1
|
Esmaeili H, Zhang Y, Ravi K, Neff K, Zhu W, Migrino RQ, Park JG, Nikkhah M. Development of an electroconductive Heart-on-a-chip model to investigate cellular and molecular response of human cardiac tissue to gold nanomaterials. Biomaterials 2025; 320:123275. [PMID: 40138961 DOI: 10.1016/j.biomaterials.2025.123275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/16/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
To date, various strategies have been developed to construct biomimetic and functional in vitro cardiac tissue models utilizing human induced pluripotent stem cells (hiPSCs). Among these approaches, microfluidic-based Heart-on-a-chip (HOC) models are promising, as they enable the engineering of miniaturized, physiologically relevant in vitro cardiac tissues with precise control over cellular constituents and tissue architecture. Despite significant advancements, previously reported HOC models often lack the electroconductivity features of the native human myocardium. In this study, we developed a 3D electroconductive HOC (referred to as eHOC) model through the co-culture of isogenic hiPSC-derived cardiomyocytes (hiCMs) and cardiac fibroblasts (hiCFs), embedded within an electroconductive hydrogel scaffold in a microfluidic-based chip system. Functional and gene expression analyses demonstrated that, compared to non-conductive HOC, the eHOC model exhibited enhanced contractile functionality, improved calcium transients, and increased expression of structural and calcium handling genes. The eHOC model was further leveraged to investigate the underlying electroconduction-induced pathway(s) associated with cardiac tissue development through single-cell RNA sequencing (scRNA-seq). Notably, scRNA-seq analyses revealed a significant downregulation of a set of cardiac genes, associated with the fetal stage of heart development, as well as upregulation of sarcomere- and conduction-related genes within the eHOC model. Additionally, upregulation of the cardiac muscle contraction and motor protein pathways were observed in the eHOC model, consistent with enhanced contractile functionality of the engineered cardiac tissues. Comparison of scRNA-seq data from the 3D eHOC model with published datasets of adult human hearts demonstrated a similar expression pattern of fetal- and adult-like cardiac genes. Overall, this study provides a unique eHOC model with improved biomimcry and organotypic features, which could be potentially used for drug testing and discovery, as well as disease modeling applications.
Collapse
Affiliation(s)
- Hamid Esmaeili
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Yining Zhang
- Center for Personalized Diagnostics (CPD), Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Kalpana Ravi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Keagan Neff
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Wuqiang Zhu
- Department of Cardiovascular Medicine, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Raymond Q Migrino
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ, 85022, USA; University of Arizona College of Medicine, Phoenix, AZ, 85004, USA
| | - Jin G Park
- Center for Personalized Diagnostics (CPD), Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA; Biodesign Virginia G. Piper Center for Personalized Diagnosis, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
2
|
Yang J, Wang Z, Zhou H, Xiong Y, Li Y, Zheng YW, Liu L. Insights into human melanocyte development and characteristics through pluripotent stem cells combined with single-cell sequencing. iScience 2025; 28:112373. [DOI: 10.1016/j.isci.2025.112373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
|
3
|
Karadas H, Tosun H, Ceylan H. Identification of dilated cardiomyopathy-linked key genes by bioinformatics methods and evaluating the impact of tannic acid and monosodium glutamate in rats. Biotechnol Appl Biochem 2025; 72:377-387. [PMID: 39318238 PMCID: PMC11975261 DOI: 10.1002/bab.2670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Dilated cardiomyopathy (DCM) is the most common type of myocardial dysfunction, affecting mostly young adults, but its therapeutic diagnosis and biomarkers for prognosis are lacking. This study aimed to investigate the possible effect of the common food additive monosodium glutamate (MSG) and tannic acid (TA), a phenolic compound, on the key molecular actors responsible for DCM. DCM-related publicly available microarray datasets (GSE120895, GSE17800, and GSE19303) were downloaded from the comprehensive Gene Expression Omnibus (GEO) database, and analyzed to identify differentially expressed genes (DEGs). By integrating DEGs and gene-disease validity curation results, overlapping genes were screened and identified as hub genes. Protein-protein interaction (PPI) network and ontology analysis were performed to make sense of the identified biological data. Finally, mRNA expression changes of identified hub genes in the heart tissues of rats treated with MSG and TA were measured by the qPCR method. Six upregulated (IGF1, TTN, ACTB, LMNA, EDN1, and NPPB) DEGs were identified between the DCM and healthy control samples as the hub genes. qPCR results revealed that the mRNA levels of these genes involved in DCM development increased significantly in rat heart tissues exposed to MSG. In contrast, this increase was remarkably alleviated by TA treatment. Our results provide new insights into critical molecular mechanisms that should be focused on in future DCM studies. Moreover, MSG may play a critical role in DCM formation, and TA may be used as a promising therapeutic agent in DCM.
Collapse
Affiliation(s)
- Habibe Karadas
- Department of Molecular Biology and Genetics, Faculty of ScienceAtatürk UniversityErzurumTurkey
| | - Hilal Tosun
- Department of Molecular Biology and Genetics, Faculty of ScienceAtatürk UniversityErzurumTurkey
| | - Hamid Ceylan
- Department of Molecular Biology and Genetics, Faculty of ScienceAtatürk UniversityErzurumTurkey
| |
Collapse
|
4
|
Bogomolova AP, Katrukha IA, Emelin AM, Zabolotsky AI, Bereznikova AV, Lebedeva OS, Deev RV, Katrukha AG. Development of Immunochemical Systems for Detection of Human Skeletal Troponin I Isoforms. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:349-363. [PMID: 40367078 DOI: 10.1134/s0006297924601928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 05/16/2025]
Abstract
Troponin I (TnI), together with troponin T (TnT) and troponin C (TnC), forms the troponin complex, a thin filament protein of the striated muscle that plays a key role in regulation of muscle contraction. In humans, TnI is represented by three isoforms: cardiac, which is synthesized only in myocardium, and fast and slow skeletal, which are synthesized in fast- and slow-twitch muscle fibers, respectively. Skeletal TnI isoforms could be used as biomarkers of skeletal muscle damage of various etiologies, including mechanical trauma, myopathies, muscle atrophy (sarcopenia), and rhabdomyolysis. Unlike classical markers of muscle damage, such as creatine kinase or myoglobin, which are also present in other tissues, skeletal TnIs are specific for skeletal muscle. In this study, we developed a panel of monoclonal antibodies for immunochemical detection of skeletal TnI isoforms using Western blotting (sensitivity: 0.01-1 ng per lane), immunohistochemical assays, and fluorescence immunoassays. Some of the designed fluorescence immunoassays enable quantification of fast skeletal (limit of detection [LOD] = 0.07 ng/mL) and slow skeletal (LOD = 0.1 ng/mL) TnI isoforms or both isoforms (LOD = 0.1 ng/ml). Others allow differential detection of binary (with TnC) or ternary (with TnT and TnC) complexes, revealing composition of troponin forms in the human blood.
Collapse
Affiliation(s)
- Agnessa P Bogomolova
- Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Hytest Ltd., Turku, 20520, Finland
| | - Ivan A Katrukha
- Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia
- Hytest Ltd., Turku, 20520, Finland
| | - Alexey M Emelin
- Avtsyn Research Institute of Human Morphology, "Petrovsky National Research Centre of Surgery", Moscow, 117418, Russia
| | - Artur I Zabolotsky
- Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia V Bereznikova
- Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia
- Hytest Ltd., Turku, 20520, Finland
| | - Olga S Lebedeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical-Biological Agency, Moscow, 119435, Russia
| | - Roman V Deev
- Avtsyn Research Institute of Human Morphology, "Petrovsky National Research Centre of Surgery", Moscow, 117418, Russia
| | - Alexey G Katrukha
- Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia
- Hytest Ltd., Turku, 20520, Finland
| |
Collapse
|
5
|
Wang X, Kulik K, Wan TC, Lough JW, Auchampach JA. Histone H2A.Z Deacetylation and Dedifferentiation in Infarcted/Tip60-depleted Cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.11.575312. [PMID: 38260622 PMCID: PMC10802610 DOI: 10.1101/2024.01.11.575312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Myocardial infarction (MI) results in the loss of billions of cardiomyocytes (CMs), resulting in cardiac dysfunction. To re-muscularize injured myocardium, new CMs must be generated via renewed proliferation of surviving CMs. Approaches to induce proliferation of CMs after injury have been insufficient. Toward this end we are targeting the acetyltransferase Tip60, encoded by the Kat5 gene, based on the rationale that its pleiotropic functions combine to block CM proliferation at multiple checkpoints. We previously demonstrated that genetic depletion of Tip60 in a mouse model after MI reduces scarring, retains cardiac function, and activates the CM cell-cycle, although it remains unclear whether this culminates in the generation of daughter CMs. In order for pre-existing CMs in the adult heart to undergo proliferation, it has become accepted that they must first dedifferentiate, a process highlighted by loss of maturity, epithelial to mesenchymal transitioning (EMT), and reversion from fatty acid oxidation to glycolytic metabolism, accompanied by softening of the myocardial extracellular matrix (ECM). Based on recently published findings that Tip60 induces and maintains the differentiated state of hematopoietic stem cells and neurons via site-specific acetylation of the histone variant H2A.Z, we assessed levels of acetylated H2A.Z and dedifferentiation markers after depleting Tip60 in CMs post-MI. We report that genetic depletion of Tip60 from CMs after MI results in the near obliteration of acetylated H2A.Z in CM nuclei, accompanied by the altered expression of genes indicative of EMT induction, ECM softening, decreased fatty acid oxidation, and depressed expression of genes that regulate the TCA cycle. In accord with the possibility that site-specific acetylation of H2A.Z maintains adult CMs in a mature state of differentiation, CUT&Tag revealed enrichment of H2A.ZacK4/K7 in genetic motifs and in GO terms respectively associated with CM transcription factor binding and muscle development/differentiation. Along with our previous findings, these results support the notion that Tip60 has multiple targets in CMs that combine to maintain the differentiated state and prevent proliferation.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Pharmacology and Toxicology
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| | - Katherine Kulik
- Department of Cell Biology Neurobiology and Anatomy
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| | - Tina C. Wan
- Department of Pharmacology and Toxicology
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| | - John W. Lough
- Department of Cell Biology Neurobiology and Anatomy
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| | - John A. Auchampach
- Department of Pharmacology and Toxicology
- Cardiovascular Center Medical College of Wisconsin Milwaukee, WI 53226
| |
Collapse
|
6
|
Mu J, Gao Z, Bo P, You B. Promotion of maturation in CDM3-induced embryonic stem cell-derived cardiomyocytes by palmitic acid. Biomed Mater Eng 2025; 36:34-42. [PMID: 39331088 DOI: 10.3233/bme-240101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
BACKGROUND Myocardial infarction leads to myocardial necrosis, and cardiomyocytes are non-renewable. Fatty acid-containing cardiomyocyte maturation medium promotes maturation of stem cell-derived cardiomyocytes. OBJECTIVE To study the effect palmitic acid on maturation of cardiomyocytes derived from human embryonic stem cells (hESCs) to optimize differentiation for potential treatment of myocardial infarction by hESCs. METHODS hESCs were differentiated into cardiomyocytes using standard chemically defined medium 3 (CDM3). Up to day 20 of differentiation, 200 Mm palmitic acid were added, and then the culture was continued for another 8 days to mimic the environment in which human cardiomyocytes mainly use fatty acids as the main energy source. Light microscopy, transmission electron microscopy, immunofluorescence, reverse transcription-polymerase chain reaction, and cellular ATP assays, were carried out to analyze the expression of relevant cardiomyocyte-related genes, cell morphology, metabolism levels, and other indicators cardiomyocyte maturity. RESULTS Cardiomyocytes derived from hESCs under exogenous palmitic acid had an elongated pike shape and a more regular arrangement. Sarcomere stripes were clear, and the cells color was clearly visible. The cell perimeter and elongation rate were also increased. Myogenic fibers were abundant, myofibrillar z-lines were regularly, the numbers of mitochondria and mitochondrial cristae were higher, more myofilaments were observed, and the structure of round-like discs was occasionally seen. Expression of mature cardiomyocyte-associated genes TNNT2, MYL2 and MYH6, and cardiomyocyte-associated genes KCNJ4, RYR2,and PPARα, was upregulated (p < 0.05). Expression of MYH7, MYL7, KCND2, KCND3, GJA1 and TNNI1 genes was unaffected (p > 0.05). Expression of mature cardiomyocyte-associated sarcomere protein MYL2 was significantly increased (p < 0.05), MYH7 protein expression was unaffected (p > 0.05). hESC-derived cardiomyocytes exposed to exogenous palmitic acid produced more ATP per unit time (p < 0.05). CONCLUSION Exogenous palmitic acid induced more mature hESC-CMs in terms of the cellular architecture, expression of cardiomyocyte maturation genes adnprotein, and metabolism.
Collapse
Affiliation(s)
- Junsheng Mu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- The Third Affiliated Hospital of XinXiang Medical University, XinXiang, China
| | - Zhen Gao
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Ping Bo
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Bin You
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
7
|
Li J, Han S, Yu F, Li T, Liao B, Liu F. Mapping the landscape of PSC-CM research through bibliometric analysis. Front Cardiovasc Med 2024; 11:1435874. [PMID: 39450232 PMCID: PMC11499114 DOI: 10.3389/fcvm.2024.1435874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Objectives The discovery of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) has not only deepened our understanding of the pathogenesis and progression of heart disease, but also advanced the development of engineered cardiac tissues, cardiac regenerative therapy, drug discovery and the cardiotoxicity assessment of drugs. This study aims to visualize the developmental trajectory of PSC-CM research over the past 18 years to identify the emerging research frontiers and challenges. Methods The literature on PSC-CMs from 2007 to 2024 was retrieved from the Web of Science and PubMed databases. Bibliometrix, VOSviewer and CiteSpace software were used for statistical analysis and visualization of scientific literature. Previous clinical trials were summarized using data from the ClinicalTrials.gov database. Results A total of 29,660 authors from 81 countries and regions published 6,406 papers on PSC-CMs over the past 18 years. The annual output of PSC-CM research experienced a general upward trend from 2007 to 2021, reaching its peak in 2021, followed by a notable decline in 2022 and 2023. The United States has emerged as the most influential nation in this field, with Stanford University being the most prolific institution and Joseph C. Wu standing out as the most productive and highly cited scholar. Circulation Research, Circulation, and Nature have been identified as the most co-cited journals. Organ-on-a-chip, 3D bio-printing, cardiac microtissue, extracellular vesicle, inflammation, energy metabolism, atrial fibrillation, personalized medicine etc., with a longer burst period, and maturation of PSC-CMs, with the highest burst strength of 27.19, are the major research focuses for rigorous investigation in recent years. Cardiac organoid is emerging as a promising key research frontier. While the clinical trials of stem-cell-mediated treatment for heart diseases shows promise, significant challenges remain. Further research is imperative to optimize protocols, enhance cell delivery methods, and establish standardized practices to improve clinical outcomes. Conclusions In conclusion, several major research hotspots, including engineered cardiac tissue and maturation, exosome-based regenerative therapy, inflammation response, energy metabolism, atrial fibrillation, and personalized medicine etc. will continue to attract substantial interest from investigators worldwide. Cardiac organoids to in vitro recapitulate the intricate human heart is emerging as a promising key research frontier. Significant challenges persist in the clinical trials of stem-cell-mediated therapies for heart diseases.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Shangting Han
- Department of Organ Transplantation, Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fengxu Yu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Bin Liao
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Feng Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Cardiovascular Remodeling and Dysfunction Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Deidda V, Ventisette I, Langione M, Giammarino L, Pioner JM, Credi C, Carpi F. 3D-Printable Gelatin Methacrylate-Xanthan Gum Hydrogel Bioink Enabling Human Induced Pluripotent Stem Cell Differentiation into Cardiomyocytes. J Funct Biomater 2024; 15:297. [PMID: 39452595 PMCID: PMC11508550 DOI: 10.3390/jfb15100297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
We describe the development of a bioink to bioprint human induced pluripotent stem cells (hiPSCs) for possible cardiac tissue engineering using a gelatin methacrylate (GelMA)-based hydrogel. While previous studies have shown that GelMA at a low concentration (5% w/v) allows for the growth of diverse cells, its 3D printability has been found to be limited by its low viscosity. To overcome that drawback, making the hydrogel both compatible with hiPSCs and 3D-printable, we developed an extrudable GelMA-based bioink by adding xanthan gum (XG). The GelMA-XG composite hydrogel had an elastic modulus (~9 kPa) comparable to that of cardiac tissue, and enabled 3D printing with high values of printing accuracy (83%) and printability (0.98). Tests with hiPSCs showed the hydrogel's ability to promote their proliferation within both 2D and 3D cell cultures. The tests also showed that hiPSCs inside hemispheres of the hydrogel were able to differentiate into cardiomyocytes, capable of spontaneous contractions (average frequency of ~0.5 Hz and amplitude of ~2%). Furthermore, bioprinting tests proved the possibility of fabricating 3D constructs of the hiPSC-laden hydrogel, with well-defined line widths (~800 μm).
Collapse
Affiliation(s)
- Virginia Deidda
- Department of Industrial Engineering, University of Florence, 50139 Florence, Italy; (V.D.); (I.V.)
| | - Isabel Ventisette
- Department of Industrial Engineering, University of Florence, 50139 Florence, Italy; (V.D.); (I.V.)
| | - Marianna Langione
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Lucrezia Giammarino
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy;
| | - Josè Manuel Pioner
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Caterina Credi
- European Laboratory for Non-Linear Spectroscopy, University of Florence, 50019 Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, 50019 Sesto Fiorentino, Italy
| | - Federico Carpi
- Department of Industrial Engineering, University of Florence, 50139 Florence, Italy; (V.D.); (I.V.)
| |
Collapse
|
9
|
Pereira IT, Gomes-Júnior R, Hansel-Frose A, França RSV, Liu M, Soliman HAN, Chan SSK, Dudley SC, Kyba M, Dallagiovanna B. Cardiac Development Long Non-Coding RNA ( CARDEL) Is Activated during Human Heart Development and Contributes to Cardiac Specification and Homeostasis. Cells 2024; 13:1050. [PMID: 38920678 PMCID: PMC11201801 DOI: 10.3390/cells13121050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Successful heart development depends on the careful orchestration of a network of transcription factors and signaling pathways. In recent years, in vitro cardiac differentiation using human pluripotent stem cells (hPSCs) has been used to uncover the intricate gene-network regulation involved in the proper formation and function of the human heart. Here, we searched for uncharacterized cardiac-development genes by combining a temporal evaluation of human cardiac specification in vitro with an analysis of gene expression in fetal and adult heart tissue. We discovered that CARDEL (CARdiac DEvelopment Long non-coding RNA; LINC00890; SERTM2) expression coincides with the commitment to the cardiac lineage. CARDEL knockout hPSCs differentiated poorly into cardiac cells, and hPSC-derived cardiomyocytes showed faster beating rates after controlled overexpression of CARDEL during differentiation. Altogether, we provide physiological and molecular evidence that CARDEL expression contributes to sculpting the cardiac program during cell-fate commitment.
Collapse
Affiliation(s)
- Isabela T. Pereira
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Curitiba 81350-010, PR, Brazil; (R.G.-J.); (A.H.-F.); (R.S.V.F.); (B.D.)
| | - Rubens Gomes-Júnior
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Curitiba 81350-010, PR, Brazil; (R.G.-J.); (A.H.-F.); (R.S.V.F.); (B.D.)
| | - Aruana Hansel-Frose
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Curitiba 81350-010, PR, Brazil; (R.G.-J.); (A.H.-F.); (R.S.V.F.); (B.D.)
| | - Rhaíza S. V. França
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Curitiba 81350-010, PR, Brazil; (R.G.-J.); (A.H.-F.); (R.S.V.F.); (B.D.)
| | - Man Liu
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (S.C.D.J.)
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (H.A.N.S.); (S.S.K.C.); (M.K.)
| | - Hossam A. N. Soliman
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (H.A.N.S.); (S.S.K.C.); (M.K.)
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sunny S. K. Chan
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (H.A.N.S.); (S.S.K.C.); (M.K.)
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samuel C. Dudley
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN 55455, USA; (M.L.); (S.C.D.J.)
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (H.A.N.S.); (S.S.K.C.); (M.K.)
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (H.A.N.S.); (S.S.K.C.); (M.K.)
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bruno Dallagiovanna
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Curitiba 81350-010, PR, Brazil; (R.G.-J.); (A.H.-F.); (R.S.V.F.); (B.D.)
| |
Collapse
|
10
|
Zheng S, Ye L. Hemodynamic Melody of Postnatal Cardiac and Pulmonary Development in Children with Congenital Heart Diseases. BIOLOGY 2024; 13:234. [PMID: 38666846 PMCID: PMC11048247 DOI: 10.3390/biology13040234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Hemodynamics is the eternal theme of the circulatory system. Abnormal hemodynamics and cardiac and pulmonary development intertwine to form the most important features of children with congenital heart diseases (CHDs), thus determining these children's long-term quality of life. Here, we review the varieties of hemodynamic abnormalities that exist in children with CHDs, the recently developed neonatal rodent models of CHDs, and the inspirations these models have brought us in the areas of cardiomyocyte proliferation and maturation, as well as in alveolar development. Furthermore, current limitations, future directions, and clinical decision making based on these inspirations are highlighted. Understanding how CHD-associated hemodynamic scenarios shape postnatal heart and lung development may provide a novel path to improving the long-term quality of life of children with CHDs, transplantation of stem cell-derived cardiomyocytes, and cardiac regeneration.
Collapse
Affiliation(s)
- Sixie Zheng
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, National Children’s Medical Center, Shanghai 200127, China;
- Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, National Children’s Medical Center, Shanghai 200127, China
| | - Lincai Ye
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, National Children’s Medical Center, Shanghai 200127, China;
- Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, National Children’s Medical Center, Shanghai 200127, China
| |
Collapse
|
11
|
Rapöhn M, Cyganek L, Voigt N, Hasenfuß G, Lehnart SE, Wegener JW. Noninvasive analysis of contractility during identical maturations revealed two phenotypes in ventricular but not in atrial iPSC-CM. Am J Physiol Heart Circ Physiol 2024; 326:H599-H611. [PMID: 38180453 PMCID: PMC11221812 DOI: 10.1152/ajpheart.00527.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
Patient-derived induced pluripotent stem cells (iPSCs) can be differentiated into atrial and ventricular cardiomyocytes to allow for personalized drug screening. A hallmark of differentiation is the manifestation of spontaneous beating in a two-dimensional (2-D) cell culture. However, an outstanding observation is the high variability in this maturation process. We valued that contractile parameters change during differentiation serving as an indicator of maturation. Consequently, we recorded noninvasively spontaneous motion activity during the differentiation of male iPSC toward iPSC cardiomyocytes (iPSC-CMs) to further analyze similar maturated iPSC-CMs. Surprisingly, our results show that identical differentiations into ventricular iPSC-CMs are variable with respect to contractile parameters resulting in two distinct subpopulations of ventricular-like cells. In contrast, differentiation into atrial iPSC-CMs resulted in only one phenotype. We propose that the noninvasive and cost-effective recording of contractile activity during maturation using a smartphone device may help to reduce the variability in results frequently reported in studies on ventricular iPSC-CMs.NEW & NOTEWORTHY Differentiation of induced pluripotent stem cells (iPSCs) into iPSC-derived cardiomyocytes (iPSC-CMs) exhibits a high variability in mature parameters. Here, we monitored noninvasively contractile parameters of iPSC-CM during full-time differentiation using a smartphone device. Our results show that parallel maturations of iPSCs into ventricular iPSC-CMs, but not into atrial iPSC-CMs, resulted in two distinct subpopulations of iPSC-CMs. These findings suggest that our cost-effective method may help to compare iPSC-CMs at the same maturation level.
Collapse
Affiliation(s)
- Marcel Rapöhn
- Department of Cardiology and Pulmonology, University Medical Center of Göttingen, Göttingen, Germany
| | - Lukas Cyganek
- Department of Cardiology and Pulmonology, University Medical Center of Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung), Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells," University of Göttingen, Göttingen, Germany
| | - Niels Voigt
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung), Göttingen, Germany
- Department of Pharmacology and Toxicology, University Medical Center of Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells," University of Göttingen, Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pulmonology, University Medical Center of Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung), Göttingen, Germany
| | - Stephan E Lehnart
- Department of Cardiology and Pulmonology, University Medical Center of Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung), Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells," University of Göttingen, Göttingen, Germany
| | - Jörg W Wegener
- Department of Cardiology and Pulmonology, University Medical Center of Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung), Göttingen, Germany
| |
Collapse
|
12
|
Bedada FB, Thompson BR, Mikkila JL, Chan SSK, Choi SH, Toso EA, Kyba M, Metzger JM. Inducing positive inotropy in human iPSC-derived cardiac muscle by gene editing-based activation of the cardiac α-myosin heavy chain. Sci Rep 2024; 14:3915. [PMID: 38365813 PMCID: PMC10873390 DOI: 10.1038/s41598-024-53395-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
Human induced pluripotent stem cells and their differentiation into cardiac myocytes (hiPSC-CMs) provides a unique and valuable platform for studies of cardiac muscle structure-function. This includes studies centered on disease etiology, drug development, and for potential clinical applications in heart regeneration/repair. Ultimately, for these applications to achieve success, a thorough assessment and physiological advancement of the structure and function of hiPSC-CMs is required. HiPSC-CMs are well noted for their immature and sub-physiological cardiac muscle state, and this represents a major hurdle for the field. To address this roadblock, we have developed a hiPSC-CMs (β-MHC dominant) experimental platform focused on directed physiological enhancement of the sarcomere, the functional unit of cardiac muscle. We focus here on the myosin heavy chain (MyHC) protein isoform profile, the molecular motor of the heart, which is essential to cardiac physiological performance. We hypothesized that inducing increased expression of α-MyHC in β-MyHC dominant hiPSC-CMs would enhance contractile performance of hiPSC-CMs. To test this hypothesis, we used gene editing with an inducible α-MyHC expression cassette into isogeneic hiPSC-CMs, and separately by gene transfer, and then investigated the direct effects of increased α-MyHC expression on hiPSC-CMs contractility and relaxation function. Data show improved cardiac functional parameters in hiPSC-CMs induced with α-MyHC. Positive inotropy and relaxation was evident in comparison to β-MyHC dominant isogenic controls both at baseline and during pacing induced stress. This approach should facilitate studies of hiPSC-CMs disease modeling and drug screening, as well as advancing fundamental aspects of cardiac function parameters for the optimization of future cardiac regeneration, repair and re-muscularization applications.
Collapse
Affiliation(s)
- Fikru B Bedada
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
- Present Address: Department of Clinical Laboratory Sciences, College of Nursing and Allied Health Sciences, Howard University, Washington, DC, USA
| | - Brian R Thompson
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Jennifer L Mikkila
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Sunny S-K Chan
- Lillehei Heart Institute, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Si Ho Choi
- Lillehei Heart Institute, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Erik A Toso
- Lillehei Heart Institute, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
- Lillehei Heart Institute, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
13
|
Hasegawa M, Miki K, Kawamura T, Takei Sasozaki I, Higashiyama Y, Tsuchida M, Kashino K, Taira M, Ito E, Takeda M, Ishida H, Higo S, Sakata Y, Miyagawa S. Gene correction and overexpression of TNNI3 improve impaired relaxation in engineered heart tissue model of pediatric restrictive cardiomyopathy. Dev Growth Differ 2024; 66:119-132. [PMID: 38193576 PMCID: PMC11457505 DOI: 10.1111/dgd.12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024]
Abstract
Research on cardiomyopathy models using engineered heart tissue (EHT) created from disease-specific induced pluripotent stem cells (iPSCs) is advancing rapidly. However, the study of restrictive cardiomyopathy (RCM), a rare and intractable cardiomyopathy, remains at the experimental stage because there is currently no established method to replicate the hallmark phenotype of RCM, particularly diastolic dysfunction, in vitro. In this study, we generated iPSCs from a patient with early childhood-onset RCM harboring the TNNI3 R170W mutation (R170W-iPSCs). The properties of R170W-iPSC-derived cardiomyocytes (CMs) and EHTs were evaluated and compared with an isogenic iPSC line in which the mutation was corrected. Our results indicated altered calcium kinetics in R170W-iPSC-CMs, including prolonged tau, and an increased ratio of relaxation force to contractile force in R170W-EHTs. These properties were reversed in the isogenic line, suggesting that our model recapitulates impaired relaxation of RCM, i.e., diastolic dysfunction in clinical practice. Furthermore, overexpression of wild-type TNNI3 in R170W-iPSC-CMs and -EHTs effectively rescued impaired relaxation. These results highlight the potential efficacy of EHT, a modality that can accurately recapitulate diastolic dysfunction in vitro, to elucidate the pathophysiology of RCM, as well as the possible benefits of gene therapies for patients with RCM.
Collapse
Affiliation(s)
- Moyu Hasegawa
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Kenji Miki
- Premium Research Institute for Human Metaverse MedicineOsaka UniversityOsakaJapan
| | - Takuji Kawamura
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Ikue Takei Sasozaki
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Yuki Higashiyama
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Masaru Tsuchida
- NTT Communication Science LaboratoriesMedia Information Research DepartmentKanagawaJapan
| | - Kunio Kashino
- Premium Research Institute for Human Metaverse MedicineOsaka UniversityOsakaJapan
- NTT Communication Science LaboratoriesMedia Information Research DepartmentKanagawaJapan
| | - Masaki Taira
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Emiko Ito
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Maki Takeda
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Hidekazu Ishida
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Shuichiro Higo
- Department of Medical Therapeutics for Heart FailureOsaka University Graduate School of MedicineOsakaJapan
| | - Yasushi Sakata
- Department of Cardiovascular MedicineOsaka University Graduate School of MedicineOsakaJapan
| | - Shigeru Miyagawa
- Department of Cardiovascular SurgeryOsaka University Graduate School of MedicineOsakaJapan
- Premium Research Institute for Human Metaverse MedicineOsaka UniversityOsakaJapan
| |
Collapse
|
14
|
Sakamoto T, Kelly DP. Cardiac maturation. J Mol Cell Cardiol 2024; 187:38-50. [PMID: 38160640 PMCID: PMC10923079 DOI: 10.1016/j.yjmcc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The heart undergoes a dynamic maturation process following birth, in response to a wide range of stimuli, including both physiological and pathological cues. This process entails substantial re-programming of mitochondrial energy metabolism coincident with the emergence of specialized structural and contractile machinery to meet the demands of the adult heart. Many components of this program revert to a more "fetal" format during development of pathological cardiac hypertrophy and heart failure. In this review, emphasis is placed on recent progress in our understanding of the transcriptional control of cardiac maturation, encompassing the results of studies spanning from in vivo models to cardiomyocytes derived from human stem cells. The potential applications of this current state of knowledge to new translational avenues aimed at the treatment of heart failure is also addressed.
Collapse
Affiliation(s)
- Tomoya Sakamoto
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Aalders J, Léger L, Van der Meeren L, Sinha S, Skirtach AG, De Backer J, van Hengel J. Three-dimensional co-culturing of stem cell-derived cardiomyocytes and cardiac fibroblasts reveals a role for both cell types in Marfan-related cardiomyopathy. Matrix Biol 2024; 126:14-24. [PMID: 38224822 DOI: 10.1016/j.matbio.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Pathogenic variants in the FBN1 gene, which encodes the extracellular matrix protein fibrillin-1, cause Marfan syndrome (MFS), which affects multiple organ systems, including the cardiovascular system. Myocardial dysfunction has been observed in a subset of patients with MFS and in several MFS mouse models. However, there is limited understanding of the intrinsic consequences of FBN1 variants on cardiomyocytes (CMs). To elucidate the CM-specific contribution in Marfan's cardiomyopathy, cardiosphere cultures of CMs and cardiac fibroblasts (CFs) are used. CMs and CFs were derived by human induced pluripotent stem cell (iPSC) differentiation from MFS iPSCs with a pathogenic variant in FBN1 (c.3725G>A; p.Cys1242Tyr) and the corresponding CRISPR-corrected iPSC line (Cor). Cardiospheres containing MFS CMs show decreased FBN1, COL1A2 and GJA1 expression. MFS CMs cultured in cardiospheres have fewer binucleated CMs in comparison with Cor CMs. 13% of MFS CMs in cardiospheres are binucleated and 15% and 16% in cardiospheres that contain co-cultures with respectively MFS CFs and Cor CFs, compared to Cor CMs, that revealed up to 23% binucleation when co-cultured with CFs. The sarcomere length of CMs, as a marker of development, is significantly increased in MFS CMs interacting with Cor CF or MFS CF, as compared to monocultured MFS CMs. Nuclear blebbing was significantly more frequent in MFS CFs, which correlated with increased stiffness of the nuclear area compared to Cor CFs. Our cardiosphere model for Marfan-related cardiomyopathy identified a contribution of CFs in Marfan-related cardiomyopathy and suggests that abnormal early development of CMs may play a role in the disease mechanism.
Collapse
Affiliation(s)
- Jeffrey Aalders
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Laurens Léger
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Louis Van der Meeren
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Andre G Skirtach
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Julie De Backer
- Centre for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Department of Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Jolanda van Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
16
|
Beisaw A, Wu CC. Cardiomyocyte maturation and its reversal during cardiac regeneration. Dev Dyn 2024; 253:8-27. [PMID: 36502296 DOI: 10.1002/dvdy.557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease is a leading cause of death worldwide. Due to the limited proliferative and regenerative capacity of adult cardiomyocytes, the lost myocardium is not replenished efficiently and is replaced by a fibrotic scar, which eventually leads to heart failure. Current therapies to cure or delay the progression of heart failure are limited; hence, there is a pressing need for regenerative approaches to support the failing heart. Cardiomyocytes undergo a series of transcriptional, structural, and metabolic changes after birth (collectively termed maturation), which is critical for their contractile function but limits the regenerative capacity of the heart. In regenerative organisms, cardiomyocytes revert from their terminally differentiated state into a less mature state (ie, dedifferentiation) to allow for proliferation and regeneration to occur. Importantly, stimulating adult cardiomyocyte dedifferentiation has been shown to promote morphological and functional improvement after myocardial infarction, further highlighting the importance of cardiomyocyte dedifferentiation in heart regeneration. Here, we review several hallmarks of cardiomyocyte maturation, and summarize how their reversal facilitates cardiomyocyte proliferation and heart regeneration. A detailed understanding of how cardiomyocyte dedifferentiation is regulated will provide insights into therapeutic options to promote cardiomyocyte de-maturation and proliferation, and ultimately heart regeneration in mammals.
Collapse
Affiliation(s)
- Arica Beisaw
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
| | - Chi-Chung Wu
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
17
|
Shiba N, Yang X, Sato M, Kadota S, Suzuki Y, Agata M, Nagamine K, Izumi M, Honda Y, Koganehira T, Kobayashi H, Ichimura H, Chuma S, Nakai J, Tohyama S, Fukuda K, Miyazaki D, Nakamura A, Shiba Y. Efficacy of exon-skipping therapy for DMD cardiomyopathy with mutations in actin binding domain 1. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102060. [PMID: 38028197 PMCID: PMC10654596 DOI: 10.1016/j.omtn.2023.102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Exon-skipping therapy is a promising treatment strategy for Duchenne muscular dystrophy (DMD), which is caused by loss-of-function mutations in the DMD gene encoding dystrophin, leading to progressive cardiomyopathy. In-frame deletion of exons 3-9 (Δ3-9), manifesting a very mild clinical phenotype, is a potential targeted reading frame for exon-skipping by targeting actin-binding domain 1 (ABD1); however, the efficacy of this approach for DMD cardiomyopathy remains uncertain. In this study, we compared three isogenic human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) expressing Δ3-9, frameshifting Δ3-7, or intact DMD. RNA sequencing revealed a resemblance in the expression patterns of mechano-transduction-related genes between Δ3-9 and wild-type samples. Furthermore, we observed similar electrophysiological properties between Δ3-9 and wild-type hiPSC-CMs; Δ3-7 hiPSC-CMs showed electrophysiological alterations with accelerated CaMKII activation. Consistently, Δ3-9 hiPSC-CMs expressed substantial internally truncated dystrophin protein, resulting in maintaining F-actin binding and desmin retention. Antisense oligonucleotides targeting exon 8 efficiently induced skipping exons 8-9 to restore functional dystrophin and electrophysiological parameters in Δ3-7 hiPSC-CMs, bringing the cell characteristics closer to those of Δ3-9 hiPSC-CMs. Collectively, exon-skipping targeting ABD1 to convert the reading frame to Δ3-9 may become a promising therapy for DMD cardiomyopathy.
Collapse
Affiliation(s)
- Naoko Shiba
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
- Department of Pediatrics, Shinshu University, Matsumoto 390-8621, Japan
| | - Xiao Yang
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Mitsuto Sato
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Shin Kadota
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
- Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
| | - Yota Suzuki
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Masahiro Agata
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Kohei Nagamine
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Masaki Izumi
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Yusuke Honda
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Tomoya Koganehira
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Hideki Kobayashi
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Hajime Ichimura
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Shinichiro Chuma
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Junichi Nakai
- Graduate Schools of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Daigo Miyazaki
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Akinori Nakamura
- Department of Clinical Research, National Hospital Organization Matsumoto Medical Center, Matsumoto 399-8701, Japan
| | - Yuji Shiba
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
- Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
18
|
Ormrod B, Ehler E. Induced pluripotent stem cell-derived cardiomyocytes-more show than substance? Biophys Rev 2023; 15:1941-1950. [PMID: 38192353 PMCID: PMC10771368 DOI: 10.1007/s12551-023-01099-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/04/2023] [Indexed: 01/10/2024] Open
Abstract
Cardiomyocytes that are derived from human-induced pluripotent stem cells (iPSC-CM) are an exciting tool to investigate cardiomyopathy disease mechanisms at the cellular level as well as to screen for potential side effects of novel drugs. However, currently their benefit is limited due to their fairly immature differentiation status under conventional culture conditions. This review is mainly aimed at researchers outside of the iPSC-CM field and will describe potential pitfalls and which features at the level of the myofibrils would be desired to make them a more representative model system. We will also discuss different strategies that may help to achieve these.
Collapse
Affiliation(s)
- Beth Ormrod
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, SE1 1UL UK
| | - Elisabeth Ehler
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, SE1 1UL UK
- Randall Centre for Cell and Molecular Biophysics (School of Basic and Biosciences), Room 3.26A, New Hunt’s House, Guy’s Campus, London, SE1 1UL UK
- British Heart Foundation Centre of Research Excellence, King’s College London, London, SE1 1UL UK
| |
Collapse
|
19
|
Katili PA, Karima AP, Azwani W, Antarianto RD, Djer MM. Application of Human Induced Pluripotent Stem Cells for Tissue Engineered Cardiomyocyte Modelling. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2023; 9:431-446. [DOI: 10.1007/s40883-023-00294-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/06/2025]
Abstract
Abstract
Purpose
Cardiac
tissue engineering opens up opportunities for regenerative therapy in heart diseases. Current technologies improve engineered cardiac tissue characteristics by combining human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with non-cardiomyocytes, selective biomaterials, and additional growth factors. Animal models are still required to determine cardiac patches’ overall in vivo effect before initiating human trials. Here, we review the current in vivo studies of cardiac patches using hiPSC-CMs.
Methods
We performed a literature search for studies on cardiac patch in vivo application and compared outcomes based on cell engraftment, functional changes, and safety profiles.
Results
Present studies confirm the beneficial results of combining hiPSC-CMs with other cardiac cell lineages and biomaterials. They improved the functional capacity of the heart, showed a reduction in infarct size, and initiated an adaptive inflammatory process through neovascularisation.
Conclusion
The cardiac patch is currently the most effective delivery system, proving safety and improvements in animal models, which are suggested to be the role of the paracrine mechanism. Further studies should focus on honing in vitro patch characteristics to achieve ideal results.
Lay Summary
Cardiac tissue engineering answers the demand for regenerative therapy in heart diseases. Combining human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with biomaterials and growth factors in cardiac patches improves the heart’s structural and functional characteristics. This delivery system is safe and efficient for delivering many cells and minimising cellular loss in vivo. Rat and porcine models of ischemic and non-ischemic heart diseases demonstrated the benefits of this therapy, which include cell engraftment, reduced infarct size, and increased left ventricular (LV) systolic function, with no reported critical adverse events. These reports sufficiently provide evidence of feasible improvements to proceed towards further trials.
Collapse
|
20
|
Meier AB, Zawada D, De Angelis MT, Martens LD, Santamaria G, Zengerle S, Nowak-Imialek M, Kornherr J, Zhang F, Tian Q, Wolf CM, Kupatt C, Sahara M, Lipp P, Theis FJ, Gagneur J, Goedel A, Laugwitz KL, Dorn T, Moretti A. Epicardioid single-cell genomics uncovers principles of human epicardium biology in heart development and disease. Nat Biotechnol 2023; 41:1787-1800. [PMID: 37012447 PMCID: PMC10713454 DOI: 10.1038/s41587-023-01718-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 02/22/2023] [Indexed: 04/05/2023]
Abstract
The epicardium, the mesothelial envelope of the vertebrate heart, is the source of multiple cardiac cell lineages during embryonic development and provides signals that are essential to myocardial growth and repair. Here we generate self-organizing human pluripotent stem cell-derived epicardioids that display retinoic acid-dependent morphological, molecular and functional patterning of the epicardium and myocardium typical of the left ventricular wall. By combining lineage tracing, single-cell transcriptomics and chromatin accessibility profiling, we describe the specification and differentiation process of different cell lineages in epicardioids and draw comparisons to human fetal development at the transcriptional and morphological levels. We then use epicardioids to investigate the functional cross-talk between cardiac cell types, gaining new insights into the role of IGF2/IGF1R and NRP2 signaling in human cardiogenesis. Finally, we show that epicardioids mimic the multicellular pathogenesis of congenital or stress-induced hypertrophy and fibrotic remodeling. As such, epicardioids offer a unique testing ground of epicardial activity in heart development, disease and regeneration.
Collapse
Affiliation(s)
- Anna B Meier
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Dorota Zawada
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Maria Teresa De Angelis
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Department of Experimental and Clinical Medicine, University 'Magna Graecia', Catanzaro, Italy
| | - Laura D Martens
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
- Helmholtz Association-Munich School for Data Science (MUDS), Munich, Germany
| | - Gianluca Santamaria
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Department of Experimental and Clinical Medicine, University 'Magna Graecia', Catanzaro, Italy
| | - Sophie Zengerle
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Monika Nowak-Imialek
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Jessica Kornherr
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Fangfang Zhang
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Qinghai Tian
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology, Research Center for Molecular Imaging and Screening, Medical Faculty, Saarland University, Homburg, Germany
| | - Cordula M Wolf
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Christian Kupatt
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Peter Lipp
- Center for Molecular Signaling (PZMS), Institute for Molecular Cell Biology, Research Center for Molecular Imaging and Screening, Medical Faculty, Saarland University, Homburg, Germany
| | - Fabian J Theis
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Alexander Goedel
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Karl-Ludwig Laugwitz
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Tatjana Dorn
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany.
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany.
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany.
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
21
|
Li D, Armand LC, Sun F, Hwang H, Wolfson D, Rampoldi A, Liu R, Forghani P, Hu X, Yu WM, Qu CK, Jones DP, Wu R, Cho HC, Maxwell JT, Xu C. AMPK activator-treated human cardiac spheres enhance maturation and enable pathological modeling. Stem Cell Res Ther 2023; 14:322. [PMID: 37941041 PMCID: PMC10633979 DOI: 10.1186/s13287-023-03554-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Cardiac pathological outcome of metabolic remodeling is difficult to model using cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) due to low metabolic maturation. METHODS hiPSC-CM spheres were treated with AMP-activated protein kinase (AMPK) activators and examined for hiPSC-CM maturation features, molecular changes and the response to pathological stimuli. RESULTS Treatment of hiPSC-CMs with AMPK activators increased ATP content, mitochondrial membrane potential and content, mitochondrial DNA, mitochondrial function and fatty acid uptake, indicating increased metabolic maturation. Conversely, the knockdown of AMPK inhibited mitochondrial maturation of hiPSC-CMs. In addition, AMPK activator-treated hiPSC-CMs had improved structural development and functional features-including enhanced Ca2+ transient kinetics and increased contraction. Transcriptomic, proteomic and metabolomic profiling identified differential levels of expression of genes, proteins and metabolites associated with a molecular signature of mature cardiomyocytes in AMPK activator-treated hiPSC-CMs. In response to pathological stimuli, AMPK activator-treated hiPSC-CMs had increased glycolysis, and other pathological outcomes compared to untreated cells. CONCLUSION AMPK activator-treated cardiac spheres could serve as a valuable model to gain novel insights into cardiac diseases.
Collapse
Affiliation(s)
- Dong Li
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Lawrence C Armand
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Fangxu Sun
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hyun Hwang
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - David Wolfson
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Antonio Rampoldi
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Rui Liu
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Parvin Forghani
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Xin Hu
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Wen-Mei Yu
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Cheng-Kui Qu
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Dean P Jones
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hee Cheol Cho
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Joshua T Maxwell
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Chunhui Xu
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
22
|
Lamberto F, Shashikadze B, Elkhateib R, Lombardo SD, Horánszky A, Balogh A, Kistamás K, Zana M, Menche J, Fröhlich T, Dinnyés A. Low-dose Bisphenol A exposure alters the functionality and cellular environment in a human cardiomyocyte model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122359. [PMID: 37567409 DOI: 10.1016/j.envpol.2023.122359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Early embryonic development represents a sensitive time-window during which the foetus might be vulnerable to the exposure of environmental contaminants, potentially leading to heart diseases also later in life. Bisphenol A (BPA), a synthetic chemical widely used in plastics manufacturing, has been associated with heart developmental defects, even in low concentrations. This study aims to investigate the effects of environmentally relevant doses of BPA on developing cardiomyocytes using a human induced pluripotent stem cell (hiPSC)-derived model. Firstly, a 2D in vitro differentiation system to obtain cardiomyocytes from hiPSCs (hiPSC-CMs) have been established and characterised to provide a suitable model for the early stages of cardiac development. Then, the effects of a repeated BPA exposure, starting from the undifferentiated stage throughout the differentiation process, were evaluated. The chemical significantly decreased the beat rate of hiPSC-CMs, extending the contraction and relaxation time in a dose-dependent manner. Quantitative proteomics analysis revealed a high abundance of basement membrane (BM) components (e.g., COL4A1, COL4A2, LAMC1, NID2) and a significant increase in TNNC1 and SERBP1 proteins in hiPSC-CMs treated with BPA. Network analysis of proteomics data supported altered extracellular matrix remodelling and provided a disease-gene association with well-known pathological conditions of the heart. Furthermore, upon hypoxia-reoxygenation challenge, hiPSC-CMs treated with BPA showed higher rate of apoptotic events. Taken together, our results revealed that a long-term treatment, even with low doses of BPA, interferes with hiPSC-CMs functionality and alters the surrounding cellular environment, providing new insights about diseases that might arise upon the toxin exposure. Our study contributes to the current understanding of BPA effects on developing human foetal cardiomyocytes, in correlation with human clinical observations and animal studies, and it provides a suitable model for New Approach Methodologies (NAMs) for environmental chemical hazard and risk assessment.
Collapse
Affiliation(s)
- Federica Lamberto
- BioTalentum Ltd., Aulich Lajos Str. 26, Gödöllő, H-2100, Hungary; Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, H-2100, Gödöllő, Hungary
| | - Bachuki Shashikadze
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377, Munich, Germany
| | - Radwa Elkhateib
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377, Munich, Germany
| | - Salvo Danilo Lombardo
- Max Perutz Labs, Vienna Biocenter Campus (VBC), 1030, Vienna, Austria; Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, 1030, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Alex Horánszky
- BioTalentum Ltd., Aulich Lajos Str. 26, Gödöllő, H-2100, Hungary; Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, H-2100, Gödöllő, Hungary
| | - Andrea Balogh
- BioTalentum Ltd., Aulich Lajos Str. 26, Gödöllő, H-2100, Hungary
| | - Kornél Kistamás
- BioTalentum Ltd., Aulich Lajos Str. 26, Gödöllő, H-2100, Hungary
| | - Melinda Zana
- BioTalentum Ltd., Aulich Lajos Str. 26, Gödöllő, H-2100, Hungary
| | - Jörg Menche
- Max Perutz Labs, Vienna Biocenter Campus (VBC), 1030, Vienna, Austria; Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, 1030, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria; Faculty of Mathematics, University of Vienna, 1090, Vienna, Austria
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377, Munich, Germany
| | - András Dinnyés
- BioTalentum Ltd., Aulich Lajos Str. 26, Gödöllő, H-2100, Hungary; Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, H-2100, Gödöllő, Hungary; Department of Cell Biology and Molecular Medicine, University of Szeged, H-6720, Szeged, Hungary.
| |
Collapse
|
23
|
Fischer B, Gwinner F, Gepp MM, Schulz A, Danz K, Dehne A, Katsen-Globa A, Neubauer JC, Gentile L, Zimmermann H. A highly versatile biopolymer-based platform for the maturation of human pluripotent stem cell-derived cardiomyocytes enables functional analysis in vitro and 3D printing of heart patches. J Biomed Mater Res A 2023; 111:1600-1615. [PMID: 37317666 DOI: 10.1002/jbm.a.37558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) represent a valuable tool for in vitro modeling of the cardiac niche and possess great potential in tissue engineering applications. However, conventional polystyrene-based cell culture substrates have adverse effects on cardiomyocytes in vitro due to the stress applied by a stiff substrate on contractile cells. Ultra-high viscosity alginates offer a unique versatility as tunable substrates for cardiac cell cultures due to their biocompatibility, flexible biofunctionalization, and stability. In this work, we analyzed the effect of alginate substrates on hPSC-CM maturity and functionality. Alginate substrates in high-throughput compatible culture formats fostered a more mature gene expression and enabled the simultaneous assessment of chronotropic and inotropic effects upon beta-adrenergic stimulation. Furthermore, we produced 3D-printed alginate scaffolds with differing mechanical properties and plated hPSC-CMs on the surface of these to create Heart Patches for tissue engineering applications. These exhibited synchronous macro-contractions in concert with more mature gene expression patterns and extensive intracellular alignment of sarcomeric structures. In conclusion, the combination of biofunctionalized alginates and human cardiomyocytes represents a valuable tool for both in vitro modeling and regenerative medicine, due to its beneficial effects on cardiomyocyte physiology, the possibility to analyze cardiac contractility, and its applicability as Heart Patches.
Collapse
Affiliation(s)
- B Fischer
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - F Gwinner
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - M M Gepp
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - A Schulz
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - K Danz
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - A Dehne
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - A Katsen-Globa
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - J C Neubauer
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - L Gentile
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - H Zimmermann
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
- Chair for Molecular and Cellular Biotechnology, Saarland University, Gebäude A, Saarbrücken, Germany
- Faculty of Marine Science, Universidad Católica del Norte, Coquimbo, Chile
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| |
Collapse
|
24
|
Galow AM, Brenmoehl J, Hoeflich A. Synergistic effects of hormones on structural and functional maturation of cardiomyocytes and implications for heart regeneration. Cell Mol Life Sci 2023; 80:240. [PMID: 37541969 PMCID: PMC10403476 DOI: 10.1007/s00018-023-04894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
The limited endogenous regenerative capacity of the human heart renders cardiovascular diseases a major health threat, thus motivating intense research on in vitro heart cell generation and cell replacement therapies. However, so far, in vitro-generated cardiomyocytes share a rather fetal phenotype, limiting their utility for drug testing and cell-based heart repair. Various strategies to foster cellular maturation provide some success, but fully matured cardiomyocytes are still to be achieved. Today, several hormones are recognized for their effects on cardiomyocyte proliferation, differentiation, and function. Here, we will discuss how the endocrine system impacts cardiomyocyte maturation. After detailing which features characterize a mature phenotype, we will contemplate hormones most promising to induce such a phenotype, the routes of their action, and experimental evidence for their significance in this process. Due to their pleiotropic effects, hormones might be not only valuable to improve in vitro heart cell generation but also beneficial for in vivo heart regeneration. Accordingly, we will also contemplate how the presented hormones might be exploited for hormone-based regenerative therapies.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| | - Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| |
Collapse
|
25
|
Allan A, Creech J, Hausner C, Krajcarski P, Gunawan B, Poulin N, Kozlowski P, Clark CW, Dow R, Saraithong P, Mair DB, Block T, Monteiro da Rocha A, Kim DH, Herron TJ. High-throughput longitudinal electrophysiology screening of mature chamber-specific hiPSC-CMs using optical mapping. iScience 2023; 26:107142. [PMID: 37416454 PMCID: PMC10320609 DOI: 10.1016/j.isci.2023.107142] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
hiPSC-CMs are being considered by the Food and Drug Administration and other regulatory agencies for in vitro cardiotoxicity screening to provide human-relevant safety data. Widespread adoption of hiPSC-CMs in regulatory and academic science is limited by the immature, fetal-like phenotype of the cells. Here, to advance the maturation state of hiPSC-CMs, we developed and validated a human perinatal stem cell-derived extracellular matrix coating applied to high-throughput cell culture plates. We also present and validate a cardiac optical mapping device designed for high-throughput functional assessment of mature hiPSC-CM action potentials using voltage-sensitive dye and calcium transients using calcium-sensitive dyes or genetically encoded calcium indicators (GECI, GCaMP6). We utilize the optical mapping device to provide new biological insight into mature chamber-specific hiPSC-CMs, responsiveness to cardioactive drugs, the effect of GCaMP6 genetic variants on electrophysiological function, and the effect of daily β-receptor stimulation on hiPSC-CM monolayer function and SERCA2a expression.
Collapse
Affiliation(s)
- Andrew Allan
- Cairn Research, Graveney Road, Faversham, Kent ME13 8UP UK
| | - Jeffery Creech
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
| | - Christian Hausner
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
| | - Peyton Krajcarski
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
| | - Bianca Gunawan
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
| | - Noah Poulin
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
| | - Paul Kozlowski
- Michigan Medicine, Internal Medicine-Cardiology, Ann Arbor, MI 48109, USA
| | - Christopher Wayne Clark
- University of Michigan, School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI 48109, USA
| | - Rachel Dow
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
| | - Prakaimuk Saraithong
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
- Michigan Medicine, Internal Medicine-Cardiology, Ann Arbor, MI 48109, USA
| | - Devin B. Mair
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Travis Block
- StemBioSys, Inc, 3463 Magic Drive, Suite 110, San Antonio, TX 78229, USA
| | - Andre Monteiro da Rocha
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
- Michigan Medicine, Internal Medicine-Cardiology, Ann Arbor, MI 48109, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Todd J. Herron
- University of Michigan, Frankel Cardiovascular Regeneration Core Laboratory, Ann Arbor, MI 48109, USA
- Michigan Medicine, Internal Medicine-Cardiology, Ann Arbor, MI 48109, USA
- Michigan Medicine, Molecular & Integrative Physiology, Ann Arbor, MI 48109, USA
| |
Collapse
|
26
|
Salameh S, Ogueri V, Posnack NG. Adapting to a new environment: postnatal maturation of the human cardiomyocyte. J Physiol 2023; 601:2593-2619. [PMID: 37031380 PMCID: PMC10775138 DOI: 10.1113/jp283792] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/16/2023] [Indexed: 04/10/2023] Open
Abstract
The postnatal mammalian heart undergoes remarkable developmental changes, which are stimulated by the transition from the intrauterine to extrauterine environment. With birth, increased oxygen levels promote metabolic, structural and biophysical maturation of cardiomyocytes, resulting in mature muscle with increased efficiency, contractility and electrical conduction. In this Topical Review article, we highlight key studies that inform our current understanding of human cardiomyocyte maturation. Collectively, these studies suggest that human atrial and ventricular myocytes evolve quickly within the first year but might not reach a fully mature adult phenotype until nearly the first decade of life. However, it is important to note that fetal, neonatal and paediatric cardiac physiology studies are hindered by a number of limitations, including the scarcity of human tissue, small sample size and a heavy reliance on diseased tissue samples, often without age-matched healthy controls. Future developmental studies are warranted to expand our understanding of normal cardiac physiology/pathophysiology and inform age-appropriate treatment strategies for cardiac disease.
Collapse
Affiliation(s)
- Shatha Salameh
- Department of Pharmacology & Physiology, George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Vanessa Ogueri
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | - Nikki Gillum Posnack
- Department of Pharmacology & Physiology, George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University, Washington, DC, USA
| |
Collapse
|
27
|
Korover N, Etzion S, Cherniak A, Rabinski T, Levitas A, Etzion Y, Ofir R, Parvari R, Cohen S. Functional defects in hiPSCs-derived cardiomyocytes from patients with a PLEKHM2-mutation associated with dilated cardiomyopathy and left ventricular non-compaction. Biol Res 2023; 56:34. [PMID: 37349842 PMCID: PMC10288792 DOI: 10.1186/s40659-023-00442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/17/2023] [Indexed: 06/24/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a primary myocardial disease, leading to heart failure and excessive risk of sudden cardiac death with rather poorly understood pathophysiology. In 2015, Parvari's group identified a recessive mutation in the autophagy regulator, PLEKHM2 gene, in a family with severe recessive DCM and left ventricular non-compaction (LVNC). Fibroblasts isolated from these patients exhibited abnormal subcellular distribution of endosomes, Golgi apparatus, lysosomes and had impaired autophagy flux. To better understand the effect of mutated PLEKHM2 on cardiac tissue, we generated and characterized induced pluripotent stem cells-derived cardiomyocytes (iPSC-CMs) from two patients and a healthy control from the same family. The patient iPSC-CMs showed low expression levels of genes encoding for contractile functional proteins (α and β-myosin heavy chains and 2v and 2a-myosin light chains), structural proteins integral to heart contraction (Troponin C, T and I) and proteins participating in Ca2+ pumping action (SERCA2 and Calsequestrin 2) compared to their levels in control iPSC-derived CMs. Furthermore, the sarcomeres of the patient iPSC-CMs were less oriented and aligned compared to control cells and generated slowly beating foci with lower intracellular calcium amplitude and abnormal calcium transient kinetics, measured by IonOptix system and MuscleMotion software. Autophagy in patient's iPSC-CMs was impaired as determined from a decrease in the accumulation of autophagosomes in response to chloroquine and rapamycin treatment, compared to control iPSC-CMs. Impairment in autophagy together with the deficiency in the expression of NKX2.5, MHC, MLC, Troponins and CASQ2 genes, which are related to contraction-relaxation coupling and intracellular Ca2+ signaling, may contribute to the defective function of the patient CMs and possibly affect cell maturation and cardiac failure with time.
Collapse
Affiliation(s)
- Nataly Korover
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.
| | - Sharon Etzion
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Alexander Cherniak
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Tatiana Rabinski
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Aviva Levitas
- Department of Pediatric Cardiology, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Yoram Etzion
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Rivka Ofir
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Dead Sea & Arava Science Center, 8691000, Masada, Israel
| | - Ruti Parvari
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Smadar Cohen
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| |
Collapse
|
28
|
Xiang H, Xu H, Tan B, Yi Q, Zhang X, Wang R, Chen T, Xie Q, Tian J, Zhu J. AKAP1 Regulates Mitochondrial Dynamics during the Fatty-Acid-Promoted Maturation of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes as Indicated by Proteomics Sequencing. Int J Mol Sci 2023; 24:ijms24098112. [PMID: 37175819 PMCID: PMC10178876 DOI: 10.3390/ijms24098112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are cells with promising applications. However, their immaturity has restricted their use in cell therapy, disease modeling, and other studies. Therefore, the current study focused on inducing the maturation of CMs. We supplemented hiPSC-CMs with fatty acids (FAs) to promote their phenotypic maturity. Proteomic sequencing was performed to identify regulators critical for promoting the maturation of hiPSC-CMs. AKAP1 was found to be significantly increased in FA-treated hiPSC-CMs, and the results were verified. Therefore, we inhibited AKAP1 expression in the FA-treated cells and analyzed the outcomes. FA supplementation promoted the morphological and functional maturation of the hiPSC-CMs, which was accompanied by the development of a mitochondrial network. Proteomic analysis results revealed that AKAP1 expression was significantly higher in FA-treated hiPSC-CMs than in control cells. In addition, increased phosphorylation of the mitochondrial dynamin Drp1 and an increased mitochondrial fusion rate were found in FA-treated hiPSC-CMs. After AKAP1 was knocked down, the level of DRP1 phosphorylation in the cell was decreased, and the mitochondrial fusion rate was reduced. FA supplementation effectively promoted the maturation of hiPSC-CMs, and in these cells, AKAP1 regulated mitochondrial dynamics, possibly playing a significant role.
Collapse
Affiliation(s)
- Han Xiang
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Hao Xu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Bin Tan
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Qin Yi
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xinyuan Zhang
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rui Wang
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Tangtian Chen
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Qiumin Xie
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jie Tian
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Department of Cardiovascular (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jing Zhu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
29
|
Voges HK, Foster SR, Reynolds L, Parker BL, Devilée L, Quaife-Ryan GA, Fortuna PRJ, Mathieson E, Fitzsimmons R, Lor M, Batho C, Reid J, Pocock M, Friedman CE, Mizikovsky D, Francois M, Palpant NJ, Needham EJ, Peralta M, Monte-Nieto GD, Jones LK, Smyth IM, Mehdiabadi NR, Bolk F, Janbandhu V, Yao E, Harvey RP, Chong JJH, Elliott DA, Stanley EG, Wiszniak S, Schwarz Q, James DE, Mills RJ, Porrello ER, Hudson JE. Vascular cells improve functionality of human cardiac organoids. Cell Rep 2023:112322. [PMID: 37105170 DOI: 10.1016/j.celrep.2023.112322] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/13/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Crosstalk between cardiac cells is critical for heart performance. Here we show that vascular cells within human cardiac organoids (hCOs) enhance their maturation, force of contraction, and utility in disease modeling. Herein we optimize our protocol to generate vascular populations in addition to epicardial, fibroblast, and cardiomyocyte cells that self-organize into in-vivo-like structures in hCOs. We identify mechanisms of communication between endothelial cells, pericytes, fibroblasts, and cardiomyocytes that ultimately contribute to cardiac organoid maturation. In particular, (1) endothelial-derived LAMA5 regulates expression of mature sarcomeric proteins and contractility, and (2) paracrine platelet-derived growth factor receptor β (PDGFRβ) signaling from vascular cells upregulates matrix deposition to augment hCO contractile force. Finally, we demonstrate that vascular cells determine the magnitude of diastolic dysfunction caused by inflammatory factors and identify a paracrine role of endothelin driving dysfunction. Together this study highlights the importance and role of vascular cells in organoid models.
Collapse
Affiliation(s)
- Holly K Voges
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Simon R Foster
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Liam Reynolds
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Benjamin L Parker
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW 2006, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lynn Devilée
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Gregory A Quaife-Ryan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Ellen Mathieson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | | | - Mary Lor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Christopher Batho
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Janice Reid
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark Pocock
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Clayton E Friedman
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
| | - Dalia Mizikovsky
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
| | - Mathias Francois
- The Centenary Institute, David Richmond Program for Cardiovascular Research: Gene Regulation and Editing, Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, QLD, Australia
| | - Elise J Needham
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marina Peralta
- Australian Regenerative Medicine Institute. Monash University, Clayton, VIC 3800, Australia
| | | | - Lynelle K Jones
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Neda R Mehdiabadi
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Francesca Bolk
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ernestene Yao
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia; School of Biotechnology and Biomolecular Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - James J H Chong
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia; Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - David A Elliott
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Sophie Wiszniak
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5001, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Science, The University of Sydney, Sydney, NSW 2006, Australia; Sydney Medical School, The University of Sydney, Sydney, 2010 NSW, Australia
| | - Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, School of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia; Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia; Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, VIC 3052, Australia.
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
30
|
Sesena-Rubfiaro A, Prajapati NJ, Paolino L, Lou L, Cotayo D, Pandey P, Shaver M, Hutcheson J, Agarwal A, He J. Membrane Remodeling of Human-Engineered Cardiac Tissue by Chronic Electric Stimulation. ACS Biomater Sci Eng 2023; 9:1644-1655. [PMID: 36765460 PMCID: PMC10542861 DOI: 10.1021/acsbiomaterials.2c01370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) show immature features, but these are improved by integration into 3D cardiac constructs. In addition, it has been demonstrated that physical manipulations such as electrical stimulation (ES) are highly effective in improving the maturation of human-engineered cardiac tissue (hECT) derived from hiPSC-CMs. Here, we continuously applied an ES in capacitive coupling configuration, which is below the pacing threshold, to millimeter-sized hECTs for 1-2 weeks. Meanwhile, the structural and functional developments of the hECTs were monitored and measured using an array of assays. Of particular note, a nanoscale imaging technique, scanning ion conductance microscopy (SICM), has been used to directly image membrane remodeling of CMs at different locations on the tissue surface. Periodic crest/valley patterns with a distance close to the sarcomere length appeared on the membrane of CMs near the edge of the tissue after ES, suggesting the enhanced transverse tubulation network. The SICM observation is also supported by the fluorescence images of the transverse tubulation network and α-actinin. Correspondingly, essential cardiac functions such as calcium handling and contraction force generation were improved. Our study provides evidence that chronic subthreshold ES can still improve the structural and functional developments of hECTs.
Collapse
Affiliation(s)
| | - Navin J. Prajapati
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Lia Paolino
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Lihua Lou
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
| | - Daniel Cotayo
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Popular Pandey
- Department of Physics, Florida International University, Miami, FL 33199, USA
| | - Mohammed Shaver
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Joshua Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
- Biomolecular Science Institute, Florida International University, Miami FL 33199, USA
| | - Arvind Agarwal
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
| | - Jin He
- Department of Physics, Florida International University, Miami, FL 33199, USA
- Biomolecular Science Institute, Florida International University, Miami FL 33199, USA
| |
Collapse
|
31
|
Lin Z, Garbern JC, Liu R, Li Q, Mancheño Juncosa E, Elwell HL, Sokol M, Aoyama J, Deumer US, Hsiao E, Sheng H, Lee RT, Liu J. Tissue-embedded stretchable nanoelectronics reveal endothelial cell-mediated electrical maturation of human 3D cardiac microtissues. SCIENCE ADVANCES 2023; 9:eade8513. [PMID: 36888704 PMCID: PMC9995081 DOI: 10.1126/sciadv.ade8513] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Clinical translation of stem cell therapies for heart disease requires electrical integration of transplanted cardiomyocytes. Generation of electrically matured human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is critical for electrical integration. Here, we found that hiPSC-derived endothelial cells (hiPSC-ECs) promoted the expression of selected maturation markers in hiPSC-CMs. Using tissue-embedded stretchable mesh nanoelectronics, we achieved a long-term stable map of human three-dimensional (3D) cardiac microtissue electrical activity. The results revealed that hiPSC-ECs accelerated the electrical maturation of hiPSC-CMs in 3D cardiac microtissues. Machine learning-based pseudotime trajectory inference of cardiomyocyte electrical signals further revealed the electrical phenotypic transition path during development. Guided by the electrical recording data, single-cell RNA sequencing identified that hiPSC-ECs promoted cardiomyocyte subpopulations with a more mature phenotype, and multiple ligand-receptor interactions were up-regulated between hiPSC-ECs and hiPSC-CMs, revealing a coordinated multifactorial mechanism of hiPSC-CM electrical maturation. Collectively, these findings show that hiPSC-ECs drive hiPSC-CM electrical maturation via multiple intercellular pathways.
Collapse
Affiliation(s)
- Zuwan Lin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Jessica C. Garbern
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
| | - Ren Liu
- School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Qiang Li
- School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | | | - Hannah L.T. Elwell
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Morgan Sokol
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Junya Aoyama
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Undine-Sophie Deumer
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Emma Hsiao
- School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Hao Sheng
- School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Corresponding author. (J.L.), (R.T.L.)
| | - Jia Liu
- School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
- Corresponding author. (J.L.), (R.T.L.)
| |
Collapse
|
32
|
Malihi G, Nikoui V, Elson EL. A review on qualifications and cost effectiveness of induced pluripotent stem cells (IPSCs)-induced cardiomyocytes in drug screening tests. Arch Physiol Biochem 2023; 129:131-142. [PMID: 32783745 DOI: 10.1080/13813455.2020.1802600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human induced pluripotent stem cells (hIPSCs) have initiated a higher degree of successes in disease modelling, preclinical evaluation of drug therapy and pharmaco-toxicological testing. Since the discovery of iPSCs in 2006, many advanced techniques have been introduced to differentiate iPSCs to cardiomyocytes, which have been progressively improved. The disease models from iPSC-induced cardiomyocytes (iPSC-CM) have been successfully helping to study a variety of cardiac diseases such as long QT syndrome, drug-induced long QT, different cardiomyopathies related to mutations in mitochondria or desmosomal proteins and other rare genetic diseases. IPSC-CMs have also been used to screen the role of chemicals in cardiovascular drug discovery and individualisation of drug dosages. In this review, the quality of current procedures for characterisation and maturation of iPSC-CM lines will be discussed. Also, we will focus on time efficiency and cost of standard differentiation methods after reprogramming.
Collapse
Affiliation(s)
| | - Vahid Nikoui
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elliot L Elson
- Department of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
33
|
Wu P, Sai X, Li Z, Ye X, Jin L, Liu G, Li G, Yang P, Zhao M, Zhu S, Liu N, Zhu P. Maturation of induced pluripotent stem cell-derived cardiomyocytes and its therapeutic effect on myocardial infarction in mouse. Bioact Mater 2023; 20:286-305. [PMID: 35702609 PMCID: PMC9167678 DOI: 10.1016/j.bioactmat.2022.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have an irreplaceable role in the treatment of myocardial infarction (MI), which can be injected into the transplanted area with new cardiomyocytes (Cardiomyocytes, CMs), and improve myocardial function. However, the immaturity of the structure and function of iPSC-CMs is the main bottleneck at present. Since collagen participates in the formation of extracellular matrix (ECM), we synthesized nano colloidal gelatin (Gel) with collagen as the main component, and confirmed that the biomaterial has good biocompatibility and is suitable for cellular in vitro growth. Subsequently, we combined the PI3K/AKT/mTOR pathway inhibitor BEZ-235 with Gel and found that the two combined increased the sarcomere length and action potential amplitude (APA) of iPSC-CMs, and improved the Ca2+ processing ability, the maturation of mitochondrial morphological structure and metabolic function. Not only that, Gel can also prolong the retention rate of iPSC-CMs in the myocardium and increase the expression of Cx43 and angiogenesis in the transplanted area of mature iPSC-CMs, which also provides a reliable basis for the subsequent treatment of mature iPSC-CMs. BEZ-235 + Gel promotes the maturation of sarcomere structure in iPSC-CMs. BEZ-235 + Gel promotes electrophysiological maturation of iPSC-CMs. BEZ-235 + Gel increases mitochondrial respiration in iPSC-CMs. Gel loaded with mature iPSC-CMs enhanced angiogenesis and gap junction formation at the injection site.
Collapse
|
34
|
Garay BI, Givens S, Abreu P, Liu M, Yücel D, Baik J, Stanis N, Rothermel TM, Magli A, Abrahante JE, Goloviznina NA, Soliman HAN, Dhoke NR, Kyba M, Alford PW, Dudley SC, van Berlo JH, Ogle B, Perlingeiro RRC. Dual inhibition of MAPK and PI3K/AKT pathways enhances maturation of human iPSC-derived cardiomyocytes. Stem Cell Reports 2022; 17:2005-2022. [PMID: 35931076 PMCID: PMC9481895 DOI: 10.1016/j.stemcr.2022.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/25/2023] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide great opportunities for mechanistic dissection of human cardiac pathophysiology; however, hiPSC-CMs remain immature relative to the adult heart. To identify novel signaling pathways driving the maturation process during heart development, we analyzed published transcriptional and epigenetic datasets from hiPSC-CMs and prenatal and postnatal human hearts. These analyses revealed that several components of the MAPK and PI3K-AKT pathways are downregulated in the postnatal heart. Here, we show that dual inhibition of these pathways for only 5 days significantly enhances the maturation of day 30 hiPSC-CMs in many domains: hypertrophy, multinucleation, metabolism, T-tubule density, calcium handling, and electrophysiology, many equivalent to day 60 hiPSC-CMs. These data indicate that the MAPK/PI3K/AKT pathways are involved in cardiomyocyte maturation and provide proof of concept for the manipulation of key signaling pathways for optimal hiPSC-CM maturation, a critical aspect of faithful in vitro modeling of cardiac pathologies and subsequent drug discovery.
Collapse
Affiliation(s)
- Bayardo I Garay
- Lillehei Heart Institute (LHI), Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Sophie Givens
- Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Phablo Abreu
- Lillehei Heart Institute (LHI), Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Man Liu
- Lillehei Heart Institute (LHI), Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Doğacan Yücel
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - June Baik
- Lillehei Heart Institute (LHI), Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Noah Stanis
- Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | - Alessandro Magli
- Lillehei Heart Institute (LHI), Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, Minneapolis, MN, USA
| | - Natalya A Goloviznina
- Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA; LHI, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Hossam A N Soliman
- LHI, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Neha R Dhoke
- Lillehei Heart Institute (LHI), Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Michael Kyba
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA; Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA; LHI, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Patrick W Alford
- Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Samuel C Dudley
- Lillehei Heart Institute (LHI), Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jop H van Berlo
- Lillehei Heart Institute (LHI), Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA; Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Brenda Ogle
- Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Rita R C Perlingeiro
- Lillehei Heart Institute (LHI), Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA; Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
35
|
Shen S, Sewanan LR, Shao S, Halder SS, Stankey P, Li X, Campbell SG. Physiological calcium combined with electrical pacing accelerates maturation of human engineered heart tissue. Stem Cell Reports 2022; 17:2037-2049. [PMID: 35931080 PMCID: PMC9481907 DOI: 10.1016/j.stemcr.2022.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have wide potential application in basic research, drug discovery, and regenerative medicine, but functional maturation remains challenging. Here, we present a method whereby maturation of hiPSC-CMs can be accelerated by simultaneous application of physiological Ca2+ and frequency-ramped electrical pacing in culture. This combination produces positive force-frequency behavior, physiological twitch kinetics, robust β-adrenergic response, improved Ca2+ handling, and cardiac troponin I expression within 25 days. This study provides insights into the role of Ca2+ in hiPSC-CM maturation and offers a scalable platform for translational and clinical research.
Collapse
Affiliation(s)
- Shi Shen
- Department of Biomedical Engineering, Yale University, 55 Prospect St. MEC 211, New Haven, CT 06511, USA
| | - Lorenzo R Sewanan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephanie Shao
- Department of Biomedical Engineering, Yale University, 55 Prospect St. MEC 211, New Haven, CT 06511, USA
| | - Saiti S Halder
- Department of Biomedical Engineering, Yale University, 55 Prospect St. MEC 211, New Haven, CT 06511, USA
| | - Paul Stankey
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Xia Li
- Department of Biomedical Engineering, Yale University, 55 Prospect St. MEC 211, New Haven, CT 06511, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, 55 Prospect St. MEC 211, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA.
| |
Collapse
|
36
|
Muñoz JJAM, Dariolli R, da Silva CM, Neri EA, Valadão IC, Turaça LT, Lima VM, de Carvalho MLP, Velho MR, Sobie EA, Krieger JE. Time-regulated transcripts with the potential to modulate human pluripotent stem cell-derived cardiomyocyte differentiation. Stem Cell Res Ther 2022; 13:437. [PMID: 36056380 PMCID: PMC9438174 DOI: 10.1186/s13287-022-03138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a promising disease model, even though hiPSC-CMs cultured for extended periods display an undifferentiated transcriptional landscape. MiRNA–target gene interactions contribute to fine-tuning the genetic program governing cardiac maturation and may uncover critical pathways to be targeted. Methods We analyzed a hiPSC-CM public dataset to identify time-regulated miRNA–target gene interactions based on three logical steps of filtering. We validated this process in silico using 14 human and mouse public datasets, and further confirmed the findings by sampling seven time points over a 30-day protocol with a hiPSC-CM clone developed in our laboratory. We then added miRNA mimics from the top eight miRNAs candidates in three cell clones in two different moments of cardiac specification and maturation to assess their impact on differentiation characteristics including proliferation, sarcomere structure, contractility, and calcium handling.
Results We uncovered 324 interactions among 29 differentially expressed genes and 51 miRNAs from 20,543 transcripts through 120 days of hiPSC-CM differentiation and selected 16 genes and 25 miRNAs based on the inverse pattern of expression (Pearson R-values < − 0.5) and consistency in different datasets. We validated 16 inverse interactions among eight genes and 12 miRNAs (Person R-values < − 0.5) during hiPSC-CMs differentiation and used miRNAs mimics to verify proliferation, structural and functional features related to maturation. We also demonstrated that miR-124 affects Ca2+ handling altering features associated with hiPSC-CMs maturation.
Conclusion We uncovered time-regulated transcripts influencing pathways affecting cardiac differentiation/maturation axis and showed that the top-scoring miRNAs indeed affect primarily structural features highlighting their role in the hiPSC-CM maturation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03138-x.
Collapse
Affiliation(s)
- Juan J A M Muñoz
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil.,Universidad Señor de Sipán, Chiclayo, Perú
| | - Rafael Dariolli
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil.,Department of Pharmacological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caio Mateus da Silva
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Elida A Neri
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Iuri C Valadão
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Lauro Thiago Turaça
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Vanessa M Lima
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Mariana Lombardi Peres de Carvalho
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Mariliza R Velho
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Eric A Sobie
- Department of Pharmacological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose E Krieger
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
37
|
Gui Y, Zhang Y, Zhang Q, Chen X, Wang F, Wu F, Gui Y, Li Q. The functional verification and analysis of Fugu promoter of cardiac gene tnni1a in zebrafish. Cells Dev 2022; 171:203801. [PMID: 35787465 DOI: 10.1016/j.cdev.2022.203801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 01/25/2023]
Abstract
Troponin I type 1b (Tnni1b) is thought to be a novel isoform that is expressed only in the zebrafish heart. Knocking down of tnni1b can lead to cardiac defects in zebrafish. Although both the zebrafish tnni1b and human troponin I1 (TNNI1) genes are thought to be closely associated with fatal cardiac development, the regulatory molecular mechanisms of these genes are poorly understood. Analyzing the functionally conserved sequence, especially in the noncoding regulatory region involved in gene expression, clarified these mechanisms. In this study, we isolated a 3 kb fragment upstream of Fugu tnni1a that can regulate green fluorescence protein (GFP) expression in a heart-specific manner, similar to the pattern of zebrafish homologue expression. Three evolutionarily conserved regions (ECRs) in the 5'-flanking sequence of Fugu tnni1a were identified by sequence alignment. Deletion analysis led to the identification of ECR2 as a core sequence that affects the heart-specific expression function of the Fugu tnni1a promoter. Interestingly, both the Fugu tnni1a promoter and ECR2 sequence were functionally conserved in zebrafish, although they shared no sequence similarity. Together, the findings of our study provided further evidence for the important role of tnni1a homologous in cardiac development and demonstrated that two functionally conserved sequences in the zebrafish and Fugu genomes may be ECRs, despite their lack of similarity.
Collapse
Affiliation(s)
- Yiting Gui
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Fudan University, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yawen Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Fudan University, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Qi Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Xudong Chen
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Feng Wang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China; Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Fudan University, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Fang Wu
- Department of Neonatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Yonghao Gui
- Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Fudan University, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China.
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China.
| |
Collapse
|
38
|
Strimaityte D, Tu C, Yanez A, Itzhaki I, Wu H, Wu JC, Yang H. Contractility and Calcium Transient Maturation in the Human iPSC-Derived Cardiac Microfibers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35376-35388. [PMID: 35901275 PMCID: PMC9780031 DOI: 10.1021/acsami.2c07326] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are considered immature in the sarcomere organization, contractile machinery, calcium transient, and transcriptome profile, which prevent them from further applications in modeling and studying cardiac development and disease. To improve the maturity of hiPSC-CMs, here, we engineered the hiPSC-CMs into cardiac microfibers (iCMFs) by a stencil-based micropatterning method, which enables the hiPSC-CMs to be aligned in an end-to-end connection for prolonged culture on the hydrogel of physiological stiffness. A series of characterization approaches were performed to evaluate the maturation in iCMFs on both structural and functional levels, including immunohistochemistry, calcium transient, reverse-transcription quantitative PCR, cardiac contractility, and electrical pacing analysis. Our results demonstrate an improved cardiac maturation of hiPSC-CMs in iCMFs compared to micropatterned or random single hiPSC-CMs and hiPSC-CMs in a random cluster at the same cell number of iCMFs. We found an increased sarcomere length, better regularity and alignment of sarcomeres, enhanced contractility, matured calcium transient, and T-tubule formation and improved adherens junction and gap junction formation. The hiPSC-CMs in iCMFs showed a robust calcium cycling in response to the programmed and continuous electrical pacing from 0.5 to 7 Hz. Moreover, we generated the iCMFs with hiPSC-CMs with mutations in myosin-binding protein C (MYBPC3) to have a proof-of-concept of iCMFs in modeling cardiac hypertrophic phenotype. These findings suggest that the multipatterned iCMF connection of hiPSC-CMs boosts the cardiac maturation structurally and functionally, which will reveal the full potential of the application of hiPSC-CM models in disease modeling of cardiomyopathy and cardiac regenerative medicine.
Collapse
Affiliation(s)
- Dovile Strimaityte
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA
| | - Chengyi Tu
- Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Apuleyo Yanez
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA
| | - Ilanit Itzhaki
- Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Haodi Wu
- Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Joseph C. Wu
- Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Huaxiao Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA
| |
Collapse
|
39
|
Li Y, Qiu X. Bioelectricity-coupling patches for repairing impaired myocardium. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1787. [PMID: 35233963 DOI: 10.1002/wnan.1787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/27/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022]
Abstract
Cardiac abnormalities, which account for extensive burdens on public health and economy, drive necessary attempts to revolutionize the traditional therapeutic system. Advances in cardiac tissue engineering have expanded a highly efficacious platform to address cardiovascular events, especially cardiac infarction. Current efforts to overcome biocompatible limitations highlight the constructs of a conductive cardiac patch to accelerate the industrial and clinical landscape that is amenable for patient-accurate therapy, regenerative medicine, disease modeling, and drug delivery. With the notion that cardiac tissue synchronically contracts triggered by electrical pulses, the cardiac patches based on conductive materials are developed and treated on the dysfunctional heart. In this review, we systematically summarize distinct conductive materials serving as the most promising alternatives (conductive nanomaterials, conductive polymers, piezoelectric polymers, and ionic electrolytes) to achieve electric signal transmission and engineered cardiac tissues. Existing applications are discussed considering how these patches containing conductive candidates are fabricated into diverse forms with major strategies. Ultimately, we try to define a new concept as a bioelectricity-coupling patch that provides a favorable cardiac micro-environment for cardiac functional activities. Underlying challenges and prospects are presented regarding industrial processing and cardiovascular treatment of conductive patch progress. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease.
Collapse
Affiliation(s)
- Yuedan Li
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaozhong Qiu
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
40
|
Printing biohybrid materials for bioelectronic cardio-3D-cellular constructs. iScience 2022; 25:104552. [PMID: 35784786 PMCID: PMC9240791 DOI: 10.1016/j.isci.2022.104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
Conductive hydrogels are emerging as promising materials for bioelectronic applications as they minimize the mismatch between biological and electronic systems. We propose a strategy to bioprint biohybrid conductive bioinks based on decellularized extracellular matrix (dECM) and multiwalled carbon nanotubes. These inks contained conductive features and morphology of the dECM fibers. Electrical stimulation (ES) was applied to bioprinted structures containing human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). It was observed that in the absence of external ES, the conductive properties of the materials can improve the contractile behavior of the hPSC-CMs, and this effect is enhanced under the application of external ES. Genetic markers indicated a trend toward a more mature state of the cells with upregulated calcium handling proteins and downregulation of calcium channels involved in the generation of pacemaking currents. These results demonstrate the potential of our strategy to manufacture conductive hydrogels in complex geometries for actuating purposes. Conductive biohybrid hydrogels were 3D bioprinted using the FRESH method MWCNTs increased the conductivity and fiber diameter of dECM hydrogels Bioactuating applications were explored on the bioprinted structures Material’s conductivity and external electrical stimulation improved cell contractility
Collapse
|
41
|
In vitro maturation of human pluripotent stem cell-derived cardiomyocyte: A promising approach for cell therapy. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2022. [DOI: 10.12750/jarb.37.2.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
42
|
Metzger JM. The road to physiological maturation of stem cell-derived cardiac muscle runs through the sarcomere. J Mol Cell Cardiol 2022; 170:117-120. [PMID: 35752207 DOI: 10.1016/j.yjmcc.2022.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Recent advances the cardiac biomedical sciences have been propelled forward by the development and implementation of human iPSC-derived cardiac muscle. These notable successes notwithstanding, it is well recognized in the field that a major roadblock persists in the lack of full "adult cardiac muscle-like" maturation of hiPSC-CMs. This Perspective centers focus on maturation roadblocks in the essential physiological unit of muscle, the sarcomere. Stalled sarcomere maturation must be addressed and overcome before this elegant experimental platform can reach the mountaintop of making impactful contributions in disease pathogenesis, drug discovery, and in clinical regenerative medicine.
Collapse
Affiliation(s)
- Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, 6-125 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
43
|
Li J, Feng X, Wei X. Modeling hypertrophic cardiomyopathy with human cardiomyocytes derived from induced pluripotent stem cells. Stem Cell Res Ther 2022; 13:232. [PMID: 35659761 PMCID: PMC9166443 DOI: 10.1186/s13287-022-02905-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 12/16/2022] Open
Abstract
One of the obstacles in studying the pathogenesis of hypertrophic cardiomyopathy (HCM) is the poor availability of myocardial tissue samples at the early stages of disease development. This has been addressed by the advent of induced pluripotent stem cells (iPSCs), which allow us to differentiate patient-derived iPSCs into cardiomyocytes (iPSC-CMs) in vitro. In this review, we summarize different approaches to establishing iPSC models and the application of genome editing techniques in iPSC. Because iPSC-CMs cultured at the present stage are immature in structure and function, researchers have attempted several methods to mature iPSC-CMs, such as prolonged culture duration, and mechanical and electrical stimulation. Currently, many researchers have established iPSC-CM models of HCM and employed diverse methods for performing measurements of cellular morphology, contractility, electrophysiological property, calcium handling, mitochondrial function, and metabolism. Here, we review published results in humans to date within the growing field of iPSC-CM models of HCM. Although there is no unified consensus, preliminary results suggest that this approach to modeling disease would provide important insights into our understanding of HCM pathogenesis and facilitate drug development and safety testing.
Collapse
Affiliation(s)
- Jiangtao Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xin Feng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
44
|
The nuclear receptor ERR cooperates with the cardiogenic factor GATA4 to orchestrate cardiomyocyte maturation. Nat Commun 2022; 13:1991. [PMID: 35418170 PMCID: PMC9008061 DOI: 10.1038/s41467-022-29733-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 03/30/2022] [Indexed: 12/19/2022] Open
Abstract
Estrogen-related receptors (ERR) α and γ were shown recently to serve as regulators of cardiac maturation, yet the underlying mechanisms have not been delineated. Herein, we find that ERR signaling is necessary for induction of genes involved in mitochondrial and cardiac-specific contractile processes during human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) differentiation. Genomic interrogation studies demonstrate that ERRγ occupies many cardiomyocyte enhancers/super-enhancers, often co-localizing with the cardiogenic factor GATA4. ERRγ interacts with GATA4 to cooperatively activate transcription of targets involved in cardiomyocyte-specific processes such as contractile function, whereas ERRγ-mediated control of metabolic genes occurs independent of GATA4. Both mechanisms require the transcriptional coregulator PGC-1α. A disease-causing GATA4 mutation is shown to diminish PGC-1α/ERR/GATA4 cooperativity and expression of ERR target genes are downregulated in human heart failure samples suggesting that dysregulation of this circuitry may contribute to congenital and acquired forms of heart failure. Mature cardiac muscle requires high mitochondrial ATP production and specialized contractile proteins. Here the authors demonstrate that cardiomyocyte-specific contractile maturation involves cooperation between the nuclear receptor ERRγ and cardiogenic transcription factor GATA4, but ERRγ controls metabolic genes independently.
Collapse
|
45
|
Ly OT, Chen H, Brown GE, Hong L, Wang X, Han YD, Pavel MA, Sridhar A, Maienschein-Cline M, Chalazan B, Ong SG, Abdelhady K, Massad M, Rizkallah LE, Rehman J, Khetani SR, Darbar D. Mutant ANP induces mitochondrial and ion channel remodeling in a human iPSC-derived atrial fibrillation model. JCI Insight 2022; 7:155640. [PMID: 35393944 PMCID: PMC9057627 DOI: 10.1172/jci.insight.155640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Human induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs) can model heritable arrhythmias to personalize therapies for individual patients. Although atrial fibrillation (AF) is a leading cause of cardiovascular morbidity and mortality, current platforms to generate iPSC-atrial (a) CMs are inadequate for modeling AF. We applied a combinatorial engineering approach, which integrated multiple physiological cues, including metabolic conditioning and electrical stimulation, to generate mature iPSC-aCMs. Using the patient’s own atrial tissue as a gold standard benchmark, we assessed the electrophysiological, structural, metabolic, and molecular maturation of iPSC-aCMs. Unbiased transcriptomic analysis and inference from gene regulatory networks identified key gene expression pathways and transcription factors mediating atrial development and maturation. Only mature iPSC-aCMs generated from patients with heritable AF carrying the non-ion channel gene (NPPA) mutation showed enhanced expression and function of a cardiac potassium channel and revealed mitochondrial electron transport chain dysfunction. Collectively, we propose that ion channel remodeling in conjunction with metabolic defects created an electrophysiological substrate for AF. Overall, our electro-metabolic approach generated mature human iPSC-aCMs that unmasked the underlying mechanism of the first non-ion channel gene, NPPA, that causes AF. Our maturation approach will allow for the investigation of the molecular underpinnings of heritable AF and the development of personalized therapies.
Collapse
Affiliation(s)
- Olivia T Ly
- Division of Cardiology, Department of Medicine.,Department of Biomedical Engineering
| | - Hanna Chen
- Division of Cardiology, Department of Medicine
| | | | - Liang Hong
- Division of Cardiology, Department of Medicine
| | - Xinge Wang
- Division of Cardiology, Department of Medicine.,Department of Biomedical Engineering
| | | | | | - Arvind Sridhar
- Division of Cardiology, Department of Medicine.,Department of Physiology
| | | | | | - Sang-Ging Ong
- Division of Cardiology, Department of Medicine.,Department of Pharmacology and Regenerative Medicine; and
| | - Khaled Abdelhady
- Division of Cardiothoracic Surgery, Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Malek Massad
- Division of Cardiothoracic Surgery, Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lona Ernst Rizkallah
- Division of Cardiothoracic Surgery, Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jalees Rehman
- Division of Cardiology, Department of Medicine.,Department of Biomedical Engineering.,Division of Cardiothoracic Surgery, Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Dawood Darbar
- Division of Cardiology, Department of Medicine.,Department of Biomedical Engineering.,Department of Physiology.,Division of Cardiothoracic Surgery, Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
46
|
Tsoi C, Deng R, Kwok M, Yan B, Lee C, Li HS, Ma CHY, Luo R, Leung KT, Chan GCF, Chow LMC, Poon EN. Temporal Control of the WNT Signaling Pathway During Cardiac Differentiation Impacts Upon the Maturation State of Human Pluripotent Stem Cell Derived Cardiomyocytes. Front Mol Biosci 2022; 9:714008. [PMID: 35402504 PMCID: PMC8987729 DOI: 10.3389/fmolb.2022.714008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Inefficient differentiation and insufficient maturation are barriers to the application of human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) for research and therapy. Great strides have been made to the former, and multiple groups have reported cardiac differentiation protocol that can generate hPSC-CMs at high efficiency. Although many such protocols are based on the modulation of the WNT signaling pathway, they differ in their timing and in the WNT inhibitors used. Little is currently known about whether and how conditions of differentiation affect cardiac maturation. Here we adapted multiple cardiac differentiation protocols to improve cost-effectiveness and consistency, and compared the properties of the hPSC-CMs generated. Our results showed that the schedule of differentiation, but not the choice of WNT inhibitors, was a critical determinant not only of differentiation efficiency, which was expected, but also CM maturation. Among cultures with comparable purity, hPSC-CMs generated with different differentiation schedules vary in the expression of genes which are important for developmental maturation, and in their structural, metabolic, calcium transient and proliferative properties. In summary, we demonstrated that simple changes in the schedule of cardiac differentiation could promote maturation. To this end, we have optimized a cardiac differentiation protocol that can simultaneously achieve high differentiation efficiency and enhanced developmental maturation. Our findings would advance the production of hPSC-CMs for research and therapy.
Collapse
Affiliation(s)
- Chantelle Tsoi
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), CUHK, Shatin, Hong Kong SAR, China
| | - Ruixia Deng
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), CUHK, Shatin, Hong Kong SAR, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Maxwell Kwok
- Hong Kong Hub of Paediatric Excellence (HK HOPE), CUHK, Shatin, Hong Kong SAR, China
- Department of Medicine and Therapeutics, CUHK, Shatin, Hong Kong SAR, China
| | - Bin Yan
- Department of Computer Science, Faculty of Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Carrie Lee
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), CUHK, Shatin, Hong Kong SAR, China
| | - Hung Sing Li
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), CUHK, Shatin, Hong Kong SAR, China
- Department of Paediatrics, CUHK, Shatin, Hong Kong SAR, China
| | - Chloe Ho Yi Ma
- Hong Kong Hub of Paediatric Excellence (HK HOPE), CUHK, Shatin, Hong Kong SAR, China
- The School of Biomedical Sciences, CUHK, Shatin, Hong Kong SAR, China
| | - Ruibang Luo
- Department of Computer Science, Faculty of Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kam Tong Leung
- Hong Kong Hub of Paediatric Excellence (HK HOPE), CUHK, Shatin, Hong Kong SAR, China
- Department of Paediatrics, CUHK, Shatin, Hong Kong SAR, China
| | - Godfrey Chi-Fung Chan
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Larry Ming-cheung Chow
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ellen N. Poon
- Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence (HK HOPE), CUHK, Shatin, Hong Kong SAR, China
- Department of Medicine and Therapeutics, CUHK, Shatin, Hong Kong SAR, China
- The School of Biomedical Sciences, CUHK, Shatin, Hong Kong SAR, China
- *Correspondence: Ellen N. Poon,
| |
Collapse
|
47
|
Pretorius D, Kahn-Krell AM, LaBarge WC, Lou X, Zhang J. Engineering of thick human functional myocardium via static stretching and electrical stimulation. iScience 2022; 25:103824. [PMID: 35243219 PMCID: PMC8873611 DOI: 10.1016/j.isci.2022.103824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/23/2021] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Human cardiac-muscle patches (hCMPs) constructed from induced pluripotent stem cells derived cardiomyocytes (iCMs) can replicate the genetics of individual patients, and consequently be used for drug testing, disease modeling, and therapeutic applications. However, conventional hCMPs are relatively thin and contain iCMs with fetal cardiomyocyte structure and function. Here, we used our layer-by-layer (lbl) fabrication to construct thicker (>2.1 mm), triple-layered hCMPs, and then evaluated iCM maturity after ten days of standard culture (Control), static stretching (Stretched), or stretching with electrical stimulation at 15 or 22 V (Stretched+15V or Stretched+22V). Assessments of stained hCMPs suggested that expression and alignment of contractile proteins was greater in Stretched+22V, whereas quantification of mRNA abundance and protein expression indicated the Stretched+22V enhanced biomolecular maturation. Transmission electron microscope images indicated that stretching and electrical stimulation were associated with increases in development of Z-lines and gap junctions, and sarcomeres were significantly longer following any of the maturation protocols.
Collapse
Affiliation(s)
- Danielle Pretorius
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Asher M. Kahn-Krell
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Wesley C. LaBarge
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Xi Lou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Medicine, Division of Cardiovascular Diseases, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
48
|
Kowalski WJ, Garcia-Pak IH, Li W, Uosaki H, Tampakakis E, Zou J, Lin Y, Patterson K, Kwon C, Mukouyama YS. Sympathetic Neurons Regulate Cardiomyocyte Maturation in Culture. Front Cell Dev Biol 2022; 10:850645. [PMID: 35359438 PMCID: PMC8961983 DOI: 10.3389/fcell.2022.850645] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 12/20/2022] Open
Abstract
Embryos devoid of autonomic innervation suffer sudden cardiac death. However, whether autonomic neurons have a role in heart development is poorly understood. To investigate if sympathetic neurons impact cardiomyocyte maturation, we co-cultured phenotypically immature cardiomyocytes derived from human induced pluripotent stem cells with mouse sympathetic ganglion neurons. We found that 1) multiple cardiac structure and ion channel genes related to cardiomyocyte maturation were up-regulated when co-cultured with sympathetic neurons; 2) sarcomere organization and connexin-43 gap junctions increased; 3) calcium imaging showed greater transient amplitudes. However, sarcomere spacing, relaxation time, and level of sarcoplasmic reticulum calcium did not show matured phenotypes. We further found that addition of endothelial and epicardial support cells did not enhance maturation to a greater extent beyond sympathetic neurons, while administration of isoproterenol alone was insufficient to induce changes in gene expression. These results demonstrate that sympathetic neurons have a significant and complex role in regulating cardiomyocyte development.
Collapse
Affiliation(s)
- William J. Kowalski
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Iris H. Garcia-Pak
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Wenling Li
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Hideki Uosaki
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States,Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Emmanouil Tampakakis
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jizhong Zou
- IPSC Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yongshun Lin
- IPSC Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kira Patterson
- IPSC Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States,*Correspondence: Yoh-Suke Mukouyama,
| |
Collapse
|
49
|
Floy ME, Shabnam F, Simmons AD, Bhute VJ, Jin G, Friedrich WA, Steinberg AB, Palecek SP. Advances in Manufacturing Cardiomyocytes from Human Pluripotent Stem Cells. Annu Rev Chem Biomol Eng 2022; 13:255-278. [PMID: 35320695 DOI: 10.1146/annurev-chembioeng-092120-033922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The emergence of human pluripotent stem cell (hPSC) technology over the past two decades has provided a source of normal and diseased human cells for a wide variety of in vitro and in vivo applications. Notably, hPSC-derived cardiomyocytes (hPSC-CMs) are widely used to model human heart development and disease and are in clinical trials for treating heart disease. The success of hPSC-CMs in these applications requires robust, scalable approaches to manufacture large numbers of safe and potent cells. Although significant advances have been made over the past decade in improving the purity and yield of hPSC-CMs and scaling the differentiation process from 2D to 3D, efforts to induce maturation phenotypes during manufacturing have been slow. Process monitoring and closed-loop manufacturing strategies are just being developed. We discuss recent advances in hPSC-CM manufacturing, including differentiation process development and scaling and downstream processes as well as separation and stabilization. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Martha E Floy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; , , , , ,
| | - Fathima Shabnam
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; , , , , ,
| | - Aaron D Simmons
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; , , , , ,
| | - Vijesh J Bhute
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA; , .,Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Gyuhyung Jin
- Department of Chemical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | - Will A Friedrich
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; , , , , ,
| | - Alexandra B Steinberg
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; , , , , ,
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; , , , , ,
| |
Collapse
|
50
|
Monitoring the maturation of the sarcomere network: a super-resolution microscopy-based approach. Cell Mol Life Sci 2022; 79:149. [PMID: 35199227 PMCID: PMC8866374 DOI: 10.1007/s00018-022-04196-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/22/2022] [Accepted: 02/05/2022] [Indexed: 12/17/2022]
Abstract
The in vitro generation of human cardiomyocytes derived from induced pluripotent stem cells (iPSC) is of great importance for cardiac disease modeling, drug-testing applications and for regenerative medicine. Despite the development of various cultivation strategies, a sufficiently high degree of maturation is still a decisive limiting factor for the successful application of these cardiac cells. The maturation process includes, among others, the proper formation of sarcomere structures, mediating the contraction of cardiomyocytes. To precisely monitor the maturation of the contractile machinery, we have established an imaging-based strategy that allows quantitative evaluation of important parameters, defining the quality of the sarcomere network. iPSC-derived cardiomyocytes were subjected to different culture conditions to improve sarcomere formation, including prolonged cultivation time and micro patterned surfaces. Fluorescent images of α-actinin were acquired using super-resolution microscopy. Subsequently, we determined cell morphology, sarcomere density, filament alignment, z-Disc thickness and sarcomere length of iPSC-derived cardiomyocytes. Cells from adult and neonatal heart tissue served as control. Our image analysis revealed a profound effect on sarcomere content and filament orientation when iPSC-derived cardiomyocytes were cultured on structured, line-shaped surfaces. Similarly, prolonged cultivation time had a beneficial effect on the structural maturation, leading to a more adult-like phenotype. Automatic evaluation of the sarcomere filaments by machine learning validated our data. Moreover, we successfully transferred this approach to skeletal muscle cells, showing an improved sarcomere formation cells over different differentiation periods. Overall, our image-based workflow can be used as a straight-forward tool to quantitatively estimate the structural maturation of contractile cells. As such, it can support the establishment of novel differentiation protocols to enhance sarcomere formation and maturity.
Collapse
|