1
|
Tatwavedi D, Pellagatti A, Boultwood J. Recent advances in the application of induced pluripotent stem cell technology to the study of myeloid malignancies. Adv Biol Regul 2024; 91:100993. [PMID: 37827894 DOI: 10.1016/j.jbior.2023.100993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
Acquired myeloid malignancies are a spectrum of clonal disorders known to be caused by sequential acquisition of genetic lesions in hematopoietic stem and progenitor cells, leading to their aberrant self-renewal and differentiation. The increasing use of induced pluripotent stem cell (iPSC) technology to study myeloid malignancies has helped usher a paradigm shift in approaches to disease modeling and drug discovery, especially when combined with gene-editing technology. The process of reprogramming allows for the capture of the diversity of genetic lesions and mutational burden found in primary patient samples into individual stable iPSC lines. Patient-derived iPSC lines, owing to their self-renewal and differentiation capacity, can thus be a homogenous source of disease relevant material that allow for the study of disease pathogenesis using various functional read-outs. Furthermore, genome editing technologies like CRISPR/Cas9 enable the study of the stepwise progression from normal to malignant hematopoiesis through the introduction of specific driver mutations, individually or in combination, to create isogenic lines for comparison. In this review, we survey the current use of iPSCs to model acquired myeloid malignancies including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), acute myeloid leukemia and MDS/MPN overlap syndromes. The use of iPSCs has enabled the interrogation of the underlying mechanism of initiation and progression driving these diseases. It has also made drug testing, repurposing, and the discovery of novel therapies for these diseases possible in a high throughput setting.
Collapse
Affiliation(s)
- Dharamveer Tatwavedi
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Andrea Pellagatti
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Dijkhuis L, Johns A, Ragusa D, van den Brink SC, Pina C. Haematopoietic development and HSC formation in vitro: promise and limitations of gastruloid models. Emerg Top Life Sci 2023; 7:439-454. [PMID: 38095554 PMCID: PMC10754337 DOI: 10.1042/etls20230091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Haematopoietic stem cells (HSCs) are the most extensively studied adult stem cells. Yet, six decades after their first description, reproducible and translatable generation of HSC in vitro remains an unmet challenge. HSC production in vitro is confounded by the multi-stage nature of blood production during development. Specification of HSC is a late event in embryonic blood production and depends on physical and chemical cues which remain incompletely characterised. The precise molecular composition of the HSC themselves is incompletely understood, limiting approaches to track their origin in situ in the appropriate cellular, chemical and mechanical context. Embryonic material at the point of HSC emergence is limiting, highlighting the need for an in vitro model of embryonic haematopoietic development in which current knowledge gaps can be addressed and exploited to enable HSC production. Gastruloids are pluripotent stem cell-derived 3-dimensional (3D) cellular aggregates which recapitulate developmental events in gastrulation and early organogenesis with spatial and temporal precision. Gastruloids self-organise multi-tissue structures upon minimal and controlled external cues, and are amenable to live imaging, screening, scaling and physicochemical manipulation to understand and translate tissue formation. In this review, we consider the haematopoietic potential of gastruloids and review early strategies to enhance blood progenitor and HSC production. We highlight possible strategies to achieve HSC production from gastruloids, and discuss the potential of gastruloid systems in illuminating current knowledge gaps in HSC specification.
Collapse
Affiliation(s)
- Liza Dijkhuis
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands
| | - Ayona Johns
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance, Brunel University London, Uxbridge UB8 3PH, U.K
| | - Denise Ragusa
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance, Brunel University London, Uxbridge UB8 3PH, U.K
| | | | - Cristina Pina
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, U.K
- Centre for Genome Engineering and Maintenance, Brunel University London, Uxbridge UB8 3PH, U.K
| |
Collapse
|
3
|
Daneshpour H, van den Bersselaar P, Chao CH, Fazzio TG, Youk H. Macroscopic quorum sensing sustains differentiating embryonic stem cells. Nat Chem Biol 2023; 19:596-606. [PMID: 36635563 PMCID: PMC10154202 DOI: 10.1038/s41589-022-01225-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/14/2022] [Indexed: 01/14/2023]
Abstract
Cells can secrete molecules that help each other's replication. In cell cultures, chemical signals might diffuse only within a cell colony or between colonies. A chemical signal's interaction length-how far apart interacting cells are-is often assumed to be some value without rigorous justifications because molecules' invisible paths and complex multicellular geometries pose challenges. Here we present an approach, combining mathematical models and experiments, for determining a chemical signal's interaction length. With murine embryonic stem (ES) cells as a testbed, we found that differentiating ES cells secrete FGF4, among others, to communicate over many millimeters in cell culture dishes and, thereby, form a spatially extended, macroscopic entity that grows only if its centimeter-scale population density is above a threshold value. With this 'macroscopic quorum sensing', an isolated macroscopic, but not isolated microscopic, colony can survive differentiation. Our integrated approach can determine chemical signals' interaction lengths in generic multicellular communities.
Collapse
Affiliation(s)
- Hirad Daneshpour
- Kavli Institute of Nanoscience, Delft, The Netherlands
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Pim van den Bersselaar
- Kavli Institute of Nanoscience, Delft, The Netherlands
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Chun-Hao Chao
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hyun Youk
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, ON, Canada.
| |
Collapse
|
4
|
Bigas A, Galán Palma L, Kartha GM, Giorgetti A. Using Pluripotent Stem Cells to Understand Normal and Leukemic Hematopoietic Development. Stem Cells Transl Med 2022; 11:1123-1134. [PMID: 36398586 PMCID: PMC9672852 DOI: 10.1093/stcltm/szac071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2023] Open
Abstract
Several decades have passed since the generation of the first embryonic stem cell (ESC) lines both in mice and in humans. Since then, stem cell biologists have tried to understand their potential biological and clinical uses for their implementation in regenerative medicine. The hematopoietic field was a pioneer in establishing the potential use for the development of blood cell products and clinical applications; however, early expectations have been truncated by the difficulty in generating bonafide hematopoietic stem cells (HSCs). Despite some progress in understanding the origin of HSCs during embryonic development, the reproduction of this process in vitro is still not possible, but the knowledge acquired in the embryo is slowly being implemented for mouse and human pluripotent stem cells (PSCs). In contrast, ESC-derived hematopoietic cells may recapitulate some leukemic transformation processes when exposed to oncogenic drivers. This would be especially useful to model prenatal leukemia development or other leukemia-predisposing syndromes, which are difficult to study. In this review, we will review the state of the art of the use of PSCs as a model for hematopoietic and leukemia development.
Collapse
Affiliation(s)
- Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
- Josep Carreras Leukemia Research Institute (IJC), Barcelona, Spain
| | - Luis Galán Palma
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
- Josep Carreras Leukemia Research Institute (IJC), Barcelona, Spain
| | - Gayathri M Kartha
- Program in Cancer Research, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
- Josep Carreras Leukemia Research Institute (IJC), Barcelona, Spain
| | - Alessandra Giorgetti
- Regenerative Medicine Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Barcelona University, Barcelona, Spain
| |
Collapse
|
5
|
Zhang Q, Wu B, Weng Q, Hu F, Lin Y, Xia C, Peng H, Wang Y, Liu X, Liu L, Xiong J, Geng Y, Zhao Y, Zhang M, Du J, Wang J. Regeneration of immunocompetent B lymphopoiesis from pluripotent stem cells guided by transcription factors. Cell Mol Immunol 2022; 19:492-503. [PMID: 34893754 PMCID: PMC8975874 DOI: 10.1038/s41423-021-00805-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
Regeneration of functional B lymphopoiesis from pluripotent stem cells (PSCs) is challenging, and reliable methods have not been developed. Here, we unveiled the guiding role of three essential factors, Lhx2, Hoxa9, and Runx1, the simultaneous expression of which preferentially drives B lineage fate commitment and in vivo B lymphopoiesis using PSCs as a cell source. In the presence of Lhx2, Hoxa9, and Runx1 expression, PSC-derived induced hematopoietic progenitors (iHPCs) immediately gave rise to pro/pre-B cells in recipient bone marrow, which were able to further differentiate into entire B cell lineages, including innate B-1a, B-1b, and marginal zone B cells, as well as adaptive follicular B cells. In particular, the regenerative B cells produced adaptive humoral immune responses, sustained antigen-specific antibody production, and formed immune memory in response to antigen challenges. The regenerative B cells showed natural B cell development patterns of immunoglobulin chain switching and hypermutation via cross-talk with host T follicular helper cells, which eventually formed T cell-dependent humoral responses. This study exhibits de novo evidence that B lymphopoiesis can be regenerated from PSCs via an HSC-independent approach, which provides insights into treating B cell-related deficiencies using PSCs as an unlimited cell resource.
Collapse
Affiliation(s)
- Qi Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bingyan Wu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qitong Weng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangxiao Hu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yunqing Lin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chengxiang Xia
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Huan Peng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yao Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofei Liu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Lijuan Liu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiapin Xiong
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Geng
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yalan Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mengyun Zhang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Juan Du
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinyong Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
6
|
Owens DDG, Anselmi G, Oudelaar AM, Downes DJ, Cavallo A, Harman JR, Schwessinger R, Bucakci A, Greder L, de Ornellas S, Jeziorska D, Telenius J, Hughes JR, de Bruijn MFTR. Dynamic Runx1 chromatin boundaries affect gene expression in hematopoietic development. Nat Commun 2022; 13:773. [PMID: 35140205 PMCID: PMC8828719 DOI: 10.1038/s41467-022-28376-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/12/2022] [Indexed: 01/22/2023] Open
Abstract
The transcription factor RUNX1 is a critical regulator of developmental hematopoiesis and is frequently disrupted in leukemia. Runx1 is a large, complex gene that is expressed from two alternative promoters under the spatiotemporal control of multiple hematopoietic enhancers. To dissect the dynamic regulation of Runx1 in hematopoietic development, we analyzed its three-dimensional chromatin conformation in mouse embryonic stem cell (ESC) differentiation cultures. Runx1 resides in a 1.1 Mb topologically associating domain (TAD) demarcated by convergent CTCF motifs. As ESCs differentiate to mesoderm, chromatin accessibility, Runx1 enhancer-promoter (E-P) interactions, and CTCF-CTCF interactions increase in the TAD, along with initiation of Runx1 expression from the P2 promoter. Differentiation to hematopoietic progenitor cells is associated with the formation of tissue-specific sub-TADs over Runx1, a shift in E-P interactions, P1 promoter demethylation, and robust expression from both Runx1 promoters. Deletion of promoter-proximal CTCF sites at the sub-TAD boundaries has no obvious effects on E-P interactions but leads to partial loss of domain structure, mildly affects gene expression, and delays hematopoietic development. Together, our analysis of gene regulation at a large multi-promoter developmental gene reveals that dynamic sub-TAD chromatin boundaries play a role in establishing TAD structure and coordinated gene expression.
Collapse
Affiliation(s)
- Dominic D G Owens
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Giorgio Anselmi
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - A Marieke Oudelaar
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Damien J Downes
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Alessandro Cavallo
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Joe R Harman
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ron Schwessinger
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Akin Bucakci
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lucas Greder
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sara de Ornellas
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Physical and Theoretical Chemistry Building, Department of Chemistry, University of Oxford, Oxford, UK
| | - Danuta Jeziorska
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jelena Telenius
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Marella F T R de Bruijn
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Francis HS, Harold CL, Beagrie RA, King AJ, Gosden ME, Blayney JW, Jeziorska DM, Babbs C, Higgs DR, Kassouf MT. Scalable in vitro production of defined mouse erythroblasts. PLoS One 2022; 17:e0261950. [PMID: 34995303 PMCID: PMC8741028 DOI: 10.1371/journal.pone.0261950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/14/2021] [Indexed: 01/23/2023] Open
Abstract
Mouse embryonic stem cells (mESCs) can be manipulated in vitro to recapitulate the process of erythropoiesis, during which multipotent cells undergo lineage specification, differentiation and maturation to produce erythroid cells. Although useful for identifying specific progenitors and precursors, this system has not been fully exploited as a source of cells to analyse erythropoiesis. Here, we establish a protocol in which characterised erythroblasts can be isolated in a scalable manner from differentiated embryoid bodies (EBs). Using transcriptional and epigenetic analysis, we demonstrate that this system faithfully recapitulates normal primitive erythropoiesis and fully reproduces the effects of natural and engineered mutations seen in primary cells obtained from mouse models. We anticipate this system to be of great value in reducing the time and costs of generating and maintaining mouse lines in a number of research scenarios.
Collapse
Affiliation(s)
- Helena S. Francis
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Caroline L. Harold
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Robert A. Beagrie
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew J. King
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew E. Gosden
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Joseph W. Blayney
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Danuta M. Jeziorska
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Douglas R. Higgs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mira T. Kassouf
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Tsuruda M, Morino-Koga S, Ogawa M. Bone morphogenetic protein 4 differently promotes distinct VE-cadherin + precursor stages during the definitive hematopoietic development from embryonic stem cell-derived mesodermal cells. Exp Hematol 2021; 103:40-51.e7. [PMID: 34464660 DOI: 10.1016/j.exphem.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022]
Abstract
Definitive hematopoietic cells develop from fetal liver kinase 1 (Flk1)+ mesodermal cells during the in vitro differentiation of mouse embryonic stem cells (ESCs). VE-cadherin+CD41-CD45-(V+41-45-) hemogenic endothelial cells (HECs) and VE-cadherin+CD41+CD45- (V+41+45-) cells mediate the definitive hematopoietic development from Flk1+ cells. Bone morphogenetic protein 4 (BMP4) is known to be essential for the formation of mesoderm. However, the role of BMP4 in differentiation of the VE-cadherin+ definitive hematopoietic precursors from the mesoderm has been elusive. We addressed this issue using a co-aggregation culture of ESC-derived Flk1+ cells with OP9 stromal cells. This culture method induced V+41-45- cells, V+41+45- cells, and CD45+ cells from Flk1+ cells. V+41+45- cells possessed potential for erythromyeloid and T-lymphoid differentiation. When Flk1+ cells were cultured in the presence of a high concentration of BMP4, the generation of V+41-45- cells was enhanced. The increase in V+41-45- cells led to the subsequent increase in V+41+45- and CD45+ cells. The addition of BMP4 also increased hematopoietic colony-forming cells of various lineages. Furthermore, BMP4 promoted the expansion of V+41+45- cells independently of the preceding V+41-45- cell stage. These results suggest that BMP4 has promotive effects on the differentiation of V+41-45- HECs from Flk1+ mesodermal cells and the subsequent proliferation of V+41+45- hematopoietic precursors. These findings may provide insights for establishing a culture system to induce definitive hematopoietic stem cells from ESCs.
Collapse
Affiliation(s)
- Mariko Tsuruda
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Saori Morino-Koga
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Minetaro Ogawa
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto, Japan.
| |
Collapse
|
9
|
Shan W, Yu Q, Long Y, Luo Q, Li H, Han Y, Xu Y, Fu S, Zeng X, Wei C, Gao Y, Li X, Li X, Zhang L, Liu L, Chen M, Qian P, Huang H. Enhanced HSC-like cell generation from mouse pluripotent stem cells in a 3D induction system cocultured with stromal cells. Stem Cell Res Ther 2021; 12:353. [PMID: 34147128 PMCID: PMC8214308 DOI: 10.1186/s13287-021-02434-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Decades of efforts have attempted to differentiate the pluripotent stem cells (PSCs) into truly functional hematopoietic stem cells (HSCs), yet the problems of low differentiation efficiency in vitro and poor hematopoiesis reconstitution in vivo still exist, mainly attributing to the lack of solid, reproduced, or pursued differentiation system. METHODS In this study, we established an in vitro differentiation system yielding in vivo hematopoietic reconstitution hematopoietic cells from mouse PSCs through a 3D induction system followed by coculture with OP9 stromal cells. The in vivo hematopoietic reconstitution potential of c-kit+ cells derived from the mouse PSCs was evaluated via m-NSG transplantation assay. Flow cytometry analysis, RNA-seq, and cell cycle analysis were used to detect the in vitro hematopoietic ability of endothelial protein C receptor (EPCR, CD201) cells generated in our induction system. RESULTS The c-kit+ cells from 3D self-assembling peptide induction system followed by the OP9 coculture system possessed apparently superiority in terms of in vivo repopulating activity than that of 3D induction system followed by the 0.1% gelatin culture. We interestingly found that our 3D+OP9 system enriched a higher percentage of CD201+c-kit+cells that showed more similar HSC-like features such as transcriptome level and CFU formation ability than CD201-c-kit+cells, which have not been reported in the field of mouse PSCs hematopoietic differentiation. Moreover, CD201+ hematopoietic cells remained in a relatively slow cycling state, consistent with high expression levels of P57 and Ccng2. Further, we innovatively demonstrated that notch signaling pathway is responsible for in vitro CD201+ hematopoietic cell induction from mouse PSCs. CONCLUSIONS Altogether, our findings lay a foundation for improving the efficiency of hematopoietic differentiation and generating in vivo functional HSC-like cells from mouse PSCs for clinical application.
Collapse
Affiliation(s)
- Wei Shan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Qin Yu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Yan Long
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Qian Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Honghu Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Yingli Han
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Yulin Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Shan Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Xiangjun Zeng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Cong Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Yang Gao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd., Hangzhou, 310016, Zhejiang, PR China
| | - Xiaoqing Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Xia Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Lifei Zhang
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd., Hangzhou, 310016, Zhejiang, PR China
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China.,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China
| | - Ming Chen
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China.,Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Pengxu Qian
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China. .,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China. .,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China. .,Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, PR China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Hangzhou, Zhejiang, PR China. .,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, PR China. .,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, PR China. .,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
10
|
Lanzillotti C, De Mattei M, Mazziotta C, Taraballi F, Rotondo JC, Tognon M, Martini F. Long Non-coding RNAs and MicroRNAs Interplay in Osteogenic Differentiation of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:646032. [PMID: 33898434 PMCID: PMC8063120 DOI: 10.3389/fcell.2021.646032] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 12/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have gained great attention as epigenetic regulators of gene expression in many tissues. Increasing evidence indicates that lncRNAs, together with microRNAs (miRNAs), play a pivotal role in osteogenesis. While miRNA action mechanism relies mainly on miRNA-mRNA interaction, resulting in suppressed expression, lncRNAs affect mRNA functionality through different activities, including interaction with miRNAs. Recent advances in RNA sequencing technology have improved knowledge into the molecular pathways regulated by the interaction of lncRNAs and miRNAs. This review reports on the recent knowledge of lncRNAs and miRNAs roles as key regulators of osteogenic differentiation. Specifically, we described herein the recent discoveries on lncRNA-miRNA crosstalk during the osteogenic differentiation of mesenchymal stem cells (MSCs) derived from bone marrow (BM), as well as from different other anatomical regions. The deep understanding of the connection between miRNAs and lncRNAs during the osteogenic differentiation will strongly improve knowledge into the molecular mechanisms of bone growth and development, ultimately leading to discover innovative diagnostic and therapeutic tools for osteogenic disorders and bone diseases.
Collapse
Affiliation(s)
- Carmen Lanzillotti
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Monica De Mattei
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Mazziotta
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - John Charles Rotondo
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
11
|
Two-step protocol for regeneration of immunocompetent T cells from mouse pluripotent stem cells. BLOOD SCIENCE 2020; 2:79-88. [PMID: 35402823 PMCID: PMC8974948 DOI: 10.1097/bs9.0000000000000049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/04/2020] [Indexed: 12/05/2022] Open
Abstract
Numerous efforts have been attempted to regenerate T cells in culture dish from pluripotent stem cells (PSCs). However, in vitro generated T cells exhibited extremely low activity and compromised immunocompetency in vivo. Here, we describe a two-step protocol for regenerating functional T cells using an inducible Runx1-Hoxa9-PSC (iR9-PSCs) line. The procedure mainly includes generation of induced hematopoietic progenitor cells (iHPCs) in vitro, transplantation, and development of functional induced T cells (iT) in vivo via transplantation. The entire induction process in vitro requires 21 days before iHPCs transplantation. The development of mature T cells in vivo takes 4 to 6 weeks post-transplantation. We provide a simple and reproducible approach for functional T cell regeneration from iR9-PSCs for research purpose.
Collapse
|
12
|
Oatley M, Bölükbası ÖV, Svensson V, Shvartsman M, Ganter K, Zirngibl K, Pavlovich PV, Milchevskaya V, Foteva V, Natarajan KN, Baying B, Benes V, Patil KR, Teichmann SA, Lancrin C. Single-cell transcriptomics identifies CD44 as a marker and regulator of endothelial to haematopoietic transition. Nat Commun 2020; 11:586. [PMID: 31996681 PMCID: PMC6989687 DOI: 10.1038/s41467-019-14171-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
The endothelial to haematopoietic transition (EHT) is the process whereby haemogenic endothelium differentiates into haematopoietic stem and progenitor cells (HSPCs). The intermediary steps of this process are unclear, in particular the identity of endothelial cells that give rise to HSPCs is unknown. Using single-cell transcriptome analysis and antibody screening, we identify CD44 as a marker of EHT enabling us to isolate robustly the different stages of EHT in the aorta-gonad-mesonephros (AGM) region. This allows us to provide a detailed phenotypical and transcriptional profile of CD44-positive arterial endothelial cells from which HSPCs emerge. They are characterized with high expression of genes related to Notch signalling, TGFbeta/BMP antagonists, a downregulation of genes related to glycolysis and the TCA cycle, and a lower rate of cell cycle. Moreover, we demonstrate that by inhibiting the interaction between CD44 and its ligand hyaluronan, we can block EHT, identifying an additional regulator of HSPC development. The endothelial to haematopoietic transition (EHT) is the process where haemogenic endothelium differentiates into haematopoietic stem and progenitor cells (HSPCs). Here the authors use single cell transcriptomics and antibody screening to identify CD44 as a marker of EHT that is required for EHT and HSPC development.
Collapse
Affiliation(s)
- Morgan Oatley
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy
| | - Özge Vargel Bölükbası
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy.,Stem Cell and Regenerative Biology Department, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Valentine Svensson
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,European Molecular Biology Laboratory, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK.,Pachter Lab, Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, USA
| | - Maya Shvartsman
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy
| | - Kerstin Ganter
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy
| | - Katharina Zirngibl
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Polina V Pavlovich
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy.,Moscow Institute of Physics and Technology, Institutskii Per. 9, Moscow Region, Dolgoprudny, 141700, Russia.,Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, D-79108, Freiburg, Germany
| | - Vladislava Milchevskaya
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Institut für Medizinische Statistik und Bioinformatik, Bachemer Strasse 86, 50931, Köln, Germany
| | - Vladimira Foteva
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy
| | - Kedar N Natarajan
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,Department of Biochemistry and Molecular Biology, The University of Southern Denmark, Danish Institute for Advanced Study, Campusvej 55, 5230, Odense M, Denmark
| | - Bianka Baying
- European Molecular Biology Laboratory, Genomics Core Facility, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Vladimir Benes
- European Molecular Biology Laboratory, Genomics Core Facility, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Kiran R Patil
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Sarah A Teichmann
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Christophe Lancrin
- European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015, Monterotondo, Italy.
| |
Collapse
|
13
|
Abstract
The generation of hematopoietic stem cells (HSCs) from pluripotent stem cell (PSC) sources is a long-standing goal that will require a comprehensive understanding of the molecular and cellular factors that determine HSC fate during embryogenesis. A precise interplay between niche components, such as the vascular, mesenchymal, primitive myeloid cells, and the nervous system provides the unique signaling milieu for the emergence of functional HSCs in the aorta-gonad-mesonephros (AGM) region. Over the last several years, the interrogation of these aspects in the embryo model and in the PSC differentiation system has provided valuable knowledge that will continue educating the design of more efficient protocols to enable the differentiation of PSCs into
bona fide, functionally transplantable HSCs. Herein, we provide a synopsis of early hematopoietic development, with particular focus on the recent discoveries and remaining questions concerning AGM hematopoiesis. Moreover, we acknowledge the recent advances towards the generation of HSCs
in vitro and discuss possible approaches to achieve this goal in light of the current knowledge.
Collapse
Affiliation(s)
- Ana G Freire
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, USA
| | - Jason M Butler
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, USA.,Molecular Oncology Program, Georgetown University, Washington D.C., USA
| |
Collapse
|
14
|
Fitch SR, Kapeni C, Tsitsopoulou A, Wilson NK, Göttgens B, de Bruijn MF, Ottersbach K. Gata3 targets Runx1 in the embryonic haematopoietic stem cell niche. IUBMB Life 2020; 72:45-52. [PMID: 31634421 PMCID: PMC6973286 DOI: 10.1002/iub.2184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/01/2019] [Indexed: 02/02/2023]
Abstract
Runx1 is an important haematopoietic transcription factor as stressed by its involvement in a number of haematological malignancies. Furthermore, it is a key regulator of the emergence of the first haematopoietic stem cells (HSCs) during development. The transcription factor Gata3 has also been linked to haematological disease and was shown to promote HSC production in the embryo by inducing the secretion of important niche factors. Both proteins are expressed in several different cell types within the aorta-gonads-mesonephros (AGM) region, in which the first HSCs are generated; however, a direct interaction between these two key transcription factors in the context of embryonic HSC production has not formally been demonstrated. In this current study, we have detected co-localisation of Runx1 and Gata3 in rare sub-aortic mesenchymal cells in the AGM. Furthermore, the expression of Runx1 is reduced in Gata3 -/- embryos, which also display a shift in HSC emergence. Using an AGM-derived cell line as a model for the stromal microenvironment in the AGM and performing ChIP-Seq and ChIP-on-chip experiments, we demonstrate that Runx1, together with other key niche factors, is a direct target gene of Gata3. In addition, we can pinpoint Gata3 binding to the Runx1 locus at specific enhancer elements which are active in the microenvironment. These results reveal a direct interaction between Gata3 and Runx1 in the niche that supports embryonic HSCs and highlight a dual role for Runx1 in driving the transdifferentiation of haemogenic endothelial cells into HSCs as well as in the stromal cells that support this process.
Collapse
Affiliation(s)
- Simon R. Fitch
- Cambridge Institute for Medical Research and Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - Chrysa Kapeni
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUK
- Cambridge Institute for Medical Research and Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | | | - Nicola K. Wilson
- Cambridge Institute for Medical Research and Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - Berthold Göttgens
- Cambridge Institute for Medical Research and Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - Marella F. de Bruijn
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Katrin Ottersbach
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUK
| |
Collapse
|
15
|
Modeling Leukemia with Human Induced Pluripotent Stem Cells. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a034868. [PMID: 31451537 DOI: 10.1101/cshperspect.a034868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The reprogramming of human somatic cells into induced pluripotent stem cells (iPSCs) a little over a decade ago raised exciting prospects to transform the study and potentially also the therapy of human diseases. iPSC models have now been created for a multitude of hematologic diseases, including malignancies. Here we discuss practical aspects of iPSC modeling of malignant diseases, review recent studies, and discuss the new opportunities that iPSC models offer, as well as their current limitations and prospects for future development.
Collapse
|
16
|
Guiding T lymphopoiesis from pluripotent stem cells by defined transcription factors. Cell Res 2019; 30:21-33. [PMID: 31729468 PMCID: PMC6951346 DOI: 10.1038/s41422-019-0251-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022] Open
Abstract
Achievement of immunocompetent and therapeutic T lymphopoiesis from pluripotent stem cells (PSCs) is a central aim in T cell regenerative medicine. To date, preferentially reconstituting T lymphopoiesis in vivo from PSCs remains a practical challenge. Here we documented that synergistic and transient expression of Runx1 and Hoxa9 restricted in the time window of endothelial-to-hematopoietic transition and hematopoietic maturation stages in a PSC differentiation scheme (iR9-PSC) in vitro induced preferential generation of engraftable hematopoietic progenitors capable of homing to thymus and developing into mature T cells in primary and secondary immunodeficient recipients. Single-cell transcriptome and functional analyses illustrated the cellular trajectory of T lineage induction from PSCs, unveiling the T-lineage specification determined at as early as hemogenic endothelial cell stage and identifying the bona fide pre-thymic progenitors. The induced T cells distributed normally in central and peripheral lymphoid organs and exhibited abundant TCRαβ repertoire. The regenerative T lymphopoiesis restored immune surveillance in immunodeficient mice. Furthermore, gene-edited iR9-PSCs produced tumor-specific T cells in vivo that effectively eradicated tumor cells. This study provides insight into universal generation of functional and therapeutic T cells from the unlimited and editable PSC source.
Collapse
|
17
|
Abstract
Evidence of the diversity and multi-layered organization of the hematopoietic system is leading to new insights that may inform ex vivo production of blood cells. Interestingly, not all long-lived hematopoietic cells derive from hematopoietic stem cells (HSCs). Here we review the current knowledge on HSC-dependent cell lineages and HSC-independent tissue-resident hematopoietic cells and how they arise during embryonic development. Classical embryological and genetic experiments, cell fate tracing data, single-cell imaging, and transcriptomics studies provide information on the molecular/cell trajectories that form the complete hematopoietic system. We also discuss the current developmentally informed efforts toward generating engraftable and multilineage blood cells.
Collapse
Affiliation(s)
- Elaine Dzierzak
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
18
|
Shan W, Wang B, Xu Y, Li X, Li X, Wang H, Lin Y, Tie R, Zhao Q, Wang J, Zheng W, Hu Y, Shi J, Yu X, Huang H. Generation of hematopoietic cells from mouse pluripotent stem cells in a 3D culture system of self-assembling peptide hydrogel. J Cell Physiol 2019; 235:2080-2090. [PMID: 31389001 DOI: 10.1002/jcp.29110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 01/25/2018] [Indexed: 01/18/2023]
Abstract
In vitro generation of hematopoietic stem cells from pluripotent stem cells (PSCs) can be regarded as novel therapeutic approaches for replacing bone marrow transplantation without immune rejection or graft versus host disease. To date, many different approaches have been evaluated in terms of directing PSCs toward different hematopoietic cell types, yet, low efficiency and no function restrict the further hematopoietic differentiation study, our research aims to develop a three dimension (3D) hematopoietic differentiation approach that serves as recapitulation of embryonic development in vitro to a degree of complexity not achievable in a two dimension culture system. We first found that mouse PSCs could be efficiently induced to hematopoietic differentiation with an expression of hematopoietic makers, such as c-kit, CD41, and CD45 within self-assembling peptide hydrogel. Colony-forming cells assay results suggested mouse PSCs (mPSCs) could be differentiated into multipotential progenitor cells and 3D induction system derived hematopoietic colonies owned potential of differentiating into lymphocyte cells. In addition, in vivo animal transplantation experiment showed that mPSCs (CD45.2) could be embedded into nonobese diabetic/severe combined immunodeficiency mice (CD45.1) with about 3% engraftment efficiency after 3 weeks transplantation. This study demonstrated that we developed the 3D induction approach that could efficiently promote the hematopoietic differentiation of mPSCs in vitro and obtained the multipotential progenitors that possessed the short-term engraftment potential.
Collapse
Affiliation(s)
- Wei Shan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Binsheng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yulin Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xue Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huafang Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Lin
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qianhao Zhao
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jinyong Wang
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Weiyan Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohong Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Georgomanoli M, Papapetrou EP. Modeling blood diseases with human induced pluripotent stem cells. Dis Model Mech 2019; 12:12/6/dmm039321. [PMID: 31171568 PMCID: PMC6602313 DOI: 10.1242/dmm.039321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are derived from somatic cells through a reprogramming process, which converts them to a pluripotent state, akin to that of embryonic stem cells. Over the past decade, iPSC models have found increasing applications in the study of human diseases, with blood disorders featuring prominently. Here, we discuss methodological aspects pertaining to iPSC generation, hematopoietic differentiation and gene editing, and provide an overview of uses of iPSCs in modeling the cell and gene therapy of inherited genetic blood disorders, as well as their more recent use as models of myeloid malignancies. We also discuss the strengths and limitations of iPSCs compared to model organisms and other cellular systems commonly used in hematology research.
Collapse
Affiliation(s)
- Maria Georgomanoli
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
20
|
Ottersbach K. Endothelial-to-haematopoietic transition: an update on the process of making blood. Biochem Soc Trans 2019; 47:591-601. [PMID: 30902922 PMCID: PMC6490701 DOI: 10.1042/bst20180320] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/30/2023]
Abstract
The first definitive blood cells during embryogenesis are derived from endothelial cells in a highly conserved process known as endothelial-to-haematopoietic transition (EHT). This conversion involves activation of a haematopoietic transcriptional programme in a subset of endothelial cells in the major vasculature of the embryo, followed by major morphological changes that result in transitioning cells rounding up, breaking the tight junctions to neighbouring endothelial cells and adopting a haematopoietic fate. The whole process is co-ordinated by a complex interplay of key transcription factors and signalling pathways, with additional input from surrounding tissues. Diverse model systems, including mouse, chick and zebrafish embryos as well as differentiation of pluripotent cells in vitro, have contributed to the elucidation of the details of the EHT, which was greatly accelerated in recent years by sophisticated live imaging techniques and advances in transcriptional profiling, such as single-cell RNA-Seq. A detailed knowledge of these developmental events is required in order to be able to apply it to the generation of haematopoietic stem cells from pluripotent stem cells in vitro - an achievement which is of obvious clinical importance. The aim of this review is to summarise the latest findings and describe how these may have contributed towards achieving this goal.
Collapse
Affiliation(s)
- Katrin Ottersbach
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, U.K.
| |
Collapse
|
21
|
Shvartsman M, Bilican S, Lancrin C. Iron deficiency disrupts embryonic haematopoiesis but not the endothelial to haematopoietic transition. Sci Rep 2019; 9:6414. [PMID: 31015568 PMCID: PMC6478831 DOI: 10.1038/s41598-019-42765-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
In this study, we aimed to explore how cellular iron status affects embryonic haematopoiesis. For this purpose, we used a model of mouse embryonic stem cell differentiation into embryonic haematopoietic progenitors. We modulated the iron status by adding either the iron chelator Deferoxamine (DFO) for iron deficiency, or ferric ammonium citrate for iron excess, and followed the emergence of developing haematopoietic progenitors. Interestingly, we found that iron deficiency did not block the endothelial to haematopoietic transition, the first step of haematopoiesis. However, it did reduce the proliferation, survival and clonogenic capacity of haematopoietic progenitors. Surprisingly, iron deficiency affected erythro-myeloid progenitors significantly more than the primitive erythroid ones. Erythro-myeloid progenitors expressed less transferrin-receptor on the cell surface and had less labile iron compared to primitive erythroid progenitors, which could reduce their capacity to compete for scarce iron and survive iron deficiency. In conclusion, we show that iron deficiency could disturb haematopoiesis at an early embryonic stage by compromising more severely the survival, proliferation and differentiation of definitive haematopoietic progenitors compared to restricted erythroid progenitors.
Collapse
Affiliation(s)
- Maya Shvartsman
- European Molecular Biology Laboratory, EMBL Rome, Epigenetics and Neurobiology Unit, Via Ramarini 32, 00015, Monterotondo, Italy.
| | - Saygın Bilican
- European Molecular Biology Laboratory, EMBL Rome, Epigenetics and Neurobiology Unit, Via Ramarini 32, 00015, Monterotondo, Italy
| | - Christophe Lancrin
- European Molecular Biology Laboratory, EMBL Rome, Epigenetics and Neurobiology Unit, Via Ramarini 32, 00015, Monterotondo, Italy.
| |
Collapse
|
22
|
Lin Y, Kobayashi M, Azevedo Portilho N, Mishra A, Gao H, Liu Y, Wenzel P, Davis B, Yoder MC, Yoshimoto M. Long-Term Engraftment of ESC-Derived B-1 Progenitor Cells Supports HSC-Independent Lymphopoiesis. Stem Cell Reports 2019; 12:572-583. [PMID: 30745034 PMCID: PMC6409422 DOI: 10.1016/j.stemcr.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/09/2023] Open
Abstract
It is generally considered that mouse embryonic stem cell (ESC) differentiation into blood cells in vitro recapitulates yolk sac (YS) hematopoiesis. As such, similar to YS-derived B-progenitors, we demonstrate here that ESC-derived B-progenitors differentiate into B-1 and marginal zone B cells, but not B-2 cells in immunodeficient mice after transplantation. ESC-derived B-1 cells were maintained in the recipients for more than 6 months, secreting natural IgM antibodies in vivo. Gene expression profiling displayed a close relationship between ESC- and YS-derived B-1 progenitors. Because there are no hematopoietic stem cells (HSCs) detectable in our ESC differentiation culture, successful long-term engraftment of ESC-derived functional B-1 cells supports the presence of HSC-independent B-1 cell development. ESC-derived B-progenitors mature into B-1 cells and MZ B cells in vivo ESC-derived B-1 cells engrafted in vivo long-term and secrete natural antibodies ESC-derived B-progenitors are molecularly similar to YS-derived B-progenitors Long-term B-1 cell engraftment represents HSC-independent lymphopoiesis
Collapse
Affiliation(s)
- Yang Lin
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michihiro Kobayashi
- Center for Stem Cell Research, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nathalia Azevedo Portilho
- Center for Stem Cell Research, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Akansha Mishra
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Pamela Wenzel
- Center for Stem Cell Research, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Brian Davis
- Center for Stem Cell Research, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mervin C Yoder
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Momoko Yoshimoto
- Center for Stem Cell Research, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Garcia-Alegria E, Menegatti S, Fadlullah MZH, Menendez P, Lacaud G, Kouskoff V. Early Human Hemogenic Endothelium Generates Primitive and Definitive Hematopoiesis In Vitro. Stem Cell Reports 2018; 11:1061-1074. [PMID: 30449319 PMCID: PMC6234921 DOI: 10.1016/j.stemcr.2018.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 01/11/2023] Open
Abstract
The differentiation of human embryonic stem cells (hESCs) to hematopoietic lineages initiates with the specification of hemogenic endothelium, a transient specialized endothelial precursor of all blood cells. This in vitro system provides an invaluable model to dissect the emergence of hematopoiesis in humans. However, the study of hematopoiesis specification is hampered by a lack of consensus in the timing of hemogenic endothelium analysis and the full hematopoietic potential of this population. Here, our data reveal a sharp decline in the hemogenic potential of endothelium populations isolated over the course of hESC differentiation. Furthermore, by tracking the dynamic expression of CD31 and CD235a at the onset of hematopoiesis, we identified three populations of hematopoietic progenitors, representing primitive and definitive subsets that all emerge from the earliest specified hemogenic endothelium. Our data establish that hemogenic endothelium populations endowed with primitive and definitive hematopoietic potential are specified simultaneously from the mesoderm in differentiating hESCs.
Collapse
Affiliation(s)
- Eva Garcia-Alegria
- Developmental Haematopoiesis Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Sara Menegatti
- Developmental Haematopoiesis Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Muhammad Z H Fadlullah
- Stem Cell Biology Group, CRUK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain; Instituciò Catalana Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Georges Lacaud
- Stem Cell Biology Group, CRUK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK.
| | - Valerie Kouskoff
- Developmental Haematopoiesis Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
24
|
Baron CS, Kester L, Klaus A, Boisset JC, Thambyrajah R, Yvernogeau L, Kouskoff V, Lacaud G, van Oudenaarden A, Robin C. Single-cell transcriptomics reveal the dynamic of haematopoietic stem cell production in the aorta. Nat Commun 2018; 9:2517. [PMID: 29955049 PMCID: PMC6023921 DOI: 10.1038/s41467-018-04893-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 05/25/2018] [Indexed: 11/09/2022] Open
Abstract
Haematopoietic stem cells (HSCs) are generated from haemogenic endothelial (HE) cells via the formation of intra-aortic haematopoietic clusters (IAHCs) in vertebrate embryos. The molecular events controlling endothelial specification, endothelial-to-haematopoietic transition (EHT) and IAHC formation, as it occurs in vivo inside the aorta, are still poorly understood. To gain insight in these processes, we performed single-cell RNA-sequencing of non-HE cells, HE cells, cells undergoing EHT, IAHC cells, and whole IAHCs isolated from mouse embryo aortas. Our analysis identified the genes and transcription factor networks activated during the endothelial-to-haematopoietic switch and IAHC cell maturation toward an HSC fate. Our study provides an unprecedented complete resource to study in depth HSC generation in vivo. It will pave the way for improving HSC production in vitro to address the growing need for tailor-made HSCs to treat patients with blood-related disorders.
Collapse
Affiliation(s)
- Chloé S Baron
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Lennart Kester
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Anna Klaus
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Jean-Charles Boisset
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Roshana Thambyrajah
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Aderley Park, Aderley Edge, Macclesfield, SK10 4TG, UK
| | - Laurent Yvernogeau
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Valérie Kouskoff
- Division of Developmental Biology and Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Georges Lacaud
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Aderley Park, Aderley Edge, Macclesfield, SK10 4TG, UK
| | - Alexander van Oudenaarden
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
- Regenerative Medicine Center, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands.
| |
Collapse
|
25
|
Leung A, Zulick E, Skvir N, Vanuytsel K, Morrison TA, Naing ZH, Wang Z, Dai Y, Chui DHK, Steinberg MH, Sherr DH, Murphy GJ. Notch and Aryl Hydrocarbon Receptor Signaling Impact Definitive Hematopoiesis from Human Pluripotent Stem Cells. Stem Cells 2018; 36:1004-1019. [PMID: 29569827 PMCID: PMC6099224 DOI: 10.1002/stem.2822] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 12/19/2022]
Abstract
Induced pluripotent stem cells (iPSCs) stand to revolutionize the way we study human development, model disease, and eventually, treat patients. However, these cell sources produce progeny that retain embryonic and/or fetal characteristics. The failure to mature to definitive, adult‐type cells is a major barrier for iPSC‐based disease modeling and drug discovery. To directly address these concerns, we have developed a chemically defined, serum and feeder‐free–directed differentiation platform to generate hematopoietic stem‐progenitor cells (HSPCs) and resultant adult‐type progeny from iPSCs. This system allows for strict control of signaling pathways over time through growth factor and/or small molecule modulation. Through direct comparison with our previously described protocol for the production of primitive wave hematopoietic cells, we demonstrate that induced HSPCs are enhanced for erythroid and myeloid colony forming potential, and strikingly, resultant erythroid‐lineage cells display enhanced expression of adult β globin indicating definitive pathway patterning. Using this system, we demonstrate the stage‐specific roles of two key signaling pathways, Notch and the aryl hydrocarbon receptor (AHR), in the derivation of definitive hematopoietic cells. We illustrate the stage‐specific necessity of Notch signaling in the emergence of hematopoietic progenitors and downstream definitive, adult‐type erythroblasts. We also show that genetic or small molecule inhibition of the AHR results in the increased production of CD34+CD45+ HSPCs while conversely, activation of the same receptor results in a block of hematopoietic cell emergence. Results presented here should have broad implications for hematopoietic stem cell transplantation and future clinical translation of iPSC‐derived blood cells. Stem Cells2018;36:1004–1019
Collapse
Affiliation(s)
- Amy Leung
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Elizabeth Zulick
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Nicholas Skvir
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Kim Vanuytsel
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Tasha A Morrison
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Zaw Htut Naing
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Yan Dai
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - David H K Chui
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Martin H Steinberg
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - George J Murphy
- Section of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.,Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Teichweyde N, Kasperidus L, Carotta S, Kouskoff V, Lacaud G, Horn PA, Heinrichs S, Klump H. HOXB4 Promotes Hemogenic Endothelium Formation without Perturbing Endothelial Cell Development. Stem Cell Reports 2018; 10:875-889. [PMID: 29456178 PMCID: PMC5919293 DOI: 10.1016/j.stemcr.2018.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/25/2022] Open
Abstract
Generation of hematopoietic stem cells (HSCs) from pluripotent stem cells, in vitro, holds great promise for regenerative therapies. Primarily, this has been achieved in mouse cells by overexpression of the homeotic selector protein HOXB4. The exact cellular stage at which HOXB4 promotes hematopoietic development, in vitro, is not yet known. However, its identification is a prerequisite to unambiguously identify the molecular circuits controlling hematopoiesis, since the activity of HOX proteins is highly cell and context dependent. To identify that stage, we retrovirally expressed HOXB4 in differentiating mouse embryonic stem cells (ESCs). Through the use of Runx1(-/-) ESCs containing a doxycycline-inducible Runx1 coding sequence, we uncovered that HOXB4 promoted the formation of hemogenic endothelium cells without altering endothelial cell development. Whole-transcriptome analysis revealed that its expression mediated the upregulation of transcription of core transcription factors necessary for hematopoiesis, culminating in the formation of blood progenitors upon initiation of Runx1 expression.
Collapse
Affiliation(s)
- Nadine Teichweyde
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Lara Kasperidus
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany; Department of Bone Marrow Transplantation, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Sebastian Carotta
- Cancer Cell Signaling, Boehringer Ingelheim RCV, Dr Boehringer-Gasse, 1120 Vienna, Austria
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Hannes Klump
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany.
| |
Collapse
|
27
|
Kauts ML, Rodriguez-Seoane C, Kaimakis P, Mendes SC, Cortés-Lavaud X, Hill U, Dzierzak E. In Vitro Differentiation of Gata2 and Ly6a Reporter Embryonic Stem Cells Corresponds to In Vivo Waves of Hematopoietic Cell Generation. Stem Cell Reports 2017; 10:151-165. [PMID: 29276152 PMCID: PMC5768964 DOI: 10.1016/j.stemcr.2017.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
In vivo hematopoietic generation occurs in waves of primitive and definitive cell emergence. Differentiation cultures of pluripotent embryonic stem cells (ESCs) offer an accessible source of hematopoietic cells for blood-related research and therapeutic strategies. However, despite many approaches, it remains a goal to robustly generate hematopoietic progenitor and stem cells (HP/SCs) in vitro from ESCs. This is partly due to the inability to efficiently promote, enrich, and/or molecularly direct hematopoietic emergence. Here, we use Gata2Venus (G2V) and Ly6a(SCA1)GFP (LG) reporter ESCs, derived from well-characterized mouse models of HP/SC emergence, to show that during in vitro differentiation they report emergent waves of primitive hematopoietic progenitor cells (HPCs), definitive HPCs, and B-lymphoid cell potential. These results, facilitated by enrichment of single and double reporter cells with HPC properties, demonstrate that in vitro ESC differentiation approximates the waves of hematopoietic cell generation found in vivo, thus raising possibilities for enrichment of rare ESC-derived HP/SCs. Gata2 reports waves of hematopoietic cell potential during ESC differentiation Ly6aGFP expression distinguishes a late wave of ESC hematopoietic differentiation Fluorescent reporters enrich ESC-derived cells with hematopoietic potential Double reporter ESCs verify waves of hematopoietic progenitor generation
Collapse
Affiliation(s)
- Mari-Liis Kauts
- Erasmus Medical Center Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, Rotterdam, the Netherlands; Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Carmen Rodriguez-Seoane
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Polynikis Kaimakis
- Erasmus Medical Center Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Sandra C Mendes
- Erasmus Medical Center Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Xabier Cortés-Lavaud
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Undine Hill
- Erasmus Medical Center Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Elaine Dzierzak
- Erasmus Medical Center Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, Rotterdam, the Netherlands; Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
28
|
Meader E, Barta T, Melguizo-Sanchis D, Tilgner K, Montaner D, El-Harouni AA, Armstrong L, Lako M. Pluripotent Stem Cell-Derived Hematopoietic Progenitors Are Unable to Downregulate Key Epithelial-Mesenchymal Transition-Associated miRNAs. Stem Cells 2017; 36:55-64. [PMID: 29047185 PMCID: PMC5765482 DOI: 10.1002/stem.2724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/04/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells derived from pluripotent stem cells could be used as an alternative to bone marrow transplants. Deriving these has been a long‐term goal for researchers. However, the success of these efforts has been limited with the cells produced able to engraft in the bone marrow of recipient animals only in very low numbers. There is evidence that defects in the migratory and homing capacity of the cells are due to mis‐regulation of miRNA expression and are responsible for their failure to engraft. We compared the miRNA expression profile of hematopoietic progenitors derived from pluripotent stem cells to those derived from bone marrow and found that numerous miRNAs are too highly expressed in hematopoietic progenitors derived from pluripotent stem cells, and that most of these are inhibitors of epithelial‐mesenchymal transition or metastasis (including miR‐200b, miR‐200c, miR‐205, miR‐148a, and miR‐424). We hypothesize that the high expression of these factors, which promote an adherent phenotype, may be causing the defect in hematopoietic differentiation. However, inhibiting these miRNAs, individually or in multiplex, was insufficient to improve hematopoietic differentiation in vitro, suggesting that other miRNAs and/or genes may be involved in this process. Stem Cells2018;36:55–64
Collapse
Affiliation(s)
- Ellie Meader
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tomas Barta
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dario Melguizo-Sanchis
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Katarzyna Tilgner
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Montaner
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Ashraf A El-Harouni
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
29
|
Lacaud G, Kouskoff V. Hemangioblast, hemogenic endothelium, and primitive versus definitive hematopoiesis. Exp Hematol 2017; 49:19-24. [PMID: 28043822 DOI: 10.1016/j.exphem.2016.12.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 01/27/2023]
Abstract
The types of progenitors generated during the successive stages of embryonic blood development are now fairly well characterized. The terminology used to describe these waves, however, can still be confusing. What is truly primitive? What is uniquely definitive? These questions become even more challenging to answer when blood progenitors are derived in vitro upon the differentiation of embryonic stem cells or induced pluripotent stem cells. Similarly, the cellular origin of these blood progenitors can be controversial. Are all blood cells, including the primitive wave, derived from hemogenic endothelium? Is the hemangioblast an in vitro artifact or is this mesoderm entity also present in the developing embryo? Here, we discuss the latest findings and propose some consensus relating to these controversial issues.
Collapse
Affiliation(s)
- Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, United Kingdom.
| | - Valerie Kouskoff
- Division of Developmental Biology and Medicine, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
30
|
Galat Y, Dambaeva S, Elcheva I, Khanolkar A, Beaman K, Iannaccone PM, Galat V. Cytokine-free directed differentiation of human pluripotent stem cells efficiently produces hemogenic endothelium with lymphoid potential. Stem Cell Res Ther 2017; 8:67. [PMID: 28302184 PMCID: PMC5356295 DOI: 10.1186/s13287-017-0519-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/14/2017] [Accepted: 02/21/2017] [Indexed: 11/16/2022] Open
Abstract
Background The robust generation of human hematopoietic progenitor cells from induced or embryonic pluripotent stem cells would be beneficial for multiple areas of research, including mechanistic studies of hematopoiesis, the development of cellular therapies for autoimmune diseases, induced transplant tolerance, anticancer immunotherapies, disease modeling, and drug/toxicity screening. Over the past years, significant progress has been made in identifying effective protocols for hematopoietic differentiation from pluripotent stem cells and understanding stages of mesodermal, endothelial, and hematopoietic specification. Thus, it has been shown that variations in cytokine and inhibitory molecule treatments in the first few days of hematopoietic differentiation define primitive versus definitive potential of produced hematopoietic progenitor cells. The majority of current feeder-free, defined systems for hematopoietic induction from pluripotent stem cells include prolonged incubations with various cytokines that make the differentiation process complex and time consuming. We established that the application of Wnt agonist CHIR99021 efficiently promotes differentiation of human pluripotent stem cells in the absence of any hematopoietic cytokines to the stage of hemogenic endothelium capable of definitive hematopoiesis. Methods The hemogenic endothelium differentiation was accomplished in an adherent, serum-free culture system by applying CHIR99021. Hemogenic endothelium progenitor cells were isolated on day 5 of differentiation and evaluated for their endothelial, myeloid, and lymphoid potential. Results Monolayer induction based on GSK3 inhibition, described here, yielded a large number of CD31+CD34+ hemogenic endothelium cells. When isolated and propagated in adherent conditions, these progenitors gave rise to mature endothelium. When further cocultured with OP9 mouse stromal cells, these progenitors gave rise to various cells of myeloid lineages as well as natural killer lymphoid, T-lymphoid, and B-lymphoid cells. Conclusion The results of this study substantiate a method that significantly reduces the complexity of current protocols for hematopoietic induction, offers a defined system to study the factors that affect the early stages of hematopoiesis, and provides a new route of lymphoid and myeloid cell derivation from human pluripotent stem cells, thus enhancing their use in translational medicine. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0519-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yekaterina Galat
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Svetlana Dambaeva
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Irina Elcheva
- Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Present Address: Department of Pediatrics, Division of Hematology & Oncology, Penn State Hershey College of Medicine, Hershey, PA, USA
| | - Aaruni Khanolkar
- Department of Pathology, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kenneth Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Philip M Iannaccone
- Department of Pediatrics, Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vasiliy Galat
- Department of Pathology, Developmental Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
31
|
Ditadi A, Sturgeon CM, Keller G. A view of human haematopoietic development from the Petri dish. Nat Rev Mol Cell Biol 2016; 18:56-67. [PMID: 27876786 DOI: 10.1038/nrm.2016.127] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human pluripotent stem cells (hPSCs) provide an unparalleled opportunity to establish in vitro differentiation models that will transform our approach to the study of human development. In the case of the blood system, these models will enable investigation of the earliest stages of human embryonic haematopoiesis that was previously not possible. In addition, they will provide platforms for studying the origins of human blood cell diseases and for generating de novo haematopoietic stem and progenitor cell populations for cell-based regenerative therapies.
Collapse
Affiliation(s)
- Andrea Ditadi
- McEwen Centre for Regenerative Medicine and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Christopher M Sturgeon
- Department of Internal Medicine, Division of Hematology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Gordon Keller
- McEwen Centre for Regenerative Medicine and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Garcia-Alegria E, Menegatti S, Batta K, Cuvertino S, Florkowska M, Kouskoff V. Emerging concepts for the in vitro derivation of murine haematopoietic stem and progenitor cells. FEBS Lett 2016; 590:4116-4125. [PMID: 27404333 DOI: 10.1002/1873-3468.12300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/04/2016] [Accepted: 07/09/2016] [Indexed: 02/11/2024]
Abstract
Well into the second decade of the 21st century, the field of regenerative medicine is bursting with hopes and promises to heal young and old. The bespoken generation of cells is thought to offer unprecedented cures for a vast range of diseases. Haematological disorders have already benefited tremendously from stem cell therapy in the form of bone marrow transplantation. However, lack of compatible donors often means that patients remain on transplantation waiting lists for too long. The in vitro derivation of haematopoietic stem cells offers the possibility to generate tailor-made cells for the treatment of these patients. Promising approaches to generate in vitro-derived blood progenitors include the directed differentiation of pluripotent stem cells and the reprogramming of somatic cells.
Collapse
Affiliation(s)
- Eva Garcia-Alegria
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, UK
| | - Sara Menegatti
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, UK
| | - Kiran Batta
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, UK
| | - Sara Cuvertino
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, UK
| | - Magdalena Florkowska
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, UK
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, UK
| |
Collapse
|
33
|
Batta K, Menegatti S, Garcia-Alegria E, Florkowska M, Lacaud G, Kouskoff V. Concise Review: Recent Advances in the In Vitro Derivation of Blood Cell Populations. Stem Cells Transl Med 2016; 5:1330-1337. [PMID: 27388244 PMCID: PMC5031184 DOI: 10.5966/sctm.2016-0039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/18/2016] [Indexed: 12/21/2022] Open
Abstract
: Hematopoietic cell-based therapies are currently available treatment options for many hematological and nonhematological disorders. However, the scarcity of allogeneic donor-derived cells is a major hurdle in treating these disorders. Embryonic stem cell-based directed differentiation and direct reprogramming of somatic cells provide excellent tools for the potential generation of hematopoietic stem cells usable in the clinic for cellular therapies. In addition to blood stem cell transplantation, mature blood cells such as red blood cells, platelets, and engineered T cells have also been increasingly used to treat several diseases. Besides cellular therapies, induced blood progenitor cells generated from autologous sources (either induced pluripotent stem cells or somatic cells) can be useful for disease modeling of bone marrow failures and acquired blood disorders. However, although great progress has been made toward these goals, we are still far from the use of in vitro-derived blood products in the clinic. We review the current state of knowledge on the directed differentiation of embryonic stem cells and the reprogramming of somatic cells toward the generation of blood stem cells and derivatives. SIGNIFICANCE Hematopoietic cell-based therapies are currently available treatment options for many hematological and nonhematological disorders. However, the scarcity of allogeneic donor-derived cells is a major hurdle in treating these disorders. The current state of knowledge on the directed differentiation of embryonic stem cells and the reprogramming of somatic cells toward the generation of blood stem cells and derivatives is reviewed.
Collapse
Affiliation(s)
- Kiran Batta
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Sara Menegatti
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Eva Garcia-Alegria
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Magdalena Florkowska
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
34
|
Obier N, Bonifer C. Chromatin programming by developmentally regulated transcription factors: lessons from the study of haematopoietic stem cell specification and differentiation. FEBS Lett 2016; 590:4105-4115. [PMID: 27497427 DOI: 10.1002/1873-3468.12343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/26/2016] [Accepted: 07/31/2016] [Indexed: 01/08/2023]
Abstract
Although the body plan of individuals is encoded in their genomes, each cell type expresses a different gene expression programme and therefore has access to only a subset of this information. Alterations to gene expression programmes are the underlying basis for the differentiation of multiple cell types and are driven by tissue-specific transcription factors (TFs) that interact with the epigenetic regulatory machinery to programme the chromatin landscape into transcriptionally active and inactive states. The haematopoietic system has long served as a paradigm for studying the molecular principles that regulate gene expression in development. In this review article, we summarize the current knowledge on the mechanism of action of TFs regulating haematopoietic stem cell specification and differentiation, and place this information into the context of general principles governing development.
Collapse
Affiliation(s)
- Nadine Obier
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, UK
| |
Collapse
|
35
|
Thambyrajah R, Patel R, Mazan M, Lie-a-Ling M, Lilly A, Eliades A, Menegatti S, Garcia-Alegria E, Florkowska M, Batta K, Kouskoff V, Lacaud G. New insights into the regulation by RUNX1 and GFI1(s) proteins of the endothelial to hematopoietic transition generating primordial hematopoietic cells. Cell Cycle 2016; 15:2108-2114. [PMID: 27399214 PMCID: PMC4993433 DOI: 10.1080/15384101.2016.1203491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 10/26/2022] Open
Abstract
The first hematopoietic cells are generated very early in ontogeny to support the growth of the embryo and to provide the foundation to the adult hematopoietic system. There is a considerable therapeutic interest in understanding how these first blood cells are generated in order to try to reproduce this process in vitro. This would allow generating blood products, or hematopoietic cell populations from embryonic stem (ES) cells, induced pluripotent stem cells or through directed reprogramming. Recent studies have clearly established that the first hematopoietic cells originate from a hemogenic endothelium (HE) through an endothelial to hematopoietic transition (EHT). The molecular mechanisms underlining this transition remain largely unknown with the exception that the transcription factor RUNX1 is critical for this process. In this Extra Views report, we discuss our recent studies demonstrating that the transcriptional repressors GFI1 and GFI1B have a critical role in the EHT. We established that these RUNX1 transcriptional targets are actively implicated in the downregulation of the endothelial program and the loss of endothelial identity during the formation of the first blood cells. In addition, our results suggest that GFI1 expression provides an ideal novel marker to identify, isolate and study the HE cell population.
Collapse
Affiliation(s)
- Roshana Thambyrajah
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Rahima Patel
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Milena Mazan
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Michael Lie-a-Ling
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Andrew Lilly
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Alexia Eliades
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Sara Menegatti
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Eva Garcia-Alegria
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | | | - Kiran Batta
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Valerie Kouskoff
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Georges Lacaud
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| |
Collapse
|
36
|
Slukvin II. Generating human hematopoietic stem cells in vitro -exploring endothelial to hematopoietic transition as a portal for stemness acquisition. FEBS Lett 2016; 590:4126-4143. [PMID: 27391301 DOI: 10.1002/1873-3468.12283] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/20/2016] [Accepted: 07/06/2016] [Indexed: 11/10/2022]
Abstract
Advances in cellular reprogramming technologies have created alternative platforms for the production of blood cells, either through inducing pluripotency in somatic cells or by way of direct conversion of nonhematopoietic cells into blood cells. However, de novo generation of hematopoietic stem cells (HSCs) with robust and sustained multilineage engraftment potential remains a significant challenge. Hemogenic endothelium (HE) has been recognized as a unique transitional stage of blood development from mesoderm at which HSCs arise in certain embryonic locations. The major aim of this review is to summarize historical perspectives and recent advances in the investigation of endothelial to hematopoietic transition (EHT) and HSC formation in the context of aiding in vitro approaches to instruct HSC fate from human pluripotent stem cells. In addition, direct conversion of somatic cells to blood and HSCs and progression of this conversion through HE stage are discussed. A thorough understanding of the intrinsic and microenvironmental regulators of EHT that lead to the acquisition of self-renewal potential by emerging blood cells is essential to advance the technologies for HSC production and expansion.
Collapse
Affiliation(s)
- Igor I Slukvin
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.,Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.,National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, USA
| |
Collapse
|
37
|
Garcia-Alegria E, Iluit M, Stefanska M, Silva C, Heeg S, Kimber SJ, Kouskoff V, Lacaud G, Vijayaraghavan A, Batta K. Graphene Oxide promotes embryonic stem cell differentiation to haematopoietic lineage. Sci Rep 2016; 6:25917. [PMID: 27197878 PMCID: PMC4873758 DOI: 10.1038/srep25917] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/25/2016] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells represent a promising source of differentiated tissue-specific stem and multipotent progenitor cells for regenerative medicine and drug testing. The realisation of this potential relies on the establishment of robust and reproducible protocols of differentiation. Several reports have highlighted the importance of biomaterials in assisting directed differentiation. Graphene oxide (GO) is a novel material that has attracted increasing interest in the field of biomedicine. In this study, we demonstrate that GO coated substrates significantly enhance the differentiation of mouse embryonic stem (ES) cells to both primitive and definitive haematopoietic cells. GO does not affect cell proliferation or survival of differentiated cells but rather enhances the transition of haemangioblasts to haemogenic endothelial cells, a key step during haematopoietic specification. Importantly, GO also improves, in addition to murine, human ES cell differentiation to blood cells. Taken together, our study reveals a positive role for GO in haematopoietic differentiation and suggests that further functionalization of GO could represent a valid strategy for the generation of large numbers of functional blood cells. Producing these cells would accelerate haematopoietic drug toxicity testing and treatment of patients with blood disorders or malignancies.
Collapse
Affiliation(s)
- Eva Garcia-Alegria
- Cancer Research UK Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Maria Iluit
- School of Materials and National Graphene Institute, University of Manchester, UK
| | - Monika Stefanska
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Claudio Silva
- School of Materials and National Graphene Institute, University of Manchester, UK
| | - Sebastian Heeg
- School of Materials and National Graphene Institute, University of Manchester, UK
| | - Susan J. Kimber
- Faculty of Life Sciences, Michael Smith Building, Manchester, United Kingdom
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Hematopoiesis Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | | | - Kiran Batta
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
38
|
Thambyrajah R, Mazan M, Patel R, Moignard V, Stefanska M, Marinopoulou E, Li Y, Lancrin C, Clapes T, Möröy T, Robin C, Miller C, Cowley S, Göttgens B, Kouskoff V, Lacaud G. GFI1 proteins orchestrate the emergence of haematopoietic stem cells through recruitment of LSD1. Nat Cell Biol 2016; 18:21-32. [PMID: 26619147 DOI: 10.1038/ncb3276] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022]
Abstract
In vertebrates, the first haematopoietic stem cells (HSCs) with multi-lineage and long-term repopulating potential arise in the AGM (aorta-gonad-mesonephros) region. These HSCs are generated from a rare and transient subset of endothelial cells, called haemogenic endothelium (HE), through an endothelial-to-haematopoietic transition (EHT). Here, we establish the absolute requirement of the transcriptional repressors GFI1 and GFI1B (growth factor independence 1 and 1B) in this unique trans-differentiation process. We first demonstrate that Gfi1 expression specifically defines the rare population of HE that generates emerging HSCs. We further establish that in the absence of GFI1 proteins, HSCs and haematopoietic progenitor cells are not produced in the AGM, revealing the critical requirement for GFI1 proteins in intra-embryonic EHT. Finally, we demonstrate that GFI1 proteins recruit the chromatin-modifying protein LSD1, a member of the CoREST repressive complex, to epigenetically silence the endothelial program in HE and allow the emergence of blood cells.
Collapse
Affiliation(s)
- Roshana Thambyrajah
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Milena Mazan
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Rahima Patel
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Victoria Moignard
- Department of Haematology, Cambridge Institute for Medical Research &Wellcome Trust and MRC Stem Cell Institute, Hills Road, Cambridge CB2 0XY, UK
| | - Monika Stefanska
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Elli Marinopoulou
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Yaoyong Li
- CRUK Computational Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Christophe Lancrin
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
- European Molecular Biology Laboratory, Mouse Biology Unit, 00015 Monterotondo, Italy
| | - Thomas Clapes
- Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal (IRCM) and département de microbiologie et immunologie, Université de Montréal, Montréal, Quebec H2W 1R7, Canada
| | - Catherine Robin
- Hubrecht Institute, Uppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Crispin Miller
- CRUK Computational Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Shaun Cowley
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research &Wellcome Trust and MRC Stem Cell Institute, Hills Road, Cambridge CB2 0XY, UK
| | - Valerie Kouskoff
- CRUK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Georges Lacaud
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
39
|
Hirota S, Ogawa M. Activin A in combination with OP9 cells facilitates development of Flk-1+ PDGFRα− and Flk-1+ PDGFRα+ hematopoietic mesodermal cells from murine embryonic stem cells. Biochem Biophys Res Commun 2015; 467:583-8. [DOI: 10.1016/j.bbrc.2015.09.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 09/23/2015] [Indexed: 11/16/2022]
|