1
|
Topa H, Benoit-Pilven C, Tukiainen T, Pietiläinen O. X-chromosome inactivation in human iPSCs provides insight into X-regulated gene expression in autosomes. Genome Biol 2024; 25:144. [PMID: 38822397 PMCID: PMC11143737 DOI: 10.1186/s13059-024-03286-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/17/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Variation in X chromosome inactivation (XCI) in human-induced pluripotent stem cells (hiPSCs) can impact their ability to model biological sex biases. The gene-wise landscape of X chromosome gene dosage remains unresolved in female hiPSCs. To characterize patterns of de-repression and escape from inactivation, we performed a systematic survey of allele specific expression in 165 female hiPSC lines. RESULTS XCI erosion is non-random and primarily affects genes that escape XCI in human tissues. Individual genes and cell lines vary in the frequency and degree of de-repression. Bi-allelic expression increases gradually after modest decrease of XIST in cultures, whose loss is commonly used to mark lines with eroded XCI. We identify three clusters of female lines at different stages of XCI. Increased XCI erosion amplifies female-biased expression at hypomethylated sites and regions normally occupied by repressive histone marks, lowering male-biased differences in the X chromosome. In autosomes, erosion modifies sex differences in a dose-dependent way. Male-biased genes are enriched for hypermethylated regions, and de-repression of XIST-bound autosomal genes in female lines attenuates normal male-biased gene expression in eroded lines. XCI erosion can compensate for a dominant loss of function effect in several disease genes. CONCLUSIONS We present a comprehensive view of X chromosome gene dosage in hiPSCs and implicate a direct mechanism for XCI erosion in regulating autosomal gene expression in trans. The uncommon and variable reactivation of X chromosome genes in female hiPSCs can provide insight into X chromosome's role in regulating gene expression and sex differences in humans.
Collapse
Affiliation(s)
- Hande Topa
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Clara Benoit-Pilven
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Taru Tukiainen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Olli Pietiläinen
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
- The Stanley Center for Psychiatric Research at the Broad Institute, of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Carreras Mascaro A, Grochowska MM, Boumeester V, Dits NFJ, Bilgiҫ EN, Breedveld GJ, Vergouw L, de Jong FJ, van Royen ME, Bonifati V, Mandemakers W. LRP10 and α-synuclein transmission in Lewy body diseases. Cell Mol Life Sci 2024; 81:75. [PMID: 38315424 PMCID: PMC10844361 DOI: 10.1007/s00018-024-05135-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Autosomal dominant variants in LRP10 have been identified in patients with Lewy body diseases (LBDs), including Parkinson's disease (PD), Parkinson's disease-dementia (PDD), and dementia with Lewy bodies (DLB). Nevertheless, there is little mechanistic insight into the role of LRP10 in disease pathogenesis. In the brains of control individuals, LRP10 is typically expressed in non-neuronal cells like astrocytes and neurovasculature, but in idiopathic and genetic cases of PD, PDD, and DLB, it is also present in α-synuclein-positive neuronal Lewy bodies. These observations raise the questions of what leads to the accumulation of LRP10 in Lewy bodies and whether a possible interaction between LRP10 and α-synuclein plays a role in disease pathogenesis. Here, we demonstrate that wild-type LRP10 is secreted via extracellular vesicles (EVs) and can be internalised via clathrin-dependent endocytosis. Additionally, we show that LRP10 secretion is highly sensitive to autophagy inhibition, which induces the formation of atypical LRP10 vesicular structures in neurons in human-induced pluripotent stem cells (iPSC)-derived brain organoids. Furthermore, we show that LRP10 overexpression leads to a strong induction of monomeric α-synuclein secretion, together with time-dependent, stress-sensitive changes in intracellular α-synuclein levels. Interestingly, patient-derived astrocytes carrying the c.1424 + 5G > A LRP10 variant secrete aberrant high-molecular-weight species of LRP10 in EV-free media fractions. Finally, we show that this truncated patient-derived LRP10 protein species (LRP10splice) binds to wild-type LRP10, reduces LRP10 wild-type levels, and antagonises the effect of LRP10 on α-synuclein levels and distribution. Together, this work provides initial evidence for a possible functional role of LRP10 in LBDs by modulating intra- and extracellular α-synuclein levels, and pathogenic mechanisms linked to the disease-associated c.1424 + 5G > A LRP10 variant, pointing towards potentially important disease mechanisms in LBDs.
Collapse
Affiliation(s)
- Ana Carreras Mascaro
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martyna M Grochowska
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Valerie Boumeester
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Natasja F J Dits
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ece Naz Bilgiҫ
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guido J Breedveld
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Leonie Vergouw
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank Jan de Jong
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wim Mandemakers
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Cloutier M, Kumar S, Buttigieg E, Keller L, Lee B, Williams A, Mojica-Perez S, Erliandri I, Rocha AMD, Cadigan K, Smith GD, Kalantry S. Preventing erosion of X-chromosome inactivation in human embryonic stem cells. Nat Commun 2022; 13:2516. [PMID: 35523820 PMCID: PMC9076865 DOI: 10.1038/s41467-022-30259-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
X-chromosome inactivation is a paradigm of epigenetic transcriptional regulation. Female human embryonic stem cells (hESCs) often undergo erosion of X-inactivation upon prolonged culture. Here, we investigate the sources of X-inactivation instability by deriving new primed pluripotent hESC lines. We find that culture media composition dramatically influenced the expression of XIST lncRNA, a key regulator of X-inactivation. hESCs cultured in a defined xenofree medium stably maintained XIST RNA expression and coating, whereas hESCs cultured in the widely used mTeSR1 medium lost XIST RNA expression. We pinpointed lithium chloride in mTeSR1 as a cause of XIST RNA loss. The addition of lithium chloride or inhibitors of GSK-3 proteins that are targeted by lithium to the defined hESC culture medium impeded XIST RNA expression. GSK-3 inhibition in differentiating female mouse embryonic stem cells and epiblast stem cells also resulted in a loss of XIST RNA expression. Together, these data may reconcile observed variations in X-inactivation in hESCs and inform the faithful culture of pluripotent stem cells.
Collapse
Affiliation(s)
- Marissa Cloutier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Surinder Kumar
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Emily Buttigieg
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Laura Keller
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Brandon Lee
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Aaron Williams
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sandra Mojica-Perez
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Indri Erliandri
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Andre Monteiro Da Rocha
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine & Cardiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Kenneth Cadigan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Gary D Smith
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Lim KRQ, Sheri N, Nguyen Q, Yokota T. Cardiac Involvement in Dystrophin-Deficient Females: Current Understanding and Implications for the Treatment of Dystrophinopathies. Genes (Basel) 2020; 11:genes11070765. [PMID: 32650403 PMCID: PMC7397028 DOI: 10.3390/genes11070765] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive condition caused primarily by out-of-frame mutations in the dystrophin gene. In males, DMD presents with progressive body-wide muscle deterioration, culminating in death as a result of cardiac or respiratory failure. A milder form of DMD exists, called Becker muscular dystrophy (BMD), which is typically caused by in-frame dystrophin gene mutations. It should be emphasized that DMD and BMD are not exclusive to males, as some female dystrophin mutation carriers do present with similar symptoms, generally at reduced levels of severity. Cardiac involvement in particular is a pressing concern among manifesting females, as it may develop into serious heart failure or could predispose them to certain risks during pregnancy or daily life activities. It is known that about 8% of carriers present with dilated cardiomyopathy, though it may vary from 0% to 16.7%, depending on if the carrier is classified as having DMD or BMD. Understanding the genetic and molecular mechanisms underlying cardiac manifestations in dystrophin-deficient females is therefore of critical importance. In this article, we review available information from the literature on this subject, as well as discuss the implications of female carrier studies on the development of therapies aiming to increase dystrophin levels in the heart.
Collapse
Affiliation(s)
- Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (N.S.); (Q.N.)
| | - Narin Sheri
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (N.S.); (Q.N.)
| | - Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (N.S.); (Q.N.)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; (K.R.Q.L.); (N.S.); (Q.N.)
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB T6G2H7, Canada
- Correspondence: ; Tel.: +1-780-492-1102
| |
Collapse
|
5
|
Watanabe N, Kitada K, Santostefano KE, Yokoyama A, Waldrop SM, Heldermon CD, Tachibana D, Koyama M, Meacham AM, Pacak CA, Terada N. Generation of Induced Pluripotent Stem Cells from a Female Patient with a Xq27.3-q28 Deletion to Establish Disease Models and Identify Therapies. Cell Reprogram 2020; 22:179-188. [PMID: 32608992 DOI: 10.1089/cell.2020.0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Since it is extremely difficult to establish an animal model for human chromosomal abnormalities, induced pluripotent stem cells (iPSCs) provide a powerful alternative to study underlying mechanisms of these disorders and identify potential therapeutic interventions. In this study we established iPSCs from a young girl with a hemizygous deletion of Xq27.3-q28 who exhibited global developmental delay and intellectual disability from early in infancy. The deletion site on the X chromosome includes Fragile X Mental Retardation 1 (FMR1), the gene responsible for fragile X syndrome, which likely contributes to the patient's neurodevelopmental abnormalities. The FMR1 gene was expressed in approximately half of the iPSC clones we generated while it was absent in the other half due to the random inactivation of normal and abnormal X chromosomes. The normal or absent expression pattern of the FMR1 gene was not altered when the iPSCs were differentiated into neural progenitor cells (NPCs). Moreover, chromosome reactivating reagents such as 5-aza-2-deoxycytidine, trichostatin A, and UNC0638, were tested in an attempt to reactivate the suppressed FMR1 gene in affected iPSC-NPCs. The affected and control isogenic iPSCs developed in this study are ideal models with which to identify downstream consequences caused by the Xq27.3-q28 deletion and also to provide tools for high-throughput screening to identify compounds potentially improving the well-being of this patient population.
Collapse
Affiliation(s)
- Noriko Watanabe
- Department of Pathology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Kohei Kitada
- Department of Pathology, University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Airi Yokoyama
- Department of Pathology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Sara M Waldrop
- Department of Pathology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Coy D Heldermon
- Department of Medicine, and University of Florida College of Medicine, Gainesville, Florida, USA
| | - Daisuke Tachibana
- Depertment of Obstetrics and Gynecology, Osaka City University, Graduate School of Medicine, Osaka, Japan
| | - Masayasu Koyama
- Depertment of Obstetrics and Gynecology, Osaka City University, Graduate School of Medicine, Osaka, Japan
| | - Amy M Meacham
- Department of Medicine, and University of Florida College of Medicine, Gainesville, Florida, USA
| | - Christina A Pacak
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Naohiro Terada
- Department of Pathology, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
6
|
Bar S, Seaton LR, Weissbein U, Eldar-Geva T, Benvenisty N. Global Characterization of X Chromosome Inactivation in Human Pluripotent Stem Cells. Cell Rep 2020; 27:20-29.e3. [PMID: 30943402 DOI: 10.1016/j.celrep.2019.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/15/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
Dosage compensation of sex-chromosome gene expression between male and female mammals is achieved via X chromosome inactivation (XCI) by employing epigenetic modifications to randomly silence one X chromosome during early embryogenesis. Human pluripotent stem cells (hPSCs) were reported to present various states of XCI that differ according to the expression of the long non-coding RNA XIST and the degree of X chromosome silencing. To obtain a comprehensive perspective on XCI in female hPSCs, we performed a large-scale analysis characterizing different XCI parameters in more than 700 RNA high-throughput sequencing samples. Our findings suggest differences in XCI status between most published samples of embryonic stem cells (ESCs) and induced PSCs (iPSCs). While the majority of iPSC lines maintain an inactive X chromosome, ESC lines tend to silence the expression of XIST and upregulate distal chromosomal regions. Our study highlights significant epigenetic heterogeneity within hPSCs, which may bear implications for their use in research and regenerative therapy.
Collapse
Affiliation(s)
- Shiran Bar
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Lev Roz Seaton
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Uri Weissbein
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Talia Eldar-Geva
- IVF Unit, Division of Obstetrics and Gynecology, Shaare Zedek Medical Center, Jerusalem, Israel; The Hebrew University School of Medicine, Jerusalem, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
7
|
Kanwal S, Guo X, Ward C, Volpe G, Qin B, Esteban MA, Bao X. Role of Long Non-coding RNAs in Reprogramming to Induced Pluripotency. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:16-25. [PMID: 32445708 PMCID: PMC7393543 DOI: 10.1016/j.gpb.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/25/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
Abstract
The generation of induced pluripotent stem cells through somatic cell reprogramming requires a global reorganization of cellular functions. This reorganization occurs in a multi-phased manner and involves a gradual revision of both the epigenome and transcriptome. Recent studies have shown that the large-scale transcriptional changes observed during reprogramming also apply to long non-coding RNAs (lncRNAs), a type of traditionally neglected RNA species that are increasingly viewed as critical regulators of cellular function. Deeper understanding of lncRNAs in reprogramming may not only help to improve this process but also have implications for studying cell plasticity in other contexts, such as development, aging, and cancer. In this review, we summarize the current progress made in profiling and analyzing the role of lncRNAs in various phases of somatic cell reprogramming, with emphasis on the re-establishment of the pluripotency gene network and X chromosome reactivation.
Collapse
Affiliation(s)
- Shahzina Kanwal
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Xiangpeng Guo
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Carl Ward
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Giacomo Volpe
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Baoming Qin
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (5)Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Miguel A Esteban
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China; (6)Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xichen Bao
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China; (7)Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
8
|
Panova AV, Bogomazova AN, Lagarkova MA, Kiselev SL. Methylation of the Human AR Locus Does Not Correlate with the Presence of Inactivated X Chromosome in Induced Pluripotent Stem Cells. RUSS J GENET+ 2020; 56:339-344. [DOI: 10.1134/s102279542002009x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/10/2019] [Accepted: 06/24/2019] [Indexed: 02/05/2023]
|
9
|
Perenthaler E, Nikoncuk A, Yousefi S, Berdowski WM, Alsagob M, Capo I, van der Linde HC, van den Berg P, Jacobs EH, Putar D, Ghazvini M, Aronica E, van IJcken WFJ, de Valk WG, Medici-van den Herik E, van Slegtenhorst M, Brick L, Kozenko M, Kohler JN, Bernstein JA, Monaghan KG, Begtrup A, Torene R, Al Futaisi A, Al Murshedi F, Mani R, Al Azri F, Kamsteeg EJ, Mojarrad M, Eslahi A, Khazaei Z, Darmiyan FM, Doosti M, Karimiani EG, Vandrovcova J, Zafar F, Rana N, Kandaswamy KK, Hertecant J, Bauer P, AlMuhaizea MA, Salih MA, Aldosary M, Almass R, Al-Quait L, Qubbaj W, Coskun S, Alahmadi KO, Hamad MHA, Alwadaee S, Awartani K, Dababo AM, Almohanna F, Colak D, Dehghani M, Mehrjardi MYV, Gunel M, Ercan-Sencicek AG, Passi GR, Cheema HA, Efthymiou S, Houlden H, Bertoli-Avella AM, Brooks AS, Retterer K, Maroofian R, Kaya N, van Ham TJ, Barakat TS. Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases. Acta Neuropathol 2020; 139:415-442. [PMID: 31820119 PMCID: PMC7035241 DOI: 10.1007/s00401-019-02109-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022]
Abstract
Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies.
Collapse
Affiliation(s)
- Elena Perenthaler
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anita Nikoncuk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Soheil Yousefi
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Woutje M Berdowski
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Maysoon Alsagob
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Ivan Capo
- Department for Histology and Embryology, Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
| | - Herma C van der Linde
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Paul van den Berg
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Edwin H Jacobs
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Darija Putar
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mehrnaz Ghazvini
- iPS Cell Core Facility, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Zwolle, The Netherlands
| | - Wilfred F J van IJcken
- Center for Biomics, Department of Cell Biology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Walter G de Valk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Lauren Brick
- Division of Genetics, McMaster Children's Hospital, Hamilton, ON, L8S 4J9, Canada
| | - Mariya Kozenko
- Division of Genetics, McMaster Children's Hospital, Hamilton, ON, L8S 4J9, Canada
| | - Jennefer N Kohler
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94035, USA
| | - Jonathan A Bernstein
- Division of Medical Genetics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94035, USA
| | | | | | | | - Amna Al Futaisi
- Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Fathiya Al Murshedi
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat, Oman
| | - Renjith Mani
- Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Faisal Al Azri
- Department of Radiology and Molecular Imaging, Sultan Qaboos University Hospital, Muscat, Oman
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Genetic Center of Khorasan Razavi, Mashhad, Iran
| | - Atieh Eslahi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Mohammad Doosti
- Department Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Jana Vandrovcova
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Faisal Zafar
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, 60000, Pakistan
| | - Nuzhat Rana
- Department of Paediatric Neurology, Children's Hospital and Institute of Child Health, Multan, 60000, Pakistan
| | | | - Jozef Hertecant
- Department of Pediatrics, Tawam Hospital, and College of Medicine and Health Sciences, UAE University, Al-Ain, UAE
| | | | - Mohammed A AlMuhaizea
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Mustafa A Salih
- Neurology Division, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Mazhor Aldosary
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Rawan Almass
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Laila Al-Quait
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Wafa Qubbaj
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Khaled O Alahmadi
- Radiology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Muddathir H A Hamad
- Neurology Division, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Salem Alwadaee
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Khalid Awartani
- Obstetrics/Gynecology Department, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Anas M Dababo
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Futwan Almohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Mohammadreza Dehghani
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Murat Gunel
- Department of Neurosurgery, Program On Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - A Gulhan Ercan-Sencicek
- Department of Neurosurgery, Program On Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Masonic Medical Research Institute, Utica, NY, USA
| | - Gouri Rao Passi
- Department of Pediatrics, Pediatric Neurology Clinic, Choithram Hospital and Research Centre, Indore, Madhya Pradesh, India
| | - Huma Arshad Cheema
- Pediatric Gastroenterology Department, Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | | | - Alice S Brooks
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Using Two- and Three-Dimensional Human iPSC Culture Systems to Model Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2020; 25:237-257. [PMID: 32578150 DOI: 10.1007/978-3-030-45493-7_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders are among the most challenging human diseases to understand at a mechanistic level due to the heterogeneity of symptoms within established diagnostic categories, the general absence of focal pathology, and the genetic complexity inherent in these mostly polygenic disorders. Each of these features presents unique challenges to disease modeling for biological discovery, drug development, or improved diagnostics. In addition, live human neural tissue has been largely inaccessible to experimentation, leaving gaps in our knowledge derived from animal models that cannot fully recapitulate the features of the disease, indirect measures of brain function in human patients, and from analyses of postmortem tissue that can be confounded by comorbid conditions and medication history.
Collapse
|
11
|
D'Antonio-Chronowska A, Donovan MKR, Young Greenwald WW, Nguyen JP, Fujita K, Hashem S, Matsui H, Soncin F, Parast M, Ward MC, Coulet F, Smith EN, Adler E, D'Antonio M, Frazer KA. Association of Human iPSC Gene Signatures and X Chromosome Dosage with Two Distinct Cardiac Differentiation Trajectories. Stem Cell Reports 2019; 13:924-938. [PMID: 31668852 PMCID: PMC6895695 DOI: 10.1016/j.stemcr.2019.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 11/30/2022] Open
Abstract
Despite the importance of understanding how variability across induced pluripotent stem cell (iPSC) lines due to non-genetic factors (clone and passage) influences their differentiation outcome, large-scale studies capable of addressing this question have not yet been conducted. Here, we differentiated 191 iPSC lines to generate iPSC-derived cardiovascular progenitor cells (iPSC-CVPCs). We observed cellular heterogeneity across the iPSC-CVPC samples due to varying fractions of two cell types: cardiomyocytes (CMs) and epicardium-derived cells (EPDCs). Comparing the transcriptomes of CM-fated and EPDC-fated iPSCs, we discovered that 91 signature genes and X chromosome dosage differences are associated with these two distinct cardiac developmental trajectories. In an independent set of 39 iPSCs differentiated into CMs, we confirmed that sex and transcriptional differences affect cardiac-fate outcome. Our study provides novel insights into how iPSC transcriptional and X chromosome gene dosage differences influence their response to differentiation stimuli and, hence, cardiac cell fate. Cellular heterogeneity across iPSC-CVPCs due to varying fractions of CMs and EPDCs iPSC non-genetic factors (clone and passage) associated with cardiac cell fate Expression levels of signature genes in iPSCs associated with cardiac lineage fate iPSC donor sex plays a role in cardiac lineage fate
Collapse
Affiliation(s)
| | - Margaret K R Donovan
- Bioinformatics and Systems Biology Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | | | - Jennifer Phuong Nguyen
- Bioinformatics and Systems Biology Graduate Program, UC San Diego, La Jolla, CA 92093, USA
| | - Kyohei Fujita
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Sherin Hashem
- Division of Cardiology, Department of Medicine, UC San Diego, La Jolla, CA 92093, USA
| | - Hiroko Matsui
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | | | - Mana Parast
- Department of Pathology, UC San Diego, La Jolla, CA 92093, USA
| | - Michelle C Ward
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Florence Coulet
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Erin N Smith
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Eric Adler
- Division of Cardiology, Department of Medicine, UC San Diego, La Jolla, CA 92093, USA
| | - Matteo D'Antonio
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA.
| | - Kelly A Frazer
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Talon I, Janiszewski A, Chappell J, Vanheer L, Pasque V. Recent Advances in Understanding the Reversal of Gene Silencing During X Chromosome Reactivation. Front Cell Dev Biol 2019; 7:169. [PMID: 31552244 PMCID: PMC6733891 DOI: 10.3389/fcell.2019.00169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022] Open
Abstract
Dosage compensation between XX female and XY male cells is achieved by a process known as X chromosome inactivation (XCI) in mammals. XCI is initiated early during development in female cells and is subsequently stably maintained in most somatic cells. Despite its stability, the robust transcriptional silencing of XCI is reversible, in the embryo and also in a number of reprogramming settings. Although XCI has been intensively studied, the dynamics, factors, and mechanisms of X chromosome reactivation (XCR) remain largely unknown. In this review, we discuss how new sequencing technologies and reprogramming approaches have enabled recent advances that revealed the timing of transcriptional activation during XCR. We also discuss the factors and chromatin features that might be important to understand the dynamics and mechanisms of the erasure of transcriptional gene silencing on the inactive X chromosome (Xi).
Collapse
Affiliation(s)
| | | | | | | | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Bragança J, Lopes JA, Mendes-Silva L, Almeida Santos JM. Induced pluripotent stem cells, a giant leap for mankind therapeutic applications. World J Stem Cells 2019; 11:421-430. [PMID: 31396369 PMCID: PMC6682501 DOI: 10.4252/wjsc.v11.i7.421] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/22/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Induced pluripotent stem cells (iPSC) technology has propelled the field of stem cells biology, providing new cells to explore the molecular mechanisms of pluripotency, cancer biology and aging. A major advantage of human iPSC, compared to the pluripotent embryonic stem cells, is that they can be generated from virtually any embryonic or adult somatic cell type without destruction of human blastocysts. In addition, iPSC can be generated from somatic cells harvested from normal individuals or patients, and used as a cellular tool to unravel mechanisms of human development and to model diseases in a manner not possible before. Besides these fundamental aspects of human biology and physiology that are revealed using iPSC or iPSC-derived cells, these cells hold an immense potential for cell-based therapies, and for the discovery of new or personalized pharmacological treatments for many disorders. Here, we review some of the current challenges and concerns about iPSC technology. We introduce the potential held by iPSC for research and development of novel health-related applications. We briefly present the efforts made by the scientific and clinical communities to create the necessary guidelines and regulations to achieve the highest quality standards in the procedures for iPSC generation, characterization and long-term preservation. Finally, we present some of the audacious and pioneer clinical trials in progress with iPSC-derived cells.
Collapse
Affiliation(s)
- José Bragança
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal.
| | - João André Lopes
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal
| | - Leonardo Mendes-Silva
- Department of Biomedical Sciences and Medicine, University of Algarve, Faro 8005-139, Portugal
| | | |
Collapse
|
14
|
Hinz L, Hoekstra SD, Watanabe K, Posthuma D, Heine VM. Generation of Isogenic Controls for In Vitro Disease Modelling of X-Chromosomal Disorders. Stem Cell Rev Rep 2019; 15:276-285. [PMID: 30421281 PMCID: PMC6441401 DOI: 10.1007/s12015-018-9851-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Generation of proper controls is crucial in induced pluripotent stem cell (iPSC) studies. X-chromosomal disorders offer the potential to develop isogenic controls due to random X-chromosomal inactivation (XCI). However, the generation of such lines is currently hampered by skewed X-inactivation in fibroblast lines and X-chromosomal reactivation (XCR) after reprogramming. Here we describe a method to generate a pure iPSC population with respect to the specific inactivated X-chromosome (Xi). We used fibroblasts from Rett patients, who all have a causal mutation in the X-linked MeCP2 gene. Pre-sorting these fibroblasts followed by episomal reprogramming, allowed us to overcome skewness in fibroblast lines and to retain the X-chromosomal state, which was unpredictable with lentiviral reprogramming. This means that fibroblast pre-sorting followed by episomal reprogramming can be used to reliably generate iPSC lines with specified X-chromosomal phenotype such as Rett syndrome.
Collapse
Affiliation(s)
- Lisa Hinz
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Stephanie D Hoekstra
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Kyoko Watanabe
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Clinical Genetics, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Vivi M Heine
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Boelelaan 1085, 1081HV, Amsterdam, The Netherlands.
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Cheng S, Pei Y, He L, Peng G, Reinius B, Tam PP, Jing N, Deng Q. Single-Cell RNA-Seq Reveals Cellular Heterogeneity of Pluripotency Transition and X Chromosome Dynamics during Early Mouse Development. Cell Rep 2019; 26:2593-2607.e3. [DOI: 10.1016/j.celrep.2019.02.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/29/2018] [Accepted: 02/08/2019] [Indexed: 01/13/2023] Open
|
16
|
Eisen B, Ben Jehuda R, Cuttitta AJ, Mekies LN, Shemer Y, Baskin P, Reiter I, Willi L, Freimark D, Gherghiceanu M, Monserrat L, Scherr M, Hilfiker-Kleiner D, Arad M, Michele DE, Binah O. Electrophysiological abnormalities in induced pluripotent stem cell-derived cardiomyocytes generated from Duchenne muscular dystrophy patients. J Cell Mol Med 2019; 23:2125-2135. [PMID: 30618214 PMCID: PMC6378185 DOI: 10.1111/jcmm.14124] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 01/09/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X‐linked progressive muscle degenerative disease, caused by mutations in the dystrophin gene and resulting in death because of respiratory or cardiac failure. To investigate the cardiac cellular manifestation of DMD, we generated induced pluripotent stem cells (iPSCs) and iPSC‐derived cardiomyocytes (iPSC‐CMs) from two DMD patients: a male and female manifesting heterozygous carrier. Dystrophin mRNA and protein expression were analysed by qRT‐PCR, RNAseq, Western blot and immunofluorescence staining. For comprehensive electrophysiological analysis, current and voltage clamp were used to record transmembrane action potentials and ion currents, respectively. Microelectrode array was used to record extracellular electrograms. X‐inactive specific transcript (XIST) and dystrophin expression analyses revealed that female iPSCs underwent X chromosome reactivation (XCR) or erosion of X chromosome inactivation, which was maintained in female iPSC‐CMs displaying mixed X chromosome expression of wild type (WT) and mutated alleles. Both DMD female and male iPSC‐CMs presented low spontaneous firing rate, arrhythmias and prolonged action potential duration. DMD female iPSC‐CMs displayed increased beat rate variability (BRV). DMD male iPSC‐CMs manifested decreased If density, and DMD female and male iPSC‐CMs showed increased ICa,L density. Our findings demonstrate cellular mechanisms underlying electrophysiological abnormalities and cardiac arrhythmias in DMD.
Collapse
Affiliation(s)
- Binyamin Eisen
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ronen Ben Jehuda
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Biotechnology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ashley J Cuttitta
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Lucy N Mekies
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yuval Shemer
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Polina Baskin
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Irina Reiter
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Lubna Willi
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dov Freimark
- Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Michaela Scherr
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel E Michele
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
17
|
Barakat TS, Halbritter F, Zhang M, Rendeiro AF, Perenthaler E, Bock C, Chambers I. Functional Dissection of the Enhancer Repertoire in Human Embryonic Stem Cells. Cell Stem Cell 2018; 23:276-288.e8. [PMID: 30033119 PMCID: PMC6084406 DOI: 10.1016/j.stem.2018.06.014] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 03/02/2018] [Accepted: 06/19/2018] [Indexed: 12/21/2022]
Abstract
Enhancers are genetic elements that regulate spatiotemporal gene expression. Enhancer function requires transcription factor (TF) binding and correlates with histone modifications. However, the extent to which TF binding and histone modifications functionally define active enhancers remains unclear. Here, we combine chromatin immunoprecipitation with a massively parallel reporter assay (ChIP-STARR-seq) to identify functional enhancers in human embryonic stem cells (ESCs) genome-wide in a quantitative unbiased manner. Although active enhancers associate with TFs, only a minority of regions marked by NANOG, OCT4, H3K27ac, and H3K4me1 function as enhancers, with activity markedly changing under naive versus primed culture conditions. We identify an enhancer set associated with functions extending to non-ESC-specific processes. Moreover, although transposable elements associate with putative enhancers, only some exhibit activity. Similarly, within super-enhancers, large tracts are non-functional, with activity restricted to small sub-domains. This catalog of validated enhancers provides a valuable resource for further functional dissection of the regulatory genome. Massively parallel reporter assay assessed over 350,000 genome regions ChIP-STARR-seq catalogs functional enhancers in primed and naive hESCs Identification of transcription factors and transposable elements linked to enhancers ChIP-STARR-seq dissects super-enhancers into small functional units
Collapse
Affiliation(s)
- Tahsin Stefan Barakat
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK; Department of Clinical Genetics, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands.
| | - Florian Halbritter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Man Zhang
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - André F Rendeiro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Elena Perenthaler
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
18
|
Cantone I, Fisher AG. Human X chromosome inactivation and reactivation: implications for cell reprogramming and disease. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0358. [PMID: 28947657 DOI: 10.1098/rstb.2016.0358] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2017] [Indexed: 11/12/2022] Open
Abstract
X-chromosome inactivation (XCI) is an exemplar of epigenetic regulation that is set up as pluripotent cells differentiate. Once established, XCI is stably propagated, but can be reversed in vivo or by pluripotent reprogramming in vitro Although reprogramming provides a useful model for inactive X (Xi) reactivation in mouse, the relative instability and heterogeneity of human embryonic stem (ES) cells and induced pluripotent stem cells hampers comparable progress in human. Here we review studies aimed at reactivating the human Xi using different reprogramming strategies. We outline our recent results using mouse ES cells to reprogramme female human fibroblasts by cell-cell fusion. We show that pluripotent reprogramming induces widespread and rapid chromatin remodelling in which the human Xi loses XIST and H3K27m3 enrichment and selected Xi genes become reactivated, ahead of mitotic division. Using RNA sequencing to map the extent of human Xi reactivation, and chromatin-modifying drugs to potentiate reactivation, we outline how this approach could be used to better design strategies to re-express human X-linked loci. As cell fusion induces the expression of human pluripotency genes that represent both the 'primed' and 'naive' states, this approach may also offer a fresh opportunity to segregate human pluripotent states with distinct Xi expression profiles, using single-cell-based approaches.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- Irene Cantone
- Lymphocyte Development, MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK
| | - Amanda G Fisher
- Lymphocyte Development, MRC London Institute of Medical Sciences (LMS), Du Cane Road, London W12 0NN, UK .,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
19
|
Sahakyan A, Plath K, Rougeulle C. Regulation of X-chromosome dosage compensation in human: mechanisms and model systems. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0363. [PMID: 28947660 DOI: 10.1098/rstb.2016.0363] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2017] [Indexed: 01/01/2023] Open
Abstract
The human blastocyst forms 5 days after one of the smallest human cells (the sperm) fertilizes one of the largest human cells (the egg). Depending on the sex-chromosome contribution from the sperm, the resulting embryo will either be female, with two X chromosomes (XX), or male, with an X and a Y chromosome (XY). In early development, one of the major differences between XX female and XY male embryos is the conserved process of X-chromosome inactivation (XCI), which compensates gene expression of the two female X chromosomes to match the dosage of the single X chromosome of males. Most of our understanding of the pre-XCI state and XCI establishment is based on mouse studies, but recent evidence from human pre-implantation embryo research suggests that many of the molecular steps defined in the mouse are not conserved in human. Here, we will discuss recent advances in understanding the control of X-chromosome dosage compensation in early human embryonic development and compare it to that of the mouse.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- Anna Sahakyan
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Claire Rougeulle
- Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Université Paris Diderot, Paris, France
| |
Collapse
|
20
|
Epigenetic modifications in the embryonic and induced pluripotent stem cells. Gene Expr Patterns 2018; 29:1-9. [PMID: 29625185 DOI: 10.1016/j.gep.2018.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/03/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
Epigenetic modifications are involved in global reprogramming of the cell transcriptome. Therefore, synchronized major shifts in the expression of many genes could be achieved through epigenetic changes. The regulation of gene expression could be implemented by different epigenetic events including histone modifications, DNA methylation and chromatin remodelling. Interestingly, it has been documented that reprogramming of somatic cells to induced pluripotent stem (iPS) cells is also a typical example of epigenetic modifications. Additionally, epigenetic would determine the fates of almost all cells upon differentiation of stem cells into somatic cells. Currently, generation of iPS cells through epigenetic modifications is a routine laboratory practice. Despite all our knowledge, inconsistency in the results of reprogramming and differentiation of stem cells, highlight the need for more thorough investigation into the role of epigenetic modification in generation and maintenance of stem cells. Besides, subtle differences have been observed among different iPS cells and between iPS and ES cells. Although, a handful of detailed review regarding the status of epigenetics in stem cells has been published previously, in the current review, an abstracted and rather simplified view has been presented for those who want to gain a more general overview on this subject. However, almost all key references and ground breaking studies were included, which could be further explored to gain more in depth knowledge regarding this topic. The most dominant epigenetic changes have been presented followed by the impacts of such changes on the global gene expression. Epigenetic status in iPS and ES cells were compared. In addition to including the issues related to X-chromosome reactivation in the stem cells, we have also included loss of imprinting for some genes as a major drawback in generation of iPS cells. Finally, the overall impacts of epigenetic modifications on different aspects of stem cells has been discussed, including their use in cell therapy.
Collapse
|
21
|
Liu C, Luo B, Xie XX, Liao XS, Fu J, Ge YY, Li XS, Guo GS, Shen N, Xiao SW, Zhang QM. Involvement of X-chromosome Reactivation in Augmenting Cancer Testis Antigens Expression: A Hypothesis. Curr Med Sci 2018; 38:19-25. [PMID: 30074147 DOI: 10.1007/s11596-018-1842-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/08/2018] [Indexed: 12/28/2022]
Abstract
Cancer testis antigens (CTAs) are attractive targets for tumor immunotherapy because of their tumor-specific expression. Since more than half of confirmed CTAs are located on the X-chromosome, we asked whether there is a link between CTA expression and X-chromosomes. Recent reports have shown that reactivation of the inactive X-chromosome, known as X-chromosome reactivation (XCR), a unique phenomenon that exists in many high-risk tumors in women, can transform the expression of many X-linked genes from monoallelic to biallelic. In this review, we discuss the link between CTA and XCR with the hopes of providing some novel insights into tumor biology.
Collapse
Affiliation(s)
- Chang Liu
- Department of Neurosurgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Bin Luo
- Department of Histology and Embryology, Guangxi Medical University, Nanning, 530021, China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Xun Xie
- Department of Histology and Embryology, Guangxi Medical University, Nanning, 530021, China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Xing-Sheng Liao
- Department of Neurosurgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jun Fu
- Department of Histology and Embryology, Guangxi Medical University, Nanning, 530021, China
| | - Ying-Ying Ge
- Department of Histology and Embryology, Guangxi Medical University, Nanning, 530021, China
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Xi-Sheng Li
- Department of Neurosurgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Gao-Shui Guo
- Department of Neurosurgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Ning Shen
- Department of Oral and Maxillofacial Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Shao-Wen Xiao
- Department of Neurosurgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Qing-Mei Zhang
- Department of Histology and Embryology, Guangxi Medical University, Nanning, 530021, China.
- Central Laboratory, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
22
|
Geens M, Chuva De Sousa Lopes SM. X chromosome inactivation in human pluripotent stem cells as a model for human development: back to the drawing board? Hum Reprod Update 2018; 23:520-532. [PMID: 28582519 DOI: 10.1093/humupd/dmx015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human pluripotent stem cells (hPSC), both embryonic and induced (hESC and hiPSC), are regarded as a valuable in vitro model for early human development. In order to fulfil this promise, it is important that these cells mimic as closely as possible the in vivo molecular events, both at the genetic and epigenetic level. One of the most important epigenetic events during early human development is X chromosome inactivation (XCI), the transcriptional silencing of one of the two X chromosomes in female cells. XCI is important for proper development and aberrant XCI has been linked to several pathologies. Recently, novel data obtained using high throughput single-cell technology during human preimplantation development have suggested that the XCI mechanism is substantially different from XCI in mouse. It has also been suggested that hPSC show higher complexity in XCI than the mouse. Here we compare the available recent data to understand whether XCI during human preimplantation can be properly recapitulated using hPSC. OBJECTIVE AND RATIONALE We will summarize what is known on the timing and mechanisms of XCI during human preimplantation development. We will compare this to the XCI patterns that are observed during hPSC derivation, culture and differentiation, and comment on the cause of the aberrant XCI patterns observed in hPSC. Finally, we will discuss the implications of the aberrant XCI patterns on the applicability of hPSC as an in vitro model for human development and as cell source for regenerative medicine. SEARCH METHODS Combinations of the following keywords were applied as search criteria in the PubMed database: X chromosome inactivation, preimplantation development, embryonic stem cells, induced pluripotent stem cells, primordial germ cells, differentiation. OUTCOMES Recent single-cell RNASeq data have shed new light on the XCI process during human preimplantation development. These indicate a gradual inactivation on both XX chromosomes, starting from Day 4 of development and followed by a random choice to inactivate one of them, instead of the mechanism in mice where imprinted XCI is followed by random XCI. We have put these new findings in perspective using previous data obtained in human (and mouse) embryos. In addition, there is an ongoing discussion whether or not hPSC lines show X chromosome reactivation upon derivation, mimicking the earliest embryonic cells, and the XCI states observed during culture of hPSC are highly variable. Recent studies have shown that hPSC rapidly progress to highly aberrant XCI patterns and that this process is probably driven by suboptimal culture conditions. Importantly, these aberrant XCI states seem to be inherited by the differentiated hPSC-progeny. WIDER IMPLICATIONS The aberrant XCI states (and epigenetic instability) observed in hPSC throw a shadow on their applicability as an in vitro model for development and disease modelling. Moreover, as the aberrant XCI states observed in hPSC seem to shift to a more malignant phenotype, this may also have important consequences for the safety aspect of using hPSC in the clinic.
Collapse
Affiliation(s)
- Mieke Geens
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Brussels, Belgium
| | - Susana M Chuva De Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.,Department of Reproductive Medicine, Ghent-Fertility and Stem Cell Team (G-FaST), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
23
|
Boers R, Boers J, de Hoon B, Kockx C, Ozgur Z, Molijn A, van IJcken W, Laven J, Gribnau J. Genome-wide DNA methylation profiling using the methylation-dependent restriction enzyme LpnPI. Genome Res 2017; 28:88-99. [PMID: 29222086 PMCID: PMC5749185 DOI: 10.1101/gr.222885.117] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/27/2017] [Indexed: 02/03/2023]
Abstract
DNA methylation is a well-known epigenetic modification that plays a crucial role in gene regulation, but genome-wide analysis of DNA methylation remains technically challenging and costly. DNA methylation-dependent restriction enzymes can be used to restrict CpG methylation analysis to methylated regions of the genome only, which significantly reduces the required sequencing depth and simplifies subsequent bioinformatics analysis. Unfortunately, this approach has been hampered by complete digestion of DNA in CpG methylation-dense regions, resulting in fragments that are too small for accurate mapping. Here, we show that the activity of DNA methylation-dependent enzyme, LpnPI, is blocked by a fragment size smaller than 32 bp. This unique property prevents complete digestion of methylation-dense DNA and allows accurate genome-wide analysis of CpG methylation at single-nucleotide resolution. Methylated DNA sequencing (MeD-seq) of LpnPI digested fragments revealed highly reproducible genome-wide CpG methylation profiles for >50% of all potentially methylated CpGs, at a sequencing depth less than one-tenth required for whole-genome bisulfite sequencing (WGBS). MeD-seq identified a high number of patient and tissue-specific differential methylated regions (DMRs) and revealed that patient-specific DMRs observed in both blood and buccal samples predict DNA methylation in other tissues and organs. We also observed highly variable DNA methylation at gene promoters on the inactive X Chromosome, indicating tissue-specific and interpatient-specific escape of X Chromosome inactivation. These findings highlight the potential of MeD-seq for high-throughput epigenetic profiling.
Collapse
Affiliation(s)
- Ruben Boers
- Department of Developmental Biology, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,Department of Obstetrics and Gynaecology, Erasmus MC, 3015 CE Rotterdam, the Netherlands
| | - Joachim Boers
- Department of Developmental Biology, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,Delft Diagnostic Laboratories, 2288 ER, Rijswijk, the Netherlands
| | - Bas de Hoon
- Department of Developmental Biology, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,Department of Obstetrics and Gynaecology, Erasmus MC, 3015 CE Rotterdam, the Netherlands
| | - Christel Kockx
- Centre for Biomics, Erasmus MC, 3015 CE Rotterdam, the Netherlands
| | - Zeliha Ozgur
- Centre for Biomics, Erasmus MC, 3015 CE Rotterdam, the Netherlands
| | - Anco Molijn
- Delft Diagnostic Laboratories, 2288 ER, Rijswijk, the Netherlands
| | | | - Joop Laven
- Department of Obstetrics and Gynaecology, Erasmus MC, 3015 CE Rotterdam, the Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| |
Collapse
|
24
|
Bates LE, Silva JC. Reprogramming human cells to naïve pluripotency: how close are we? Curr Opin Genet Dev 2017; 46:58-65. [PMID: 28668635 PMCID: PMC6112416 DOI: 10.1016/j.gde.2017.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/14/2017] [Accepted: 06/08/2017] [Indexed: 12/24/2022]
Abstract
Pluripotent stem cells (PSCs) have the potential to revolutionise biomedical science; however, while it is simple to reproducibly obtain comparable, stable cell lines in mouse, those produced from human material typically show significant variability both within and between cell lines. This is likely due to differences in the cell identity of conventional mouse and human PSCs. It is hoped that recently identified conditions to reprogram human cells to a naïve-like state will produce better PSCs resulting in reproducible experimental outcomes and more consistent differentiation protocols. In this review we discuss the latest literature on the discovery of human naïve-like stem cells and examine how similar they are to both mouse naïve cells and the preimplantation human epiblast.
Collapse
Affiliation(s)
- Lawrence E Bates
- Wellcome Trust Medical Research Council Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - José Cr Silva
- Wellcome Trust Medical Research Council Cambridge Stem Cell Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
25
|
Induction of Pluripotent Stem Cells from a Manifesting Carrier of Duchenne Muscular Dystrophy and Characterization of Their X-Inactivation Status. Stem Cells Int 2017; 2017:7906843. [PMID: 28491099 PMCID: PMC5405591 DOI: 10.1155/2017/7906843] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 01/05/2023] Open
Abstract
Three to eight percent of female carriers of Duchenne muscular dystrophy (DMD) develop dystrophic symptoms ranging from mild muscle weakness to a rapidly progressive DMD-like muscular dystrophy due to skewed inactivation of X chromosomes during early development. Here, we generated human induced pluripotent stem cells (hiPSCs) from a manifesting female carrier using retroviral or Sendai viral (SeV) vectors and determined their X-inactivation status. Although manifesting carrier-derived iPS cells showed normal expression of human embryonic stem cell markers and formed well-differentiated teratomas in vivo, many hiPS clones showed bi-allelic expression of the androgen receptor (AR) gene and loss of X-inactivation-specific transcript and trimethyl-histone H3 (Lys27) signals on X chromosomes, suggesting that both X chromosomes of the hiPS cells are in an active state. Importantly, normal dystrophin was expressed in multinucleated myotubes differentiated from a manifesting carrier of DMD-hiPS cells with XaXa pattern. AR transcripts were also equally transcribed from both alleles in induced myotubes. Our results indicated that the inactivated X chromosome in the patient's fibroblasts was activated during reprogramming, and XCI occurred randomly during differentiation.
Collapse
|
26
|
Cantone I, Dharmalingam G, Chan YW, Kohler AC, Lenhard B, Merkenschlager M, Fisher AG. Allele-specific analysis of cell fusion-mediated pluripotent reprograming reveals distinct and predictive susceptibilities of human X-linked genes to reactivation. Genome Biol 2017; 18:2. [PMID: 28118853 PMCID: PMC5264468 DOI: 10.1186/s13059-016-1136-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/14/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inactivation of one X chromosome is established early in female mammalian development and can be reversed in vivo and in vitro when pluripotency factors are re-expressed. The extent of reactivation along the inactive X chromosome (Xi) and the determinants of locus susceptibility are, however, poorly understood. Here we use cell fusion-mediated pluripotent reprograming to study human Xi reactivation and allele-specific single nucleotide polymorphisms (SNPs) to identify reactivated loci. RESULTS We show that a subset of human Xi genes is rapidly reactivated upon re-expression of the pluripotency network. These genes lie within the most evolutionary recent segments of the human X chromosome that are depleted of LINE1 and enriched for SINE elements, predicted to impair XIST spreading. Interestingly, this cadre of genes displays stochastic Xi expression in human fibroblasts ahead of reprograming. This stochastic variability is evident between clones, by RNA-sequencing, and at the single-cell level, by RNA-FISH, and is not attributable to differences in repressive histone H3K9me3 or H3K27me3 levels. Treatment with the DNA demethylating agent 5-deoxy-azacytidine does not increase Xi expression ahead of reprograming, but instead reveals a second cadre of genes that only become susceptible to reactivation upon induction of pluripotency. CONCLUSIONS Collectively, these data not only underscore the multiple pathways that contribute to maintaining silencing along the human Xi chromosome but also suggest that transcriptional stochasticity among human cells could be useful for predicting and engineering epigenetic strategies to achieve locus-specific or domain-specific human Xi gene reactivation.
Collapse
Affiliation(s)
- Irene Cantone
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Gopuraja Dharmalingam
- Bioinformatics and Computing facility, MRC London Institute of Medical Sciences, Imperial College, London, UK
| | - Yi-Wah Chan
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Anne-Celine Kohler
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Boris Lenhard
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Imperial College, London, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Amanda G Fisher
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Hammersmith Campus, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
27
|
Differential X Chromosome Inactivation Patterns during the Propagation of Human Induced Pluripotent Stem Cells. Keio J Med 2017; 66:1-8. [PMID: 28111378 DOI: 10.2302/kjm.2016-0015-oa] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) represent a potentially useful tool for studying the molecular mechanisms of disease thanks to their ability to generate patient-specific hiPSC clones. However, previous studies have reported that DNA methylation profiles, including those for imprinted genes, may change during passaging of hiPSCs. This is particularly problematic for hiPSC models of X-linked disease, because unstable X chromosome inactivation status may affect the detection of phenotypes. In the present study, we examined the epigenetic status of hiPSCs derived from patients with Rett syndrome, an X-linked disease, during long-term culture. To analyze X chromosome inactivation, we used a methylation-specific polymerase chain reaction (MSP) to assay the human androgen receptor locus (HUMARA). We found that single cell-derived hiPSC clones exhibit various states of X chromosome inactivation immediately after clonal isolation, even when established simultaneously from a single donor. X chromosome inactivation states remain variable in hiPSC clones at early passages, and this variability may affect cellular phenotypes characteristic of X-linked diseases. Careful evaluation of X chromosome inactivation in hiPSC clones, particularly in early passages, by methods such as HUMARA-MSP, is therefore important when using patient-specific hiPSCs to model X-linked disease.
Collapse
|
28
|
Patel S, Bonora G, Sahakyan A, Kim R, Chronis C, Langerman J, Fitz-Gibbon S, Rubbi L, Skelton RJP, Ardehali R, Pellegrini M, Lowry WE, Clark AT, Plath K. Human Embryonic Stem Cells Do Not Change Their X Inactivation Status during Differentiation. Cell Rep 2016; 18:54-67. [PMID: 27989715 DOI: 10.1016/j.celrep.2016.11.054] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/09/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022] Open
Abstract
Applications of embryonic stem cells (ESCs) require faithful chromatin changes during differentiation, but the fate of the X chromosome state in differentiating ESCs is unclear. Female human ESC lines either carry two active X chromosomes (XaXa), an Xa and inactive X chromosome with or without XIST RNA coating (XiXIST+Xa;XiXa), or an Xa and an eroded Xi (XeXa) where the Xi no longer expresses XIST RNA and has partially reactivated. Here, we established XiXa, XeXa, and XaXa ESC lines and followed their X chromosome state during differentiation. Surprisingly, we found that the X state pre-existing in primed ESCs is maintained in differentiated cells. Consequently, differentiated XeXa and XaXa cells lacked XIST, did not induce X inactivation, and displayed higher X-linked gene expression than XiXa cells. These results demonstrate that X chromosome dosage compensation is not required for ESC differentiation. Our data imply that XiXIST+Xa ESCs are most suited for downstream applications and show that all other X states are abnormal byproducts of our ESC derivation and propagation method.
Collapse
Affiliation(s)
- Sanjeet Patel
- Department of Biological Chemistry, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Giancarlo Bonora
- Department of Biological Chemistry, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anna Sahakyan
- Department of Biological Chemistry, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rachel Kim
- Department of Biological Chemistry, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Constantinos Chronis
- Department of Biological Chemistry, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Justin Langerman
- Department of Biological Chemistry, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sorel Fitz-Gibbon
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Liudmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rhys J P Skelton
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - William E Lowry
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amander T Clark
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Bioinformatics Program, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
29
|
Ordered chromatin changes and human X chromosome reactivation by cell fusion-mediated pluripotent reprogramming. Nat Commun 2016; 7:12354. [PMID: 27507283 PMCID: PMC4987517 DOI: 10.1038/ncomms12354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/24/2016] [Indexed: 12/17/2022] Open
Abstract
Erasure of epigenetic memory is required to convert somatic cells towards pluripotency. Reactivation of the inactive X chromosome (Xi) has been used to model epigenetic reprogramming in mouse, but human studies are hampered by Xi epigenetic instability and difficulties in tracking partially reprogrammed iPSCs. Here we use cell fusion to examine the earliest events in the reprogramming-induced Xi reactivation of human female fibroblasts. We show that a rapid and widespread loss of Xi-associated H3K27me3 and XIST occurs in fused cells and precedes the bi-allelic expression of selected Xi-genes by many heterokaryons (30–50%). After cell division, RNA-FISH and RNA-seq analyses confirm that Xi reactivation remains partial and that induction of human pluripotency-specific XACT transcripts is rare (1%). These data effectively separate pre- and post-mitotic events in reprogramming-induced Xi reactivation and reveal a complex hierarchy of epigenetic changes that are required to reactivate the genes on the human Xi chromosome. Reactivation of the inactive X chromosome (Xi) has modelled epigenetic reprogramming in mouse. Here, by using cell fusion between human female fibroblasts and mouse embryonic stem cells, the authors show a complex hierarchy of epigenetic changes that are required to reactivate the genes on the human Xi chromosome.
Collapse
|
30
|
Dandulakis MG, Meganathan K, Kroll KL, Bonni A, Constantino JN. Complexities of X chromosome inactivation status in female human induced pluripotent stem cells-a brief review and scientific update for autism research. J Neurodev Disord 2016; 8:22. [PMID: 27303449 PMCID: PMC4907282 DOI: 10.1186/s11689-016-9155-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/20/2016] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) allow researchers to make customized patient-derived cell lines by reprogramming noninvasively retrieved somatic cells. These cell lines have the potential to faithfully represent an individual’s genetic background; therefore, in the absence of available human brain tissue from a living patient, these models have a significant advantage relative to other models of neurodevelopmental disease. When using human induced pluripotent stem cells (hiPSCs) to model X-linked developmental disorders or inherited conditions that undergo sex-specific modulation of penetrance (e.g., autism spectrum disorders), there are significant complexities in the course and status of X chromosome inactivation (XCI) that are crucial to consider in establishing the validity of cellular models. There are major gaps and inconsistencies in the existing literature regarding XCI status during the derivation and maintenance of hiPSCs and their differentiation into neurons. Here, we briefly describe the importance of the problem, review the findings and inconsistencies of the existing literature, delineate options for specifying XCI status in clonal populations, and develop recommendations for future studies.
Collapse
Affiliation(s)
- Mary G Dandulakis
- School of Medicine, Washington University in St. Louis, St. Louis, USA
| | - Kesavan Meganathan
- Department of Developmental Biology, Washington University in St. Louis, Campus Box 8103, 660 S. Euclid Ave., St. Louis, MO 63110-1093 USA
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University in St. Louis, Campus Box 8103, 660 S. Euclid Ave., St. Louis, MO 63110-1093 USA
| | - Azad Bonni
- Department of Neuroscience, Washington University in St. Louis, Campus Box 8108, 660 S. Euclid Ave., St. Louis, MO 63110-1093 USA
| | - John N Constantino
- Department of Psychiatry, Washington University in St. Louis, Campus Box 8134, 660 S. Euclid Avenue, St. Louis, MO 63110 USA
| |
Collapse
|
31
|
Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol 2016; 17:155-69. [PMID: 26860365 DOI: 10.1038/nrm.2015.28] [Citation(s) in RCA: 447] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The molecular mechanisms and signalling pathways that regulate the in vitro preservation of distinct pluripotent stem cell configurations, and their induction in somatic cells by direct reprogramming, constitute a highly exciting area of research. In this Review, we integrate recent discoveries related to isolating unique naive and primed pluripotent stem cell states with altered functional and molecular characteristics, and from different species. We provide an overview of the pathways underlying pluripotent state transitions and interconversion in vitro and in vivo. We conclude by highlighting unresolved key questions, future directions and potential novel applications of such dynamic pluripotent cell states.
Collapse
|
32
|
Geens M, Seriola A, Barbé L, Santalo J, Veiga A, Dée K, Van Haute L, Sermon K, Spits C. Female human pluripotent stem cells rapidly lose X chromosome inactivation marks and progress to a skewed methylation pattern during culture. Mol Hum Reprod 2016; 22:285-98. [DOI: 10.1093/molehr/gaw004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/13/2016] [Indexed: 12/25/2022] Open
|
33
|
GŁADYCH M, NIJAK A, LOTA P, OLEKSIEWICZ U. Epigenetics: the guardian of pluripotency and differentiation. Turk J Biol 2016. [DOI: 10.3906/biy-1509-30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
34
|
Pasque V, Plath K. X chromosome reactivation in reprogramming and in development. Curr Opin Cell Biol 2015; 37:75-83. [PMID: 26540406 DOI: 10.1016/j.ceb.2015.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 11/29/2022]
Abstract
Dramatic epigenetic changes take place during mammalian differentiation from the naïve pluripotent state including the silencing of one of the two X chromosomes in female cells through X chromosome inactivation. Conversely, reprogramming of somatic cells to naive pluripotency is coupled to X chromosome reactivation (XCR). Recent studies in the mouse system have shed light on the mechanisms of XCR by uncovering the timing and steps of XCR during reprogramming to induced pluripotent stem cells (iPSCs), allowing the generation of testable hypotheses during embryogenesis. In contrast, analyses of the X chromosome in human iPSCs have revealed important differences between mouse and human reprogramming processes that can partially be explained by the establishment of distinct pluripotent states and impact disease modeling and the application of human pluripotent stem cells. Here, we review recent literature on XCR as a readout and determinant of reprogramming to pluripotency.
Collapse
Affiliation(s)
- Vincent Pasque
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
35
|
Abstract
X chromosome inactivation (XCI) is the dosage compensation mechanism that evolved in female mammals to correct the genetic imbalance of X-linked genes between sexes. X chromosome inactivation occurs in early development when one of the two X chromosomes of females is nearly-completely silenced. Differentiating Embryonic Stem cells (ESC) are regarded as a useful tool to study XCI, since they recapitulate many events occurring during early development. In this review we aim to summarise the advances in the field and to discuss the close connection between cell differentiation and X chromosome inactivation, with a particular focus on mouse ESCs.
Collapse
Affiliation(s)
- Greta Pintacuda
- />Department of Biochemistry, University of Oxford, Oxford, OX1 3QU UK
| | - Andrea Cerase
- />EMBL Mouse Biology Unit, Monterotondo, 00015 RM Italy
| |
Collapse
|
36
|
Manor YS, Massarwa R, Hanna JH. Establishing the human naïve pluripotent state. Curr Opin Genet Dev 2015; 34:35-45. [PMID: 26291026 DOI: 10.1016/j.gde.2015.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 02/08/2023]
Abstract
Pluripotency is first assembled within the inner-cell-mass of developing pre-implantation blastocysts, and is gradually reconfigured and dismantled during early post-implantation development, before overt differentiation into somatic lineages ensues. This transition from pre-implantation to post-implantation pluripotent states, respectively referred to as naïve and primed, is accompanied by dramatic changes in molecular and functional characteristics. Remarkably, pluripotent states can be artificially preserved in a self-renewing state in vitro by continuous supplementation of a variety of exogenous cytokines and small molecule inhibitors. Different exogenous factors endow the cells with distinct configurations of pluripotency that have direct influence on stem cell characteristics both in mice and humans. Here we overview pluripotent states captured from rodents and humans under different growth conditions, and provide a conceptual framework for classifying pluripotent cell states on the basis of a combination of multiple characteristics that a pluripotent cell can simultaneously retain. We further highlight the complexity and dynamic nature of these artificially isolated in vitro pluripotent states in humans.
Collapse
Affiliation(s)
- Yair S Manor
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rada Massarwa
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Jacob H Hanna
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|