1
|
Weldon KC, Longaker MT, Ambrosi TH. Harnessing the diversity and potential of endogenous skeletal stem cells for musculoskeletal tissue regeneration. Stem Cells 2025; 43:sxaf006. [PMID: 39945760 PMCID: PMC11892563 DOI: 10.1093/stmcls/sxaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/21/2025] [Indexed: 03/11/2025]
Abstract
In our aging society, the degeneration of the musculoskeletal system and adjacent tissues is a growing orthopedic concern. As bones age, they become more fragile, increasing the risk of fractures and injuries. Furthermore, tissues like cartilage accumulate damage, leading to widespread joint issues. Compounding this, the regenerative capacity of these tissues declines with age, exacerbating the consequences of fractures and cartilage deterioration. With rising demand for fracture and cartilage repair, bone-derived stem cells have attracted significant research interest. However, the therapeutic use of stem cells has produced inconsistent results, largely due to ongoing debates and uncertainties regarding the precise identity of the stem cells responsible for musculoskeletal growth, maintenance and repair. This review focuses on the potential to leverage endogenous skeletal stem cells (SSCs)-a well-defined population of stem cells with specific markers, reliable isolation techniques, and functional properties-in bone repair and cartilage regeneration. Understanding SSC behavior in response to injury, including their activation to a functional state, could provide insights into improving treatment outcomes. Techniques like microfracture surgery, which aim to stimulate SSC activity for cartilage repair, are of particular interest. Here, we explore the latest advances in how such interventions may modulate SSC function to enhance bone healing and cartilage regeneration.
Collapse
Affiliation(s)
- Kelly C Weldon
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, United States
- School of Medicine, University of California, Sacramento, CA 95817, United States
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Thomas H Ambrosi
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, United States
| |
Collapse
|
2
|
Xiao Y, Yang S, Sun Y, Sah RL, Wang J, Han C. Nanoscale Morphologies on the Surface of Substrates/Scaffolds Enhance Chondrogenic Differentiation of Stem Cells: A Systematic Review of the Literature. Int J Nanomedicine 2024; 19:12743-12768. [PMID: 39634196 PMCID: PMC11615010 DOI: 10.2147/ijn.s492020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Nanoscale morphologies on the surface of substrates/scaffolds have gained considerable attention in cartilage tissue engineering for their potential to improve chondrogenic differentiation and cartilage regeneration outcomes by mimicking the topographical and biophysical properties of the extracellular matrix (ECM). To evaluate the influence of nanoscale surface morphologies on chondrogenic differentiation of stem cells and discuss available strategies, we systematically searched evidence according to the PRISMA guidelines on PubMed, Embase, Web of Science, and Cochrane (until April 2024) and registered on the OSF (osf.io/3kvdb). The inclusion criteria were (in vitro) studies reporting the chondrogenic differentiation outcomes of nanoscale morphologies on the surface of substrates/scaffolds. The risk of bias (RoB) was assessed using the JBI-adapted quasi-experimental study assessment tool. Out of 1530 retrieved articles, 14 studies met the inclusion criteria. The evidence suggests that nanoholes, nanogrills, nanoparticles with a diameter of 10-40nm, nanotubes with a diameter of 70-100nm, nanopillars with a height of 127-330nm, and hexagonal nanostructures with a periodicity of 302-733nm on the surface of substrates/scaffolds result in better cell adhesion, growth, and chondrogenic differentiation of stem cells compared to the smooth/unpatterned ones through increasing integrin expression. Large nanoparticles with 300-1200nm diameter promote pre-chondrogenic cellular aggregation. The synergistic effects of the surface nanoscale topography and other environmental physical characteristics, such as matrix stiffness, also play important in the chondrogenic differentiation of stem cells. The RoB was low in 86% (12/14) of studies and high in 14% (2/14). Our study demonstrates that nanomorphologies with specific controlled properties engineered on the surface of substrates/scaffolds enhance stem cells' chondrogenic differentiation, which may benefit cartilage regeneration. However, given the variability in experimental designs and lack of reporting across studies, the results should be interpreted with caution.
Collapse
Affiliation(s)
- Yi Xiao
- Thoracic Surgery Department, The China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Shiyan Yang
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
- Department of Head and Neck, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People’s Republic of China
| | - Yang Sun
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Robert L Sah
- Department of Bioengineering, University of California–San Diego, La Jolla, CA, 92037, USA
- Center for Musculoskeletal Research, Institute of Engineering in Medicine, University of California–San Diego, La Jolla, CA, 92037, USA
| | - Jincheng Wang
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Chunshan Han
- Thoracic Surgery Department, The China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| |
Collapse
|
3
|
Guo L, Li P, Rong X, Wei X. Key roles of the superficial zone in articular cartilage physiology, pathology, and regeneration. Chin Med J (Engl) 2024:00029330-990000000-01274. [PMID: 39439390 DOI: 10.1097/cm9.0000000000003319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT The superficial zone (SFZ) of articular cartilage is an important interface that isolates deeper zones from the microenvironment of the articular cavity and is directly exposed to various biological and mechanical stimuli. The SFZ is not only a crucial structure for maintaining the normal physiological function of articular cartilage but also the earliest site of osteoarthritis (OA) cartilage degeneration and a major site of cartilage progenitor cells, suggesting that the SFZ might represent a key target for the early diagnosis and treatment of OA. However, to date, SFZ research has not received sufficient attention, accounting for only about 0.58% of cartilage tissue research. The structure, biological composition, function, and related mechanisms of the SFZ in the physiological and pathological processes of articular cartilage remain unclear. This article reviews the key role of the SFZ in articular cartilage physiology and pathology and focuses on the characteristics of SFZ in articular cartilage degeneration and regeneration in OA, aiming to provide researchers with a systematic understanding of the current research status of the SFZ of articular cartilage, hoping that scholars will give more attention to the SFZ of articular cartilage in the future.
Collapse
Affiliation(s)
- Li Guo
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Pengcui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xueqin Rong
- Department of Pain Medicine Center, Central Hospital of Sanya, Sanya, Hainan 572000, China
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
4
|
Gadomski SJ, Mui BW, Gorodetsky R, Paravastu SS, Featherall J, Li L, Haffey A, Kim JC, Kuznetsov SA, Futrega K, Lazmi-Hailu A, Merling RK, NIDCD/NIDCR Genomics and Computational Biology Core ,, Martin D, McCaskie AW, Robey PG. Time- and cell-specific activation of BMP signaling restrains chondrocyte hypertrophy. iScience 2024; 27:110537. [PMID: 39193188 PMCID: PMC11347861 DOI: 10.1016/j.isci.2024.110537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 02/29/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Stem cell therapies for degenerative cartilage disease are limited by an incomplete understanding of hyaline cartilage formation and maintenance. Human bone marrow stromal cells/skeletal stem cells (hBMSCs/SSCs) produce stable hyaline cartilage when attached to hyaluronic acid-coated fibrin microbeads (HyA-FMBs), yet the mechanism remains unclear. In vitro, hBMSC/SSC/HyA-FMB organoids exhibited reduced BMP signaling early in chondrogenic differentiation, followed by restoration of BMP signaling in chondrogenic IGFBP5 + /MGP + cells. Subsequently, human-induced pluripotent stem cell (hiPSC)-derived sclerotome cells were established (BMP inhibition) and then treated with transforming growth factor β (TGF-β) -/+ BMP2 and growth differentiation factor 5 (GDF5) (BMP signaling activation). TGF-β alone elicited a weak chondrogenic response, but TGF-β/BMP2/GDF5 led to delamination of SOX9 + aggregates (chondrospheroids) with high expression of COL2A1, ACAN, and PRG4 and minimal expression of COL10A1 and ALP in vitro. While transplanted hBMSCs/SSCs/HyA-FMBs did not heal articular cartilage defects in immunocompromised rodents, chondrospheroid-derived cells/HyA-FMBs formed non-hypertrophic cartilage that persisted until at least 5 months in vivo.
Collapse
Affiliation(s)
- Stephen J. Gadomski
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
- NIH Oxford-Cambridge Scholars Program in Partnership with Medical University of South Carolina, Charleston, SC 29425, USA
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | - Byron W.H. Mui
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
- NIH Oxford-Cambridge Scholars Program in Partnership with Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- NIH Medical Research Scholars Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raphael Gorodetsky
- Lab of Biotechnology and Radiobiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sriram S. Paravastu
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
- NIH Medical Research Scholars Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph Featherall
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
- NIH Medical Research Scholars Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Li
- National Institute of Dental and Craniofacial Research Imaging Core, National Institutes of Health, Bethesda, MD 20892, USA
| | - Abigail Haffey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
- National Institute of Dental and Craniofacial Research Summer Internship Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jae-Chun Kim
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
- National Institute of Dental and Craniofacial Research Summer Dental Student Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergei A. Kuznetsov
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Kathryn Futrega
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Astar Lazmi-Hailu
- Lab of Biotechnology and Radiobiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Randall K. Merling
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - NIDCD/NIDCR Genomics and Computational Biology Core,
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, 35A Convent Drive, Room 1F-103, Bethesda, MD 20892, USA
- Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Martin
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, 35A Convent Drive, Room 1F-103, Bethesda, MD 20892, USA
- Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew W. McCaskie
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
- Department of Surgery, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Pamela G. Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Humphreys PEA, Woods S, Bates N, Rooney KM, Mancini FE, Barclay C, O'Flaherty J, Martial FP, Domingos MAN, Kimber SJ. Optogenetic manipulation of BMP signaling to drive chondrogenic differentiation of hPSCs. Cell Rep 2023; 42:113502. [PMID: 38032796 DOI: 10.1016/j.celrep.2023.113502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Optogenetics is a rapidly advancing technology combining photochemical, optical, and synthetic biology to control cellular behavior. Together, sensitive light-responsive optogenetic tools and human pluripotent stem cell differentiation models have the potential to fine-tune differentiation and unpick the processes by which cell specification and tissue patterning are controlled by morphogens. We used an optogenetic bone morphogenetic protein (BMP) signaling system (optoBMP) to drive chondrogenic differentiation of human embryonic stem cells (hESCs). We engineered light-sensitive hESCs through CRISPR-Cas9-mediated integration of the optoBMP system into the AAVS1 locus. The activation of optoBMP with blue light, in lieu of BMP growth factors, resulted in the activation of BMP signaling mechanisms and upregulation of a chondrogenic phenotype, with significant transcriptional differences compared to cells in the dark. Furthermore, cells differentiated with light could form chondrogenic pellets consisting of a hyaline-like cartilaginous matrix. Our findings indicate the applicability of optogenetics for understanding human development and tissue engineering.
Collapse
Affiliation(s)
- Paul E A Humphreys
- Division of Cell Matrix & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Steven Woods
- Division of Cell Matrix & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nicola Bates
- Division of Cell Matrix & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Kirsty M Rooney
- Division of Cell Matrix & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Fabrizio E Mancini
- Division of Cell Matrix & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK; Department of Mechanical, Aerospace, and Civil Engineering, Faculty of Science and Engineering, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Cerys Barclay
- Division of Cell Matrix & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Julieta O'Flaherty
- Division of Cell Matrix & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Franck P Martial
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Marco A N Domingos
- Department of Mechanical, Aerospace, and Civil Engineering, Faculty of Science and Engineering, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Susan J Kimber
- Division of Cell Matrix & Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
6
|
Xu X, Xu L, Xia J, Wen C, Liang Y, Zhang Y. Harnessing knee joint resident mesenchymal stem cells in cartilage tissue engineering. Acta Biomater 2023; 168:372-387. [PMID: 37481194 DOI: 10.1016/j.actbio.2023.07.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Osteoarthritis (OA) is a widespread clinical disease characterized by cartilage degeneration in middle-aged and elderly people. Currently, there is no effective treatment for OA apart from total joint replacement in advanced stages. Mesenchymal stem cells (MSCs) are a type of adult stem cell with diverse differentiation capabilities and immunomodulatory potentials. MSCs are known to effectively regulate the cartilage microenvironment, promote cartilage regeneration, and alleviate OA symptoms. As a result, they are promising sources of cells for OA therapy. Recent studies have revealed the presence of resident MSCs in synovial fluid, synovial membrane, and articular cartilage, which can be collected as knee joint-derived MSCs (KJD-MSC). Several preclinical and clinical studies have demonstrated that KJD-MSCs have great potential for OA treatment, whether applied alone, in combination with biomaterials, or as exocrine MSCs. In this article, we will review the characteristics of MSCs in the joints, including their cytological characteristics, such as proliferation, cartilage differentiation, and immunomodulatory abilities, as well as the biological function of MSC exosomes. We will also discuss the use of tissue engineering in OA treatment and introduce the concept of a new generation of stem cell-based tissue engineering therapy, including the use of engineering, gene therapy, and gene editing techniques to create KJD-MSCs or KJD-MSC derivative exosomes with improved functionality and targeted delivery. These advances aim to maximize the efficiency of cartilage tissue engineering and provide new strategies to overcome the bottleneck of OA therapy. STATEMENT OF SIGNIFICANCE: This research will provide new insights into the medicinal benefit of Joint resident Mesenchymal Stem Cells (MSCs), specifically on its cartilage tissue engineering ability. Through this review, the community will further realize promoting joint resident mesenchymal stem cells, especially cartilage progenitor/MSC-like progenitor cells (CPSC), as a preventive measure against osteoarthritis and cartilage injury. People and medical institutions may also consider cartilage derived MSC as an alternative approach against cartilage degeneration. Moreover, the discussion presented in this study will convey valuable information for future research that will explore the medicinal benefits of cartilage derived MSC.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Limei Xu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Caining Wen
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Yujie Liang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yuanmin Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China.
| |
Collapse
|
7
|
Shkhyan R, Flynn C, Lamoure E, Sarkar A, Van Handel B, Li J, York J, Banks N, Van der Horst R, Liu NQ, Lee S, Bajaj P, Vadivel K, Harn HIC, Tassey J, Lozito T, Lieberman JR, Chuong CM, Hurtig MS, Evseenko D. Inhibition of a signaling modality within the gp130 receptor enhances tissue regeneration and mitigates osteoarthritis. Sci Transl Med 2023; 15:eabq2395. [PMID: 36947594 PMCID: PMC10792550 DOI: 10.1126/scitranslmed.abq2395] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 01/17/2023] [Indexed: 03/24/2023]
Abstract
Adult mammals are incapable of multitissue regeneration, and augmentation of this potential may shift current therapeutic paradigms. We found that a common co-receptor of interleukin 6 (IL-6) cytokines, glycoprotein 130 (gp130), serves as a major nexus integrating various context-specific signaling inputs to either promote regenerative outcomes or aggravate disease progression. Via genetic and pharmacological experiments in vitro and in vivo, we demonstrated that a signaling tyrosine 814 (Y814) within gp130 serves as a major cellular stress sensor. Mice with constitutively inactivated Y814 (F814) were resistant to surgically induced osteoarthritis as reflected by reduced loss of proteoglycans, reduced synovitis, and synovial fibrosis. The F814 mice also exhibited enhanced regenerative, not reparative, responses after wounding in the skin. In addition, pharmacological modulation of gp130 Y814 upstream of the SRC and MAPK circuit by a small molecule, R805, elicited a protective effect on tissues after injury. Topical administration of R805 on mouse skin wounds resulted in enhanced hair follicle neogenesis and dermal regeneration. Intra-articular administration of R805 to rats after medial meniscal tear and to canines after arthroscopic meniscal release markedly mitigated the appearance of osteoarthritis. Single-cell sequencing data demonstrated that genetic and pharmacological modulation of Y814 resulted in attenuation of inflammatory gene signature as visualized by the anti-inflammatory macrophage and nonpathological fibroblast subpopulations in the skin and joint tissue after injury. Together, our study characterized a molecular mechanism that, if manipulated, enhances the intrinsic regenerative capacity of tissues through suppression of a proinflammatory milieu and prevents pathological outcomes in injury and disease.
Collapse
Affiliation(s)
- Ruzanna Shkhyan
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Candace Flynn
- Ontario Veterinary College, Department of Clinical Studies, University of Guelph, ON N1G 2W1, Canada
| | - Emma Lamoure
- Ontario Veterinary College, Department of Clinical Studies, University of Guelph, ON N1G 2W1, Canada
| | - Arijita Sarkar
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Benjamin Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Jinxiu Li
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Jesse York
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Nicholas Banks
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Robert Van der Horst
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Nancy Q. Liu
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Siyoung Lee
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Paul Bajaj
- UCLA Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
| | - Kanagasabai Vadivel
- UCLA Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
| | - Hans I.-Chen Harn
- Department of Pathology, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan 701401 Taiwan
| | - Jade Tassey
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Thomas Lozito
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Jay R. Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Mark S. Hurtig
- Ontario Veterinary College, Department of Clinical Studies, University of Guelph, ON N1G 2W1, Canada
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
- Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| |
Collapse
|
8
|
Gao M, Liu X, Guo P, Wang J, Li J, Wang W, Stoddart MJ, Grad S, Li Z, Wu H, Li B, He Z, Zhou G, Liu S, Zhu W, Chen D, Zou X, Zhou Z. Deciphering postnatal limb development at single-cell resolution. iScience 2023; 26:105808. [PMID: 36619982 PMCID: PMC9813795 DOI: 10.1016/j.isci.2022.105808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/22/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The early postnatal limb developmental progression bridges embryonic and mature stages and mirrors the pathological remodeling of articular cartilage. However, compared with multitudinous research on embryonic limb development, the early postnatal stage seems relatively unnoticed. Here, a systematic work to portray the postnatal limb developmental landscape was carried out by characterization of 19,952 single cells from murine hindlimbs at 4 postnatal stages using single-cell RNA sequencing technique. By delineation of cell heterogeneity, the candidate progenitor sub-clusters marked by Cd34 and Ly6e were discovered in articular cartilage and enthesis, and three cellular developmental branches marked by Col10a1, Spp1, and Tnni2 were reflected in growth plate. The representative transcriptomes and developmental patterns were intensively explored, and the key regulation mechanisms as well as evolvement in osteoarthritis were discussed. Above all, these results expand horizons of postnatal limb developmental biology and reach the interconnections between limb development, remodeling, and regeneration.
Collapse
Affiliation(s)
- Manman Gao
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Sport Medicine, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen 518071, China
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Peng Guo
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jianmin Wang
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Junhong Li
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Wentao Wang
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | | | - Sibylle Grad
- AO Research Institute Davos, Davos 7270, Switzerland
| | - Zhen Li
- AO Research Institute Davos, Davos 7270, Switzerland
| | - Huachuan Wu
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Baoliang Li
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhongyuan He
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Guangqian Zhou
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen 518071, China
| | - Shaoyu Liu
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Weimin Zhu
- Department of Sport Medicine, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen 518071, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing 100035, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiyu Zhou
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
9
|
Grogan S, Kopcow J, D’Lima D. Challenges Facing the Translation of Embryonic Stem Cell Therapy for the Treatment of Cartilage Lesions. Stem Cells Transl Med 2022; 11:1186-1195. [PMID: 36493381 PMCID: PMC9801304 DOI: 10.1093/stcltm/szac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/02/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis is a common disease resulting in significant disability without approved disease-modifying treatment (other than total joint replacement). Stem cell-based therapy is being actively explored for the repair of cartilage lesions in the treatment and prevention of osteoarthritis. Embryonic stem cells are a very attractive source as they address many of the limitations inherent in autologous stem cells, such as variability in function and limited expansion. Over the past 20 years, there has been widespread interest in differentiating ESC into mesenchymal stem cells and chondroprogenitors with successful in vitro, ex vivo, and early animal studies. However, to date, none have progressed to clinical trials. In this review, we compare and contrast the various approaches to differentiating ESC; and discuss the benefits and drawbacks of each approach. Approaches relying on spontaneous differentiation are simpler but not as efficient as more targeted approaches. Methods replicating developmental biology are more efficient and reproducible but involve many steps in a complicated process. The small-molecule approach, arguably, combines the advantages of the above two methods because of the relative efficiency, reproducibility, and simplicity. To better understand the reasons for lack of progression to clinical applications, we explore technical, scientific, clinical, and regulatory challenges that remain to be overcome to achieve success in clinical applications.
Collapse
Affiliation(s)
- Shawn Grogan
- Corresponding author: Darryl D’Lima, MD, PhD, Shiley Center for Orthopaedic Research and Education, Scripps Health, 10666 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Joel Kopcow
- Shiley Center for Orthopaedic Research and Education, Scripps Health, La Jolla, CA, USA
| | - Darryl D’Lima
- Shiley Center for Orthopaedic Research and Education, Scripps Health, La Jolla, CA, USA
| |
Collapse
|
10
|
Qi L, Wang J, Chen X, Ding Y, Ling B, Wang W, Xu J, Xue Z. Single-cell transcriptomics reveals variable trajectories of CSPCs in the progression of osteoarthritis. Heliyon 2022; 8:e11148. [PMID: 36339749 PMCID: PMC9634280 DOI: 10.1016/j.heliyon.2022.e11148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/05/2022] [Accepted: 10/13/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is characterised by cartilage destruction; however, there are no specific drugs available for its treatment. Cartilage-derived stem/progenitor cells (CSPCs) are multipotent cells that play an essential role in cartilage renewal and may provide critical insights into the medical needs for OA treatment. However, alterations in cell function and fate of CSPCs during OA progression have seldom been analysed, especially at the single-cell level. Additionally, it has been reported that CSPCs can migrate to the cartilage injury area, although the mechanism of migration remains elusive. Thus, understanding the changing patterns of CSPCs in the pathological process of OA is important in the effort to develop stem cell therapy for OA. Here, we downloaded single-cell transcriptomic data of patients with OA from the Gene Expression Omnibus (GEO) database and performed unbiased clustering of the cells based on gene expression patterns using the Seurat package. Using common stem cell markers and chondrogenic transcription factors, we traced CSPCs throughout all stages of OA. We further explored the dynamics of CSPCs in OA progression and validated the single-cell RNA sequencing data in vitro using qPCR, immunofluorescence, and western blotting. Specifically, we primarily explored the heterogeneity of CSPCs at the single-cell level and found that it was closely associated with OA progression. Our results indicate significantly reduced chondrogenic differentiation capacity in CSPCs during the late stage of OA, while their proliferation capacity tended to increase. We also found that genes implicated in fibrosis, cell motility, and extracellular matrix remodelling were upregulated in CSPCs during the progression of OA. Our study revealed the dynamics of stem cells in OA progression and may inform the development of stem cell therapy for OA.
Collapse
Affiliation(s)
- Lingbin Qi
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jian Wang
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xian Chen
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yanhui Ding
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Bin Ling
- The Second People’s Hospital of Yunnan Province, Kunming, China
| | - Wenjun Wang
- Stem Cell and Regenerative Medicine Engineering Research Center of Hunan Province, Hunan Yuanpin Cell Technology Co. Ltd, 102 Dongwu Road, Changsha City 410100, Hunan Province, China
- Corresponding author.
| | - Jun Xu
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Corresponding author.
| | - Zhigang Xue
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 200065 Shanghai, China
- Corresponding author.
| |
Collapse
|
11
|
Liu W, Feng M, Xu P. From regeneration to osteoarthritis in the knee joint: The role shift of cartilage-derived progenitor cells. Front Cell Dev Biol 2022; 10:1010818. [PMID: 36340024 PMCID: PMC9630655 DOI: 10.3389/fcell.2022.1010818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
A mount of growing evidence has proven that cartilage-derived progenitor cells (CPCs) harbor strong proliferation, migration, andmultiple differentiation potentials over the past 2 decades. CPCs in the stage of immature tissue play an important role in cartilage development process and injured cartilage repair in the young and active people. However, during maturation and aging, cartilage defects cannot be completely repaired by CPCs in vivo. Recently, tissue engineering has revealed that repaired cartilage defects with sufficient stem cell resources under good condition and bioactive scaffolds in vitro and in vivo. Chronic inflammation in the knee joint limit the proliferation and chondrogenesis abilities of CPCs, which further hampered cartilage healing and regeneration. Neocartilage formation was observed in the varus deformity of osteoarthritis (OA) patients treated with offloading technologies, which raises the possibility that organisms could rebuild cartilage structures spontaneously. In addition, nutritionmetabolismdysregulation, including glucose and free fatty acid dysregulation, could influence both chondrogenesis and cartilage formation. There are a few reviews about the advantages of CPCs for cartilage repair, but few focused on the reasons why CPCs could not repair the cartilage as they do in immature status. A wide spectrum of CPCs was generated by different techniques and exhibited substantial differences. We recently reported that CPCs maybe are as internal inflammation sources during cartilage inflammaging. In this review, we further streamlined the changes of CPCs from immature development to maturation and from healthy status to OA advancement. The key words including “cartilage derived stem cells”, “cartilage progenitor cells”, “chondroprogenitor cells”, “chondroprogenitors” were set for latest literature searching in PubMed and Web of Science. The articles were then screened through titles, abstracts, and the full texts in sequence. The internal environment including long-term inflammation, extendedmechanical loading, and nutritional elements intake and external deleterious factors were summarized. Taken together, these results provide a comprehensive understanding of the underlying mechanism of CPC proliferation and differentiation during development, maturation, aging, injury, and cartilage regeneration in vivo.
Collapse
Affiliation(s)
- Wenguang Liu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Meng Feng
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Peng Xu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Peng Xu,
| |
Collapse
|
12
|
Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution. Commun Biol 2022; 5:1084. [PMID: 36224302 PMCID: PMC9556750 DOI: 10.1038/s42003-022-04056-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Atherogenesis involves an interplay of inflammation, tissue remodeling and cellular transdifferentiation (CTD), making it especially difficult to precisely delineate its pathophysiology. Here we use single-cell RNA sequencing and systems-biology approaches to analyze the transcriptional profiles of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) in calcified atherosclerotic core (AC) plaques and patient-matched proximal adjacent (PA) portions of carotid artery tissue from patients undergoing carotid endarterectomy. Our results reveal an anatomic distinction whereby PA cells express inflammatory mediators, while cells expressing matrix-secreting genes occupy a majority of the AC region. Systems biology analysis indicates that inflammation in PA ECs and VSMCs may be driven by TNFa signaling. Furthermore, we identify POSTN, SPP1 and IBSP in AC VSMCs, and ITLN1, SCX and S100A4 in AC ECs as possible candidate drivers of CTD in the atherosclerotic core. These results establish an anatomic framework for atherogenesis which forms the basis for exploration of a site-specific strategy for disruption of disease progression. Single-cell RNA sequencing and systems biology are used to profile the human vascular cell populations in calcified atherosclerotic core plaques from carotid endarterectomy samples, showing an anatomic distinction between gene expression of inflammatory versus matrix-secreting factors.
Collapse
|
13
|
Tiffany AS, Harley BAC. Growing Pains: The Need for Engineered Platforms to Study Growth Plate Biology. Adv Healthc Mater 2022; 11:e2200471. [PMID: 35905390 PMCID: PMC9547842 DOI: 10.1002/adhm.202200471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Growth plates, or physis, are highly specialized cartilage tissues responsible for longitudinal bone growth in children and adolescents. Chondrocytes that reside in growth plates are organized into three distinct zones essential for proper function. Modeling key features of growth plates may provide an avenue to develop advanced tissue engineering strategies and perspectives for cartilage and bone regenerative medicine applications and a platform to study processes linked to disease progression. In this review, a brief introduction of the growth plates and their role in skeletal development is first provided. Injuries and diseases of the growth plates as well as physiological and pathological mechanisms associated with remodeling and disease progression are discussed. Growth plate biology, namely, its architecture and extracellular matrix organization, resident cell types, and growth factor signaling are then focused. Next, opportunities and challenges for developing 3D biomaterial models to study aspects of growth plate biology and disease in vitro are discussed. Finally, opportunities for increasingly sophisticated in vitro biomaterial models of the growth plate to study spatiotemporal aspects of growth plate remodeling, to investigate multicellular signaling underlying growth plate biology, and to develop platforms that address key roadblocks to in vivo musculoskeletal tissue engineering applications are described.
Collapse
Affiliation(s)
- Aleczandria S. Tiffany
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
14
|
Expression Profile of New Gene Markers Involved in Differentiation of Canine Adipose-Derived Stem Cells into Chondrocytes. Genes (Basel) 2022; 13:genes13091664. [PMID: 36140831 PMCID: PMC9498306 DOI: 10.3390/genes13091664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The interest in stem cell research continuously increased over the last decades, becoming one of the most important trends in the 21st century medicine. Stem cell-based therapies have a potential to become a solution for a range of currently untreatable diseases, such as spinal cord injuries, type I diabetes, Parkinson’s disease, heart disease, stroke, and osteoarthritis. Hence, this study, based on canine material, aims to investigate the molecular basis of adipose-derived stem cell (ASC) differentiation into chondrocytes, to serve as a transcriptomic reference for further research aiming to introduce ASC into treatment of bone and cartilage related diseases, such as osteoarthritis in veterinary medicine. Adipose tissue samples were harvested from a canine specimen subjected to a routine ovariohysterecromy procedure at an associated veterinary clinic. The material was treated for ASC isolation and chondrogenic differentiation. RNA samples were isolated at day 1 of culture, day 30 of culture in unsupplemented culture media, and day 30 of culture in chondrogenic differentiation media. The resulting RNA was analyzed using RNAseq assays, with the results validated by RT-qPCR. Between differentiated chondrocytes, early and late cultures, most up- and down-regulated genes in each comparison were selected for further analysis., there are several genes (e.g., MMP12, MPEG1, CHI3L1, and CD36) that could be identified as new markers of chondrogenesis and the influence of long-term culture conditions on ASCs. The results of the study prove the usefulness of the in vitro culture model, providing further molecular insight into the processes associated with ASC culture and differentiation. Furthermore, the knowledge obtained could be used as a molecular reference for future in vivo and clinical studies.
Collapse
|
15
|
Ferreira MJS, Mancini FE, Humphreys PA, Ogene L, Buckley M, Domingos MAN, Kimber SJ. Pluripotent stem cells for skeletal tissue engineering. Crit Rev Biotechnol 2022; 42:774-793. [PMID: 34488516 DOI: 10.1080/07388551.2021.1968785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we review the use of human pluripotent stem cells for skeletal tissue engineering. A number of approaches have been used for generating cartilage and bone from both human embryonic stem cells and induced pluripotent stem cells. These range from protocols relying on intrinsic cell interactions and signals from co-cultured cells to those attempting to recapitulate the series of steps occurring during mammalian skeletal development. The importance of generating authentic tissues rather than just differentiated cells is emphasized and enabling technologies for doing this are reported. We also review the different methods for characterization of skeletal cells and constructs at the tissue and single-cell level, and indicate newer resources not yet fully utilized in this field. There have been many challenges in this research area but the technologies to overcome these are beginning to appear, often adopted from related fields. This makes it more likely that cost-effective and efficacious human pluripotent stem cell-engineered constructs may become available for skeletal repair in the near future.
Collapse
Affiliation(s)
- Miguel J S Ferreira
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester, UK
| | - Fabrizio E Mancini
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul A Humphreys
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Leona Ogene
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Michael Buckley
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Marco A N Domingos
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Kim JG, Rim YA, Ju JH. The Role of Transforming Growth Factor Beta in Joint Homeostasis and Cartilage Regeneration. Tissue Eng Part C Methods 2022; 28:570-587. [PMID: 35331016 DOI: 10.1089/ten.tec.2022.0016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) is an important regulator of joint homeostasis, of which dysregulation is closely associated with the development of osteoarthritis (OA). In normal conditions, its biological functions in a joint environment are joint protective, but it can be dramatically altered in different contexts, making its therapeutic application a challenge. However, with the deeper insights into the TGF-β functions, it has been proven that TGF-β augments cartilage regeneration by chondrocytes, and differentiates both the precursor cells of chondrocytes and stem cells into cartilage-generating chondrocytes. Following documentation of the therapeutic efficacy of chondrocytes augmented by TGF-β in the last decade, there is an ongoing phase III clinical trial examining the therapeutic efficacy of a mixture of allogeneic chondrocytes and TGF-β-overexpressing cells. To prepare cartilage-restoring chondrocytes from induced pluripotent stem cells (iPSCs), the stem cells are differentiated mainly using TGF-β with some other growth factors. Of note, clinical trials evaluating the therapeutic efficacy of iPSCs for OA are scheduled this year. Mesenchymal stromal stem cells (MSCs) have inherent limitations in that they differentiate into the osteochondral pathway, resulting in the production of poor-quality cartilage. Despite the established essential role of TGF-β in chondrogenic differentiation of MSCs, whether the coordinated use of TGF-β in MSC-based therapy for degenerated cartilage is effective is unknown. We herein reviewed the general characteristics and mechanism of action of TGF-β in a joint environment. Furthermore, we discussed the core interaction of TGF-β with principal cells of OA cell-based therapies, the chondrocytes, MSCs, and iPSCs. Impact Statement Transforming growth factor-beta (TGF-β) has been widely used as a core regulator to improve or formulate therapeutic regenerative cells for degenerative joints. It differentiates stem cells into chondrocytes and improves the chondrogenic potential of differentiated chondrocytes. Herein, we discussed the overall characteristics of TGF-β and reviewed the comprehension and utilization of TGF-β in cell-based therapy for degenerative joint disease.
Collapse
Affiliation(s)
- Jung Gon Kim
- Division of Rheumatology, Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
17
|
Humphreys PA, Mancini FE, Ferreira MJS, Woods S, Ogene L, Kimber SJ. Developmental principles informing human pluripotent stem cell differentiation to cartilage and bone. Semin Cell Dev Biol 2022; 127:17-36. [PMID: 34949507 DOI: 10.1016/j.semcdb.2021.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Human pluripotent stem cells can differentiate into any cell type given appropriate signals and hence have been used to research early human development of many tissues and diseases. Here, we review the major biological factors that regulate cartilage and bone development through the three main routes of neural crest, lateral plate mesoderm and paraxial mesoderm. We examine how these routes have been used in differentiation protocols that replicate skeletal development using human pluripotent stem cells and how these methods have been refined and improved over time. Finally, we discuss how pluripotent stem cells can be employed to understand human skeletal genetic diseases with a developmental origin and phenotype, and how developmental protocols have been applied to gain a better understanding of these conditions.
Collapse
Affiliation(s)
- Paul A Humphreys
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, University of Manchester, UK
| | - Fabrizio E Mancini
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Miguel J S Ferreira
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, University of Manchester, UK
| | - Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Leona Ogene
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| |
Collapse
|
18
|
Zhou J, Zou D, Wan R, Liu J, Zhou Q, Zhou Z, Wang W, Tao C, Liu T. Gene Expression Microarray Data Identify Hub Genes Involved in Osteoarthritis. Front Genet 2022; 13:870590. [PMID: 35734433 PMCID: PMC9207392 DOI: 10.3389/fgene.2022.870590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022] Open
Abstract
The present study was performed to explore the underlying molecular mechanisms and screen hub genes of osteoarthritis (OA) via bioinformatics analysis. In total, twenty-five OA synovial tissue samples and 25 normal synovial tissue samples were derived from three datasets, namely, GSE55457, GSE55235, and GSE1919, and were used to identify the differentially expressed genes (DEGs) of OA by R language. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEGs were conducted using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). A Venn diagram was built to show the potential hub genes identified in all three datasets. The STRING database was used for constructing the protein–protein interaction (PPI) networks and submodules of DEGs. We identified 507 upregulated and 620 downregulated genes. Upregulated DEGs were significantly involved in immune response, MHC class II receptor activity, and presented in the extracellular region, while downregulated DEGs were mainly enriched in response to organic substances, extracellular region parts, and cadmium ion binding. Results of KEGG analysis indicated that the upregulated DEGs mainly existed in cell adhesion molecules (CAMs), while downregulated DEGs were significantly involved in the MAPK signaling pathway. A total of eighteen intersection genes were identified across the three datasets. These include Nell-1, ATF3, RhoB, STC1, and VEGFA. In addition, 10 hub genes including CXCL12, CXCL8, CCL20, and CCL4 were found in the PPI network and module construction. Identification of DEGs and hub genes associated with OA may be helpful for revealing the molecular mechanisms of OA and further promotes the development of relevant biomarkers and drug targets.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dazhi Zou
- Department of Spine Surgery, Longhui People’s Hospital, Shaoyang, China
| | - Rongjun Wan
- Branch of National Clinical Research Center for Respiratory Disease, Department of Respiratory Medicine, National Key Clinical Specialty, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Jie Liu
- Department of Cardiology, The Fourth Hospital of Changsha, Changsha, China
| | - Qiong Zhou
- Department of Cardiology, The Fourth Hospital of Changsha, Changsha, China
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cheng Tao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Tang Liu, ; Cheng Tao,
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Tang Liu, ; Cheng Tao,
| |
Collapse
|
19
|
Jabbari E, Sepahvandi A. Decellularized Articular Cartilage Microgels as Microcarriers for Expansion of Mesenchymal Stem Cells. Gels 2022; 8:gels8030148. [PMID: 35323261 PMCID: PMC8949257 DOI: 10.3390/gels8030148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
Conventional microcarriers used for expansion of human mesenchymal stem cells (hMSCs) require detachment and separation of the cells from the carrier prior to use in clinical applications for regeneration of articular cartilage, and the carrier can cause undesirable phenotypic changes in the expanded cells. This work describes a novel approach to expand hMSCs on biomimetic carriers based on adult or fetal decellularized bovine articular cartilage that supports tissue regeneration without the need to detach the expanded cells from the carrier. In this approach, the fetal or adult bovine articular cartilage was minced, decellularized, freeze-dried, ground, and sieved to produce articular cartilage microgels (CMGs) in a specified size range. Next, the hMSCs were expanded on CMGs in a bioreactor in basal medium to generate hMSC-loaded CMG microgels (CMG-MSCs). Then, the CMG-MSCs were suspended in sodium alginate, injected in a mold, crosslinked with calcium chloride, and incubated in chondrogenic medium as an injectable cellular construct for regeneration of articular cartilage. The expression of chondrogenic markers and compressive moduli of the injectable CMG-MSCs/alginate hydrogels incubated in chondrogenic medium were higher compared to the hMSCs directly encapsulated in alginate hydrogels.
Collapse
|
20
|
Liu NQ, Lin Y, Li L, Lu J, Geng D, Zhang J, Jashashvili T, Buser Z, Magallanes J, Tassey J, Shkhyan R, Sarkar A, Lopez N, Lee S, Lee Y, Wang L, Petrigliano FA, Van Handel B, Lyons K, Evseenko D. gp130/STAT3 signaling is required for homeostatic proliferation and anabolism in postnatal growth plate and articular chondrocytes. Commun Biol 2022; 5:64. [PMID: 35039652 PMCID: PMC8763901 DOI: 10.1038/s42003-021-02944-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/03/2021] [Indexed: 02/05/2023] Open
Abstract
Growth of long bones and vertebrae is maintained postnatally by a long-lasting pool of progenitor cells. Little is known about the molecular mechanisms that regulate the output and maintenance of the cells that give rise to mature cartilage. Here we demonstrate that postnatal chondrocyte-specific deletion of a transcription factor Stat3 results in severely reduced proliferation coupled with increased hypertrophy, growth plate fusion, stunting and signs of progressive dysfunction of the articular cartilage. This effect is dimorphic, with females more strongly affected than males. Chondrocyte-specific deletion of the IL-6 family cytokine receptor gp130, which activates Stat3, phenocopied Stat3-deletion; deletion of Lifr, one of many co-receptors that signals through gp130, resulted in a milder phenotype. These data define a molecular circuit that regulates chondrogenic cell maintenance and output and reveals a pivotal positive function of IL-6 family cytokines in the skeletal system with direct implications for skeletal development and regeneration.
Collapse
Affiliation(s)
- Nancy Q. Liu
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Yucheng Lin
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 China ,grid.263826.b0000 0004 1761 0489Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 China
| | - Liangliang Li
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 China ,grid.89957.3a0000 0000 9255 8984Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu 211100 China
| | - Jinxiu Lu
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Dawei Geng
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 China ,grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Jiankang Zhang
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Tea Jashashvili
- grid.42505.360000 0001 2156 6853Department of Radiology, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Zorica Buser
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Jenny Magallanes
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Jade Tassey
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Ruzanna Shkhyan
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Arijita Sarkar
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Noah Lopez
- grid.19006.3e0000 0000 9632 6718Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angles (UCLA), Los Angeles, CA USA
| | - Siyoung Lee
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Youngjoo Lee
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Liming Wang
- grid.89957.3a0000 0000 9255 8984Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006 China ,grid.89957.3a0000 0000 9255 8984Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu 210006 China
| | - Frank A. Petrigliano
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA 90033 USA
| | - Ben Van Handel
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA
| | - Karen Lyons
- grid.19006.3e0000 0000 9632 6718Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angles (UCLA), Los Angeles, CA USA
| | - Denis Evseenko
- grid.42505.360000 0001 2156 6853Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033 USA ,grid.42505.360000 0001 2156 6853Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA 90033 USA
| |
Collapse
|
21
|
Long-term repair of porcine articular cartilage using cryopreservable, clinically compatible human embryonic stem cell-derived chondrocytes. NPJ Regen Med 2021; 6:77. [PMID: 34815400 PMCID: PMC8611001 DOI: 10.1038/s41536-021-00187-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) impacts hundreds of millions of people worldwide, with those affected incurring significant physical and financial burdens. Injuries such as focal defects to the articular surface are a major contributing risk factor for the development of OA. Current cartilage repair strategies are moderately effective at reducing pain but often replace damaged tissue with biomechanically inferior fibrocartilage. Here we describe the development, transcriptomic ontogenetic characterization and quality assessment at the single cell level, as well as the scaled manufacturing of an allogeneic human pluripotent stem cell-derived articular chondrocyte formulation that exhibits long-term functional repair of porcine articular cartilage. These results define a new potential clinical paradigm for articular cartilage repair and mitigation of the associated risk of OA.
Collapse
|
22
|
Tassey J, Sarkar A, Van Handel B, Lu J, Lee S, Evseenko D. A Single-Cell Culture System for Dissecting Microenvironmental Signaling in Development and Disease of Cartilage Tissue. Front Cell Dev Biol 2021; 9:725854. [PMID: 34733842 PMCID: PMC8558457 DOI: 10.3389/fcell.2021.725854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/01/2021] [Indexed: 12/25/2022] Open
Abstract
Cartilage tissue is comprised of extracellular matrix and chondrocytes, a cell type with very low cellular turnover in adults, providing limited capacity for regeneration. However, in development a significant number of chondrocytes actively proliferate and remodel the surrounding matrix. Uncoupling the microenvironmental influences that determine the balance between clonogenic potential and terminal differentiation of these cells is essential for the development of novel approaches for cartilage regeneration. Unfortunately, most of the existing methods are not applicable for the analysis of functional properties of chondrocytes at a single cell resolution. Here we demonstrate that a novel 3D culture method provides a long-term and permissive in vitro niche that selects for highly clonogenic, colony-forming chondrocytes which maintain cartilage-specific matrix production, thus recapitulating the in vivo niche. As a proof of concept, clonogenicity of Sox9IRES–EGFP mouse chondrocytes is almost exclusively found in the highest GFP+ fraction known to be enriched for chondrocyte progenitor cells. Although clonogenic chondrocytes are very rare in adult cartilage, we have optimized this system to support large, single cell-derived chondrogenic organoids with complex zonal architecture and robust chondrogenic phenotype from adult pig and human articular chondrocytes. Moreover, we have demonstrated that growth trajectory and matrix biosynthesis in these organoids respond to a pro-inflammatory environment. This culture method offers a robust, defined and controllable system that can be further used to interrogate the effects of various microenvironmental signals on chondrocytes, providing a high throughput platform to assess genetic and environmental factors in development and disease.
Collapse
Affiliation(s)
- Jade Tassey
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Arijita Sarkar
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Ben Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Jinxiu Lu
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Siyoung Lee
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.,Department of Stem Cell Research and Regenerative Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
23
|
Zhang FX, Liu P, Ding W, Meng QB, Su DH, Zhang QC, Lian RX, Yu BQ, Zhao MD, Dong J, Li YL, Jiang LB. Injectable Mussel-Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration. Biomaterials 2021; 278:121169. [PMID: 34626937 DOI: 10.1016/j.biomaterials.2021.121169] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022]
Abstract
In the early stage of osteoarthritis (OA), cartilage degradation in the surface region leads to superficial cartilage defect. However, enhancing the regeneration of cartilage defect remains a great challenge for existing hydrogel technology because of the weak adhesion to wet tissue. In the present study, an injectable mussel-inspired highly adhesive hydrogel with exosomes was investigated for endogenous cell recruitment and cartilage defect regeneration. The hydrogel with high bonding strength to the wet surface was prepared using a crosslinked network of alginate-dopamine, chondroitin sulfate, and regenerated silk fibroin (AD/CS/RSF). Compared with commercial enbucrilate tissue adhesive, the AD/CS/RSF hydrogel provided a comparative lap shear strength of 120 kPa, with a similar gelation time and a higher capacity for maintaining adhesive strength. The AD/CS/RSF/EXO hydrogel with encapsulated exosomes recruited BMSCs migration and inflation, promoted BMSCs proliferation and differentiation. Most importantly, the AD/CS/RSF/EXO hydrogel accelerated cartilage defect regeneration in situ, and extracellular matrix remodeling after injection in rat patellar grooves. The exosomes released by the hydrogels could recruit BMSCs into the hydrogel and neo-cartilage via the chemokine signaling pathway. Our findings reveal an injectable and adhesive hydrogel for superficial cartilage regeneration, which is a promising approach for minimally treating cartilage defect with arthroscopic assistance.
Collapse
Affiliation(s)
- Fang-Xue Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Peng Liu
- Department of Orthopedic Surgery, Eastern Hospital, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610110, China
| | - Wang Ding
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qing-Bing Meng
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Di-Han Su
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qi-Chen Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rui-Xian Lian
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Bao-Qing Yu
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No.2800 gongwei road, China
| | - Ming-Dong Zhao
- Department of Orthopaedics, Jinshan Hospital, Fudan University, 201508, Shanghai, China.
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yu-Lin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.
| | - Li-Bo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Rejuvenated Stem/Progenitor Cells for Cartilage Repair Using the Pluripotent Stem Cell Technology. Bioengineering (Basel) 2021; 8:bioengineering8040046. [PMID: 33920285 PMCID: PMC8070387 DOI: 10.3390/bioengineering8040046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/19/2023] Open
Abstract
It is widely accepted that chondral defects in articular cartilage of adult joints are never repaired spontaneously, which is considered to be one of the major causes of age-related degenerative joint disorders, such as osteoarthritis. Since mobilization of subchondral bone (marrow) cells and addition of chondrocytes or mesenchymal stromal cells into full-thickness defects show some degrees of repair, the lack of self-repair activity in adult articular cartilage can be attributed to lack of reparative cells in adult joints. In contrast, during a fetal or embryonic stage, joint articular cartilage has a scar-less repair activity, suggesting that embryonic joints may contain cells responsible for such activity, which can be chondrocytes, chondroprogenitors, or other cell types such as skeletal stem cells. In this respect, the tendency of pluripotent stem cells (PSCs) to give rise to cells of embryonic characteristics will provide opportunity, especially for humans, to obtain cells carrying similar cartilage self-repair activity. Making use of PSC-derived cells for cartilage repair is still in a basic or preclinical research phase. This review will provide brief overviews on how human PSCs have been used for cartilage repair studies.
Collapse
|
25
|
Aprile P, Kelly DJ. Hydrostatic Pressure Regulates the Volume, Aggregation and Chondrogenic Differentiation of Bone Marrow Derived Stromal Cells. Front Bioeng Biotechnol 2021; 8:619914. [PMID: 33520969 PMCID: PMC7844310 DOI: 10.3389/fbioe.2020.619914] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/15/2020] [Indexed: 01/17/2023] Open
Abstract
The limited ability of articular cartilage to self-repair has motivated the development of tissue engineering strategies that aim to harness the regenerative potential of mesenchymal stem/marrow stromal cells (MSCs). Understanding how environmental factors regulate the phenotype of MSCs will be central to unlocking their regenerative potential. The biophysical environment is known to regulate the phenotype of stem cells, with factors such as substrate stiffness and externally applied mechanical loads known to regulate chondrogenesis of MSCs. In particular, hydrostatic pressure (HP) has been shown to play a key role in the development and maintenance of articular cartilage. Using a collagen-alginate interpenetrating network (IPN) hydrogel as a model system to tune matrix stiffness, this study sought to investigate how HP and substrate stiffness interact to regulate chondrogenesis of MSCs. If applied during early chondrogenesis in soft IPN hydrogels, HP was found to downregulate the expression of ACAN, COL2, CDH2 and COLX, but to increase the expression of the osteogenic factors RUNX2 and COL1. This correlated with a reduction in SMAD 2/3, HDAC4 nuclear localization and the expression of NCAD. It was also associated with a reduction in cell volume, an increase in the average distance between MSCs in the hydrogels and a decrease in their tendency to form aggregates. In contrast, the delayed application of HP to MSCs grown in soft hydrogels was associated with increased cellular volume and aggregation and the maintenance of a chondrogenic phenotype. Together these findings demonstrate how tailoring the stiffness and the timing of HP exposure can be leveraged to regulate chondrogenesis of MSCs and opens alternative avenues for developmentally inspired strategies for cartilage tissue regeneration.
Collapse
Affiliation(s)
- Paola Aprile
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Tani S, Okada H, Chung UI, Ohba S, Hojo H. The Progress of Stem Cell Technology for Skeletal Regeneration. Int J Mol Sci 2021; 22:1404. [PMID: 33573345 PMCID: PMC7866793 DOI: 10.3390/ijms22031404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/05/2023] Open
Abstract
Skeletal disorders, such as osteoarthritis and bone fractures, are among the major conditions that can compromise the quality of daily life of elderly individuals. To treat them, regenerative therapies using skeletal cells have been an attractive choice for patients with unmet clinical needs. Currently, there are two major strategies to prepare the cell sources. The first is to use induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs), which can recapitulate the skeletal developmental process and differentiate into various skeletal cells. Skeletal tissues are derived from three distinct origins: the neural crest, paraxial mesoderm, and lateral plate mesoderm. Thus, various protocols have been proposed to recapitulate the sequential process of skeletal development. The second strategy is to extract stem cells from skeletal tissues. In addition to mesenchymal stem/stromal cells (MSCs), multiple cell types have been identified as alternative cell sources. These cells have distinct multipotent properties allowing them to differentiate into skeletal cells and various potential applications for skeletal regeneration. In this review, we summarize state-of-the-art research in stem cell differentiation based on the understanding of embryogenic skeletal development and stem cells existing in skeletal tissues. We then discuss the potential applications of these cell types for regenerative medicine.
Collapse
Affiliation(s)
- Shoichiro Tani
- Sensory & Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (S.T.); (H.O.)
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Hiroyuki Okada
- Sensory & Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (S.T.); (H.O.)
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Ung-il Chung
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan;
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
27
|
Wu CL, Dicks A, Steward N, Tang R, Katz DB, Choi YR, Guilak F. Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis. Nat Commun 2021; 12:362. [PMID: 33441552 PMCID: PMC7806634 DOI: 10.1038/s41467-020-20598-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/10/2020] [Indexed: 01/29/2023] Open
Abstract
The therapeutic application of human induced pluripotent stem cells (hiPSCs) for cartilage regeneration is largely hindered by the low yield of chondrocytes accompanied by unpredictable and heterogeneous off-target differentiation of cells during chondrogenesis. Here, we combine bulk RNA sequencing, single cell RNA sequencing, and bioinformatic analyses, including weighted gene co-expression analysis (WGCNA), to investigate the gene regulatory networks regulating hiPSC differentiation under chondrogenic conditions. We identify specific WNTs and MITF as hub genes governing the generation of off-target differentiation into neural cells and melanocytes during hiPSC chondrogenesis. With heterocellular signaling models, we further show that WNT signaling produced by off-target cells is responsible for inducing chondrocyte hypertrophy. By targeting WNTs and MITF, we eliminate these cell lineages, significantly enhancing the yield and homogeneity of hiPSC-derived chondrocytes. Collectively, our findings identify the trajectories and molecular mechanisms governing cell fate decision in hiPSC chondrogenesis, as well as dynamic transcriptome profiles orchestrating chondrocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Chia-Lung Wu
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester, Rochester, NY, 14627, USA
| | - Amanda Dicks
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
- Dept. of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO, 63110, USA
| | - Nancy Steward
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
| | - Ruhang Tang
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
| | - Dakota B Katz
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
- Dept. of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO, 63110, USA
| | - Yun-Rak Choi
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA
- Dept. of Orthopaedic Surgery, Yonsei University, Seoul, South Korea
| | - Farshid Guilak
- Dept. of Orthopaedic Surgery, Washington University in Saint Louis, St. Louis, MO, 63110, USA.
- Shriners Hospitals for Children-St. Louis, St. Louis, MO, 63110, USA.
- Dept. of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
28
|
PECULIARITIES OF SYNOVIOCYTES AND CHONDROCYTES PROLIFERATIVE ACTIVITY IN RATS WITH EXPERIMENTAL MODEL OF UNDIFFERENTIATED DYSPLASIA OF CONNECTIVE TISSUE. WORLD OF MEDICINE AND BIOLOGY 2021. [DOI: 10.26724/2079-8334-2021-2-76-198-202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Uto S, Hikita A, Sakamoto T, Mori D, Yano F, Ohba S, Saito T, Takato T, Hoshi K. Ear Cartilage Reconstruction Combining Induced Pluripotent Stem Cell-Derived Cartilage and Three-Dimensional Shape-Memory Scaffold. Tissue Eng Part A 2020; 27:604-617. [PMID: 32883178 DOI: 10.1089/ten.tea.2020.0106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Microtia is a congenital malformation of the auricle. The conventional therapy for microtia is reconstruction of the auricle by using the patient's own costal cartilage. Because it is invasive to harvest costal cartilages, less invasive ways for auricular reconstruction need to be established. Recent reports have indicated a new method for the production of cartilaginous particles from human induced pluripotent stem cells. To adopt this method to create an auricular-shaped regenerative cartilage, a novel scaffold with the property of a three-dimensional shape memory was created. A scaffold with a three-dimensional shape of auricular frames composed of a helix and an antihelix, which was designed to mimic an auricular framework carved from autologous costal cartilage and transplanted in auricular reconstruction, was prepared, filled with cartilaginous particles, and subcutaneously transplanted in nude rats. The auricular-shaped regenerative cartilage maintained the given shape and cartilage features in vivo for 1 year. Our findings suggest a novel approach for auricular reconstruction.
Collapse
Affiliation(s)
- Sakura Uto
- Division of Tissue Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsuhiko Hikita
- Division of Tissue Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoaki Sakamoto
- Division of Tissue Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Mori
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumiko Yano
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Taku Saito
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Takato
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,JR Tokyo General Hospital, Tokyo, Japan
| | - Kazuto Hoshi
- Division of Tissue Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Woods S, Charlton S, Cheung K, Hao Y, Soul J, Reynard LN, Crowe N, Swingler TE, Skelton AJ, Piróg KA, Miles CG, Tsompani D, Jackson RM, Dalmay T, Clark IM, Barter MJ, Young DA. microRNA-seq of cartilage reveals an overabundance of miR-140-3p which contains functional isomiRs. RNA (NEW YORK, N.Y.) 2020; 26:1575-1588. [PMID: 32660984 PMCID: PMC7566571 DOI: 10.1261/rna.075176.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/06/2020] [Indexed: 05/15/2023]
Abstract
miR-140 is selectively expressed in cartilage. Deletion of the entire Mir140 locus in mice results in growth retardation and early-onset osteoarthritis-like pathology; however, the relative contribution of miR-140-5p or miR-140-3p to the phenotype remains to be determined. An unbiased small RNA sequencing approach identified miR-140-3p as significantly more abundant (>10-fold) than miR-140-5p in human cartilage. Analysis of these data identified multiple miR-140-3p isomiRs differing from the miRBase annotation at both the 5' and 3' end, with >99% having one of two seed sequences (5' bases 2-8). Canonical (miR-140-3p.2) and shifted (miR-140-3p.1) seed isomiRs were overexpressed in chondrocytes and transcriptomics performed to identify targets. miR-140-3p.1 and miR-140-3p.2 significantly down-regulated 694 and 238 genes, respectively, of which only 162 genes were commonly down-regulated. IsomiR targets were validated using 3'UTR luciferase assays. miR-140-3p.1 targets were enriched within up-regulated genes in rib chondrocytes of Mir140-null mice and within down-regulated genes during human chondrogenesis. Finally, through imputing the expression of miR-140 from the expression of the host gene WWP2 in 124 previously published data sets, an inverse correlation with miR-140-3p.1 predicted targets was identified. Together these data suggest the novel seed containing isomiR miR-140-3p.1 is more functional than original consensus miR-140-3p seed containing isomiR.
Collapse
Affiliation(s)
- Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Sarah Charlton
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Kat Cheung
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Yao Hao
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
- Orthopedics Department, First Hospital of Shanxi Medical University, Yingze District, Taiyuan, 030000, China
| | - Jamie Soul
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Louise N Reynard
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Natalie Crowe
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Tracey E Swingler
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Andrew J Skelton
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Katarzyna A Piróg
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Colin G Miles
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Dimitra Tsompani
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Robert M Jackson
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Ian M Clark
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Matt J Barter
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - David A Young
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom
| |
Collapse
|
31
|
Kreuser U, Buchert J, Haase A, Richter W, Diederichs S. Initial WNT/β-Catenin Activation Enhanced Mesoderm Commitment, Extracellular Matrix Expression, Cell Aggregation and Cartilage Tissue Yield From Induced Pluripotent Stem Cells. Front Cell Dev Biol 2020; 8:581331. [PMID: 33195222 PMCID: PMC7661475 DOI: 10.3389/fcell.2020.581331] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
Mesodermal differentiation of induced pluripotent stem cells (iPSCs) in vitro and subsequent specification into mesodermal derivatives like chondrocytes is currently afflicted with a substantial cell loss that severely limits tissue yield. More knowledge on the key players regulating mesodermal differentiation of iPSCs is currently needed to drive all cells into the desired lineage and to overcome the current need for intermediate cell selection steps to remove misdifferentiated cells. Using two independent human iPSC lines, we here report that a short initial WNT/β-catenin pulse induced by the small molecule CHIR99021 (24 h) enhanced expression of mesodermal markers (PDGFRα, HAND1, KDR, and GATA4), supported the exit from pluripotency (decreased OCT4, SOX2, and LIN28A) and inhibited ectodermal misdifferentiation (reduced PAX6, TUBB3, and NES). Importantly, the initial CHIR pulse increased cell proliferation until day 14 (five-fold), adjusted expression of adhesion-related genes (CDH3 up, CDH6 down) and increased extracellular matrix (ECM)-related gene expression (COL6, COL1, COL3, COL5, DCN, NPNT, LUM, MGP, MATN2, and VTN), thus yielding more matrix-interacting progenitors with a high aggregation capability. Enhanced contribution to chondrogenic pellet formation increased the cell yield after eight weeks 200-fold compared to controls. The collagen type II and proteoglycan-positive area was enlarged in the CHIR group, indicating an increased number of cartilage-forming cells. Conclusively, short initial WNT activation improved mesoderm commitment and our data demonstrated for the first time to our knowledge that, acting via stimulation of cell proliferation, ECM expression and cell aggregation, WNT pulsing is a key step to make cell selection steps before chondrogenesis obsolete. This advanced understanding of the WNT/β-catenin function is a major step toward robust and efficient generation of high-quality mesodermal progenitors from human iPSCs and toward rescuing low tissue yield during subsequent in vitro chondrogenesis, which is highly desired for clinical cartilage regeneration, disease modeling and drug screening.
Collapse
Affiliation(s)
- Ursula Kreuser
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Justyna Buchert
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexandra Haase
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation, and Vascular Surgery, Hannover, Germany
| | - Wiltrud Richter
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Solvig Diederichs
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
32
|
Characterization of heterogeneous primary human cartilage-derived cell population using non-invasive live-cell phase-contrast time-lapse imaging. Cytotherapy 2020; 23:488-499. [PMID: 33092987 DOI: 10.1016/j.jcyt.2020.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 01/14/2023]
Abstract
Reliable and reproducible cell therapy strategies to treat osteoarthritis demand an improved characterization of the cell and heterogeneous cell population resident in native cartilage tissue. Using live-cell phase-contrast time-lapse imaging (PC-TLI), this study investigates the morphological attributes and biological performance of the three primary biological objects enzymatically isolated from primary human cartilage: connective tissue progenitors (CTPs), non-progenitors (NPs) and multi-cellular structures (MCSs). The authors' results demonstrated that CTPs were smaller in size in comparison to NPs (P < 0.001). NPs remained part of the adhered cell population throughout the cell culture period. Both NPs and CTP progeny on day 8 increased in size and decreased in circularity in comparison to their counterparts on day 1, although the percent change was considerably less in CTP progeny (P < 0.001). PC-TLI analyses indicated three colony types: single-CTP-derived (29%), multiple-CTP-derived (26%) and MCS-derived (45%), with large heterogeneity with respect to cell morphology, proliferation rate and cell density. On average, clonal (CL) (P = 0.009) and MCS (P = 0.001) colonies exhibited higher cell density (cells per colony area) than multi-clonal (MC) colonies; however, it is interesting to note that the behavior of CL (less cells per colony and less colony area) and MCS (high cells per colony and high colony area) colonies was quite different. Overall effective proliferation rate (EPR) of the CTPs that formed CL colonies was higher than the EPR of CTPs that formed MC colonies (P = 0.02), most likely due to CTPs with varying EPR that formed the MC colonies. Finally, the authors demonstrated that lag time before first cell division of a CTP (early attribute) could potentially help predict its proliferation rate long-term. Quantitative morphological characterization using non-invasive PC-TLI serves as a reliable and reproducible technique to understand cell heterogeneity. Size and circularity parameters can be used to distinguish CTP from NP populations. Morphological cell and colony features can also be used to reliably and reproducibly identify CTP subpopulations with preferred proliferation and differentiation potentials in an effort to improve cell manufacturing and therapeutic outcomes.
Collapse
|
33
|
Barqué A, Jan K, De La Fuente E, Nicholas CL, Hynes RO, Naba A. Knockout of the gene encoding the extracellular matrix protein SNED1 results in early neonatal lethality and craniofacial malformations. Dev Dyn 2020; 250:274-294. [PMID: 33012048 DOI: 10.1002/dvdy.258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The extracellular matrix (ECM) is a fundamental component of multicellular organisms that orchestrates developmental processes and controls cell and tissue organization. We previously identified the novel ECM protein SNED1 as a promoter of breast cancer metastasis and showed that its level of expression negatively correlated with breast cancer patient survival. Here, we sought to identify the roles of SNED1 during murine development. RESULTS We generated two novel Sned1 knockout mouse strains and showed that Sned1 is essential since homozygous ablation of the gene led to early neonatal lethality. Phenotypic analysis of the surviving knockout mice revealed a role for SNED1 in the development of craniofacial and skeletal structures since Sned1 knockout resulted in growth defects, nasal cavity occlusion, and craniofacial malformations. Sned1 is widely expressed in embryos, notably by cell populations undergoing epithelial-to-mesenchymal transition, such as the neural crest cells. We further show that mice with a neural-crest-cell-specific deletion of Sned1 survive, but display facial anomalies partly phenocopying the global knockout mice. CONCLUSIONS Our results demonstrate requisite roles for SNED1 during development and neonatal survival. Importantly, the deletion of 2q37.3 in humans, a region that includes the SNED1 locus, has been associated with facial dysmorphism and short stature.
Collapse
Affiliation(s)
- Anna Barqué
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kyleen Jan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Emanuel De La Fuente
- Department of Orthodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Christina L Nicholas
- Department of Orthodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Anthropology, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard O Hynes
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
34
|
Middendorf JM, Diamantides N, Shortkroff S, Dugopolski C, Kennedy S, Cohen I, Bonassar LJ. Multiscale mechanics of tissue-engineered cartilage grown from human chondrocytes and human-induced pluripotent stem cells. J Orthop Res 2020; 38:1965-1973. [PMID: 32125023 DOI: 10.1002/jor.24643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 02/17/2020] [Accepted: 02/29/2020] [Indexed: 02/04/2023]
Abstract
Tissue-engineered cartilage has shown promising results in the repair of focal cartilage defects. However, current clinical techniques rely on an extra surgical procedure to biopsy healthy cartilage to obtain human chondrocytes. Alternatively, induced pluripotent stem cells (iPSCs) have the ability to differentiate into chondrocytes and produce cartilaginous matrix without the need to biopsy healthy cartilage. However, the mechanical properties of tissue-engineered cartilage with iPSCs are unknown and might be critical to long-term tissue function and health. This study used confined compression, cartilage on glass tribology, and shear testing on a confocal microscope to assess the macroscale and microscale mechanical properties of two constructs seeded with either chondrocyte-derived iPSCs (Ch-iPSCs) or native human chondrocytes. Macroscale properties of Ch-iPSC constructs provided similar or better mechanical properties than chondrocyte constructs. Under compression, Ch-iPSC constructs had an aggregate modulus that was two times larger than chondrocyte constructs and was closer to native tissue. No differences in the shear modulus and friction coefficients were observed between Ch-iPSC and chondrocyte constructs. On the microscale, Ch-iPSC and chondrocyte constructs had different depth-dependent mechanical properties, neither of which matches native tissue. These observed depth-dependent differences may be important to the function of the implant. Overall, this comparison of multiple mechanical properties of Ch-iPSC and chondrocyte constructs shows that using Ch-iPSCs can produce equivalent or better global mechanical properties to chondrocytes. Therefore, iPSC-seeded cartilage constructs could be a promising solution to repair focal cartilage defects. The chondrocyte constructs used in this study have been implanted into humans for clinical trials. Therefore, Ch-iPSC constructs could also be used clinically in place of the current chondrocyte construct.
Collapse
Affiliation(s)
- Jill M Middendorf
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, New York
| | - Nicole Diamantides
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | | | | | | | - Itai Cohen
- Department of Applied Engineering and Physics, Cornell University, Ithaca, New York.,Department of Physics, Cornell University, Ithaca, New York
| | - Lawrence J Bonassar
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, New York.,Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| |
Collapse
|
35
|
Nakayama N, Pothiawala A, Lee JY, Matthias N, Umeda K, Ang BK, Huard J, Huang Y, Sun D. Human pluripotent stem cell-derived chondroprogenitors for cartilage tissue engineering. Cell Mol Life Sci 2020; 77:2543-2563. [PMID: 31915836 PMCID: PMC11104892 DOI: 10.1007/s00018-019-03445-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Abstract
The cartilage of joints, such as meniscus and articular cartilage, is normally long lasting (i.e., permanent). However, once damaged, especially in large animals and humans, joint cartilage is not spontaneously repaired. Compensating the lack of repair activity by supplying cartilage-(re)forming cells, such as chondrocytes or mesenchymal stromal cells, or by transplanting a piece of normal cartilage, has been the basis of therapy for biological restoration of damaged joint cartilage. Unfortunately, current biological therapies face problems on a number of fronts. The joint cartilage is generated de novo from a specialized cell type, termed a 'joint progenitor' or 'interzone cell' during embryogenesis. Therefore, embryonic chondroprogenitors that mimic the property of joint progenitors might be the best type of cell for regenerating joint cartilage in the adult. Pluripotent stem cells (PSCs) are expected to differentiate in culture into any somatic cell type through processes that mimic embryogenesis, making human (h)PSCs a promising source of embryonic chondroprogenitors. The major research goals toward the clinical application of PSCs in joint cartilage regeneration are to (1) efficiently generate lineage-specific chondroprogenitors from hPSCs, (2) expand the chondroprogenitors to the number needed for therapy without loss of their chondrogenic activity, and (3) direct the in vivo or in vitro differentiation of the chondroprogenitors to articular or meniscal (i.e., permanent) chondrocytes rather than growth plate (i.e., transient) chondrocytes. This review is aimed at providing the current state of research toward meeting these goals. We also include our recent achievement of successful generation of "permanent-like" cartilage from long-term expandable, hPSC-derived ectomesenchymal chondroprogenitors.
Collapse
Affiliation(s)
- Naoki Nakayama
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA.
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston Medical School, Houston, TX, USA.
| | - Azim Pothiawala
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA
| | - John Y Lee
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA
- Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Nadine Matthias
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA
| | - Katsutsugu Umeda
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA
- Department of Pediatrics, Kyoto University School of Medicine, Kyoto, Japan
| | - Bryan K Ang
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston Medical School, 1825 Pressler St., Houston, TX, 77030, USA
- Weil Cornell Medicine, New York, NY, USA
| | - Johnny Huard
- Department of Orthopaedic Surgery, The University of Texas Health Science Center at Houston Medical School, Houston, TX, USA
- Steadman Philippon Research Institute, Vail, CO, USA
| | - Yun Huang
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, USA
| | - Deqiang Sun
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, USA
| |
Collapse
|
36
|
Weber AE, Jalali O, Limfat S, Shkhyan R, Van Der Horst R, Lee S, Lin Y, Li L, Mayer EN, Wang L, Liu NQ, Petrigliano FA, Lieberman JR, Evseenko D. Modulation of Hedgehog Signaling by Kappa Opioids to Attenuate Osteoarthritis. Arthritis Rheumatol 2020; 72:1278-1288. [PMID: 32249508 DOI: 10.1002/art.41250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/03/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Inhibition of hedgehog (HH) signaling prevents cartilage degeneration and promotes repair in animal models of osteoarthritis (OA). This study, undertaken in OA models and in human OA articular cartilage, was designed to explore whether kappa opioid receptor (KOR) modulation via the inhibition of HH signaling may have therapeutic potential for achieving disease-modifying activity in OA. METHODS Primary human articular cartilage and synovial tissue samples from patients with knee OA undergoing total joint replacement and from healthy human subjects were obtained from the National Disease Research Interchange. For in vivo animal studies, a partial medial meniscectomy (PMM) model of knee OA in rats was used. A novel automated 3-dimensional indentation tester (Mach-1) was used to quantify the thickness and stiffness properties of the articular cartilage. RESULTS Inhibition of HH signaling through KOR activation was achieved with a selective peptide agonist, JT09, which reduced HH signaling via the cAMP/CREB pathway in OA human articular chondrocytes (P = 0.002 for treated versus untreated OA chondrocytes). Moreover, JT09 markedly decreased matrix degeneration induced by an HH agonist, SAG, in pig articular chondrocytes and cartilage explants (P = 0.026 versus untreated controls). In vivo application of JT09 via intraarticular injection into the rat knee joint after PMM surgery significantly attenuated articular cartilage degeneration (60% improvement in the tibial plateau; P = 0.021 versus vehicle-treated controls). In JT09-treated rats, cartilage content, structure, and functional properties were largely maintained, and osteophyte formation was reduced by 70% (P = 0.005 versus vehicle-treated controls). CONCLUSION The results of this study define a novel mechanism for the role of KOR in articular cartilage homeostasis and disease, providing a potential unifying mechanistic basis for the overlap in disease processes and features involving opioid and HH signaling. Moreover, this study identifies a potential novel therapeutic strategy in which KOR modulation can improve outcomes in patients with OA.
Collapse
Affiliation(s)
| | - Omid Jalali
- University of Southern California, Los Angeles
| | - Sean Limfat
- University of Southern California, Los Angeles
| | | | | | - Siyoung Lee
- University of Southern California, Los Angeles
| | - Yucheng Lin
- University of Southern California, Los Angeles, Nanjing First Hospital, Nanjing Medical University, Zhongda Hospital, and Southeast University, Nanjing, China
| | - Liangliang Li
- University of Southern California, Los Angeles, Nanjing First Hospital, and Nanjing Medical University, Nanjing, China
| | | | - Liming Wang
- Nanjing Medical University and Nanjing First Hospital, Nanjing, China
| | - Nancy Q Liu
- University of Southern California, Los Angeles
| | | | | | | |
Collapse
|
37
|
Griffiths R, Woods S, Cheng A, Wang P, Griffiths-Jones S, Ronshaugen M, Kimber SJ. The Transcription Factor-microRNA Regulatory Network during hESC-chondrogenesis. Sci Rep 2020; 10:4744. [PMID: 32179818 PMCID: PMC7075910 DOI: 10.1038/s41598-020-61734-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/19/2020] [Indexed: 12/21/2022] Open
Abstract
Human embryonic stem cells (ESCs) offer a promising therapeutic approach for osteoarthritis (OA). The unlimited source of cells capable of differentiating to chondrocytes has potential for repairing damaged cartilage or to generate disease models via gene editing. However their use is limited by the efficiency of chondrogenic differentiation. An improved understanding of the transcriptional and post-transcriptional regulation of chondrogenesis will enable us to improve hESC chondrogenic differentiation protocols. Small RNA-seq and whole transcriptome sequencing was performed on distinct stages of hESC-directed chondrogenesis. This revealed significant changes in the expression of several microRNAs including upregulation of known cartilage associated microRNAs and those transcribed from the Hox complexes, and the downregulation of pluripotency associated microRNAs. Integration of miRomes and transcriptomes generated during hESC-directed chondrogenesis identified key functionally related clusters of co-expressed microRNAs and protein coding genes, associated with pluripotency, primitive streak, limb development and extracellular matrix. Analysis identified regulators of hESC-directed chondrogenesis such as miR-29c-3p with 10 of its established targets identified as co-regulated 'ECM organisation' genes and miR-22-3p which is highly co-expressed with ECM genes and may regulate these genes indirectly by targeting the chondrogenic regulators SP1 and HDAC4. We identified several upregulated transcription factors including HOXA9/A10/D13 involved in limb patterning and RELA, JUN and NFAT5, which have targets enriched with ECM associated genes. We have developed an unbiased approach for integrating transcriptome and miRome using protein-protein interactions, transcription factor regulation and miRNA target interactions and identified key regulatory networks prominent in hESC chondrogenesis.
Collapse
Affiliation(s)
- Rosie Griffiths
- Divisions of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, United Kingdom
| | - Steven Woods
- Divisions of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Aixin Cheng
- Divisions of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
- Salford Royal NHS Foundation Trust, Department of Trauma and Orthopaedic, Stott Lane, Salford, M6 8HD, United Kingdom
| | - Ping Wang
- Evolution and Genomic Science, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Sam Griffiths-Jones
- Evolution and Genomic Science, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Matthew Ronshaugen
- Developmental Biology and Medicine, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Susan J Kimber
- Divisions of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, Michael Smith Building, Oxford Road, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
38
|
Riedl M, Witzmann C, Koch M, Lang S, Kerschbaum M, Baumann F, Krutsch W, Docheva D, Alt V, Pfeifer C. Attenuation of Hypertrophy in Human MSCs via Treatment with a Retinoic Acid Receptor Inverse Agonist. Int J Mol Sci 2020; 21:1444. [PMID: 32093330 PMCID: PMC7073129 DOI: 10.3390/ijms21041444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
In vitro chondrogenically differentiated mesenchymal stem cells (MSCs) have a tendency to undergo hypertrophy, mirroring the fate of transient "chondrocytes" in the growth plate. As hypertrophy would result in ossification, this fact limits their use in cartilage tissue engineering applications. During limb development, retinoic acid receptor (RAR) signaling exerts an important influence on cell fate of mesenchymal progenitors. While retinoids foster hypertrophy, suppression of RAR signaling seems to be required for chondrogenic differentiation. Therefore, we hypothesized that treatment of chondrogenically differentiating hMSCs with the RAR inverse agonist, BMS204,493 (further named BMS), would attenuate hypertrophy. We induced hypertrophy in chondrogenic precultured MSC pellets by the addition of bone morphogenetic protein 4. Direct activation of the RAR pathway by application of the physiological RAR agonist retinoic acid (RA) further enhanced the hypertrophic phenotype. However, BMS treatment reduced hypertrophic conversion in hMSCs, shown by decreased cell size, number of hypertrophic cells, and collagen type X deposition in histological analyses. BMS effects were dependent on the time point of application and strongest after early treatment during chondrogenic precultivation. The possibility of modifing hypertrophic cartilage via attenuation of RAR signaling by BMS could be helpful in producing stable engineered tissue for cartilage regeneration.
Collapse
Affiliation(s)
- Moritz Riedl
- Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (M.R.); (M.K.); (S.L.); (M.K.); (F.B.); (W.K.); (V.A.)
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (C.W.); (D.D.)
| | - Christina Witzmann
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (C.W.); (D.D.)
| | - Matthias Koch
- Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (M.R.); (M.K.); (S.L.); (M.K.); (F.B.); (W.K.); (V.A.)
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (C.W.); (D.D.)
| | - Siegmund Lang
- Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (M.R.); (M.K.); (S.L.); (M.K.); (F.B.); (W.K.); (V.A.)
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (C.W.); (D.D.)
| | - Maximilian Kerschbaum
- Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (M.R.); (M.K.); (S.L.); (M.K.); (F.B.); (W.K.); (V.A.)
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (C.W.); (D.D.)
| | - Florian Baumann
- Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (M.R.); (M.K.); (S.L.); (M.K.); (F.B.); (W.K.); (V.A.)
| | - Werner Krutsch
- Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (M.R.); (M.K.); (S.L.); (M.K.); (F.B.); (W.K.); (V.A.)
| | - Denitsa Docheva
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (C.W.); (D.D.)
| | - Volker Alt
- Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (M.R.); (M.K.); (S.L.); (M.K.); (F.B.); (W.K.); (V.A.)
| | - Christian Pfeifer
- Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (M.R.); (M.K.); (S.L.); (M.K.); (F.B.); (W.K.); (V.A.)
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, Regensburg University Medical Center, 93053 Regensburg, Germany; (C.W.); (D.D.)
| |
Collapse
|
39
|
Dicks A, Wu CL, Steward N, Adkar SS, Gersbach CA, Guilak F. Prospective isolation of chondroprogenitors from human iPSCs based on cell surface markers identified using a CRISPR-Cas9-generated reporter. Stem Cell Res Ther 2020; 11:66. [PMID: 32070421 PMCID: PMC7026983 DOI: 10.1186/s13287-020-01597-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/29/2022] Open
Abstract
Background Articular cartilage shows little or no capacity for intrinsic repair, generating a critical need of regenerative therapies for joint injuries and diseases such as osteoarthritis. Human-induced pluripotent stem cells (hiPSCs) offer a promising cell source for cartilage tissue engineering and in vitro human disease modeling; however, off-target differentiation remains a challenge during hiPSC chondrogenesis. Therefore, the objective of this study was to identify cell surface markers that define the true chondroprogenitor population and use these markers to purify iPSCs as a means of improving the homogeneity and efficiency of hiPSC chondrogenic differentiation. Methods We used a CRISPR-Cas9-edited COL2A1-GFP knock-in reporter hiPSC line, coupled with a surface marker screen, to identify a novel chondroprogenitor population. Single-cell RNA sequencing was then used to analyze the distinct clusters within the population. An unpaired t test with Welch’s correction or an unpaired Kolmogorov-Smirnov test was performed with significance reported at a 95% confidence interval. Results Chondroprogenitors expressing CD146, CD166, and PDGFRβ, but not CD45, made up an average of 16.8% of the total population. Under chondrogenic culture conditions, these triple-positive chondroprogenitor cells demonstrated decreased heterogeneity as measured by single-cell RNA sequencing with fewer clusters (9 clusters in unsorted vs. 6 in sorted populations) closer together. Additionally, there was more robust and homogenous matrix production (unsorted: 1.5 ng/ng vs. sorted: 19.9 ng/ng sGAG/DNA; p < 0.001) with significantly higher chondrogenic gene expression (i.e., SOX9, COL2A1, ACAN; p < 0.05). Conclusions Overall, this study has identified a unique hiPSC-derived subpopulation of chondroprogenitors that are CD146+/CD166+/PDGFRβ+/CD45− and exhibit high chondrogenic potential, providing a purified cell source for cartilage tissue engineering or disease modeling studies.
Collapse
Affiliation(s)
- Amanda Dicks
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, 63110, USA.,Shriners Hospitals for Children - St. Louis, St. Louis, MO, 63110, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, 63110, USA.,Center of Regenerative Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, 63110, USA.,Shriners Hospitals for Children - St. Louis, St. Louis, MO, 63110, USA.,Center of Regenerative Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Nancy Steward
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, 63110, USA.,Shriners Hospitals for Children - St. Louis, St. Louis, MO, 63110, USA.,Center of Regenerative Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Shaunak S Adkar
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, 63110, USA. .,Shriners Hospitals for Children - St. Louis, St. Louis, MO, 63110, USA. .,Department of Biomedical Engineering, Washington University, St. Louis, MO, 63110, USA. .,Center of Regenerative Medicine, Washington University, St. Louis, MO, 63110, USA.
| |
Collapse
|
40
|
Diederichs S, Klampfleuthner FAM, Moradi B, Richter W. Chondral Differentiation of Induced Pluripotent Stem Cells Without Progression Into the Endochondral Pathway. Front Cell Dev Biol 2019; 7:270. [PMID: 31737632 PMCID: PMC6838640 DOI: 10.3389/fcell.2019.00270] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
A major problem with chondrocytes derived in vitro from stem cells is undesired hypertrophic degeneration, to which articular chondrocytes (ACs) are resistant. As progenitors of all adult tissues, induced pluripotent stem cells (iPSCs) are in theory able to form stable articular cartilage. In vitro differentiation of iPSCs into chondrocytes with an AC-phenotype and resistance to hypertrophy has not been demonstrated so far. Here, we present a novel protocol that succeeded in deriving chondrocytes from human iPSCs without using pro-hypertrophic bone-morphogenetic-proteins. IPSC-chondrocytes had a high cartilage formation capacity and deposited two-fold more proteoglycans per cell than adult ACs. Importantly, cartilage engineered from iPSC-chondrocytes had similar marginal expression of hypertrophic markers (COL10A1, PTH1R, IBSP, ALPL mRNAs) like cartilage from ACs. Collagen X was barely detectable in iPSC-cartilage and 30-fold lower than in hypertrophic cartilage derived from mesenchymal stromal cells (MSCs). Moreover, alkaline phosphatase (ALP) activity remained at basal AC-like levels throughout iPSC chondrogenesis, in contrast to a well-known significant upregulation in hypertrophic MSCs. In line, iPSC-cartilage subjected to mineralizing conditions in vitro showed barely any mineralization, while MSC-derived hypertrophic cartilage mineralized strongly. Low expression of Indian hedgehog (IHH) like in ACs but rising BMP7 expression like in MSCs suggested that phenotype stability was linked to the hedgehog rather than the bone morphogenetic protein (BMP) pathway. Taken together, unlimited amounts of AC-like chondrocytes with a high proteoglycan production reminiscent of juvenile chondrocytes and resistance to hypertrophy and mineralization can now be produced from human iPSCs in vitro. This opens new strategies for cartilage regeneration, disease modeling and pharmacological studies.
Collapse
Affiliation(s)
- Solvig Diederichs
- Research Center for Experimental Orthopaedics, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felicia A M Klampfleuthner
- Research Center for Experimental Orthopaedics, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Babak Moradi
- Clinic for Orthopaedics and Trauma Surgery, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Wiltrud Richter
- Research Center for Experimental Orthopaedics, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
41
|
Scalzone A, Ferreira AM, Tonda-Turo C, Ciardelli G, Dalgarno K, Gentile P. The interplay between chondrocyte spheroids and mesenchymal stem cells boosts cartilage regeneration within a 3D natural-based hydrogel. Sci Rep 2019; 9:14630. [PMID: 31601910 PMCID: PMC6787336 DOI: 10.1038/s41598-019-51070-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/25/2019] [Indexed: 12/30/2022] Open
Abstract
Articular cartilage (AC) lacks the ability to self-repair and cell-based approaches, primarily based on using chondrocytes and mesenchymal stem cells (MSCs), are emerging as effective technology to restore cartilage functionality, because cells synergic functionality may support the maintenance of chondrogenic phenotype and promote extracellular matrix regeneration. This work aims to develop a more physiologically representative co-culture system to investigate the influence of MSCs on the activity of chondrocytes. A thermo-sensitive chitosan-based hydrogel, ionically crosslinked with β-glycerophosphate, is optimised to obtain sol/gel transition at physiological conditions within 5 minutes, high porosity with pores diameter <30 µm, and in vitro mechanical integrity with compressive and equilibrium Young's moduli of 37 kPa and 17 kPa, respectively. Live/dead staining showed that after 1 and 3 days in culture, the encapsulated MSCs into the hydrogels are viable and characterised by round-like morphology. Furthermore chondrocyte spheroids, seeded on top of gels that contained either MSCs or no cells, show that the encapsulated MSCs stimulate chondrocyte activity within a gel co-culture, both in terms of maintaining the coherence of chondrocyte spheroids, leading to a larger quantity of CD44 (by immunofluorescence) and a higher production of collagen and glycosaminoglycans (by histology) compared with the mono-culture.
Collapse
Affiliation(s)
- Annachiara Scalzone
- School of Engineering, Newcastle University, Claremont Road, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Ana M Ferreira
- School of Engineering, Newcastle University, Claremont Road, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino Corso Duca degli Abruzzi 29, Turin, 10129, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino Corso Duca degli Abruzzi 29, Turin, 10129, Italy
| | - Kenny Dalgarno
- School of Engineering, Newcastle University, Claremont Road, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Claremont Road, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| |
Collapse
|
42
|
The Role of Extracellular Matrix Expression, ERK1/2 Signaling and Cell Cohesiveness for Cartilage Yield from iPSCs. Int J Mol Sci 2019; 20:ijms20174295. [PMID: 31480758 PMCID: PMC6747490 DOI: 10.3390/ijms20174295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
Current therapies involving chondrocytes or mesenchymal stromal cells (MSCs) remain inefficient in restoring cartilage properties upon injury. The induced pluripotent stem-cell (iPSC)-derived mesenchymal progenitor cells (iMPCs) have been put forward as a promising alternative cell source due to their high proliferation and differentiation potential. However, the observed cell loss during in vitro chondrogenesis is currently a bottleneck in establishing articular chondrocyte generation from iPSCs. In a search for candidate mechanisms underlying the low iPSC-derived cartilage tissue yield, global transcriptomes were compared between iMPCs and MSCs and the cell properties were analyzed via a condensation assay. The iMPCs had a more juvenile mesenchymal gene signature than MSCs with less myofibroblast-like characteristics, including significantly lower ECM- and integrin-ligand-related as well as lower α-smooth-muscle-actin expression. This correlated with less substrate and more cell-cell adhesion, impaired aggregate formation and consequently inferior cohesive tissue properties of the iMPC-pellets. Along lower expression of pro-survival ECM molecules, like decorin, collagen VI, lumican and laminin, the iMPC populations had significantly less active ERK1/2 compared to MSCs. Overall, this study proposes that this ECM and integrin-ligand shortage, together with insufficient pro-survival ERK1/2-activity, explains the loss of a non-aggregating iMPC sub-fraction during pellet formation and reduced survival of cells in early pellets. Enhancing ECM production and related signaling in iMPCs may be a promising new means to enrich the instructive microenvironment with pro-survival cues allowing to improve the final cartilage tissue yield from iPSCs.
Collapse
|
43
|
Zhou J, Li C, Yu A, Jie S, Du X, Liu T, Wang W, Luo Y. Bioinformatics analysis of differentially expressed genes involved in human developmental chondrogenesis. Medicine (Baltimore) 2019; 98:e16240. [PMID: 31277141 PMCID: PMC6635276 DOI: 10.1097/md.0000000000016240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA), also known as degenerative arthritis, affects millions of people all over the world. OA occurs when the cartilage wears down over time, which is a worldwide complaint. The aim of this study was to screen and verify hub genes involved in developmental chondrogenesis as well as to explore potential molecular mechanisms.The expression profiles of GSE51812 were downloaded from the Gene Expression Omnibus (GEO) database, which contained 9 samples, including 6-week pre-chondrocytes (PC, 6 independent specimens) and 17-week fetal periarticular resting chondrocytes (RC, 3 independent specimens). The raw data were integrated to obtain differentially expressed genes (DEGs) and were further analyzed with bioinformatics analysis. The Gene Ontology (GO) and pathway enrichment of DEGs were conducted via Database for Annotation, Visualization, and Integrated Discovery (DAVID). The protein-protein interaction (PPI) networks of the DEGs were constructed based on data from the search tool for the retrieval of interacting genes (STRING) database. An intersection figure was provided to show the relationship between the DEGs identified in this study and genes from any existed related studies.A total of 9486 DEGs, including 4821 upregulated genes and 4665 downregulated genes were observed. The top 30 developmental chondrogenesis associated genes were identified, including matrix metalloproteinase (MMP)1, MMP3, MMP13, prostaglandin-endoperoxide synthase 2 (PTGS2), and so on. The majority of DEGs, including PTGS2, CCL20, CHI3L1, LIF, CXCL8, and CXCL12 were intensively enriched in immune-associated biological process terms, including inflammatory, and immune responses. Additionally, the majority of DEGs were mainly enriched in NF-kappa β (NF-kβ) signaling pathway and tumor necrosis factor (TNF) signaling pathway. The hub genes identified in STRING and Cytoscape databases included MMP1, MMP3, MMP13, PTGS2 and so on. Among the top 30 upregulated and downregulated DEGs, there were 15 genes have been reported to be associated with OA or developmental chondrogenesis.This large scale gene expression study observed genes associated with human developmental chondrogenesis and their relative GO function, which may offer opportunities for the research for cartilage tissue engineering and novel insights into the prevention of OA in the near future.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital
- Department of Sports Medicine Research Center, Central South University, Changsha, Hunan
| | - Chenxi Li
- Department of Clinical Medicine, School of Medicine
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong
| | - Anqi Yu
- Department of Anesthesiology, The Second Xiangya Hospital
| | - Shuo Jie
- Department of Orthopedics, The Second Xiangya Hospital
| | - Xiadong Du
- Department of Orthopedics, The Second Xiangya Hospital
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital
- State Key Laboratory of Powder Metallurgy, Central South University
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital
| | - Yingquan Luo
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
44
|
Characterization of Different Sources of Human MSCs Expanded in Serum-Free Conditions with Quantification of Chondrogenic Induction in 3D. Stem Cells Int 2019; 2019:2186728. [PMID: 31320905 PMCID: PMC6610765 DOI: 10.1155/2019/2186728] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/11/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) represent alternative candidates to chondrocytes for cartilage engineering. However, it remains difficult to identify the ideal source of MSCs for cartilage repair since conditions supporting chondrogenic induction are diverse among published works. In this study, we characterized and evaluated the chondrogenic potential of MSCs from bone marrow (BM), Wharton's jelly (WJ), dental pulp (DP), and adipose tissue (AT) isolated and cultivated under serum-free conditions. BM-, WJ-, DP-, and AT-MSCs did not differ in terms of viability, clonogenicity, and proliferation. By an extensive polychromatic flow cytometry analysis, we found notable differences in markers of the osteochondrogenic lineage between the 4 MSC sources. We then evaluated their chondrogenic potential in a micromass culture model, and only BM-MSCs showed chondrogenic conversion. This chondrogenic differentiation was specifically ascertained by the production of procollagen IIB, the only type II collagen isoform synthesized by well-differentiated chondrocytes. As a pilot study toward cartilage engineering, we encapsulated BM-MSCs in hydrogel and developed an original method to evaluate their chondrogenic conversion by flow cytometry analysis, after release of the cells from the hydrogel. This allowed the simultaneous quantification of procollagen IIB and α10, a subunit of a type II collagen receptor crucial for proper cartilage development. This work represents the first comparison of detailed immunophenotypic analysis and chondrogenic differentiation potential of human BM-, WJ-, DP-, and AT-MSCs performed under the same serum-free conditions, from their isolation to their induction. Our study, achieved in conditions compliant with clinical applications, highlights that BM-MSCs are good candidates for cartilage engineering.
Collapse
|
45
|
Abstract
Synovial joints enable movement and protect the integrity of the articular cartilage. Joints form within skeletal condensations destined to undergo chondrogenesis. The suppression of this chondrogenic program in the interzone is the first morphological sign of joint formation. While we have a fairly good understanding of the essential roles of BMP and TGFβ family members in promoting chondrogenic differentiation in developing skeletal elements, we know very little about how BMP activity is suppressed specifically within the interzone, a crucial step in joint development. The function of the BMP ligand Gdf5 has been especially difficult to decipher. On the one hand, Gdf5 is required to promote chondrogenesis of articular elements. On the other hand, Gdf5 is highly expressed in the joint interzone where chondrogenesis must be suppressed for the formation of many joints. Here we review the evidence that BMP signaling must be suppressed within the joint interzone for joint morphogenesis to progress, and consider how Gdf5 exerts its divergent effects on chondrogenesis and joint formation. We also consider how TGFβ signaling impacts formation of the interzone. Finally, we propose a model whereby Gdf5 exerts distinct effects in the interzone vs. surrounding cartilage based on the repertoire of BMP receptors available in these tissues. Understanding how BMP antagonists and counteracting TGFβ signals intersect with Gdf5 to sculpt the joint interzone is essential for understanding the origin of osteoarthritis and other diseases of joint tissues.
Collapse
Affiliation(s)
- Karen M Lyons
- Department of Orthopaedic Surgery, Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States.
| |
Collapse
|
46
|
Saitta B, Elphingstone J, Limfat S, Shkhyan R, Evseenko D. CaMKII inhibition in human primary and pluripotent stem cell-derived chondrocytes modulates effects of TGFβ and BMP through SMAD signaling. Osteoarthritis Cartilage 2019; 27:158-171. [PMID: 30205161 PMCID: PMC6309757 DOI: 10.1016/j.joca.2018.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Upregulation of calcium/calmodulin-dependent kinase II (CaMKII) is implicated in the pathogenesis of osteoarthritis (OA) and reactivation of articular cartilage hypertrophy. However, direct inhibition of CaMKII unexpectedly augmented symptoms of OA in animal models. The role of CaMKII in OA remains unclear and requires further investigation. METHODS Analysis of CaMKII expression was performed in normal human and OA articular chondrocytes, and signaling mechanisms were assessed in articular, fetal and Pluripotent Stem Cell (PSC)-derived human chondrocytes using pharmacological (KN93), peptide (AC3-I) and small interfering RNA (siRNA) inhibitors of CaMKII. RESULTS Expression levels of phospho-CaMKII (pCaMKII) were significantly and consistently increased in human OA specimens. BMP2/4 activated expression of pCaMKII as well as COLII and COLX in human adult articular chondrocytes, and also increased the levels and nuclear localization of SMADs1/5/8, while TGFβ1 showed minimal or no activation of the chondrogenic program in adult chondrocytes. Targeted blockade of CaMKII with specific siRNAs decreased levels of pSMADs, COLII, COLX and proteoglycans in normal and OA adult articular chondrocytes in the presence of both BMP4 and TGFβ1. Both human fetal and PSC-derived chondrocytes also demonstrated a decrease of chondrogenic differentiation in the presence of small molecule and peptide inhibitors of CaMKII. Furthermore, immunoprecipitation for SMADs1/5/8 or 2/3 followed by western blotting for pCaMKII showed direct interaction between SMADs and pCaMKII in primary chondrocytes. CONCLUSION Current study demonstrates a direct role for CaMKII in TGF-β and BMP-mediated responses in primary and PSC-derived chondrocytes. These findings have direct implications for tissue engineering of cartilage tissue from stem cells and therapeutic management of OA.
Collapse
Affiliation(s)
- Biagio Saitta
- Departments of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, 90033, USA,Medicine Div. of Nephrology and Hypertension, University of Southern California, Los Angeles, CA, 90033, USA
| | - Joseph Elphingstone
- Departments of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, 90033, USA
| | - Sean Limfat
- Departments of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ruzanna Shkhyan
- Departments of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, 90033, USA
| | - Denis Evseenko
- Departments of Orthopaedic Surgery, University of Southern California, Los Angeles, CA, 90033, USA,Stem Cell Research and Regenerative Medicine Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA,Corresponding Author:Denis Evseenko MD, PhD., Associate Professor of Orthopaedic Surgery, Stem Cell Research and Regenerative Medicine, Keck School of Medicine of USC, 1450 Biggy St, NRT 4509, Los Angeles, CA 90033,
| |
Collapse
|
47
|
Moeinzadeh S, Monavarian M, Kader S, Jabbari E. Sequential Zonal Chondrogenic Differentiation of Mesenchymal Stem Cells in Cartilage Matrices. Tissue Eng Part A 2018; 25:234-247. [PMID: 30146939 DOI: 10.1089/ten.tea.2018.0083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IMPACT STATEMENT The higher regenerative capacity of fetal articular cartilage compared with the adult is rooted in differences in cell density and matrix composition. We hypothesized that the zonal organization of articular cartilage can be engineered by encapsulation of mesenchymal stem cells in a single superficial zone-like matrix followed by sequential addition of zone-specific growth factors within the matrix, similar to the process of fetal cartilage development. The results demonstrate that the zonal organization of articular cartilage can potentially be regenerated using an injectable, monolayer cell-laden hydrogel with sequential release of growth factors.
Collapse
Affiliation(s)
- Seyedsina Moeinzadeh
- 1 Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina
| | - Mehri Monavarian
- 1 Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina
| | - Safaa Kader
- 1 Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina.,2 Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina
| | - Esmaiel Jabbari
- 1 Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
48
|
Adkar SS, Wu CL, Willard VP, Dicks A, Ettyreddy A, Steward N, Bhutani N, Gersbach CA, Guilak F. Step-Wise Chondrogenesis of Human Induced Pluripotent Stem Cells and Purification Via a Reporter Allele Generated by CRISPR-Cas9 Genome Editing. Stem Cells 2018; 37:65-76. [PMID: 30378731 DOI: 10.1002/stem.2931] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/26/2018] [Accepted: 09/05/2018] [Indexed: 01/23/2023]
Abstract
The differentiation of human induced pluripotent stem cells (hiPSCs) to prescribed cell fates enables the engineering of patient-specific tissue types, such as hyaline cartilage, for applications in regenerative medicine, disease modeling, and drug screening. In many cases, however, these differentiation approaches are poorly controlled and generate heterogeneous cell populations. Here, we demonstrate cartilaginous matrix production in three unique hiPSC lines using a robust and reproducible differentiation protocol. To purify chondroprogenitors (CPs) produced by this protocol, we engineered a COL2A1-GFP knock-in reporter hiPSC line by CRISPR-Cas9 genome editing. Purified CPs demonstrated an improved chondrogenic capacity compared with unselected populations. The ability to enrich for CPs and generate homogenous matrix without contaminating cell types will be essential for regenerative and disease modeling applications. Stem Cells 2019;37:65-76.
Collapse
Affiliation(s)
- Shaunak S Adkar
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA
| | | | - Amanda Dicks
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Adarsh Ettyreddy
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Nancy Steward
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA
| | - Nidhi Bhutani
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA.,Cytex Therapeutics, Inc., Durham, North Carolina, USA
| |
Collapse
|
49
|
Genetic Markers Can Predict Chondrogenic Differentiation Potential in Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells Int 2018; 2018:9530932. [PMID: 30405725 PMCID: PMC6199884 DOI: 10.1155/2018/9530932] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023] Open
Abstract
The precise predictions of the differentiation direction and potential of mesenchymal stromal cells (MSCs) are an important key to the success of regenerative medicine. The expression levels of fate-determining genes may provide tools for predicting differentiation potential. The expression levels of 95 candidate marker genes and glycosaminoglycan (GAG) contents after chondrogenic induction in 10 undifferentiated ilium and 5 jaw MSC cultures were determined, and their correlations were analyzed. The expression levels of eight genes before the induction of chondrogenic MSC differentiation were significantly correlated with the GAG levels after induction. Based on correlation patterns, the eight genes were classified into two groups: group 1 genes (AURKB, E2F1, CDKN2D, LIF, and ACLY), related to cell cycle regulation, and group 2 genes (CD74, EFEMP1, and TGM2), involved in chondrogenesis. The expression levels of the group 2 genes were significantly correlated with the ages of the cell donors. The expression levels of CDKN2D, CD74, and TGM2 were >10-fold higher in highly potent MSCs (ilium MSCs) than in MSCs with limited potential (jaw MSCs). Three-dimensional (3D) scatter plot analyses of the expression levels of these genes showed reduced variability between donors and confirmed predictive potential. These data suggest that group 2 genes are involved in age-dependent decreases in the chondrogenic differentiation potential of MSCs, and combined 3D analyses of the expression profiles of three genes, including two group 2 genes, were predictive of MSC differentiation potential.
Collapse
|
50
|
Ferguson GB, Van Handel B, Bay M, Fiziev P, Org T, Lee S, Shkhyan R, Banks NW, Scheinberg M, Wu L, Saitta B, Elphingstone J, Larson AN, Riester SM, Pyle AD, Bernthal NM, Mikkola HK, Ernst J, van Wijnen AJ, Bonaguidi M, Evseenko D. Mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes. Nat Commun 2018; 9:3634. [PMID: 30194383 PMCID: PMC6128860 DOI: 10.1038/s41467-018-05573-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 07/04/2018] [Indexed: 11/09/2022] Open
Abstract
Tissue-specific gene expression defines cellular identity and function, but knowledge of early human development is limited, hampering application of cell-based therapies. Here we profiled 5 distinct cell types at a single fetal stage, as well as chondrocytes at 4 stages in vivo and 2 stages during in vitro differentiation. Network analysis delineated five tissue-specific gene modules; these modules and chromatin state analysis defined broad similarities in gene expression during cartilage specification and maturation in vitro and in vivo, including early expression and progressive silencing of muscle- and bone-specific genes. Finally, ontogenetic analysis of freshly isolated and pluripotent stem cell-derived articular chondrocytes identified that integrin alpha 4 defines 2 subsets of functionally and molecularly distinct chondrocytes characterized by their gene expression, osteochondral potential in vitro and proliferative signature in vivo. These analyses provide new insight into human musculoskeletal development and provide an essential comparative resource for disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Gabriel B Ferguson
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Ben Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Maxwell Bay
- Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA, 90033, USA
| | - Petko Fiziev
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, 90095, USA.,Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, 90095, USA
| | - Tonis Org
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA, 90095, USA.,Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Siyoung Lee
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Ruzanna Shkhyan
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Nicholas W Banks
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Mila Scheinberg
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Ling Wu
- InVitro Cell Research, LLC, Cockeysville, MD, 21030, USA
| | - Biagio Saitta
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Joseph Elphingstone
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - A Noelle Larson
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Center of Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Scott M Riester
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Center of Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - April D Pyle
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, 90095, USA
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Hanna Ka Mikkola
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, 90095, USA.,Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA, 90095, USA
| | - Jason Ernst
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, 90095, USA.,Computer Science Department, University of California, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Andre J van Wijnen
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Center of Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Michael Bonaguidi
- Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA, 90033, USA
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA. .,Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA, 90033, USA. .,Department of Orthopaedic Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|