abstract
Following the discovery of bone as an endocrine organ with systemic influence, bone-brain interaction has emerged as a research hotspot, unveiling complex bidirectional communication between bone and brain. Studies indicate that bone and brain can influence each other's homeostasis via multiple pathways, yet there is a dearth of systematic reviews in this area. This review comprehensively examines interactions across three key areas: the influence of bone-derived factors on brain function, the effects of brain-related diseases or injuries (BRDI) on bone health, and the concept of skeletal interoception. Additionally, the review discusses innovative approaches in biomaterial design inspired by bone-brain interaction mechanisms, aiming to facilitate bone-brain interactions through materiobiological effects to aid in the treatment of neurodegenerative and bone-related diseases. Notably, the integration of artificial intelligence (AI) in biomaterial design is highlighted, showcasing AI's role in expediting the formulation of effective and targeted treatment strategies. In conclusion, this review offers vital insights into the mechanisms of bone-brain interaction and suggests advanced approaches to harness these interactions in clinical practice. These insights offer promising avenues for preventing and treating complex diseases impacting the skeleton and brain, underscoring the potential of interdisciplinary approaches in enhancing human health.
Collapse
Affiliation(s)
- Jiaze Yu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Luli Ji
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yongxian Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaogang Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Changsheng Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China.
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
13
|
Schaible P, Henschel J, Erny D. How the gut microbiota impacts neurodegenerative diseases by modulating CNS immune cells. J Neuroinflammation 2025; 22:60. [PMID: 40033338 PMCID: PMC11877772 DOI: 10.1186/s12974-025-03371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. Amyloid-β (Aβ) accumulation and neurofibrillary tangles are two key histological features resulting in progressive and irreversible neuronal loss and cognitive decline. The macrophages of the central nervous system (CNS) belong to the innate immune system and comprise parenchymal microglia and CNS-associated macrophages (CAMs) at the CNS interfaces (leptomeninges, perivascular space and choroid plexus). Microglia and CAMs have received attention as they may play a key role in disease onset and progression e. g., by clearing amyloid beta (Aβ) through phagocytosis. Genome-wide association studies (GWAS) have revealed that human microglia and CAMs express numerous risk genes for AD, further highlighting their potentially critical role in AD pathogenesis. Microglia and CAMs are tightly controlled by environmental factors, such as the host microbiota. Notably, it was further reported that the composition of the gut microbiota differed between AD patients and healthy individuals. Hence, emerging studies have analyzed the impact of gut bacteria in different preclinical mouse models for AD as well as in clinical studies, potentially enabling promising new therapeutic options.
Collapse
Affiliation(s)
- Philipp Schaible
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Julia Henschel
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Erny
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| |
Collapse
|
14
|
Calvo B, Schembri-Wismayer P, Durán-Alonso MB. Age-Related Neurodegenerative Diseases: A Stem Cell's Perspective. Cells 2025; 14:347. [PMID: 40072076 PMCID: PMC11898746 DOI: 10.3390/cells14050347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Neurodegenerative diseases encompass a number of very heterogeneous disorders, primarily characterized by neuronal loss and a concomitant decline in neurological function. Examples of this type of clinical condition are Alzheimer's Disease, Parkinson's Disease, Huntington's Disease and Amyotrophic Lateral Sclerosis. Age has been identified as a major risk in the etiology of these disorders, which explains their increased incidence in developed countries. Unfortunately, despite continued and intensive efforts, no cure has yet been found for any of these diseases; reliable markers that allow for an early diagnosis of the disease and the identification of key molecular events leading to disease onset and progression are lacking. Altered adult neurogenesis appears to precede the appearance of severe symptoms. Given the scarcity of human samples and the considerable differences with model species, increasingly complex human stem-cell-based models are being developed. These are shedding light on the molecular alterations that contribute to disease development, facilitating the identification of new clinical targets and providing a screening platform for the testing of candidate drugs. Moreover, the secretome and other promising features of these cell types are being explored, to use them as replacement cells of high plasticity or as co-adjuvant therapy in combinatorial treatments.
Collapse
Affiliation(s)
- Belén Calvo
- Faculty of Health Sciences, Catholic University of Ávila, 05005 Ávila, Spain;
| | - Pierre Schembri-Wismayer
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - María Beatriz Durán-Alonso
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
15
|
Wu X, Miller JA, Lee BTK, Wang Y, Ruedl C. Reducing microglial lipid load enhances β amyloid phagocytosis in an Alzheimer's disease mouse model. SCIENCE ADVANCES 2025; 11:eadq6038. [PMID: 39908361 PMCID: PMC11797491 DOI: 10.1126/sciadv.adq6038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025]
Abstract
Macrophages accumulate lipid droplets (LDs) under stress and inflammatory conditions. Despite the presence of LD-loaded macrophages in many tissues, including the brain, their contribution to neurodegenerative disorders remains elusive. This study investigated the role of lipid metabolism in Alzheimer's disease (AD) by assessing the contribution of LD-loaded brain macrophages, including microglia and border-associated macrophages (BAMs), in an AD mouse model. Particularly, BAMs and activated CD11c+ microglia localized near β amyloid (Aβ) plaques exhibited a pronounced lipid-associated gene signature and a high LD load. Having observed that elevated intracellular LD content correlated inversely with microglial phagocytic activities, we subsequently inhibited LD formation specifically in CX3CR1+ brain macrophages using an inducible APP-KI/Fit2iΔMφ transgenic mouse model. We demonstrated that reducing LD content in microglia and CX3CR1+ BAMs remarkably improved their phagocytic ability. Furthermore, lowering microglial LDs consistently enhanced their efferocytosis capacities and notably reduced Aβ deposition in the brain parenchyma. Therefore, mitigating LD accumulation in brain macrophages provides perspectives for AD treatment.
Collapse
Affiliation(s)
- Xiaoting Wu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - James Alastair Miller
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Bernett Teck Kwong Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yulan Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
16
|
Yu Z, Liu J, Liu Z, Liu X, Tuo J, Li J, Tu Y, Tan Q, Ma Y, Bai Y, Xin J, Huang S, Zeng G, Shi A, Wang J, Liu Y, Bu X, Ye L, Wan Y, Liu T, Chen X, Qiu Z, Gao C, Wang Y. Roles of blood monocytes carrying TREM2 R47H mutation in pathogenesis of Alzheimer's disease and its therapeutic potential in APP/PS1 mice. Alzheimers Dement 2025; 21:e14402. [PMID: 39740209 PMCID: PMC11848385 DOI: 10.1002/alz.14402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION The triggering receptor expressed on myeloid cells 2 (TREM2) arginine-47-histidine (R47H) mutation is a significant risk for Alzheimer's disease (AD) with unclear mechanisms. Previous studies focused on microglial amyloid-β (Aβ) phagocytosis with less attention on the impact of TREM2R47H mutation on blood monocytes. METHODS Bone marrow transplantation (BMT) models were used to assess the contribution of blood monocytes carrying TREM2R47H mutation to AD. RESULTS Aβ phagocytosis was compromised in mouse monocytes carrying the TREM2R47H mutation. Transplantation of bone marrow cells (BMCs) carrying TREM2R47H mutation increased cerebral Aβ burden and aggravated AD-type pathologies. Moreover, the replacement of TREM2R47H-BMCs restored monocytic Aβ phagocytosis, lowered Aβ levels in the blood and brain, and improved cognitive function. DISCUSSION Our study reveals that blood monocytes carrying the TREM2R47H mutation substantially contribute to the pathogenesis of AD, and correcting the TREM2R47H mutation in BMCs would be a potential therapeutic approach for those carrying this mutation. HIGHLIGHTS TREM2R47H mutation compromises the Aβ phagocytosis of blood monocytes. Blood monocytes carrying TREM2R47H mutation contribute substantially to AD pathogenesis. Correction of the TREM2R47H mutation in bone marrow cells ameliorates AD pathologies and cognitive impairments.
Collapse
Affiliation(s)
- Zhong‐Yuan Yu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Institute of Brain and IntelligenceChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Jie Liu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Institute of Brain and IntelligenceChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Zhi‐Hao Liu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiao‐Yu Liu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Department of NeurologyThe 991st Hospital of Chinese People's Liberation Army Joint Logistic Support ForceXiangyangChina
| | - Jin‐Mei Tuo
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Jiang‐Hui Li
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Yun‐Feng Tu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Qi Tan
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Yuan‐Yuan Ma
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Yu‐Di Bai
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Jia‐Yan Xin
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Shan Huang
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Gui‐Hua Zeng
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - An‐Yu Shi
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Jun Wang
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Yu‐Hui Liu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Xian‐Le Bu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
| | - Li‐Lin Ye
- Institute of ImmunologyThird Military Medical UniversityChongqingChina
| | - Ying Wan
- Biomedical Analysis CentreThird Military Medical UniversityChongqingChina
| | - Tong‐Fei Liu
- Institute for Brain Science and DiseaseChongqing Medical UniversityChongqingChina
| | - Xiao‐Wei Chen
- Institute of Brain and IntelligenceChongqingChina
- Brain Research CentreCollaborative Innovation Centre for Brain ScienceThird Military Medical UniversityChongqingChina
| | - Zi‐Long Qiu
- Songjiang HospitalSongjiang InstituteShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chang‐Yue Gao
- Department of Rehabilitation MedicineDaping Hospital, Third Military Medical UniversityChongqingChina
| | - Yan‐Jiang Wang
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, Third Military Medical UniversityChongqingChina
- Institute of Brain and IntelligenceChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
17
|
Gu X, Kang H, Cao S, Tong Z, Song N. Blockade of TREM2 ameliorates pulmonary inflammation and fibrosis by modulating sphingolipid metabolism. Transl Res 2025; 275:1-17. [PMID: 39490681 DOI: 10.1016/j.trsl.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/19/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Pulmonary fibrosis is a chronic interstitial lung disease involving systemic inflammation and abnormal collagen deposition. Dysregulations in lipid metabolism, such as macrophage-dependent lipid catabolism, have been recognized as critical factors for the development of pulmonary fibrosis. However, little is known about the signaling pathways involved and the key regulators. Here we found that triggering receptor expressed on myeloid cells 2 (TREM2) plays a pivotal role in regulating the lipid handling capacities of pulmonary macrophages and triggering fibrosis. By integrating analysis of single-cell and bulk RNA sequencing data from patients and mice with pulmonary fibrosis, we revealed that pulmonary macrophages consist of heterogeneous populations with distinct pro-fibrotic properties, and found that both sphingolipid metabolism and the expression of chemotaxis-related genes are elevated in fibrotic lungs. TREM2, a sensor recognizing multiple lipid species, is specifically upregulated in a subset of monocyte-derived macrophages. Blockade of TREM2 by conventional/conditional knock-out or soluble TREM2 administration can attenuate bleomycin-induced pulmonary fibrosis. By utilizing scRNA Seq and lipidomics, we found that Trem2 deficiency downregulates the synthesis of various sphingomyelins, and inhibits the expression of chemokines such as Ccl2. Together, our findings not only reveal the alterations in lipidomic profiles and the atlas of pulmonary macrophages during pulmonary fibrosis, but also suggest that targeting TREM2, the crucial regulator affecting both pulmonary sphingolipid metabolism and the chemokines secretion, can benefit pulmonary fibrosis patients in the future.
Collapse
Affiliation(s)
- Xueqing Gu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing 100020, China
| | - Hanyujie Kang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing 100020, China
| | - Siyu Cao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing 100020, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing 100020, China.
| | - Nan Song
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing 100020, China; Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
18
|
Maggiore A, Latina V, D'Erme M, Amadoro G, Coccurello R. Non-canonical pathways associated to Amyloid beta and tau protein dyshomeostasis in Alzheimer's disease: A narrative review. Ageing Res Rev 2024; 102:102578. [PMID: 39542177 DOI: 10.1016/j.arr.2024.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Alzheimer's Disease (AD) is the most common form of dementia among elderly people. This disease imposes a significant burden on the healthcare system, society, and economy due to the increasing global aging population. Current trials with drugs or bioactive compounds aimed at reducing cerebral Amyloid beta (Aβ) plaques and tau protein neurofibrillary tangles, which are the two main hallmarks of this devastating neurodegenerative disease, have not provided significant results in terms of their neuropathological outcomes nor met the expected clinical end-points. Ageing, genetic and environmental risk factors, along with different clinical symptoms suggest that AD is a complex and heterogeneous disorder with multiple interconnected pathological pathways rather than a single disease entity. In the present review, we highlight and discuss various non-canonical, Aβ-independent mechanisms, like gliosis, unhealthy dietary intake, lipid and sugar signaling, and cerebrovascular damage that contribute to the onset and development of AD. We emphasize that challenging the traditional "amyloid cascade hypothesis" may improve our understanding of this age-related complex syndrome and help fight the progressive cognitive decline in AD.
Collapse
Affiliation(s)
- Anna Maggiore
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy; Department of Brain Sciences, Imperial College, London, UK
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy
| | - Maria D'Erme
- Department of Biochemical Sciences, Sapienza University, P.le Aldo Moro 5, Rome 00185, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, Rome 00161, Italy; Institute of Translational Pharmacology (IFT) CNR, Via Fosso del Cavaliere 100, Rome 00133, Italy.
| | - Roberto Coccurello
- Institute for Complex System (ISC) CNR, Via dei Taurini 19, Rome 00185, Italy; IRCSS Santa Lucia Foundation, European Center for Brain Research, Via Fosso del Fiorano 64-65, Rome 00143, Italy.
| |
Collapse
|
19
|
Dziewa M, Złotek M, Herbet M, Piątkowska-Chmiel I. Molecular and Cellular Foundations of Aging of the Brain: Anti-aging Strategies in Alzheimer's Disease. Cell Mol Neurobiol 2024; 44:80. [PMID: 39607636 PMCID: PMC11604688 DOI: 10.1007/s10571-024-01514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Alzheimer's disease (AD) is a condition characterized by the gradual degeneration of the nervous system that poses significant challenges to cognitive function and overall mental health. Given the increasing global life expectancy, there is an urgent need for effective strategies to prevent and manage Alzheimer's disease, with a particular focus on anti-aging interventions. Recent scientific advancements have unveiled several promising strategies for combating Alzheimer's disease (AD), ranging from lifestyle interventions to cutting-edge pharmacological treatments and therapies targeting the underlying biological processes of aging and AD. Regular physical exercise, cognitive engagement, a balanced diet, and social interaction serve as key pillars in maintaining brain health. At the same time, therapies target key pathological mechanisms of AD, such as amyloid-beta accumulation, tau abnormalities, neuroinflammation, mitochondrial dysfunction, and synaptic loss, offering potential breakthroughs in treatment. Moreover, cutting-edge innovations such as gene therapy, stem cell transplantation, and novel drug delivery systems are emerging as potential game-changers in the fight against AD. This review critically evaluates the latest research on anti-aging interventions and their potential in preventing and treating Alzheimer's disease (AD) by exploring the connections between aging mechanisms and AD pathogenesis. It provides a comprehensive analysis of both well-established and emerging strategies, while also identifying key gaps in current knowledge to guide future research efforts.
Collapse
Affiliation(s)
- Magdalena Dziewa
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| | - Magdalena Złotek
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland
| | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090, Lublin, Poland.
| |
Collapse
|
20
|
Montepeloso A, Mattioli D, Pellin D, Peviani M, Genovese P, Biffi A. Haploinsufficiency at the CX3CR1 locus of hematopoietic stem cells favors the appearance of microglia-like cells in the central nervous system of transplant recipients. Nat Commun 2024; 15:10192. [PMID: 39587072 PMCID: PMC11589136 DOI: 10.1038/s41467-024-54515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
Transplantation of engineered hematopoietic stem/progenitor cells (HSPCs) showed curative potential in patients affected by neurometabolic diseases treated in early stage. Favoring the engraftment and maturation of the engineered HSPCs in the central nervous system (CNS) could allow enhancing further the therapeutic potential of this approach. Here we unveil that HSPCs haplo-insufficient at the Cx3cr1 (Cx3cr1-/+) locus are favored in central nervous system (CNS) engraftment and generation of microglia-like progeny cells (MLCs) as compared to wild type (Cx3cr1+/+) HSPCs upon transplantation in mice. Based on this evidence, we have developed a CRISPR-based targeted gene addition strategy at the human CX3CR1 locus resulting in an enhanced ability of the edited human HSPCs to generate mature MLCs upon transplantation in immunodeficient mice, and in lineage specific, regulated and robust transgene expression. This approach, which benefits from the modulation of pathways involved in microglia maturation and migration in haplo-insufficient cells, may broaden the application of HSPC gene therapy to a larger spectrum of neurometabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Annita Montepeloso
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
- Gene Therapy Consulting, Padua, Italy
| | - Davide Mattioli
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Padua, Padua, Italy
| | - Danilo Pellin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Marco Peviani
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Pietro Genovese
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Alessandra Biffi
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Padua, Padua, Italy.
| |
Collapse
|
21
|
Zhu B, Liu Y, Peng D. The double-edged role and therapeutic potential of TREM2 in atherosclerosis. Biomark Res 2024; 12:131. [PMID: 39497214 PMCID: PMC11533605 DOI: 10.1186/s40364-024-00675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/18/2024] [Indexed: 11/07/2024] Open
Abstract
Atherosclerosis is a chronic lipid-driven inflammatory disease characterized by infiltration of large numbers of macrophages. The progression of the disease is closely related to the status of macrophages in atherosclerotic plaques. Recent advances in plaque analysis have revealed a subpopulation of macrophages that express high levels of triggering receptor expressed on myeloid cells 2 (TREM2). Although TREM2 is known to play a critical role in inflammation, lipid metabolism, and tissue repair, its role in atherosclerosis is still not fully understood. Recent studies have shown that TREM2 promotes macrophage cholesterol uptake and efflux, enhances efferocytosis function, regulates inflammation and metabolism, and promotes cell survival, all of which are significant functions in atherosclerosis. In early plaques TREM2 promotes lipid uptake and increases lesion size. In advanced plaques TREM2 promotes macrophage survival and increases plaque stability. The dualistic nature of TREM2 in atherosclerosis, where it can exert both protective effect and a side effect of increased lesion size, presents a complex but crucial area of study. Understanding these dual roles could help in the development of new therapeutic strategies to modulate TREM2 activity and utilize its atheroprotective function while mitigating its deleterious effects. In this review, we discuss the roles and mechanisms of TREM2 during different stages of atherosclerotic plaques, as well as the potential applications of TREM2 in the diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Botao Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Yuxuan Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
22
|
Fan X, Chen H, He W, Zhang J. Emerging microglial biology highlights potential therapeutic targets for Alzheimer's disease. Ageing Res Rev 2024; 101:102471. [PMID: 39218078 DOI: 10.1016/j.arr.2024.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease is a chronic degenerative disease of the central nervous system, which primarily affects elderly people and accounts for 70-80 % of dementia cases. The current prevailing amyloid cascade hypothesis suggests that Alzheimer's disease begins with the deposition of amyloid β (Aβ) in the brain. Major therapeutic strategies target Aβ production, aggregation, and clearance, although many clinical trials have shown that these therapeutic strategies are not sufficient to completely improve cognitive deficits in AD patients. Recent genome-wide association studies have identified that multiple important regulators are the most significant genetic risk factors for Alzheimer's disease, especially in the innate immune pathways. These genetic risk factors suggest a critical role for microglia, highlighting their therapeutic potential in treating neurodegenerative diseases. In this review, we discuss how these recently documented AD risk genes affect microglial function and AD pathology and how they can be further targeted to regulate microglial states and slow AD progression, especially the highly anticipated APOE and TREM2 targets. We focused on recent findings that modulation of innate and adaptive neuroimmune microenvironment crosstalk reverses cognitive deficits in AD patients. We also considered novel strategies for microglia in AD patients.
Collapse
Affiliation(s)
- Xi Fan
- Department of Immunology, CAMS Key laboratory T cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Chen
- Department of Immunology, CAMS Key laboratory T cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China.
| | - Wei He
- Department of Immunology, CAMS Key laboratory T cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China.
| | - Jianmin Zhang
- Department of Immunology, CAMS Key laboratory T cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, Jiangsu 213000, China.
| |
Collapse
|
23
|
Favero F, Re A, Dason MS, Gravina T, Gagliardi M, Mellai M, Corazzari M, Corà D. Characterization of gut microbiota dynamics in an Alzheimer's disease mouse model through clade-specific marker-based analysis of shotgun metagenomic data. Biol Direct 2024; 19:100. [PMID: 39478626 PMCID: PMC11524029 DOI: 10.1186/s13062-024-00541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder significantly impairing cognitive faculties, memory, and physical abilities. To characterize the modulation of the gut microbiota in an in vivo AD model, we performed shotgun metagenomics sequencing on 3xTgAD mice at key time points (i.e., 2, 6, and 12 months) of AD progression. Fecal samples from both 3xTgAD and wild-type mice were collected, DNA extracted, and sequenced. Quantitative taxon abundance assessment using MetaPhlAn 4 ensured precise microbial community representation. The analysis focused on species-level genome bins (SGBs) including both known and unknown SGBs (kSGBs and uSGBs, respectively) and also comprised higher taxonomic categories such as family-level genome bins (FGBs), class-level genome bins (CGBs), and order-level genome bins (OGBs). Our bioinformatic results pinpointed the presence of extensive gut microbial diversity in AD mice and showed that the largest proportion of AD- and aging-associated microbiome changes in 3xTgAD mice concern SGBs that belong to the Bacteroidota and Firmicutes phyla, along with a large set of uncharacterized SGBs. Our findings emphasize the need for further advanced bioinformatic studies for accurate classification and functional analysis of these elusive microbial species in relation to their potential bridging role in the gut-brain axis and AD pathogenesis.
Collapse
Affiliation(s)
- Francesco Favero
- Department of Translational Medicine (DIMET), University of Piemonte Orientale, Via Solaroli 17, I-28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy
| | - Angela Re
- Department of Applied Science and Technology (DISAT) - Politecnico di Torino, C.so Duca degli Abruzzi, 24, I-10129, Torino, Italy
| | - Mohammed Salim Dason
- Department of Applied Science and Technology (DISAT) - Politecnico di Torino, C.so Duca degli Abruzzi, 24, I-10129, Torino, Italy
| | - Teresa Gravina
- Department of Translational Medicine (DIMET), University of Piemonte Orientale, Via Solaroli 17, I-28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy
| | - Mara Gagliardi
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy
- Department of Health Sciences (DISS), University of Piemonte Orientale, Via Solaroli 17, I- 28100, Novara, Italy
| | - Marta Mellai
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy
- Department of Health Sciences (DISS), University of Piemonte Orientale, Via Solaroli 17, I- 28100, Novara, Italy
| | - Marco Corazzari
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy.
- Department of Health Sciences (DISS), University of Piemonte Orientale, Via Solaroli 17, I- 28100, Novara, Italy.
| | - Davide Corà
- Department of Translational Medicine (DIMET), University of Piemonte Orientale, Via Solaroli 17, I-28100, Novara, Italy.
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), C.so Trieste, 15/A, I-28100, Novara, Italy.
| |
Collapse
|
24
|
Chen Y, Holtzman DM. New insights into innate immunity in Alzheimer's disease: from APOE protective variants to therapies. Trends Immunol 2024; 45:768-782. [PMID: 39278789 DOI: 10.1016/j.it.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024]
Abstract
Recent discoveries of rare variants of human APOE may shed light on novel therapeutic strategies for Alzheimer's disease (AD). Here, we highlight the newly identified protective variant [APOE3 Christchurch (APOE3ch, R136S)] as an example. We summarize human AD and mouse amyloidosis and tauopathy studies from the past 5 years that have been associated with this R136S variant. We also propose a potential mechanism for how this point mutation might lead to protection against AD pathology, from the molecular level, to cells, to mouse models, and potentially, to humans. Lastly, we extend our discussion of the recent insights gained regarding different APOE variants to putative therapeutic approaches in AD.
Collapse
Affiliation(s)
- Yun Chen
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St Louis, St Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St Louis, St Louis, MO 63110, USA.
| |
Collapse
|
25
|
Gao ML, Wang TY, Lin X, Tang C, Li M, Bai ZP, Liu ZC, Chen LJ, Kong QR, Pan SH, Zeng SS, Guo Y, Cai JQ, Huang XF, Zhang J. Retinal Organoid Microenvironment Enhanced Bioactivities of Microglia-Like Cells Derived From HiPSCs. Invest Ophthalmol Vis Sci 2024; 65:19. [PMID: 39392440 PMCID: PMC11472886 DOI: 10.1167/iovs.65.12.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/12/2024] [Indexed: 10/12/2024] Open
Abstract
Purpose Microglia-like cells derived from stem cells (iMG) provide a plentiful cell source for studying the functions of microglia in both normal and pathological conditions. Our goal is to establish a simplified and effective method for generating iMG in a precisely defined system. Additionally, we aim to achieve functional maturation of iMG through coculture with retinal organoids. Methods In this study, iMG were produced under precisely defined conditions. They were subjected to LPS and poly IC stimulation. Additionally, we examined distinct phenotypic and functional variances between iMG and HMC3, a commonly used human microglia cell line. To investigate how the retinal cell interaction enhances microglial properties, iMG were cocultured with retinal organoids, producing CC-iMG. We performed RNA sequencing, electrophysiological analysis, and transmission electron microscope (TEM) to examine the maturation of CC-iMG compared to iMG. Results Our results demonstrated that iMG performed immune-responsive profiles closely resembling those of primary human microglia. Compared to HMC3, iMG expressed a higher level of typical microglial markers and exhibited enhanced phagocytic activity. The transcriptomic analysis uncovered notable alterations in the ion channel profile of CC-iMG compared to iMG. Electrophysiological examination demonstrated a heightened intensity of inward- and outward-rectifying K+ currents in CC-iMG. Furthermore, CC-iMG displayed elevated numbers of lysosomes and mitochondria, coupled with increased phagocytic activity. Conclusions These findings contribute to advancing our understanding of human microglial biology, specifically in characterizing and elucidating the functions of CC-iMG, thereby offering an in vitro microglial model for future scientific research and potential clinical applications in cell therapy.
Collapse
Affiliation(s)
- Mei-Ling Gao
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Tong-Yu Wang
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Xin Lin
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Chun Tang
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Mengyao Li
- Department of Critical Care Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Zhan-Pei Bai
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Cong Liu
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Li-Jun Chen
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qing-Ran Kong
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shao-Hui Pan
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
| | - Shan-Shan Zeng
- China National Institute of Standardization, Beijing, China
| | - Ya Guo
- China National Institute of Standardization, Beijing, China
| | - Jian-Qi Cai
- China National Institute of Standardization, Beijing, China
| | - Xiu-Feng Huang
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Zhang
- The State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, China
- Laboratory of Retinal Physiology and Disease, Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
26
|
Wu Y, Ma B, Liu C, Li D, Sui G. Pathological Involvement of Protein Phase Separation and Aggregation in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:10187. [PMID: 39337671 PMCID: PMC11432175 DOI: 10.3390/ijms251810187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Neurodegenerative diseases are the leading cause of human disability and immensely reduce patients' life span and quality. The diseases are characterized by the functional loss of neuronal cells and share several common pathogenic mechanisms involving the malfunction, structural distortion, or aggregation of multiple key regulatory proteins. Cellular phase separation is the formation of biomolecular condensates that regulate numerous biological processes, including neuronal development and synaptic signaling transduction. Aberrant phase separation may cause protein aggregation that is a general phenomenon in the neuronal cells of patients suffering neurodegenerative diseases. In this review, we summarize the pathological causes of common neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, among others. We discuss the regulation of key amyloidogenic proteins with an emphasis of their aberrant phase separation and aggregation. We also introduce the approaches as potential therapeutic strategies to ameliorate neurodegenerative diseases through intervening protein aggregation. Overall, this review consolidates the research findings of phase separation and aggregation caused by misfolded proteins in a context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yinuo Wu
- Aulin College, Northeast Forestry University, Harbin 150040, China;
| | - Biao Ma
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| | - Chang Liu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| |
Collapse
|
27
|
Chadarevian JP, Hasselmann J, Lahian A, Capocchi JK, Escobar A, Lim TE, Le L, Tu C, Nguyen J, Kiani Shabestari S, Carlen-Jones W, Gandhi S, Bu G, Hume DA, Pridans C, Wszolek ZK, Spitale RC, Davtyan H, Blurton-Jones M. Therapeutic potential of human microglia transplantation in a chimeric model of CSF1R-related leukoencephalopathy. Neuron 2024; 112:2686-2707.e8. [PMID: 38897209 DOI: 10.1016/j.neuron.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Microglia replacement strategies are increasingly being considered for the treatment of primary microgliopathies like adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). However, available mouse models fail to recapitulate the diverse neuropathologies and reduced microglia numbers observed in patients. In this study, we generated a xenotolerant mouse model lacking the fms-intronic regulatory element (FIRE) enhancer within Csf1r, which develops nearly all the hallmark pathologies associated with ALSP. Remarkably, transplantation of human induced pluripotent stem cell (iPSC)-derived microglial (iMG) progenitors restores a homeostatic microglial signature and prevents the development of axonal spheroids, white matter abnormalities, reactive astrocytosis, and brain calcifications. Furthermore, transplantation of CRISPR-corrected ALSP-patient-derived iMG reverses pre-existing spheroids, astrogliosis, and calcification pathologies. Together with the accompanying study by Munro and colleagues, our results demonstrate the utility of FIRE mice to model ALSP and provide compelling evidence that iMG transplantation could offer a promising new therapeutic strategy for ALSP and perhaps other microglia-associated neurological disorders.
Collapse
Affiliation(s)
- Jean Paul Chadarevian
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Jonathan Hasselmann
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Alina Lahian
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Joia K Capocchi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Adrian Escobar
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Tau En Lim
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Lauren Le
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Christina Tu
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Jasmine Nguyen
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Sepideh Kiani Shabestari
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - William Carlen-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Sunil Gandhi
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
| | - Guojun Bu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - David A Hume
- Mater Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Clare Pridans
- University of Edinburgh, University of Edinburgh Center for Inflammation Research, Edinburgh, UK
| | | | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Hayk Davtyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA; Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
28
|
Du S, Drieu A, Cheng Y, Storck SE, Rustenhoven J, Mamuladze T, Bhattarai B, Brioschi S, Nguyen K, Ou F, Cao J, Rodrigues PF, Smirnov I, DeNardo D, Ginhoux F, Cella M, Colonna M, Kipnis J. Brain-Engrafted Monocyte-derived Macrophages from Blood and Skull-Bone Marrow Exhibit Distinct Identities from Microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606900. [PMID: 39211090 PMCID: PMC11361186 DOI: 10.1101/2024.08.08.606900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are thought to originate exclusively from primitive macrophage progenitors in the yolk sac (YS) and to persist throughout life without much contribution from definitive hematopoiesis. Here, using lineage tracing, pharmacological manipulation, and RNA-sequencing, we elucidated the presence and characteristics of monocyte-derived macrophages (MDMs) in the brain parenchyma at baseline and during microglia repopulation, and defined the core transcriptional signatures of brain-engrafted MDMs. Lineage tracing mouse models revealed that MDMs transiently express CD206 during brain engraftment as CD206 + microglia precursors in the YS. We found that brain-engrafted MDMs exhibit transcriptional and epigenetic characteristics akin to meningeal macrophages, likely due to environmental imprinting within the meningeal space. Utilizing parabiosis and skull transplantation, we demonstrated that monocytes from both peripheral blood and skull bone marrow can repopulate microglia-depleted brains. Our results reveal the heterogeneous origins and cellular dynamics of brain parenchymal macrophages at baseline and in models of microglia depletion.
Collapse
|
29
|
Liu Z, Liu M, Xiong Y, Wang Y, Bu X. Crosstalk between bone and brain in Alzheimer's disease: Mechanisms, applications, and perspectives. Alzheimers Dement 2024; 20:5720-5739. [PMID: 38824621 PMCID: PMC11350061 DOI: 10.1002/alz.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 06/04/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that involves multiple systems in the body. Numerous recent studies have revealed bidirectional crosstalk between the brain and bone, but the interaction between bone and brain in AD remains unclear. In this review, we summarize human studies of the association between bone and brain and provide an overview of their interactions and the underlying mechanisms in AD. We review the effects of AD on bone from the aspects of AD pathogenic proteins, AD risk genes, neurohormones, neuropeptides, neurotransmitters, brain-derived extracellular vesicles (EVs), and the autonomic nervous system. Correspondingly, we elucidate the underlying mechanisms of the involvement of bone in the pathogenesis of AD, including bone-derived hormones, bone marrow-derived cells, bone-derived EVs, and inflammation. On the basis of the crosstalk between bone and the brain, we propose potential strategies for the management of AD with the hope of offering novel perspectives on its prevention and treatment. HIGHLIGHTS: The pathogenesis of AD, along with its consequent changes in the brain, may involve disturbing bone homeostasis. Degenerative bone disorders may influence the progression of AD through a series of pathophysiological mechanisms. Therefore, relevant bone intervention strategies may be beneficial for the comprehensive management of AD.
Collapse
Affiliation(s)
- Zhuo‐Ting Liu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease (Third Military Medical University)ChongqingChina
| | - Ming‐Han Liu
- Department of OrthopaedicsXinqiao Hospital, Third Military Medical UniversityChongqingChina
| | - Yan Xiong
- Department of OrthopaedicsDaping Hospital, Third Military Medical UniversityChongqingChina
| | - Yan‐Jiang Wang
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease (Third Military Medical University)ChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
| | - Xian‐Le Bu
- Department of Neurology and Centre for Clinical NeuroscienceDaping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical UniversityChongqingChina
- Chongqing Key Laboratory of Ageing and Brain DiseasesChongqingChina
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease (Third Military Medical University)ChongqingChina
- Institute of Brain and IntelligenceThird Military Medical UniversityChongqingChina
| |
Collapse
|
30
|
Sun Z, Zhang X, So KF, Jiang W, Chiu K. Targeting Microglia in Alzheimer's Disease: Pathogenesis and Potential Therapeutic Strategies. Biomolecules 2024; 14:833. [PMID: 39062547 PMCID: PMC11274940 DOI: 10.3390/biom14070833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Microglia, as resident macrophages in the central nervous system, play a multifunctional role in the pathogenesis of Alzheimer's disease (AD). Their clustering around amyloid-β (Aβ) deposits is a core pathological feature of AD. Recent advances in single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) have revealed dynamic changes in microglial phenotypes over time and across different brain regions during aging and AD progression. As AD advances, microglia primarily exhibit impaired phagocytosis of Aβ and tau, along with the release of pro-inflammatory cytokines that damage synapses and neurons. Targeting microglia has emerged as a potential therapeutic approach for AD. Treatment strategies involving microglia can be broadly categorized into two aspects: (1) enhancing microglial function: This involves augmenting their phagocytic ability against Aβ and cellular debris and (2) mitigating neuroinflammation: Strategies include inhibiting TNF-α signaling to reduce the neuroinflammatory response triggered by microglia. Clinical trials exploring microglia-related approaches for AD treatment have garnered attention. Additionally, natural products show promise in enhancing beneficial effects and suppressing inflammatory responses. Clarifying microglial dynamics, understanding their roles, and exploring novel therapeutic approaches will advance our fight against AD.
Collapse
Affiliation(s)
- Zhongqing Sun
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Ophthalmology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xin Zhang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Kwok-Fai So
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou 510632, China
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Kin Chiu
- Department of Ophthalmology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
31
|
Colella P, Sayana R, Suarez-Nieto MV, Sarno J, Nyame K, Xiong J, Pimentel Vera LN, Arozqueta Basurto J, Corbo M, Limaye A, Davis KL, Abu-Remaileh M, Gomez-Ospina N. CNS-wide repopulation by hematopoietic-derived microglia-like cells corrects progranulin deficiency in mice. Nat Commun 2024; 15:5654. [PMID: 38969669 PMCID: PMC11226701 DOI: 10.1038/s41467-024-49908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
Hematopoietic stem cell transplantation can deliver therapeutic proteins to the central nervous system (CNS) through transplant-derived microglia-like cells. However, current conditioning approaches result in low and slow engraftment of transplanted cells in the CNS. Here we optimized a brain conditioning regimen that leads to rapid, robust, and persistent microglia replacement without adverse effects on neurobehavior or hematopoiesis. This regimen combines busulfan myeloablation and six days of Colony-stimulating factor 1 receptor inhibitor PLX3397. Single-cell analyses revealed unappreciated heterogeneity of microglia-like cells with most cells expressing genes characteristic of homeostatic microglia, brain-border-associated macrophages, and unique markers. Cytokine analysis in the CNS showed transient inductions of myeloproliferative and chemoattractant cytokines that help repopulate the microglia niche. Bone marrow transplant of progranulin-deficient mice conditioned with busulfan and PLX3397 restored progranulin in the brain and eyes and normalized brain lipofuscin storage, proteostasis, and lipid metabolism. This study advances our understanding of CNS repopulation by hematopoietic-derived cells and demonstrates its therapeutic potential for treating progranulin-dependent neurodegeneration.
Collapse
Affiliation(s)
- Pasqualina Colella
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Ruhi Sayana
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Jolanda Sarno
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900, Monza, Italy
| | - Kwamina Nyame
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, 94305, USA
| | - Jian Xiong
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, 94305, USA
| | | | | | - Marco Corbo
- MedGenome, Inc, 348 Hatch Dr, Foster City, CA, 94404, USA
| | - Anay Limaye
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- MedGenome, Inc, 348 Hatch Dr, Foster City, CA, 94404, USA
| | - Kara L Davis
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, 94305, USA
| | - Natalia Gomez-Ospina
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
32
|
Peterman EL, Ploessl DS, Galloway KE. Accelerating Diverse Cell-Based Therapies Through Scalable Design. Annu Rev Chem Biomol Eng 2024; 15:267-292. [PMID: 38594944 DOI: 10.1146/annurev-chembioeng-100722-121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Augmenting cells with novel, genetically encoded functions will support therapies that expand beyond natural capacity for immune surveillance and tissue regeneration. However, engineering cells at scale with transgenic cargoes remains a challenge in realizing the potential of cell-based therapies. In this review, we introduce a range of applications for engineering primary cells and stem cells for cell-based therapies. We highlight tools and advances that have launched mammalian cell engineering from bioproduction to precision editing of therapeutically relevant cells. Additionally, we examine how transgenesis methods and genetic cargo designs can be tailored for performance. Altogether, we offer a vision for accelerating the translation of innovative cell-based therapies by harnessing diverse cell types, integrating the expanding array of synthetic biology tools, and building cellular tools through advanced genome writing techniques.
Collapse
Affiliation(s)
- Emma L Peterman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Deon S Ploessl
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Kate E Galloway
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
33
|
Biffi A. Hematopoietic stem cell gene therapy to halt neurodegeneration. Neurotherapeutics 2024; 21:e00440. [PMID: 39276677 PMCID: PMC11417237 DOI: 10.1016/j.neurot.2024.e00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/17/2024] Open
Abstract
Microglia play fundamental roles in multiple pathological primary and secondary processes affecting the central nervous system that ultimately result in neurodegeneration and for this reason they are considered as a key therapeutic target in several neurodegenerative diseases. Microglia-targeted therapies are directed at either restoring or modulating microglia function, to redirect their functional features toward neuroprotection. Among these strategies, hematopoietic stem cell gene therapy have proven to be endowed with a unique potential for replacing diseased microglia with engineered, transplant progeny cells that can integrate and exert relevant beneficial effects in the central nervous system of patients affected by inherited and acquired neurodegenerative conditions.
Collapse
Affiliation(s)
- Alessandra Biffi
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Women and Child's Health, University of Padova and Padova University Hospital, Padova, Italy.
| |
Collapse
|
34
|
Dou Y, Nian Z, Wang D, Sun G, Zhou L, Hu Z, Ke J, Zhu X, Sun R, Tian Z, Fu B, Zhou Y, Wei H. Reconstituted CD74 + NK cells trigger chronic graft versus host disease after allogeneic bone marrow transplantation. J Autoimmun 2024; 147:103274. [PMID: 38936148 DOI: 10.1016/j.jaut.2024.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Chronic graft-versus-host disease (cGVHD) is the most common long-term complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The patients with pulmonary cGVHD in particular have a very poor prognosis. NK cells are the first reconstituted lymphocyte subset after allo-HSCT; however, the impact of reconstituted NK cells on cGVHD is unclear. Here, we found allogeneic recipients showed obvious pulmonary cGVHD. Surprisingly, deletion of reconstituted NK cells resulted in maximal relief of pulmonary cGVHD. Mechanistically, reconstituted NK cells with donor profiles modulated the pulmonary inflammatory microenvironment to trigger cGVHD. Reconstituted NK cells secreted IFN-γ and TNF-α to induce CXCL10 production by epithelial cells, which recruited macrophages and CD4+ T cells to the lungs. Then macrophages and CD4+ T cells were activated by the inflammatory microenvironment, thereby mediating lung injury. Through assessment of differences in cellular energy, we found that CD74+ NK cells with high mitochondrial potential and pro-inflammatory activity triggered pulmonary cGVHD. Furthermore, targeted elimination of CD74+ NK cells using the anti-CD74 antibody significantly alleviated pulmonary cGVHD but preserved the CD74- NK cells to exert graft-versus-leukemia (GVL) effects. Data from human samples corroborated our findings in mouse models. Collectively, our results reveal that reconstituted CD74+ NK cells trigger pulmonary cGVHD and suggest that administration of CD74 antibody was a potential therapeutic for patients with cGVHD.
Collapse
Affiliation(s)
- Yingchao Dou
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Nian
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Dongyao Wang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China; Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Guangyu Sun
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China; Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Li Zhou
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziming Hu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Jieqi Ke
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China; Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Rui Sun
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Binqing Fu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China.
| | - Yonggang Zhou
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China.
| | - Haiming Wei
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institute of Immunology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
35
|
Jiang S, Cai G, Yang Z, Shi H, Zeng H, Ye Q, Hu Z, Wang Z. Biomimetic Nanovesicles as a Dual Gene Delivery System for the Synergistic Gene Therapy of Alzheimer's Disease. ACS NANO 2024; 18:11753-11768. [PMID: 38649866 DOI: 10.1021/acsnano.3c13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The association between dysfunctional microglia and amyloid-β (Aβ) is a fundamental pathological event and increases the speed of Alzheimer's disease (AD). Additionally, the pathogenesis of AD is intricate and a single drug may not be enough to achieve a satisfactory therapeutic outcome. Herein, we reported a facile and effective gene therapy strategy for the modulation of microglia function and intervention of Aβ anabolism by ROS-responsive biomimetic exosome-liposome hybrid nanovesicles (designated as TSEL). The biomimetic nanovesicles codelivery β-site amyloid precursor protein cleaving enzyme-1 (BACE1) siRNA (siBACE1) and TREM2 plasmid (pTREM2) gene drug efficiently penetrate the blood-brain barrier and enhance the drug accumulation at AD lesions with the help of exosomes homing ability and angiopep-2 peptides. Specifically, an upregulation of TREM2 expression can reprogram microglia from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype while also restoring its capacity to phagocytose Aβ and its nerve repair function. In addition, siRNA reduces the production of Aβ plaques at the source by knocking out the BACE1 gene, which is expected to further enhance the therapeutic effect of AD. The in vivo study suggests that TSEL through the synergistic effect of two gene drugs can ameliorate APP/PS1 mice cognitive impairment by regulating the activated microglial phenotype, reducing the accumulation of Aβ, and preventing the retriggering of neuroinflammation. This strategy employs biomimetic nanovesicles for the delivery of dual nucleic acids, achieving synergistic gene therapy for AD, thus offering more options for the treatment of AD.
Collapse
Affiliation(s)
- Sujun Jiang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Guoen Cai
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Zhimin Yang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Haoyuan Shi
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Huajie Zeng
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Qinyong Ye
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Zhiyuan Hu
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zihua Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
36
|
Sharma M, Pal P, Gupta SK. The neurotransmitter puzzle of Alzheimer's: Dissecting mechanisms and exploring therapeutic horizons. Brain Res 2024; 1829:148797. [PMID: 38342422 DOI: 10.1016/j.brainres.2024.148797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's Disease (AD) represents a complex interplay of neurological pathways and molecular mechanisms, with significant impacts on patients' lives. This review synthesizes the latest developments in AD research, focusing on both the scientific advancements and their clinical implications. We examine the role of microglia in AD, highlighting their contribution to the disease's inflammatory aspects. The cholinergic hypothesis, a cornerstone of AD research, is re-evaluated, including the role of Alpha-7 Nicotinic Acetylcholine Receptors in disease progression. This review places particular emphasis on the neurotransmission systems, exploring the therapeutic potential of GABAergic neurotransmitters and the role of NMDA inhibitors in the context of glutamatergic neurotransmission. By analyzing the interactions and implications of neurotransmitter pathways in AD, we aim to shed light on emerging therapeutic strategies. In addition to molecular insights, the review addresses the clinical and personal aspects of AD, underscoring the need for patient-centered approaches in treatment and care. The final section looks at the future directions of AD research and treatment, discussing the integration of scientific innovation with patient care. This review aims to provide a comprehensive update on AD, merging scientific insights with practical considerations, suitable for both specialists and those new to the field.
Collapse
Affiliation(s)
- Monika Sharma
- Faculty of Pharmacy, Department of Pharmacology, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Sukesh Kumar Gupta
- Department of Anatomy and Neurobiology, School of Medicine, University of California, USA.
| |
Collapse
|
37
|
Correa-da-Silva F, Carter J, Wang XY, Sun R, Pathak E, Kuhn JMM, Schriever SC, Maya-Monteiro CM, Jiao H, Kalsbeek MJ, Moraes-Vieira PMM, Gille JJP, Sinnema M, Stumpel CTRM, Curfs LMG, Stenvers DJ, Pfluger PT, Lutter D, Pereira AM, Kalsbeek A, Fliers E, Swaab DF, Wilkinson L, Gao Y, Yi CX. Microglial phagolysosome dysfunction and altered neural communication amplify phenotypic severity in Prader-Willi Syndrome with larger deletion. Acta Neuropathol 2024; 147:64. [PMID: 38556574 PMCID: PMC10982101 DOI: 10.1007/s00401-024-02714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Prader-Willi Syndrome (PWS) is a rare neurodevelopmental disorder of genetic etiology, characterized by paternal deletion of genes located at chromosome 15 in 70% of cases. Two distinct genetic subtypes of PWS deletions are characterized, where type I (PWS T1) carries four extra haploinsufficient genes compared to type II (PWS T2). PWS T1 individuals display more pronounced physiological and cognitive abnormalities than PWS T2, yet the exact neuropathological mechanisms behind these differences remain unclear. Our study employed postmortem hypothalamic tissues from PWS T1 and T2 individuals, conducting transcriptomic analyses and cell-specific protein profiling in white matter, neurons, and glial cells to unravel the cellular and molecular basis of phenotypic severity in PWS sub-genotypes. In PWS T1, key pathways for cell structure, integrity, and neuronal communication are notably diminished, while glymphatic system activity is heightened compared to PWS T2. The microglial defect in PWS T1 appears to stem from gene haploinsufficiency, as global and myeloid-specific Cyfip1 haploinsufficiency in murine models demonstrated. Our findings emphasize microglial phagolysosome dysfunction and altered neural communication as crucial contributors to the severity of PWS T1's phenotype.
Collapse
Affiliation(s)
- Felipe Correa-da-Silva
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Jenny Carter
- Neuroscience and Mental Health Innovation Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Xin-Yuan Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Rui Sun
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Ekta Pathak
- Computational Discovery Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
| | - José Manuel Monroy Kuhn
- Computational Discovery Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sonja C Schriever
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
| | - Clarissa M Maya-Monteiro
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Han Jiao
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Martin J Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Pedro M M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Johan J P Gille
- Department of Clinical Genetics, Amsterdam University Medical Centers, location VUMC. University of Amsterdam, Amsterdam, The Netherlands
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Constance T R M Stumpel
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Leopold M G Curfs
- Governor Kremers Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Dirk Jan Stenvers
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Paul T Pfluger
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Dominik Lutter
- Computational Discovery Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Alberto M Pereira
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Dick F Swaab
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Lawrence Wilkinson
- Neuroscience and Mental Health Innovation Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Yuanqing Gao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands.
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands.
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Jin M, Ma Z, Dang R, Zhang H, Kim R, Xue H, Pascual J, Finkbeiner S, Head E, Liu Y, Jiang P. A Trisomy 21-linked Hematopoietic Gene Variant in Microglia Confers Resilience in Human iPSC Models of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584646. [PMID: 38559257 PMCID: PMC10979994 DOI: 10.1101/2024.03.12.584646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
While challenging, identifying individuals displaying resilience to Alzheimer's disease (AD) and understanding the underlying mechanism holds great promise for the development of new therapeutic interventions to effectively treat AD. Down syndrome (DS), or trisomy 21, is the most common genetic cause of AD. Interestingly, some people with DS, despite developing AD neuropathology, show resilience to cognitive decline. Furthermore, DS individuals are at an increased risk of myeloid leukemia due to somatic mutations in hematopoietic cells. Recent studies indicate that somatic mutations in hematopoietic cells may lead to resilience to neurodegeneration. Microglia, derived from hematopoietic lineages, play a central role in AD etiology. We therefore hypothesize that microglia carrying the somatic mutations associated with DS myeloid leukemia may impart resilience to AD. Using CRISPR-Cas9 gene editing, we introduce a trisomy 21-linked hotspot CSF2RB A455D mutation into human pluripotent stem cell (hPSC) lines derived from both DS and healthy individuals. Employing hPSC-based in vitro microglia culture and in vivo human microglia chimeric mouse brain models, we show that in response to pathological tau, the CSF2RB A455D mutation suppresses microglial type-1 interferon signaling, independent of trisomy 21 genetic background. This mutation reduces neuroinflammation and enhances phagocytic and autophagic functions, thereby ameliorating senescent and dystrophic phenotypes in human microglia. Moreover, the CSF2RB A455D mutation promotes the development of a unique microglia subcluster with tissue repair properties. Importantly, human microglia carrying CSF2RB A455D provide protection to neuronal function, such as neurogenesis and synaptic plasticity in chimeric mouse brains where human microglia largely repopulate the hippocampus. When co-transplanted into the same mouse brains, human microglia with CSF2RB A455D mutation phagocytize and replace human microglia carrying the wildtype CSF2RB gene following pathological tau treatment. Our findings suggest that hPSC-derived CSF2RB A455D microglia could be employed to develop effective microglial replacement therapy for AD and other age-related neurodegenerative diseases, even without the need to deplete endogenous diseased microglia prior to cell transplantation.
Collapse
Affiliation(s)
- Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Ziyuan Ma
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Rui Dang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Haiwei Zhang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Rachael Kim
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Haipeng Xue
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jesse Pascual
- Department of Pathology and Laboratory Medicine, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Steven Finkbeiner
- Ceter for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes; University of California, San Francisco, CA 94158, USA
- Departments of Neurology and Physiology, University of California, San Francisco, CA 94158, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Ying Liu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| |
Collapse
|
39
|
Li Y, Li P, Tao Q, Abuqeis IJA, Xiyang Y. Role and limitation of cell therapy in treating neurological diseases. IBRAIN 2024; 10:93-105. [PMID: 38682022 PMCID: PMC11045202 DOI: 10.1002/ibra.12152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 05/01/2024]
Abstract
The central role of the brain in governing systemic functions within human physiology underscores its paramount significance as the focal point of physiological regulation. The brain, a highly sophisticated organ, orchestrates a diverse array of physiological processes encompassing motor control, sensory perception, cognition, emotion, and the regulation of vital functions, such as heartbeat, respiration, and hormonal equilibrium. A notable attribute of neurological diseases manifests as the depletion of neurons and the occurrence of tissue necrosis subsequent to injury. The transplantation of neural stem cells (NSCs) into the brain exhibits the potential for the replacement of lost neurons and the reconstruction of neural circuits. Furthermore, the transplantation of other types of cells in alternative locations can secrete nutritional factors that indirectly contribute to the restoration of nervous system equilibrium and the mitigation of neural inflammation. This review summarized a comprehensive investigation into the role of NSCs, hematopoietic stem cells, mesenchymal stem cells, and support cells like astrocytes and microglia in alleviating neurological deficits after cell infusion. Moreover, a thorough assessment was undertaken to discuss extant constraints in cellular transplantation therapies, concurrently delineating indispensable model-based methodologies, specifically on organoids, which were essential for guiding prospective research initiatives in this specialized field.
Collapse
Affiliation(s)
- Yu‐Qi Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Peng‐Fei Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Qian Tao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | | | - Yan‐Bin Xiyang
- School of Basic MedicineKunming Medical UniversityKunmingChina
- Department of Pharmacology and Toxicology, College of PharmacologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
40
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
41
|
Wu Z, Zhang W, Qu J, Liu GH. Emerging epigenetic insights into aging mechanisms and interventions. Trends Pharmacol Sci 2024; 45:157-172. [PMID: 38216430 DOI: 10.1016/j.tips.2023.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Epigenetic dysregulation emerges as a critical hallmark and driving force of aging. Although still an evolving field with much to explore, it has rapidly gained significance by providing valuable insights into the mechanisms of aging and potential therapeutic opportunities for age-related diseases. Recent years have witnessed remarkable strides in our understanding of the epigenetic landscape of aging, encompassing pivotal elements, such as DNA methylation, histone modifications, RNA modifications, and noncoding (nc) RNAs. Here, we review the latest discoveries that shed light on new epigenetic mechanisms and critical targets for predicting and intervening in aging and related disorders. Furthermore, we explore burgeoning interventions and exemplary clinical trials explicitly designed to foster healthy aging, while contemplating the potential ramifications of epigenetic influences.
Collapse
Affiliation(s)
- Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
42
|
Liu Y, Tan Y, Zhang Z, Yi M, Zhu L, Peng W. The interaction between ageing and Alzheimer's disease: insights from the hallmarks of ageing. Transl Neurodegener 2024; 13:7. [PMID: 38254235 PMCID: PMC10804662 DOI: 10.1186/s40035-024-00397-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Ageing is a crucial risk factor for Alzheimer's disease (AD) and is characterised by systemic changes in both intracellular and extracellular microenvironments that affect the entire body instead of a single organ. Understanding the specific mechanisms underlying the role of ageing in disease development can facilitate the treatment of ageing-related diseases, such as AD. Signs of brain ageing have been observed in both AD patients and animal models. Alleviating the pathological changes caused by brain ageing can dramatically ameliorate the amyloid beta- and tau-induced neuropathological and memory impairments, indicating that ageing plays a crucial role in the pathophysiological process of AD. In this review, we summarize the impact of several age-related factors on AD and propose that preventing pathological changes caused by brain ageing is a promising strategy for improving cognitive health.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China
| | - Yejun Tan
- School of Mathematics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China
| | - Min Yi
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China.
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, People's Republic of China.
| |
Collapse
|
43
|
Shen Z, Yang X, Lan Y, Chen G. The Neuro-Inflammatory Microenvironment: An Important Regulator of Stem Cell Survival in Alzheimer's Disease. J Alzheimers Dis 2024; 98:741-754. [PMID: 38489182 DOI: 10.3233/jad-231159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by progressive memory loss and cognitive impairment due to excessive accumulation of extracellular amyloid-β plaques and intracellular neurofibrillary tangles. Although decades of research efforts have been put into developing disease-modifying therapies for AD, no "curative" drug has been identified. As a central player in neuro-inflammation, microglia play a key role inbrain homeostasis by phagocytosing debris and regulating the balance between neurotoxic and neuroprotective events. Typically, the neurotoxic phenotype of activated microglia is predominant in the impaired microenvironment of AD. Accordingly, transitioning the activity state of microglia from pro-inflammatory to anti-inflammatory can restore the disrupted homeostatic microenvironment. Recently, stem cell therapy holds great promise as a treatment for AD; however, the diminished survival of transplanted stem cells has resulted in a disappointing long-term outcome for this treatment. This article reviews the functional changes of microglia through the course of AD-associated homeostatic deterioration. We summarize the possible microglia-associated therapeutic targets including TREM2, IL-3Rα, CD22, C5aR1, CX3CR1, P2X7R, CD33, Nrf2, PPAR-γ, CSF1R, and NLRP3, each of which has been discussed in detail. The goal of this review is to put forth the notion that microglia could be targeted by either small molecules or biologics to make the brain microenvironment more amenable to stem cell implantation and propose a novel treatment strategy for future stem cell interventions in AD.
Collapse
Affiliation(s)
- Zhiwei Shen
- Department of Neurosurgery, Key laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyi Yang
- College of Clinical Medical, Guizhou Medical University, Guiyang, China
| | - Yulong Lan
- Department of Neurosurgery, Key laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, Key laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
He Y, Liu T, He Q, Ke W, Li X, Du J, Deng S, Shu Z, Wu J, Yang B, Wang Y, Mao Y, Rao Y, Shu Y, Peng B. Microglia facilitate and stabilize the response to general anesthesia via modulating the neuronal network in a brain region-specific manner. eLife 2023; 12:RP92252. [PMID: 38131301 PMCID: PMC10746144 DOI: 10.7554/elife.92252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
General anesthesia leads to a loss of consciousness and an unrousable state in patients. Although general anesthetics are widely used in clinical practice, their underlying mechanisms remain elusive. The potential involvement of nonneuronal cells is unknown. Microglia are important immune cells in the central nervous system (CNS) that play critical roles in CNS function and dysfunction. We unintentionally observed delayed anesthesia induction and early anesthesia emergence in microglia-depleted mice. We found that microglial depletion differentially regulates neuronal activities by suppressing the neuronal network of anesthesia-activated brain regions and activating emergence-activated brain regions. Thus, microglia facilitate and stabilize the anesthesia status. This influence is not mediated by dendritic spine plasticity. Instead, it relies on the activation of microglial P2Y12 and subsequent calcium influx, which facilitates the general anesthesia response. Together, we elucidate the regulatory role of microglia in general anesthesia, extending our knowledge of how nonneuronal cells modulate neuronal activities.
Collapse
Affiliation(s)
- Yang He
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Taohui Liu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Quansheng He
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Wei Ke
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Xiaoyu Li
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Jinjin Du
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
- School of Basic Medical Sciences, Jinzhou Medical UniversityJinzhouChina
| | - Suixin Deng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Zhenfeng Shu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Jialin Wu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Baozhi Yang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
- School of Basic Medical Sciences, Jinzhou Medical UniversityJinzhouChina
| | - Yuqing Wang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
- School of Basic Medical Sciences, Jinzhou Medical UniversityJinzhouChina
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Yanxia Rao
- Department of Neurology, Zhongshan Hospital, Department of Laboratory Animal Science, MOE Frontiers Center for Brain Science, Fudan UniversityShanghaiChina
| | - Yousheng Shu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Bo Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
- Co-Innovation Center of Neurodegeneration, Nantong UniversityNantongChina
| |
Collapse
|
45
|
Harary PM, Jgamadze D, Kim J, Wolf JA, Song H, Ming GL, Cullen DK, Chen HI. Cell Replacement Therapy for Brain Repair: Recent Progress and Remaining Challenges for Treating Parkinson's Disease and Cortical Injury. Brain Sci 2023; 13:1654. [PMID: 38137103 PMCID: PMC10741697 DOI: 10.3390/brainsci13121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Neural transplantation represents a promising approach to repairing damaged brain circuitry. Cellular grafts have been shown to promote functional recovery through "bystander effects" and other indirect mechanisms. However, extensive brain lesions may require direct neuronal replacement to achieve meaningful restoration of function. While fetal cortical grafts have been shown to integrate with the host brain and appear to develop appropriate functional attributes, the significant ethical concerns and limited availability of this tissue severely hamper clinical translation. Induced pluripotent stem cell-derived cells and tissues represent a more readily scalable alternative. Significant progress has recently been made in developing protocols for generating a wide range of neural cell types in vitro. Here, we discuss recent progress in neural transplantation approaches for two conditions with distinct design needs: Parkinson's disease and cortical injury. We discuss the current status and future application of injections of dopaminergic cells for the treatment of Parkinson's disease as well as the use of structured grafts such as brain organoids for cortical repair.
Collapse
Affiliation(s)
- Paul M. Harary
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - Dennis Jgamadze
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - Jaeha Kim
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - John A. Wolf
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - D. Kacy Cullen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - H. Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
46
|
Jiang P, Jin M. Replacing microglia to treat Alzheimer's disease. Cell Stem Cell 2023; 30:1001-1003. [PMID: 37541204 PMCID: PMC10542828 DOI: 10.1016/j.stem.2023.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/06/2023]
Abstract
In this issue of Cell Stem Cell, Yoo et al.1 report that replacing Trem2 knockout microglia with Trem2 wild-type microglia-like cells derived from systemically transplanted hematopoietic cells rectifies microglial dysfunction in a mouse model of amyloidosis. These findings highlight the potential of microglia replacement therapy for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| | - Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|