1
|
Wang J, Sun S, Deng H. Chemical reprogramming for cell fate manipulation: Methods, applications, and perspectives. Cell Stem Cell 2023; 30:1130-1147. [PMID: 37625410 DOI: 10.1016/j.stem.2023.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
Chemical reprogramming offers an unprecedented opportunity to control somatic cell fate and generate desired cell types including pluripotent stem cells for applications in biomedicine in a precise, flexible, and controllable manner. Recent success in the chemical reprogramming of human somatic cells by activating a regeneration-like program provides an alternative way of producing stem cells for clinical translation. Likewise, chemical manipulation enables the capture of multiple (stem) cell states, ranging from totipotency to the stabilization of somatic fates in vitro. Here, we review progress in using chemical approaches for cell fate manipulation in addition to future opportunities in this promising field.
Collapse
Affiliation(s)
- Jinlin Wang
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Shicheng Sun
- Changping Laboratory, 28 Life Science Park Road, Beijing, China; Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, Australia.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Changping Laboratory, 28 Life Science Park Road, Beijing, China.
| |
Collapse
|
2
|
Zhang ZP, Zhang JT, Huang SC, He XY, Deng LX. Double sperm cloning (DSC) is a promising strategy in mammalian genetic engineering and stem cell research. Stem Cell Res Ther 2020; 11:388. [PMID: 32894201 PMCID: PMC7487873 DOI: 10.1186/s13287-020-01907-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Embryonic stem cells (ESCs) derived from somatic cell nuclear transfer (SCNT) and induced pluripotent stem cells (iPSCs) are promising tools for meeting the personalized requirements of regenerative medicine. However, some obstacles need to be overcome before clinical trials can be undertaken. First, donor cells vary, and the reprogramming procedures are diverse, so standardization is a great obstacle regarding SCNT and iPSCs. Second, somatic cells derived from a patient may carry mitochondrial DNA mutations and exhibit telomere instability with aging or disease, and SCNT-ESCs and iPSCs retain the epigenetic memory or epigenetic modification errors. Third, reprogramming efficiency has remained low. Therefore, in addition to improving their success rate, other alternatives for producing ESCs should be explored. Producing androgenetic diploid embryos could be an outstanding strategy; androgenic diploid embryos are produced through double sperm cloning (DSC), in which two capacitated sperms (XY or XX, sorted by flow cytometer) are injected into a denucleated oocyte by intracytoplasmic sperm injection (ICSI) to reconstruct embryo and derive DSC-ESCs. This process could avoid some potential issues, such as mitochondrial interference, telomere shortening, and somatic epigenetic memory, all of which accompany somatic donor cells. Oocytes are naturally activated by sperm, which is unlike the artificial activation that occurs in SCNT. The procedure is simple and practical and can be easily standardized. In addition, DSC-ESCs can overcome ethical concerns and resolve immunological response matching with sperm providers. Certainly, some challenges must be faced regarding imprinted genes, epigenetics, X chromosome inactivation, and dosage compensation. In mice, DSC-ESCs have been produced and have shown excellent differentiation ability. Therefore, the many advantages of DSC make the study of this process worthwhile for regenerative medicine and animal breeding.
Collapse
Affiliation(s)
- Zhi-Ping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jun-Tao Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiu-Yuan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Li-Xin Deng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Araki R, Hoki Y, Suga T, Obara C, Sunayama M, Imadome K, Fujita M, Kamimura S, Nakamura M, Wakayama S, Nagy A, Wakayama T, Abe M. Genetic aberrations in iPSCs are introduced by a transient G1/S cell cycle checkpoint deficiency. Nat Commun 2020; 11:197. [PMID: 31924765 PMCID: PMC6954237 DOI: 10.1038/s41467-019-13830-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022] Open
Abstract
A number of point mutations have been identified in reprogrammed pluripotent stem cells such as iPSCs and ntESCs. The molecular basis for these mutations has remained elusive however, which is a considerable impediment to their potential medical application. Here we report a specific stage at which iPSC generation is not reduced in response to ionizing radiation, i.e. radio-resistance. Quite intriguingly, a G1/S cell cycle checkpoint deficiency occurs in a transient fashion at the initial stage of the genome reprogramming process. These cancer-like phenomena, i.e. a cell cycle checkpoint deficiency resulting in the accumulation of point mutations, suggest a common developmental pathway between iPSC generation and tumorigenesis. This notion is supported by the identification of specific cancer mutational signatures in these cells. We describe efficient generation of human integration-free iPSCs using erythroblast cells, which have only a small number of point mutations and INDELs, none of which are in coding regions. Point mutations have been found in induced pluripotent stem cells (iPSCs) but when they arise is unclear. Here, the authors show that a G1/S cell cycle checkpoint deficiency transiently occurs early in genome reprogramming, suggesting a common developmental pathway between iPSC and tumorigenesis, and generate genetic burden-free human iPSCs.
Collapse
Affiliation(s)
- Ryoko Araki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan.
| | - Yuko Hoki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Tomo Suga
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Chizuka Obara
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Misato Sunayama
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Kaori Imadome
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Mayumi Fujita
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Satoshi Kamimura
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Miki Nakamura
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Kofu, 400-8510, Japan
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Kofu, 400-8510, Japan
| | - Masumi Abe
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan.
| |
Collapse
|
4
|
Abstract
Pluripotent stem cells (PSCs) are capable of unlimited self-renewal in culture and differentiation into all functional cell types in the body, and thus hold great promise for regenerative medicine. To achieve their clinical potential, it is critical for PSCs to maintain genomic stability during the extended proliferation. The critical tumor suppressor p53 is required to maintain genomic stability of mammalian cells. In response to DNA damage or oncogenic stress, p53 plays multiple roles in maintaining genomic stability of somatic cells by inducing cell cycle arrest, apoptosis, and senescence to prevent the passage of genetic mutations to the daughter cells. p53 is also required to maintain the genomic stability of PSCs. However, in response to the genotoxic stresses, a primary role of p53 in PSCs is to induce the differentiation of PSCs and inhibit pluripotency, providing mechanisms to maintain the genomic stability of the self-renewing PSCs. In addition, the roles of p53 in cellular metabolism might also contribute to genomic stability of PSCs by limiting oxidative stress. In summary, the elucidation of the roles of p53 in PSCs will be a prerequisite for developing safe PSC-based cell therapy.
Collapse
|
5
|
Gonzalez-Munoz E, Cibelli JB. Somatic Cell Reprogramming Informed by the Oocyte. Stem Cells Dev 2018; 27:871-887. [DOI: 10.1089/scd.2018.0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Elena Gonzalez-Munoz
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Cell Biology, Genetics and Physiology, University of Málaga, Málaga, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Málaga, Spain
| | - Jose B. Cibelli
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Animal Science, Michigan State University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI
| |
Collapse
|
6
|
Li H, Gao S, Huang H, Liu W, Huang H, Liu X, Gao Y, Le R, Kou X, Zhao Y, Kou Z, Li J, Wang H, Zhang Y, Wang H, Cai T, Sun Q, Gao S, Han Z. High throughput sequencing identifies an imprinted gene, Grb10, associated with the pluripotency state in nuclear transfer embryonic stem cells. Oncotarget 2018; 8:47344-47355. [PMID: 28476045 PMCID: PMC5564569 DOI: 10.18632/oncotarget.17185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/24/2017] [Indexed: 02/05/2023] Open
Abstract
Somatic cell nuclear transfer and transcription factor mediated reprogramming are two widely used techniques for somatic cell reprogramming. Both fully reprogrammed nuclear transfer embryonic stem cells and induced pluripotent stem cells hold potential for regenerative medicine, and evaluation of the stem cell pluripotency state is crucial for these applications. Previous reports have shown that the Dlk1-Dio3 region is associated with pluripotency in induced pluripotent stem cells and the incomplete somatic cell reprogramming causes abnormally elevated levels of genomic 5-methylcytosine in induced pluripotent stem cells compared to nuclear transfer embryonic stem cells and embryonic stem cells. In this study, we compared pluripotency associated genes Rian and Gtl2 in the Dlk1-Dio3 region in exactly syngeneic nuclear transfer embryonic stem cells and induced pluripotent stem cells with same genomic insertion. We also assessed 5-methylcytosine and 5-hydroxymethylcytosine levels and performed high-throughput sequencing in these cells. Our results showed that Rian and Gtl2 in the Dlk1-Dio3 region related to pluripotency in induced pluripotent stem cells did not correlate with the genes in nuclear transfer embryonic stem cells, and no significant difference in 5-methylcytosine and 5-hydroxymethylcytosine levels were observed between fully and partially reprogrammed nuclear transfer embryonic stem cells and induced pluripotent stem cells. Through syngeneic comparison, our study identifies for the first time that Grb10 is associated with the pluripotency state in nuclear transfer embryonic stem cells.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, People's Republic of China.,National Institute of Biological Sciences, NIBS, Beijing, People's Republic of China
| | - Shuai Gao
- National Institute of Biological Sciences, NIBS, Beijing, People's Republic of China
| | - Hua Huang
- State Key Laboratory of Environment Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, People's Republic of China
| | - Wenqiang Liu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Huanwei Huang
- National Institute of Biological Sciences, NIBS, Beijing, People's Republic of China
| | - Xiaoyu Liu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Yawei Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Rongrong Le
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Yanhong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Zhaohui Kou
- National Institute of Biological Sciences, NIBS, Beijing, People's Republic of China
| | - Jia Li
- National Institute of Biological Sciences, NIBS, Beijing, People's Republic of China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Yu Zhang
- National Institute of Biological Sciences, NIBS, Beijing, People's Republic of China
| | - Hailin Wang
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, People's Republic of China.,State Key Laboratory of Environment Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, People's Republic of China
| | - Tao Cai
- National Institute of Biological Sciences, NIBS, Beijing, People's Republic of China
| | - Qingyuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, People's Republic of China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
7
|
Chaterji S, Ahn EH, Kim DH. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research. Theranostics 2017; 7:4445-4469. [PMID: 29158838 PMCID: PMC5695142 DOI: 10.7150/thno.18456] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 08/24/2017] [Indexed: 12/13/2022] Open
Abstract
The emergence of targeted and efficient genome editing technologies, such as repurposed bacterial programmable nucleases (e.g., CRISPR-Cas systems), has abetted the development of cell engineering approaches. Lessons learned from the development of RNA-interference (RNA-i) therapies can spur the translation of genome editing, such as those enabling the translation of human pluripotent stem cell engineering. In this review, we discuss the opportunities and the challenges of repurposing bacterial nucleases for genome editing, while appreciating their roles, primarily at the epigenomic granularity. First, we discuss the evolution of high-precision, genome editing technologies, highlighting CRISPR-Cas9. They exist in the form of programmable nucleases, engineered with sequence-specific localizing domains, and with the ability to revolutionize human stem cell technologies through precision targeting with greater on-target activities. Next, we highlight the major challenges that need to be met prior to bench-to-bedside translation, often learning from the path-to-clinic of complementary technologies, such as RNA-i. Finally, we suggest potential bioinformatics developments and CRISPR delivery vehicles that can be deployed to circumvent some of the challenges confronting genome editing technologies en route to the clinic.
Collapse
|
8
|
Abstract
Human embryonic stem cells (hESCs) can undergo unlimited self-renewal and differentiate into all cell types in human body, and therefore hold great potential for cell therapy of currently incurable diseases including neural degenerative diseases, heart failure, and macular degeneration. This potential is further underscored by the promising safety and efficacy data from the ongoing clinical trials of hESC-based therapy of macular degeneration. However, one main challenge for the clinical application of hESC-based therapy is the allogeneic immune rejection of hESC-derived cells by the recipient. The breakthrough of the technology to generate autologous-induced pluripotent stem cells (iPSCs) by nuclear reprogramming of patient’s somatic cells raised the possibility that autologous iPSC-derived cells can be transplanted into the patients without the concern of immune rejection. However, accumulating data indicate that certain iPSC-derived cells can be immunogenic. In addition, the genomic instability associated with iPSCs raises additional safety concern to use iPSC-derived cells in human cell therapy. In this review, we will discuss the mechanism underlying the immunogenicity of the pluripotent stem cells and recent progress in developing immune tolerance strategies of human pluripotent stem cell (hPSC)-derived allografts. The successful development of safe and effective immune tolerance strategy will greatly facilitate the clinical development of hPSC-based cell therapy.
Collapse
Affiliation(s)
- Xin Liu
- Center for Regenerative and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Wenjuan Li
- Center for Regenerative and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuemei Fu
- The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yang Xu
- Center for Regenerative and Translational Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
9
|
Araki R, Mizutani E, Hoki Y, Sunayama M, Wakayama S, Nagatomo H, Kasama Y, Nakamura M, Wakayama T, Abe M. The Number of Point Mutations in Induced Pluripotent Stem Cells and Nuclear Transfer Embryonic Stem Cells Depends on the Method and Somatic Cell Type Used for Their Generation. Stem Cells 2017; 35:1189-1196. [PMID: 28233378 DOI: 10.1002/stem.2601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/09/2017] [Accepted: 01/29/2017] [Indexed: 01/05/2023]
Abstract
Induced pluripotent stem cells hold great promise for regenerative medicine but point mutations have been identified in these cells and have raised serious concerns about their safe use. We generated nuclear transfer embryonic stem cells (ntESCs) from both mouse embryonic fibroblasts (MEFs) and tail-tip fibroblasts (TTFs) and by whole genome sequencing found fewer mutations compared with iPSCs generated by retroviral gene transduction. Furthermore, TTF-derived ntESCs showed only a very small number of point mutations, approximately 80% less than the number observed in iPSCs generated using retrovirus. Base substitution profile analysis confirmed this greatly reduced number of point mutations. The point mutations in iPSCs are therefore not a Yamanaka factor-specific phenomenon but are intrinsic to genome reprogramming. Moreover, the dramatic reduction in point mutations in ntESCs suggests that most are not essential for genome reprogramming. Our results suggest that it is feasible to reduce the point mutation frequency in iPSCs by optimizing various genome reprogramming conditions. We conducted whole genome sequencing of ntES cells derived from MEFs or TTFs. We thereby succeeded in establishing TTF-derived ntES cell lines with far fewer point mutations. Base substitution profile analysis of these clones also indicated a reduced point mutation frequency, moving from a transversion-predominance to a transition-predominance. Stem Cells 2017;35:1189-1196.
Collapse
Affiliation(s)
- Ryoko Araki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Eiji Mizutani
- Department of Biotechnology, Faculty of Life and Environmental Science, University of Yamanashi, Kofu, Japan
| | - Yuko Hoki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Misato Sunayama
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Sayaka Wakayama
- Department of Biotechnology, Faculty of Life and Environmental Science, University of Yamanashi, Kofu, Japan
| | - Hiroaki Nagatomo
- Department of Biotechnology, Faculty of Life and Environmental Science, University of Yamanashi, Kofu, Japan
| | - Yasuji Kasama
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Miki Nakamura
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Teruhiko Wakayama
- Department of Biotechnology, Faculty of Life and Environmental Science, University of Yamanashi, Kofu, Japan
| | - Masumi Abe
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
10
|
Huang J, Zhang H, Yao J, Qin G, Wang F, Wang X, Luo A, Zheng Q, Cao C, Zhao J. BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei. Reproduction 2016; 151:39-49. [PMID: 26604326 DOI: 10.1530/rep-15-0460] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation. The results showed that the developmental competence of porcine SCNT embryos was significantly enhanced both in vitro (blastocyst rate 16.4% vs 23.2%, P<0.05) and in vivo (cloning rate 1.59% vs 2.96%) after 50 nm BIX-01294 treatment. BIX-01294 treatment significantly decreased the levels of H3K9me2 and H3K9me at the 2- and 4-cell stages, which are associated with embryo genetic activation, and increased the transcriptional expression of the pluripotency genes SOX2, NANOG and OCT4 in cloned blastocysts. Furthermore, the histone acetylation levels of H3K9, H4K8 and H4K12 in cloned embryos were decreased after BIX-01294 treatment. However, co-treatment of activated NT oocytes with BIX-01294 and Scriptaid rescued donor nuclear chromatin from decreased histone acetylation of H4K8 that resulted from exposure to BIX-01294 only and consequently improved the preimplantation development of SCNT embryos (blastocyst formation rates of 23.7% vs 21.5%). These results indicated that treatment with BIX-01294 enhanced the developmental competence of porcine SCNT embryos through improvements in epigenetic reprogramming and gene expression.
Collapse
Affiliation(s)
- Jiaojiao Huang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Hongyong Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Jing Yao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Guosong Qin
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Feng Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Xianlong Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Ailing Luo
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Qiantao Zheng
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| |
Collapse
|
11
|
Abstract
The ability to reprogram somatic cells into induced pluripotent stem cells (iPSCs) using defined factors provides new tools for biomedical research. However, some iPSC clones display tumorigenic and immunogenic potential, thus raising concerns about their utility and safety in the clinical setting. Furthermore, variability in iPSC differentiation potential has also been described. Here we discuss whether these therapeutic obstacles are specific to transcription-factor-mediated reprogramming or inherent to every cellular reprogramming method. Finally, we address whether a better understanding of the mechanism underlying the reprogramming process might improve the fidelity of reprogramming and, therefore, the iPSC quality.
Collapse
Affiliation(s)
- Natalia Tapia
- Institute of Biomedicine of Valencia, Spanish National Research Council, Jaime Roig 11, 46010 Valencia, Spain.
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany; Medical Faculty, University of Münster, Domagkstraße 3, 48149 Münster, Germany.
| |
Collapse
|
12
|
Hazen JL, Faust GG, Rodriguez AR, Ferguson WC, Shumilina S, Clark RA, Boland MJ, Martin G, Chubukov P, Tsunemoto RK, Torkamani A, Kupriyanov S, Hall IM, Baldwin KK. The Complete Genome Sequences, Unique Mutational Spectra, and Developmental Potency of Adult Neurons Revealed by Cloning. Neuron 2016; 89:1223-1236. [PMID: 26948891 DOI: 10.1016/j.neuron.2016.02.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/14/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023]
Abstract
Somatic mutation in neurons is linked to neurologic disease and implicated in cell-type diversification. However, the origin, extent, and patterns of genomic mutation in neurons remain unknown. We established a nuclear transfer method to clonally amplify the genomes of neurons from adult mice for whole-genome sequencing. Comprehensive mutation detection and independent validation revealed that individual neurons harbor ∼100 unique mutations from all classes but lack recurrent rearrangements. Most neurons contain at least one gene-disrupting mutation and rare (0-2) mobile element insertions. The frequency and gene bias of neuronal mutations differ from other lineages, potentially due to novel mechanisms governing postmitotic mutation. Fertile mice were cloned from several neurons, establishing the compatibility of mutated adult neuronal genomes with reprogramming to pluripotency and development.
Collapse
Affiliation(s)
- Jennifer L Hazen
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla CA 92037, USA
| | - Gregory G Faust
- Department of Biochemistry and Molecular Genetics, 1340 Jefferson Park Ave, University of Virginia School of Medicine, Charlottesville, VA 22901, USA
| | - Alberto R Rodriguez
- Mouse Genetics Core Facility, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - William C Ferguson
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla CA 92037, USA
| | - Svetlana Shumilina
- Department of Biochemistry and Molecular Genetics, 1340 Jefferson Park Ave, University of Virginia School of Medicine, Charlottesville, VA 22901, USA
| | - Royden A Clark
- Department of Biochemistry and Molecular Genetics, 1340 Jefferson Park Ave, University of Virginia School of Medicine, Charlottesville, VA 22901, USA
| | - Michael J Boland
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla CA 92037, USA
| | - Greg Martin
- Mouse Genetics Core Facility, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Pavel Chubukov
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla CA 92037, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rachel K Tsunemoto
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla CA 92037, USA.,Neuroscience Graduate Program, 9500 Gilman Drive, University of California San Diego, La Jolla, California, USA
| | - Ali Torkamani
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sergey Kupriyanov
- Mouse Genetics Core Facility, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ira M Hall
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, USA.,Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Kristin K Baldwin
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla CA 92037, USA.,Neuroscience Graduate Program, 9500 Gilman Drive, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
13
|
von Joest M, Búa Aguín S, Li H. Genomic stability during cellular reprogramming: Mission impossible? Mutat Res 2016; 788:12-6. [PMID: 26851988 DOI: 10.1016/j.mrfmmm.2016.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 01/01/2023]
Abstract
The generation of induced pluripotent stem cells (iPSCs) from adult somatic cells is one of the most exciting discoveries in recent biomedical research. It holds tremendous potential in drug discovery and regenerative medicine. However, a series of reports highlighting genomic instability in iPSCs raises concerns about their clinical application. Although the mechanisms cause genomic instability during cellular reprogramming are largely unknown, several potential sources have been suggested. This review summarizes current knowledge on this active research field and discusses the latest efforts to alleviate the genomic insults during cellular reprogramming to generate iPSCs with enhanced quality and safety.
Collapse
Affiliation(s)
- Mathieu von Joest
- Cellular Plasticity and Disease Modelling group, Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France
| | - Sabela Búa Aguín
- Cellular Plasticity and Disease Modelling group, Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France
| | - Han Li
- Cellular Plasticity and Disease Modelling group, Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
14
|
Conversion of embryonic stem cells into extraembryonic lineages by CRISPR-mediated activators. Sci Rep 2016; 6:19648. [PMID: 26782778 PMCID: PMC4726097 DOI: 10.1038/srep19648] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023] Open
Abstract
The recently emerged CRISPR/Cas9 technique has opened a new perspective on readily editing specific genes. When combined with transcription activators, it can precisely manipulate endogenous gene expression. Here, we enhanced the expression of endogenous Cdx2 and Gata6 genes by CRISPR-mediated activators, thus mouse embryonic stem cells (ESCs) were directly converted into two extraembryonic lineages, i.e., typical trophoblast stem cells (TSCs) and extraembryonic endoderm cells (XENCs), which exhibited characters of TSC or XENC derived from the blastocyst extraembryonic lineages such as cell morphology, specific gene expression, and differentiation ability in vitro and in vivo. This study demonstrates that the cell fate can be effectively manipulated by directly activating of specific endogenous gene expression with CRISPR-mediated activator.
Collapse
|
15
|
Yuan Y, Zhou Q, Wan H, Shen B, Wang X, Wang M, Feng C, Xie M, Gu T, Zhou T, Fu R, Huang X, Zhou Q, Sha J, Zhao XY. Generation of fertile offspring from Kit(w)/Kit(wv) mice through differentiation of gene corrected nuclear transfer embryonic stem cells. Cell Res 2015; 25:851-63. [PMID: 26088417 DOI: 10.1038/cr.2015.74] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/29/2015] [Accepted: 04/26/2015] [Indexed: 12/19/2022] Open
Abstract
Genetic mutations could cause sperm deficiency, leading to male infertility. Without functional gametes in the testes, patients cannot produce progeny even with assisted reproduction technologies such as in vitro fertilization. It has been a major challenge to restore the fertility of gamete-deficient patients due to genetic mutations. In this study, using a Kit(w)/Kit(wv) mouse model, we investigated the feasibility of generating functional sperms from gamete-deficient mice by combining the reprogramming and gene correcting technologies. We derived embryonic stem cells from cloned embryos (ntESCs) that were created by nuclear transfer of Kit(w)/Kit(wv) somatic cells. Then we generated gene-corrected ntESCs using TALEN-mediated gene editing. The repaired ntESCs could further differentiate into primordial germ cell-like cells (PGCLCs) in vitro. RFP-labeled PGCLCs from the repaired ntESCs could produce functional sperms in mouse testes. In addition, by co-transplantation with EGFP-labeled testis somatic cells into the testes where spermatogenesis has been chemically damaged or by transplantation into Kit(w)/Kit(wv) infertile testes, non-labeled PGCLCs could also produce haploid gametes, supporting full-term mouse development. Our study explores a new path to rescue male infertility caused by genetic mutations.
Collapse
Affiliation(s)
- Yan Yuan
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Quan Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Haifeng Wan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuepeng Wang
- 1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China [2] Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Wang
- 1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China [2] College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Chunjing Feng
- 1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China [2] Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Xie
- 1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China [2] College of Life Science, Anhui University of China, Hefei, Anhui 230601, China
| | - Tiantian Gu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Rui Fu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xingxu Huang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing Biomedical Research Institute, National Resource Center for Mutant Mice, Nanjing, Jiangsu 210061, China
| | - Qi Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiao-Yang Zhao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
16
|
Sung LY, Chang WF, Zhang Q, Liu CC, Liou JY, Chang CC, Ou-Yang H, Guo R, Fu H, Cheng WTK, Ding ST, Chen CM, Okuka M, Keefe DL, Chen YE, Liu L, Xu J. Telomere elongation and naive pluripotent stem cells achieved from telomerase haplo-insufficient cells by somatic cell nuclear transfer. Cell Rep 2014; 9:1603-1609. [PMID: 25464850 DOI: 10.1016/j.celrep.2014.10.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/25/2014] [Accepted: 10/18/2014] [Indexed: 01/13/2023] Open
Abstract
Haplo-insufficiency of telomerase genes in humans leads to telomere syndromes such as dyskeratosis congenital and idiopathic pulmonary fibrosis. Generation of pluripotent stem cells from telomerase haplo-insufficient donor cells would provide unique opportunities toward the realization of patient-specific stem cell therapies. Recently, pluripotent human embryonic stem cells (ntESCs) have been efficiently achieved by somatic cell nuclear transfer (SCNT). We tested the hypothesis that SCNT could effectively elongate shortening telomeres of telomerase haplo-insufficient cells in the ntESCs with relevant mouse models. Indeed, telomeres of telomerase haplo-insufficient (Terc(+/-)) mouse cells are elongated in ntESCs. Moreover, ntESCs derived from Terc(+/-) cells exhibit naive pluripotency as evidenced by generation of Terc(+/-) ntESC clone pups by tetraploid embryo complementation, the most stringent test of naive pluripotency. These data suggest that SCNT could offer a powerful tool to reprogram telomeres and to discover the factors for robust restoration of telomeres and pluripotency of telomerase haplo-insufficient somatic cells.
Collapse
Affiliation(s)
- Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC; Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115 Taiwan, ROC; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 100 Taiwan, ROC
| | - Wei-Fang Chang
- Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC
| | - Qian Zhang
- State Key Laboratory of Medicinal Chemical Biology and Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chia-Chia Liu
- Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC; Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, 350 Taiwan, ROC
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, 350 Taiwan, ROC
| | - Chia-Chun Chang
- Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC
| | - Huan Ou-Yang
- Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC
| | - Renpeng Guo
- State Key Laboratory of Medicinal Chemical Biology and Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Haifeng Fu
- State Key Laboratory of Medicinal Chemical Biology and Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Winston T K Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC; Department of Animal Science and Biotechnology, Tunghai University, Taichung, 407 Taiwan, ROC
| | - Shih-Torng Ding
- Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan, ROC
| | - Chuan-Mu Chen
- Department of Life Sciences, and Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402 Taiwan, ROC; Rong-Hsing Translational Medicine Center and iEGG Center, National Chung Hsing University, Taichung, 402 Taiwan, ROC
| | - Maja Okuka
- Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology and Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
17
|
Johannesson B, Sagi I, Gore A, Paull D, Yamada M, Golan-Lev T, Li Z, LeDuc C, Shen Y, Stern S, Xu N, Ma H, Kang E, Mitalipov S, Sauer MV, Zhang K, Benvenisty N, Egli D. Comparable frequencies of coding mutations and loss of imprinting in human pluripotent cells derived by nuclear transfer and defined factors. Cell Stem Cell 2014; 15:634-42. [PMID: 25517467 DOI: 10.1016/j.stem.2014.10.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/19/2014] [Accepted: 10/06/2014] [Indexed: 12/26/2022]
Abstract
The recent finding that reprogrammed human pluripotent stem cells can be derived by nuclear transfer into human oocytes as well as by induced expression of defined factors has revitalized the debate on whether one approach might be advantageous over the other. Here we compare the genetic and epigenetic integrity of human nuclear-transfer embryonic stem cell (NT-ESC) lines and isogenic induced pluripotent stem cell (iPSC) lines, derived from the same somatic cell cultures of fetal, neonatal, and adult origin. The two cell types showed similar genome-wide gene expression and DNA methylation profiles. Importantly, NT-ESCs and iPSCs had comparable numbers of de novo coding mutations, but significantly more than parthenogenetic ESCs. As iPSCs, NT-ESCs displayed clone- and gene-specific aberrations in DNA methylation and allele-specific expression of imprinted genes. The occurrence of these genetic and epigenetic defects in both NT-ESCs and iPSCs suggests that they are inherent to reprogramming, regardless of derivation approach.
Collapse
Affiliation(s)
- Bjarki Johannesson
- The New York Stem Cell Foundation Research Institute, New York, NY 10032, USA
| | - Ido Sagi
- Stem Cell Unit, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Athurva Gore
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Daniel Paull
- The New York Stem Cell Foundation Research Institute, New York, NY 10032, USA
| | - Mitsutoshi Yamada
- The New York Stem Cell Foundation Research Institute, New York, NY 10032, USA
| | - Tamar Golan-Lev
- Stem Cell Unit, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Zhe Li
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Charles LeDuc
- Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yufeng Shen
- Departments of Systems Biology and Biomedical Informatics, JP Sulzberger Columbia Genome Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Samantha Stern
- The New York Stem Cell Foundation Research Institute, New York, NY 10032, USA
| | - Nanfang Xu
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032, USA
| | - Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR 97239, USA
| | - Eunju Kang
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mark V Sauer
- Center for Women's Reproductive Care, College of Physicians and Surgeons, Columbia University, New York, NY 10019, USA
| | - Kun Zhang
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Nissim Benvenisty
- Stem Cell Unit, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel.
| | - Dieter Egli
- The New York Stem Cell Foundation Research Institute, New York, NY 10032, USA; Naomi Berrie Diabetes Center & Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|