1
|
Kushida C, Usui T, Tamura N, Kasashima Y, Sato K, Arai K. Comparison of equine-induced pluripotent stem cell characteristics induced on different cell adhesion substrates. Vet J 2025; 312:106351. [PMID: 40228787 DOI: 10.1016/j.tvjl.2025.106351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/16/2025]
Abstract
This study evaluated the effects of cell adhesion substrates that lead to the generation of equine-induced pluripotent stem cells (eiPSC) from embryonic skin fibroblasts by lipofection of plasmid vectors expressing five reprogramming factors. The reprogramming efficiency of cells induced on the E8 fragment of laminin-511 (eiPSC-511) was higher than that on Geltrex containing laminin-111 as a major laminin (eiPSC-111), and supplementation with a cocktail of small molecular compounds increased the number of iPSC colonies on both substrates. In the cell proliferation assay, eiPSC-511 showed higher growth activity than eiPSC-111. Although no significant changes were observed in the expression of pluripotency markers between eiPSC-111 and eiPSC-511, the expression of DPPA3 was significantly upregulated in both iPSCs by reprogramming, suggesting that DPPA3 was a sensitive pluripotent marker for equine iPSC. While both iPSCs expressed high mRNA level of integrin alpha6 and beta1 subunits, mRNA level corresponding to ITGA3 and ITGA7 significantly increased in eiPSC-511 in comparison to those in eiPSC-111. These results suggested that the binding strength to the substrate in eiPSC-511 was stronger than that in eiPSC-111. On the contrary, although no significant differences were observed in the histology of teratomas, increased in vitro differentiation into three germ layers in eiPSC-111 was shown compared to those in eiPSC-511. Thus, these results contributed to the improved generation of iPSC in horses.
Collapse
Affiliation(s)
- Chiho Kushida
- Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Tokyo, Japan; National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan
| | - Tatsuya Usui
- Department of Veterinary Pharmacology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Norihisa Tamura
- Laboratory of Clinical Science and Pathobiology, Equine Research Institute, Japan Racing Association, Tochigi, Japan
| | - Yoshinori Kasashima
- Laboratory of Clinical Science and Pathobiology, Equine Research Institute, Japan Racing Association, Tochigi, Japan
| | - Kota Sato
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan.
| | - Katsuhiko Arai
- Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
2
|
Falk J, Donadeu FX. Equine Induced Pluripotent Stem Cell Culture. Methods Mol Biol 2024; 2749:175-184. [PMID: 38133784 DOI: 10.1007/978-1-0716-3609-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Groundbreaking work by Takahashi and Yamanaka in 2006 demonstrated that non-embryonic cells can be reprogrammed into pluripotent stem cells (PSCs) by forcing the expression of a defined set of transcription factors in culture, thus overcoming ethical concerns linked to embryonic stem cells. Induced PSCs have since revolutionized biomedical research, holding tremendous potential also in other areas such as livestock production and wildlife conservation. iPSCs exhibit broad accessibility, having been derived from a multitude of cell types and species. Apart from humans, iPSCs hold particular medical promise in the horse. The potential of iPSCs has been shown in a variety of biomedical contexts in the horse. However, progress in generating therapeutically useful equine iPSCs has lagged behind that reported in humans, with the generation of footprint-free iPSCs using non-integrative reprogramming approaches having proven particularly challenging. A greater understanding of the underlying molecular pathways and essential factors required for the generation and maintenance of equine iPSCs and their differentiation into relevant lineages will be critical for realizing their significant potential in veterinary regenerative medicine. This article outlines up-to-date protocols for the successful culture of equine iPSC, including colony selection, expansion, and adaptation to feeder-free conditions.
Collapse
Affiliation(s)
- Julia Falk
- Division of Translational Bioscience, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| | - F Xavier Donadeu
- Division of Translational Bioscience, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Palomino Lago E, Jelbert ER, Baird A, Lam PY, Guest DJ. Equine induced pluripotent stem cells are responsive to inflammatory cytokines before and after differentiation into musculoskeletal cell types. In Vitro Cell Dev Biol Anim 2023; 59:514-527. [PMID: 37582999 PMCID: PMC10520172 DOI: 10.1007/s11626-023-00800-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Persistent inflammation is associated with the poor regeneration of musculoskeletal tissues. Embryonic stem cells (ESCs) have an attenuated response to inflammatory cytokines, but there are mixed reports on the response of induced pluripotent stem cells (iPSCs) to inflammation. Horses provide a relevant large animal model for studying musculoskeletal tissue diseases and the testing of novel therapies. The aim of this study was to determine if equine iPSCs are responsive to the inflammatory cytokines IL-1β, TNFα and IFN-γ in their undifferentiated state, or following differentiation into tendon and cartilage-like cells. We demonstrated that in undifferentiated iPSCs, the cytokines induce NF-κB P65 and STAT1 nuclear translocation which leads to cell death, decreased OCT4 expression and increased expression of inflammatory genes. Following differentiation towards cartilage-like cells exposure to the cytokines resulted in STAT1 nuclear translocation, changes in cartilage gene expression and increased expression of matrix metalloproteinases (MMPs) and inflammatory genes. Exposure of iPSC-derived tendon-like cells to the cytokines resulted nuclear translocation of NF-κB P65 and STAT1, altered tendon gene expression, increased MMP expression and increased expression of inflammatory genes. Equine iPSCs are therefore capable of responding to inflammatory stimulation and this may have relevance for their future clinical application.
Collapse
Affiliation(s)
- Esther Palomino Lago
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| | - Elizabeth R Jelbert
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| | - Arabella Baird
- Animal Health Trust, Lanwades Park, Kentford, Newmarket, CB8 7UU, UK
| | - Pak Y Lam
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| | - Deborah J Guest
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK.
| |
Collapse
|
4
|
Barrachina L, Arshaghi TE, O'Brien A, Ivanovska A, Barry F. Induced pluripotent stem cells in companion animals: how can we move the field forward? Front Vet Sci 2023; 10:1176772. [PMID: 37180067 PMCID: PMC10168294 DOI: 10.3389/fvets.2023.1176772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Following a one medicine approach, the development of regenerative therapies for human patients leads to innovative treatments for animals, while pre-clinical studies on animals provide knowledge to advance human medicine. Among many different biological products under investigation, stem cells are among the most prominent. Mesenchymal stromal cells (MSCs) are extensively investigated, but they present challenges such as senescence and limited differentiation ability. Embryonic stem cells (ESCs) are pluripotent cells with a virtually unlimited capacity for self-renewal and differentiation, but the use of embryos carries ethical concerns. Induced pluripotent stem cells (iPSCs) can overcome all of these limitations, as they closely resemble ESCs but are derived from adult cells by reprogramming in the laboratory using pluripotency-associated transcription factors. iPSCs hold great potential for applications in therapy, disease modeling, drug screening, and even species preservation strategies. However, iPSC technology is less developed in veterinary species compared to human. This review attempts to address the specific challenges associated with generating and applying iPSCs from companion animals. Firstly, we discuss strategies for the preparation of iPSCs in veterinary species and secondly, we address the potential for different applications of iPSCs in companion animals. Our aim is to provide an overview on the state of the art of iPSCs in companion animals, focusing on equine, canine, and feline species, as well as to identify which aspects need further optimization and, where possible, to provide guidance on future advancements. Following a "step-by-step" approach, we cover the generation of iPSCs in companion animals from the selection of somatic cells and the reprogramming strategies, to the expansion and characterization of iPSCs. Subsequently, we revise the current applications of iPSCs in companion animals, identify the main hurdles, and propose future paths to move the field forward. Transferring the knowledge gained from human iPSCs can increase our understanding in the biology of pluripotent cells in animals, but it is critical to further investigate the differences among species to develop specific approaches for animal iPSCs. This is key for significantly advancing iPSC application in veterinary medicine, which at the same time will also allow gaining pre-clinical knowledge transferable to human medicine.
Collapse
Affiliation(s)
| | | | | | | | - Frank Barry
- Regenerative Medicine Institute (REMEDI), Biosciences, University of Galway, Galway, Ireland
| |
Collapse
|
5
|
Giarratana N, Conti F, Rinvenuti L, Ronzoni F, Sampaolesi M. State of the Art Procedures for the Isolation and Characterization of Mesoangioblasts. Methods Mol Biol 2023; 2640:99-115. [PMID: 36995590 DOI: 10.1007/978-1-0716-3036-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Adult skeletal muscle is a dynamic tissue able to regenerate quite efficiently, thanks to the presence of stem cell machinery. Besides the quiescent satellite cells that are activated upon injury or paracrine factors, other stem cells are described to be directly or indirectly involved in adult myogenesis. Mesoangioblasts (MABs) are vessel-associated stem cells originally isolated from embryonic dorsal aorta and, at later stages, from the adult muscle interstitium expressing pericyte markers. Adult MABs entered clinical trials for the treatment of Duchenne muscular dystrophy and the transcriptome of human fetal MABs has been described. In addition, single cell RNA-seq analyses provide novel information on adult murine MABs and more in general in interstitial muscle stem cells. This chapter provides state-of-the-art techniques to isolate and characterize murine MABs, fetal and adult human MABs.
Collapse
Affiliation(s)
- Nefele Giarratana
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology Unit, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Filippo Conti
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology Unit, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Lorenza Rinvenuti
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology Unit, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Flavio Ronzoni
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology Unit, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology Unit, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
- Histology and Medical Embryology Unit, Department of Anatomy, Forensic Medicine and Orthopaedics, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
6
|
Endo Y, Kamei KI, Hasegawa K, Okita K, Ito H, Terada S, Inoue-Murayama M. Generation and gene expression profiles of Grevy's zebra induced Pluripotent Stem Cells. Stem Cells Dev 2022; 31:250-257. [PMID: 35316100 DOI: 10.1089/scd.2021.0253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) can serve as a biological resource for functional and conservation research for various species. This realisation has led to the generation of iPSCs from many species, including those identified as endangered. However, the understanding of species variation in mammalian iPSCs remains largely unknown. To gain insight into species variation in iPSCs, we generated iPSCs from a new species Grevy's zebra (Equus grevyi; gz-iPSCs), which has been listed as endangered in the IUCN (International Union for Conservation of Nature) Red List. We isolated primary fibroblast cells from an individual and successfully reprogrammed them into iPSCs. The generated gz-iPSCs continued to grow under primed-type culture condition and showed pluripotency and differentiation potential. To describe the molecular characteristics of gz-iPSCs, we performed RNA sequencing analysis. The gz-iPSC transcriptome showed robust expression of pluripotency associated genes reported in human and mouse, suggesting evolutionary conservation among the species. This study provides insight into the iPSCs from a rare species and helps the understanding of the gene expression basis underlying mammalian PSCs.
Collapse
Affiliation(s)
| | - Ken-Ichiro Kamei
- Kyoto University - Yoshida Campus, 12918, Kyoto, Japan, 606-8501;
| | | | | | | | - Shiho Terada
- Kyoto University - Yoshida Campus, 12918, Kyoto, Japan;
| | | |
Collapse
|
7
|
Cossu G, Tonlorenzi R, Brunelli S, Sampaolesi M, Messina G, Azzoni E, Benedetti S, Biressi S, Bonfanti C, Bragg L, Camps J, Cappellari O, Cassano M, Ciceri F, Coletta M, Covarello D, Crippa S, Cusella-De Angelis MG, De Angelis L, Dellavalle A, Diaz-Manera J, Galli D, Galli F, Gargioli C, Gerli MFM, Giacomazzi G, Galvez BG, Hoshiya H, Guttinger M, Innocenzi A, Minasi MG, Perani L, Previtali SC, Quattrocelli M, Ragazzi M, Roostalu U, Rossi G, Scardigli R, Sirabella D, Tedesco FS, Torrente Y, Ugarte G. Mesoangioblasts at 20: From the embryonic aorta to the patient bed. Front Genet 2022; 13:1056114. [PMID: 36685855 PMCID: PMC9845585 DOI: 10.3389/fgene.2022.1056114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/31/2022] [Indexed: 01/06/2023] Open
Abstract
In 2002 we published an article describing a population of vessel-associated progenitors that we termed mesoangioblasts (MABs). During the past decade evidence had accumulated that during muscle development and regeneration things may be more complex than a simple sequence of binary choices (e.g., dorsal vs. ventral somite). LacZ expressing fibroblasts could fuse with unlabelled myoblasts but not among themselves or with other cell types. Bone marrow derived, circulating progenitors were able to participate in muscle regeneration, though in very small percentage. Searching for the embryonic origin of these progenitors, we identified them as originating at least in part from the embryonic aorta and, at later stages, from the microvasculature of skeletal muscle. While continuing to investigate origin and fate of MABs, the fact that they could be expanded in vitro (also from human muscle) and cross the vessel wall, suggested a protocol for the cell therapy of muscular dystrophies. We tested this protocol in mice and dogs before proceeding to the first clinical trial on Duchenne Muscular Dystrophy patients that showed safety but minimal efficacy. In the last years, we have worked to overcome the problem of low engraftment and tried to understand their role as auxiliary myogenic progenitors during development and regeneration.
Collapse
Affiliation(s)
- Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine. University of Manchester, Manchester, United Kingdom
- Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
- Muscle Research Unit, Charité Medical Faculty and Max Delbrück Center, Berlin, Germany
- *Correspondence: Giulio Cossu, ; Rossana Tonlorenzi, ; Silvia Brunelli, ; Maurilio Sampaolesi, ; Graziella Messina,
| | - Rossana Tonlorenzi
- Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Giulio Cossu, ; Rossana Tonlorenzi, ; Silvia Brunelli, ; Maurilio Sampaolesi, ; Graziella Messina,
| | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
- *Correspondence: Giulio Cossu, ; Rossana Tonlorenzi, ; Silvia Brunelli, ; Maurilio Sampaolesi, ; Graziella Messina,
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology Unit, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Histology and Medical Embryology Unit, Department of Anatomy, Forensic Medicine and Orthopaedics, Sapienza University, Rome, Italy
- *Correspondence: Giulio Cossu, ; Rossana Tonlorenzi, ; Silvia Brunelli, ; Maurilio Sampaolesi, ; Graziella Messina,
| | - Graziella Messina
- Department of Biosciences, University of Milan, Milan, Italy
- *Correspondence: Giulio Cossu, ; Rossana Tonlorenzi, ; Silvia Brunelli, ; Maurilio Sampaolesi, ; Graziella Messina,
| | - Emanuele Azzoni
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Sara Benedetti
- UCL Great Ormond Street Institute of Child Health and NIHR GOSH Biomedical Research Centre, London, United Kingdom
| | - Stefano Biressi
- Department of Cellular, Computational and Integrative Biology (CIBIO) and Dulbecco Telethon Institute, University of Trento, Trento, Italy
| | - Chiara Bonfanti
- Department of Biosciences, University of Milan, Milan, Italy
| | - Laricia Bragg
- Division of Cell Matrix Biology and Regenerative Medicine. University of Manchester, Manchester, United Kingdom
| | - Jordi Camps
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Ornella Cappellari
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Fabio Ciceri
- Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marcello Coletta
- Histology and Medical Embryology Unit, Department of Anatomy, Forensic Medicine and Orthopaedics, Sapienza University, Rome, Italy
| | | | - Stefania Crippa
- San Raffaele-Telethon Institute of Gene Theray, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Luciana De Angelis
- Histology and Medical Embryology Unit, Department of Anatomy, Forensic Medicine and Orthopaedics, Sapienza University, Rome, Italy
| | | | - Jordi Diaz-Manera
- John Walton Muscular Dystrophy Research Centre, Newcastle University, United Kingdom
| | - Daniela Galli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Galli
- Division of Cell Matrix Biology and Regenerative Medicine. University of Manchester, Manchester, United Kingdom
| | - Cesare Gargioli
- Department of Biology, University of Tor Vergata, Rome, Italy
| | - Mattia F. M. Gerli
- UCL Department of Surgical Biotechnology and Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | - Beatriz G. Galvez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | - Anna Innocenzi
- Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - M. Giulia Minasi
- Lavitaminasi, Clinical Nutrition and Reproductive Medicine, Rome, Italy
| | - Laura Perani
- Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Mattia Quattrocelli
- Division of Molecular Cardiovascular Biology, University of Cincinnati, Cincinnati, OH, United States
| | | | - Urmas Roostalu
- Roche Institute for Translational Bioengineering (ITB), pRED Basel, Basel, Switzerland
| | - Giuliana Rossi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Raffaella Scardigli
- Columbia Stem Cell Initiative, Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, United States
| | - Dario Sirabella
- University College London, Great Ormond Street Hospital for Children and the Francis Crick Institute, London, United Kingdom
| | - Francesco Saverio Tedesco
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Yvan Torrente
- UCL Great Ormond Street Institute of Child Health and NIHR GOSH Biomedical Research Centre, London, United Kingdom
| | - Gonzalo Ugarte
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| |
Collapse
|
8
|
Martínez-Falguera D, Iborra-Egea O, Gálvez-Montón C. iPSC Therapy for Myocardial Infarction in Large Animal Models: Land of Hope and Dreams. Biomedicines 2021; 9:1836. [PMID: 34944652 PMCID: PMC8698445 DOI: 10.3390/biomedicines9121836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Myocardial infarction is the main driver of heart failure due to ischemia and subsequent cell death, and cell-based strategies have emerged as promising therapeutic methods to replace dead tissue in cardiovascular diseases. Research in this field has been dramatically advanced by the development of laboratory-induced pluripotent stem cells (iPSCs) that harbor the capability to become any cell type. Like other experimental strategies, stem cell therapy must meet multiple requirements before reaching the clinical trial phase, and in vivo models are indispensable for ensuring the safety of such novel therapies. Specifically, translational studies in large animal models are necessary to fully evaluate the therapeutic potential of this approach; to empirically determine the optimal combination of cell types, supplementary factors, and delivery methods to maximize efficacy; and to stringently assess safety. In the present review, we summarize the main strategies employed to generate iPSCs and differentiate them into cardiomyocytes in large animal species; the most critical differences between using small versus large animal models for cardiovascular studies; and the strategies that have been pursued regarding implanted cells' stage of differentiation, origin, and technical application.
Collapse
Affiliation(s)
- Daina Martínez-Falguera
- Faculty of Medicine, University of Barcelona (UB), 08036 Barcelona, Spain;
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Oriol Iborra-Egea
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Germans Trias i Pujol Health Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Heart Institute (iCor), Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut d’Investigació Biomèdica de Bellvitge-IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
9
|
Su Y, Zhu J, Salman S, Tang Y. Induced pluripotent stem cells from farm animals. J Anim Sci 2021; 98:5937369. [PMID: 33098420 DOI: 10.1093/jas/skaa343] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
The development of the induced pluripotent stem cells (iPSCs) technology has revolutionized the world on the establishment of pluripotent stem cells (PSCs) across a great variety of animal species. Generation of iPSCs from domesticated animals would provide unrestricted cell resources for the study of embryonic development and cell differentiation of these species, for screening and establishing desired traits for sustainable agricultural production, and as veterinary and preclinical therapeutic tools for animal and human diseases. Induced PSCs from domesticated animals thus harbor enormous scientific, economical, and societal values. Although much progress has been made toward the generation of PSCs from these species, major obstacles remain precluding the exclamation of the establishment of bona fide iPSCs. The most prominent of them remain the inability of these cells to silence exogenous reprogramming factors, the obvious reliance on exogenous factors for their self-renewal, and the restricted development potential in vivo. In this review, we summarize the history and current progress in domestic farm animal iPSC generation, with a focus on swine, ruminants (cattle, ovine, and caprine), horses, and avian species (quails and chickens). We also discuss the problems associated with the farm animal iPSCs and potential future directions toward the complete reprogramming of somatic cells from farm animals.
Collapse
Affiliation(s)
- Yue Su
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Jiaqi Zhu
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Saleh Salman
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Young Tang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT
| |
Collapse
|
10
|
Giacomazzi G, Giovannelli G, Rotini A, Costamagna D, Quattrocelli M, Sampaolesi M. Isolation of Mammalian Mesoangioblasts: A Subset of Pericytes with Myogenic Potential. Methods Mol Biol 2021; 2235:155-167. [PMID: 33576976 DOI: 10.1007/978-1-0716-1056-5_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mesoangioblasts (MABs) are vessel-associated stem cells that express pericyte markers and are originally isolated from the embryonic dorsal aorta. From postnatal small vessels of skeletal muscle and heart, it is possible to isolate cells with similar characteristics to embryonic MABs. Adult MABs have the capacity to self-renew and to differentiate into cell types of mesodermal lineages upon proper culture conditions. To date, the origin of MABs and the relationship with other muscle stem cells are still debated. Recently, in a phase I-II clinical trial, intra-arterial HLA-matched MABs were proved to be relatively safe. Novel information on MAB pure populations is desirable, and implementation of their therapeutic potential is mandatory to approach efficacy in MAB-based treatments. This chapter provides an overview of the current techniques for isolation and characterization of rodent, canine, human, and equine adult MABs.
Collapse
Affiliation(s)
- Giorgia Giacomazzi
- Translational Cardiomyology Laboratory, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Gaia Giovannelli
- Translational Cardiomyology Laboratory, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Alessio Rotini
- Translational Cardiomyology Laboratory, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Domiziana Costamagna
- Translational Cardiomyology Laboratory, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Mattia Quattrocelli
- Translational Cardiomyology Laboratory, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
11
|
Induced Pluripotent Stem Cells: Hope in the Treatment of Diseases, including Muscular Dystrophies. Int J Mol Sci 2020; 21:ijms21155467. [PMID: 32751747 PMCID: PMC7432218 DOI: 10.3390/ijms21155467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem (iPS) cells are laboratory-produced cells that combine the biological advantages of somatic adult and stem cells for cell-based therapy. The reprogramming of cells, such as fibroblasts, to an embryonic stem cell-like state is done by the ectopic expression of transcription factors responsible for generating embryonic stem cell properties. These primary factors are octamer-binding transcription factor 4 (Oct3/4), sex-determining region Y-box 2 (Sox2), Krüppel-like factor 4 (Klf4), and the proto-oncogene protein homolog of avian myelocytomatosis (c-Myc). The somatic cells can be easily obtained from the patient who will be subjected to cellular therapy and be reprogrammed to acquire the necessary high plasticity of embryonic stem cells. These cells have no ethical limitations involved, as in the case of embryonic stem cells, and display minimal immunological rejection risks after transplant. Currently, several clinical trials are in progress, most of them in phase I or II. Still, some inherent risks, such as chromosomal instability, insertional tumors, and teratoma formation, must be overcome to reach full clinical translation. However, with the clinical trials and extensive basic research studying the biology of these cells, a promising future for human cell-based therapies using iPS cells seems to be increasingly clear and close.
Collapse
|
12
|
Bressan FF, Bassanezze V, de Figueiredo Pessôa LV, Sacramento CB, Malta TM, Kashima S, Fantinato Neto P, Strefezzi RDF, Pieri NCG, Krieger JE, Covas DT, Meirelles FV. Generation of induced pluripotent stem cells from large domestic animals. Stem Cell Res Ther 2020; 11:247. [PMID: 32586372 PMCID: PMC7318412 DOI: 10.1186/s13287-020-01716-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/23/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Induced pluripotent stem cells (iPSCs) have enormous potential in developmental biology studies and in cellular therapies. Although extensively studied and characterized in human and murine models, iPSCs from animals other than mice lack reproducible results. METHODS Herein, we describe the generation of robust iPSCs from equine and bovine cells through lentiviral transduction of murine or human transcription factors Oct4, Sox2, Klf4, and c-Myc and from human and murine cells using similar protocols, even when different supplementations were used. The iPSCs were analyzed regarding morphology, gene and protein expression of pluripotency factors, alkaline phosphatase detection, and spontaneous and induced differentiation. RESULTS Although embryonic-derived stem cells are yet not well characterized in domestic animals, generation of iPS cells from these species is possible through similar protocols used for mouse or human cells, enabling the use of pluripotent cells from large animals for basic or applied purposes. Herein, we also infer that bovine iPS (biPSCs) exhibit similarity to mouse iPSCs (miPSCs), whereas equine iPSs (eiPSCs) to human (hiPSCs). CONCLUSIONS The generation of reproducible protocols in different animal species will provide an informative tool for producing in vitro autologous pluripotent cells from domestic animals. These cells will create new opportunities in animal breeding through transgenic technology and will support a new era of translational medicine with large animal models.
Collapse
Affiliation(s)
- Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
- Postgraduate Program in Anatomy of Domestic and Wild Animals, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Center for Cell-Based Therapy, Regional Blood Center, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Vinícius Bassanezze
- Heart Institute (INCOR), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Present Address: Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Laís Vicari de Figueiredo Pessôa
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
- Postgraduate Program in Anatomy of Domestic and Wild Animals, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Chester Bittencourt Sacramento
- Heart Institute (INCOR), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Present Address: Weill Cornell Medicine, Cornell University, Ithaca, USA
| | - Tathiane Maistro Malta
- Center for Cell-Based Therapy, Regional Blood Center, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Simone Kashima
- Center for Cell-Based Therapy, Regional Blood Center, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
- Postgraduate Program in Anatomy of Domestic and Wild Animals, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ricardo De Francisco Strefezzi
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - José Eduardo Krieger
- Heart Institute (INCOR), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-Based Therapy, Regional Blood Center, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
- Postgraduate Program in Anatomy of Domestic and Wild Animals, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Center for Cell-Based Therapy, Regional Blood Center, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
13
|
Intestinal stem cells heterogeneity and clonal dominance during aging: two faces of the same coin? Mech Ageing Dev 2020; 189:111247. [PMID: 32505859 DOI: 10.1016/j.mad.2020.111247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 11/20/2022]
Abstract
Intestinal epithelium undergoes dysfunctions and diseases over time with an exponential increase in the elderly population. Recent studies reported that the intestinal stem cells (ISCs) show a functional decline during aging and a lack of an appropriate cell identity control. Increase of cell-to-cell heterogeneity is a hallmark of aging tissues and organs, however there is little experimental evidence with regard to the cell heterogeneity of the ISCs. On the other hand, the ISCs continuously experience a niche clonality process that diminishes the initial cell heterogeneity over time. In this review, we discuss the latest findings on these topics focusing on the potential mechanisms driving intestinal stem cell heterogeneity and clonality during aging.
Collapse
|
14
|
Miranda CMFDC, Therrien J, Leonel LCPC, Smith OE, Miglino MA, Smith LC. Decellularization of Extracellular Matrix from Equine Skeletal Muscle. J Equine Vet Sci 2020; 90:102962. [PMID: 32534761 DOI: 10.1016/j.jevs.2020.102962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/17/2019] [Accepted: 02/06/2020] [Indexed: 01/29/2023]
Abstract
Equine represents an attractive animal model for musculoskeletal tissue diseases, exhibiting much similarity to the injuries that occur in humans. Cell therapy and tissue bioengineering have been widely used as a therapeutic alternative by regenerative medicine in musculoskeletal diseases. Thus, the aim of this study was to produce an acellular biomaterial of equine skeletal muscle and to evaluate its effectiveness in supporting the in vitro culture of equine induced pluripotency stem cells (iPSCs). Biceps femoris samples were frozen at -20°C for 4 days and incubated in 1% sodium dodecyl sulfate (SDS), 5 mM EDTA + 50 mM Tris and 1% Triton X-100; the effectiveness of the decellularization was evaluated by the absence of remnant nuclei (histological and 4',6-diamidino-2-phenylindole [DAPI] analysis), preservation of extracellular matrix (ECM) proteins (immunofluorescence and immunohistochemistry) and organization of ECM ultrastructure (scanning electron microscopy). Decellularized samples were recellularized with iPSCs at the concentration of 50,000 cells/cm2 and cultured in vitro for 9 days, and the presence of the cells in the biomaterial was evaluated by histological analysis and presence of nuclei. Decellularized biomaterial showed absence of remnant nuclei and muscle fibers, as well as the preservation of ECM architecture, vascular network and proteins, laminin, fibronectin, elastin, collagen III and IV. After cellularization, iPSC nuclei were present at 9 days after incubation, indicating the decellularized biomaterial-supported iPSC survival. It is concluded that the ECM biomaterial produced from the decellularized equine skeletal muscle has potential for iPSC adhesion, representing a promising biomaterial for regenerative medicine in the therapy of musculoskeletal diseases.
Collapse
Affiliation(s)
- Carla Maria Figueiredo de Carvalho Miranda
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada; Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| | - Jacinthe Therrien
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | | | - Olivia Eilers Smith
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Maria Angélica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Lawrence Charles Smith
- Centre de recherche en reproduction et fertilité, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
15
|
Chung MJ, Park S, Son JY, Lee JY, Yun HH, Lee EJ, Lee EM, Cho GJ, Lee S, Park HS, Jeong KS. Differentiation of equine induced pluripotent stem cells into mesenchymal lineage for therapeutic use. Cell Cycle 2019; 18:2954-2971. [PMID: 31505996 DOI: 10.1080/15384101.2019.1664224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In previous work, we established an equine induced pluripotent stem cell line (E-iPSCs) from equine adipose-derived stem cells (ASCs) using a lentiviral vector encoding four transcription factors: Oct4, Sox2, Klf4, and c-Myc. In the current study, we attempted to differentiate these established E-iPSCs into mesenchymal stem cells (MSCs) by serial passaging using MSC-defined media for stem cell expansion. Differentiation of the MSCs was confirmed by analyzing expression levels of the MSC surface markers CD44 and CD29, and the pluripotency markers Nanog and Oct4. Results indicated that the E-iPSC-derived MSCs (E-iPSC-MSCs) retained the characteristics of MSCs, including the ability to differentiate into chondrogenic, osteogenic, or myogenic lineages. E-iPSC-MSCs were rendered suitable for therapeutic use by inhibiting immune rejection through exposure to transforming growth factor beta 2 (TGF-β2) in culture, which down-regulated the expression of major histocompatibility complex class I (MHC class I) proteins that cause immune rejection if they are incompatible with the MHC antigen of the recipient. We reported 16 cases of E-iPSC-MSC transplantations into injured horses with generally positive effects, such as reduced lameness and fraction lines. Our findings indicate that E-iPSC-MSCs can demonstrate MSC characteristics and be safely and practically used in the treatment of musculoskeletal injuries in horses.
Collapse
Affiliation(s)
- Myung-Jin Chung
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University , Daegu , Republic of Korea
| | - SunYoung Park
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University , Daegu , Republic of Korea
| | - Ji-Yoon Son
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University , Daegu , Republic of Korea
| | - Jae-Yeong Lee
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University , Daegu , Republic of Korea
| | - Hyun Ho Yun
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University , Daegu , Republic of Korea
| | - Eun-Joo Lee
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea
| | - Eun Mi Lee
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea
| | - Gil-Jae Cho
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea
| | - Sunray Lee
- Cell Engineering For Origin , Seoul , Republic of Korea
| | | | - Kyu-Shik Jeong
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|
16
|
Cong X, Zhang SM, Ellis MW, Luo J. Large Animal Models for the Clinical Application of Human Induced Pluripotent Stem Cells. Stem Cells Dev 2019; 28:1288-1298. [PMID: 31359827 DOI: 10.1089/scd.2019.0136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technology offers a practically infinite and ethically acceptable source to obtain a variety of somatic cells. Coupled with the biotechnologies of cell therapy or tissue engineering, iPSC technology will enormously contribute to human regenerative medicine. Before clinical application, such human iPSC (hiPSC)-based therapies should be assessed using large animal models that more closely match biological or biomechanical properties of human patients. Therefore, it is critical to generate large animal iPSCs, obtain their iPSC-derived somatic cells, and preclinically evaluate their therapeutic efficacy and safety in large animals. During the past decade, the establishment of iPSC lines of a series of large animal species has been documented, and the acquisition and preclinical evaluation of iPSC-derived somatic cells has also been reported. Despite this progress, significant obstacles, such as obtaining or preserving the bona fide pluripotency of large animal iPSCs, have been encountered. Simultaneously, studies of large animal iPSCs have been overlooked in comparison with those of mouse and hiPSCs, and this field deserves more attention and support due to its important preclinical relevance. Herein, this review will focus on the large animal models of pigs, dogs, horses, and sheep/goats, and summarize current progress, challenges, and potential future directions of research on large animal iPSCs.
Collapse
Affiliation(s)
- Xiaoqiang Cong
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut.,Department of Cardiology, Bethune First Hospital of Jilin University, Changchun, China
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Matthew W Ellis
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Jiesi Luo
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, Connecticut.,Yale Stem Cell Center, New Haven, Connecticut
| |
Collapse
|
17
|
Pessôa LVDF, Bressan FF, Freude KK. Induced pluripotent stem cells throughout the animal kingdom: Availability and applications. World J Stem Cells 2019; 11:491-505. [PMID: 31523369 PMCID: PMC6716087 DOI: 10.4252/wjsc.v11.i8.491] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
Abstract
Up until the mid 2000s, the capacity to generate every cell of an organism was exclusive to embryonic stem cells. In 2006, researchers Takahashi and Yamanaka developed an alternative method of generating embryonic-like stem cells from adult cells, which they coined induced pluripotent stem cells (iPSCs). Such iPSCs possess most of the advantages of embryonic stem cells without the ethical stigma associated with derivation of the latter. The possibility of generating “custom-made” pluripotent cells, ideal for patient-specific disease models, alongside their possible applications in regenerative medicine and reproduction, has drawn a lot of attention to the field with numbers of iPSC studies published growing exponentially. IPSCs have now been generated for a wide variety of species, including but not limited to, mouse, human, primate, wild felines, bovines, equines, birds and rodents, some of which still lack well-established embryonic stem cell lines. The paucity of robust characterization of some of these iPSC lines as well as the residual expression of transgenes involved in the reprogramming process still hampers the use of such cells in species preservation or medical research, underscoring the requirement for further investigations. Here, we provide an extensive overview of iPSC generated from a broad range of animal species including their potential applications and limitations.
Collapse
Affiliation(s)
- Laís Vicari de Figueiredo Pessôa
- Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-000, São Paulo, Brazil
| | - Kristine Karla Freude
- Group of Stem Cell Models for Studies of Neurodegenerative Diseases, Section for Pathobiological Sciences, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| |
Collapse
|
18
|
Augustyniak J, Bertero A, Coccini T, Baderna D, Buzanska L, Caloni F. Organoids are promising tools for species-specific in vitro toxicological studies. J Appl Toxicol 2019; 39:1610-1622. [PMID: 31168795 DOI: 10.1002/jat.3815] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022]
Abstract
Organoids are three-dimensional self-aggregating structures generated from stem cells (SCs) or progenitor cells in a process that recapitulates molecular and cellular stages of early organ development. The differentiation process leads to the appearance of specialized mature cells and is connected with changes in the organoid internal structure rearrangement and self-organization. The formation of organ-specific structures in vitro with highly ordered architecture is also strongly influenced by the extracellular matrix. These features make organoids as a powerful model for in vitro toxicology. Nowadays this technology is developing very quickly. In this review we present, from a toxicological and species-specific point of view, the state of the art of organoid generation from adult SCs and pluripotent SCs: embryonic SCs or induced pluripotent SCs. The current culture organoid techniques are discussed for their main advantages, disadvantages and limitations. In the second part of the review, we concentrated on the characterization of species-specific organoids generated from tissue-specific SCs of different sources: mammary (bovine), epidermis (canine), intestinal (porcine, bovine, canine, chicken) and liver (feline, canine).
Collapse
Affiliation(s)
- Justyna Augustyniak
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Alessia Bertero
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milan, Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-SB, IRCCS Pavia, Pavia, Italy
| | - Diego Baderna
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
19
|
Gugjoo MB, Amarpal, Makhdoomi DM, Sharma GT. Equine Mesenchymal Stem Cells: Properties, Sources, Characterization, and Potential Therapeutic Applications. J Equine Vet Sci 2018; 72:16-27. [PMID: 30929778 DOI: 10.1016/j.jevs.2018.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/06/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
Properties like sustained multiplication and self-renewal, and homing and multilineage differentiation to undertake repair of the damaged tissues make stem cells the lifeline for any living system. Therefore, stem cell therapy is regarded to carry immense therapeutic potential. Though the dearth of understanding about the basic biological properties and pathways involved in therapeutic benefits currently limit the application of stem cells in humans as well as animals, there are innumerable reports that suggest clinical benefits of stem cell therapy in equine. Among various stem cell sources, currently adult mesenchymal stem cells (MSCs) are preferred for therapeutic application in horse owing to their easy availability, capacity to modulate inflammation, and promote healing. Also the cells carry very limited teratogenic risk compared to the pluripotent stem cells. Mesenchymal stem cells were earlier considered mainly for musculoskeletal tissues, but now may also be utilized in other diverse clinical problems in horse, and the results may be extrapolated even for human medicine. The current review highlights biological properties, sources, mechanisms, and potential therapeutic applications of stem cells in equine practice.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Surgery, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India.
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India
| | - Dil Mohammad Makhdoomi
- Division of Surgery, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-Kashmir, Srinagar, J&K, India
| | - Gutulla Taru Sharma
- Division of Physiology and Climatology, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India
| |
Collapse
|
20
|
Amilon KR, Cortes-Araya Y, Moore B, Lee S, Lillico S, Breton A, Esteves CL, Donadeu FX. Generation of Functional Myocytes from Equine Induced Pluripotent Stem Cells. Cell Reprogram 2018; 20:275-281. [PMID: 30207795 PMCID: PMC6166488 DOI: 10.1089/cell.2018.0023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have revolutionized human biomedicine through their use in disease modeling and therapy. In comparison, little progress has been made toward the application of iPSCs in veterinary species. In that regard, skeletal myocytes from iPSCs would have great potential for understanding muscle function and disease in the equine athlete. In this study, we generated skeletal myotubes by transducing equine iPSC-derived mesenchymal derivatives with an inducible lentiviral vector coding for the human sequence of the myogenic factor, MyoD. Myosin heavy chain-positive myotubes generated from two different iPSC lines were compared to myotubes from adult equine skeletal muscle progenitor cells (MPCs). iPSC myotubes had a smaller mean area than MPC myotubes (≤2-fold). In addition, quantitative polymerase chain reaction analyses showed that iPSC myotubes expressed MYH2 and MYH3 isoforms (at similar or lower levels than MPC myotubes), but they did not express the mature muscle isoform, MYH1. Compared to MPC myotubes, iPSC myotubes expressed reduced levels of the myogenic factors, MYOD1 and MYF6, but did not express MYF5. Finally, iPSC myotubes responded to KCl-induced membrane depolarization by releasing calcium and did so in a manner similar to MPC myotubes. In conclusion, this is the first study to report the generation of functional myocytes from equine iPSCs.
Collapse
Affiliation(s)
- Karin R Amilon
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | - Yennifer Cortes-Araya
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | - Benjamin Moore
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | - Seungmee Lee
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | - Simon Lillico
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | - Amandine Breton
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | - Cristina L Esteves
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom
| | - F Xavier Donadeu
- 1 The Roslin Institute and R(D)SVS, University of Edinburgh , Edinburgh, United Kingdom .,2 The Euan Macdonald Centre for Motor Neurone Disease Research, University of Edinburgh , Edinburgh, United Kingdom
| |
Collapse
|
21
|
Baird A, Lindsay T, Everett A, Iyemere V, Paterson YZ, McClellan A, Henson FMD, Guest DJ. Osteoblast differentiation of equine induced pluripotent stem cells. Biol Open 2018; 7:bio.033514. [PMID: 29685993 PMCID: PMC5992527 DOI: 10.1242/bio.033514] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bone fractures occur in horses following traumatic and non-traumatic (bone overloading) events. They can be difficult to treat due to the need for the horse to bear weight on all legs during the healing period. Regenerative medicine to improve fracture union and recovery could significantly improve horse welfare. Equine induced pluripotent stem cells (iPSCs) have previously been derived. Here we show that equine iPSCs cultured for 21 days in osteogenic induction media on an OsteoAssay surface upregulate the expression of osteoblast associated genes and proteins, including COL1A1, SPARC, SPP1, IBSP, RUNX2 and BGALP. We also demonstrate that iPSC-osteoblasts are able to produce a mineralised matrix with both calcium and hydroxyapatite deposition. Alkaline phosphatase activity is also significantly increased during osteoblast differentiation. Although the genetic background of the iPSC donor animal affects the level of differentiation observed after 21 days of differentiation, less variation between lines of iPSCs derived from the same horse was observed. The successful, direct, differentiation of equine iPSCs into osteoblasts may provide a source of cells for future regenerative medicine strategies to improve fracture repair in horses undergoing surgery. iPSC-derived osteoblasts will also provide a potential tool to study equine bone development and disease. Summary: Horse iPSCs can be turned directly into bone forming cells but the efficiency is affected by the donor horse. Less variability is observed using different iPSC lines derived from the same horse.
Collapse
Affiliation(s)
- Arabella Baird
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU, UK
| | - Timothy Lindsay
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU, UK.,Division of Trauma and Orthopaedic Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Alice Everett
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU, UK
| | - Valentine Iyemere
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU, UK
| | - Yasmin Z Paterson
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU, UK.,Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Alyce McClellan
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU, UK
| | - Frances M D Henson
- Division of Trauma and Orthopaedic Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.,Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Deborah J Guest
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU, UK
| |
Collapse
|
22
|
Broeckx S, Spaas J, Chiers K, Duchateau L, Van Hecke L, Van Brantegem L, Dumoulin M, Martens A, Pille F. Equine allogeneic chondrogenic induced mesenchymal stem cells: A GCP target animal safety and biodistribution study. Res Vet Sci 2018; 117:246-254. [DOI: 10.1016/j.rvsc.2017.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/18/2017] [Accepted: 12/26/2017] [Indexed: 12/17/2022]
|
23
|
Paterson YZ, Kafarnik C, Guest DJ. Characterization of companion animal pluripotent stem cells. Cytometry A 2017; 93:137-148. [PMID: 28678404 DOI: 10.1002/cyto.a.23163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/19/2017] [Accepted: 06/10/2017] [Indexed: 02/06/2023]
Abstract
Pluripotent stem cells have the capacity to grow indefinitely in culture and differentiate into derivatives of the three germ layers. These properties underpin their potential to be used in regenerative medicine. Originally derived from early embryos, pluripotent stem cells can now be derived by reprogramming an adult cell back to a pluripotent state. Companion animals such as horses, dogs, and cats suffer from many injuries and diseases for which regenerative medicine may offer new treatments. As many of the injuries and diseases are similar to conditions in humans the use of companion animals for the experimental and clinical testing of stem cell and regenerative medicine products would provide relevant animal models for the translation of therapies to the human field. In order to fully utilize companion animal pluripotent stem cells robust, standardized methods of characterization must be developed to ensure that safe and effective treatments can be delivered. In this review we discuss the methods that are available for characterizing pluripotent stem cells and the techniques that have been applied in cells from companion animals. We describe characteristics which have been described consistently across reports as well as highlighting discrepant results. Significant steps have been made to define the in vitro culture requirements and drive lineage specific differentiation of pluripotent stem cells in companion animal species. However, additional basic research to compare pluripotent stem cell types and define characteristics of pluripotency in companion animal species is still required. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Y Z Paterson
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, UK.,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - C Kafarnik
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, UK.,Institute of Ophthalmology, University College London, London, UK
| | - D J Guest
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, UK
| |
Collapse
|
24
|
Abstract
Huntington's disease (HD) is a fatal genetic disorder, which causes the
progressive breakdown of neurons in the human brain. HD deteriorates human
physical and mental abilities over time and has no cure. Stem cell-based
technologies are promising novel treatments, and in HD, they aim to replace lost
neurons and/or to prevent neural cell death. Herein we discuss the use of human
fetal tissue (hFT), neural stem cells (NSCs) of hFT origin or embryonic stem
cells (ESCs) and induced pluripotent stem cells (IPSCs), in clinical and
pre-clinical studies. The in vivo use of mesenchymal stem cells
(MSCs), which are derived from non-neural tissues, will also be discussed. All
these studies prove the potential of stem cells for transplantation therapy in
HD, demonstrating cell grafting and the ability to differentiate into mature
neurons, resulting in behavioral improvements. We claim that there are still
many problems to overcome before these technologies become available for HD
patient treatment, such as: a) safety regarding the use of NSCs and pluripotent stem cells, which
are potentially teratogenic; b) safety regarding the transplantation procedure itself, which
represents a risk and needs to be better studied; and finally c) technical and ethical issues regarding cells of fetal and
embryonic origin.
Collapse
Affiliation(s)
- Mônica Santoro Haddad
- MD. Faculdade de Medicina da Universidade de São Paulo - Neurologia São Paulo, São Paulo, SP, Brazil
| | | | - Celine Pompeia
- MD. Instituto Butantan - Genética, São Paulo, SP, Brazil
| | - Irina Kerkis
- MD, PhD. Instituto Butantan - Genética, São Paulo, São Paulo, Brazil
| |
Collapse
|