1
|
Zhang X, Ma S, Naz SI, Soderblom EJ, Aliferis C, Kraus VB. Plasma extracellular vesicles carry immune system-related peptides that predict human longevity. GeroScience 2025; 47:1455-1469. [PMID: 39695065 PMCID: PMC11979029 DOI: 10.1007/s11357-024-01454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Extracellular vesicles (EVs) play crucial roles in aging. In this National Institutes on Aging-funded study, we sought to identify circulating extracellular vesicle (EV) biomarkers indicative of longevity. The plasma EV proteome of 48 older adults (mean age 77.2 ± 1.7 years [range 72-80]; 50% female, 50% Black, 50% < 2-year survival, 50% ≥ 10-year survival) was analyzed by high-resolution mass spectrometry and flow cytometry. The ability of EV peptides to predict longevity was evaluated in discovery (n = 32) and validation (n = 16) datasets with areas under receiver operating characteristic curves (AUCs). Longevity-associated large EV (LEV) plasma subpopulations were mainly related to immune cells (HLA-ABC+, CD9+, and CD31+) and muscle cells (MCAD+ and RyR2+). Of 7960 identified plasma EV peptides (519 proteins), 46.4% were related to the immune system and 10.1% to muscle. Compared with short-lived older adults, 756 EV peptides (131 proteins) had a higher abundance, and 130 EV peptides (78 proteins) had a lower abundance in long-lived adults. Among longevity-associated peptides, 437 (58 proteins) were immune system related, and 12 (2 proteins) were muscle related. Using just three to five plasma EV peptides (mainly complement components C2-C6), we achieved high predictive accuracy for longevity (AUC range 0.91-1 in a hold-out validation dataset). Our findings suggest that immune cells produce longevity-associated plasma EVs and elucidate fundamental mechanisms regulating aging and longevity. EV longevity predictors suggest there may be merit in targeting complement pathways to extend lifespan, for instance, with any one of the multiple complement inhibitors currently available or in clinical development.
Collapse
Affiliation(s)
- Xin Zhang
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA.
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27701, USA.
| | - Sisi Ma
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Syeda Iffat Naz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Erik J Soderblom
- Duke Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC, USA
| | - Constantin Aliferis
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27701, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Heller V, Wang L, Schneider E, Gerstner M, Bajer L, Decker R, Boenig H, Lausen J. ID3 promotes erythroid differentiation and is repressed by a TAL1-PRMT6 complex. J Biol Chem 2025; 301:108119. [PMID: 39716491 PMCID: PMC11847539 DOI: 10.1016/j.jbc.2024.108119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024] Open
Abstract
Erythropoiesis is controlled by transcription factors that recruit epigenetic cofactors to establish and maintain erythrocyte-specific gene expression patterns while repressing alternative lineage commitment. The transcription factor TAL1 (T-cell acute lymphocytic leukemia 1) is critical for establishing erythroid gene expression. It acts as an activator or repressor of genes, depending on associated epigenetic cofactors. Understanding the epigenetic function of TAL1 during erythropoiesis is key to improving in vitro erythroid differentiation and understanding pathological erythropoiesis. Therefore, the regulatory mechanisms that control the function of TAL1 during erythropoiesis are under intense investigation. Here, we show that TAL1 interacts with protein-arginine-methyltransferase-6 (PRMT6) on the ID3 (inhibitor-of-DNA-binding-3) gene in K562 and hCD34+ cells. The ID protein family is a critical transcriptional regulator of hematopoietic cell differentiation. We show that TAL1 and PRMT6 are present at the ID3 promoter, and that TAL1 is involved in the recruitment of PRMT6. Here, PRMT6 epigenetically regulates ID3 expression by mediating dimethylation of histone 3 at arginine 2. Thus, TAL1-PRMT6 epigenetically represses ID3 expression in progenitors, which is relieved upon erythroid differentiation, leading to increased expression. Overexpression of ID3 in primary hCD34+ cells enhances erythropoiesis. Our results show that a TAL1-PRMT6 complex regulates genes important for erythropoiesis, such as ID3. Manipulation of ID3 expression may be a way to promote in vitro differentiation of hCD34+ cells into erythrocytes.
Collapse
Affiliation(s)
- Vivien Heller
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Lei Wang
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Edith Schneider
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Mirjam Gerstner
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Luana Bajer
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Robin Decker
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Halvard Boenig
- Institute for Transfusion Medicine and Immunohematology and German Red Cross Blood Service BaWüHe, Institute Frankfurt, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Joern Lausen
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
3
|
He N, Yang Q, Li Z, Guo J, Kuang C, Zhu Y, Liu X, Chen X, Shi F, Feng X, An G, Zhang G, Zhou W. LGR4 promotes proliferation and homing via activation of the NF‑κB signaling pathway in multiple myeloma. Int J Oncol 2025; 66:12. [PMID: 39749708 PMCID: PMC11753772 DOI: 10.3892/ijo.2025.5718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy characterized by clonal proliferation in the bone marrow (BM). Previously, it was reported that G‑protein‑coupled receptor 4 (LGR4) contributed to early hematopoiesis and was associated with poor prognosis in patients with MM. However, the mechanism of cell homing and migration, which is critical for MM progression, remains unclear. In the present study, cell counting, cell cycle and BrdU assays were performed to evaluate cell proliferation. Transwell assay and Xenograft mouse models were performed to evaluate cell migration and homing ability both in vitro and in vivo. I was found that overexpression of LGR4 promotes MM cell adhesion, migration and homing to BM both in vitro, while exacerbating osteolytic bone destruction in vivo. However, the LGR4 knockdown displayed the opposite effect. Further mechanistic studies demonstrated that LGR4 activated the nuclear factor kappa B (NF‑κB) signaling pathway and migration‑related adhesion molecule, thus promoting MM cell homing. Moreover, inhibiting the NF‑κB pathway was found to suppress MM cell homing. These findings identify LGR4 as a critical regulator of myeloma cell migration, homing and tumorigenesis, offering a potential therapeutic strategy for MM treatment.
Collapse
Affiliation(s)
- Nihan He
- National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Furong Laboratory, Changsha, Hunan 410008, P.R. China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qin Yang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhengjiang Li
- National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Furong Laboratory, Changsha, Hunan 410008, P.R. China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jiaojiao Guo
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chunmei Kuang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yinghong Zhu
- National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Furong Laboratory, Changsha, Hunan 410008, P.R. China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xing Liu
- National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Furong Laboratory, Changsha, Hunan 410008, P.R. China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xun Chen
- National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Furong Laboratory, Changsha, Hunan 410008, P.R. China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fangming Shi
- National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Furong Laboratory, Changsha, Hunan 410008, P.R. China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha, Hunan 410006, P.R. China
| | - Gang An
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300074, P.R. China
| | - Guoping Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wen Zhou
- National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Furong Laboratory, Changsha, Hunan 410008, P.R. China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
4
|
Shah AP, Majeti KR, Ekman FK, Selvaraj S, Sharma D, Sinha R, Soupene E, Chati P, Luna SE, Charlesworth CT, McCreary T, Lesch BJ, Tran T, Chu SN, Porteus MH, Kyle Cromer M. Engineering synthetic signaling receptors to enable erythropoietin-free erythropoiesis. Nat Commun 2025; 16:1140. [PMID: 39880867 PMCID: PMC11779867 DOI: 10.1038/s41467-025-56239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025] Open
Abstract
Blood transfusion plays a vital role in modern medicine, but frequent shortages occur. Ex vivo manufacturing of red blood cells (RBCs) from universal donor cells offers a potential solution, yet the high cost of recombinant cytokines remains a barrier. Erythropoietin (EPO) signaling is crucial for RBC development, and EPO is among the most expensive media components. To address this challenge, we develop highly optimized small molecule-inducible synthetic EPO receptors (synEPORs) using design-build-test cycles and genome editing. By integrating synEPOR at the endogenous EPOR locus in O-negative induced pluripotent stem cells, we achieve equivalent erythroid differentiation, transcriptomic changes, and hemoglobin production using small molecules compared to EPO-supplemented cultures. This approach dramatically reduces culture media costs. Our strategy not only addresses RBC production challenges but also demonstrates how protein and genome engineering can introduce precisely regulated cellular behaviors, potentially improving scalable manufacturing of a wide range of clinically relevant cell types.
Collapse
Affiliation(s)
- Aadit P Shah
- School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Kiran R Majeti
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Freja K Ekman
- School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Sridhar Selvaraj
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Devesh Sharma
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Roshani Sinha
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Eric Soupene
- Benioff Children's Hospital Oakland, University of California, San Francisco, San Francisco, CA, USA
| | - Prathamesh Chati
- Department of Biological & Medical Informatics, University of California, San Francisco, San Francisco, CA, USA
| | - Sofia E Luna
- School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Travis McCreary
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin J Lesch
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Tammy Tran
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Simon N Chu
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - M Kyle Cromer
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Yue N, Jin Q, Li C, Zhang L, Cao J, Wu C. CD36: a promising therapeutic target in hematologic tumors. Leuk Lymphoma 2024; 65:1749-1765. [PMID: 38982639 DOI: 10.1080/10428194.2024.2376178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Cluster of differentiation 36 (CD36) is a multiligand receptor with important roles in lipid metabolism, angiogenesis and innate immunity, and its diverse effects may depend on the binding of specific ligands in different contexts. CD36 is expressed not only on immune cells in the tumor microenvironment (TME) but also on some hematopoietic cells. CD36 is associated with the growth, metastasis and drug resistance in some hematologic tumors, such as leukemia, lymphoma and myelodysplastic syndrome. Currently, some targeted therapeutic agents against CD36 have been developed, such as anti-CD36 antibodies, CD36 antagonists (small molecules) and CD36 expression inhibitors. This paper not only innovatively addresses the role of CD36 in some hematopoietic cells, such as erythrocytes, hematopoietic stem cells and platelets, but also pays special attention to the role of CD36 in the development of hematologic tumors, and suggests that CD36 may be a potential cancer therapeutic target in hematologic tumors.
Collapse
Affiliation(s)
- Ningning Yue
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Qiqi Jin
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Cuicui Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Litian Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiajia Cao
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Chongyang Wu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
6
|
Kim J, Schanzer N, Singh RS, Zaman MI, Garcia-Medina JS, Proszynski J, Ganesan S, Dan Landau, Park CY, Melnick AM, Mason CE. DOGMA-seq and multimodal, single-cell analysis in acute myeloid leukemia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:67-108. [PMID: 39864897 DOI: 10.1016/bs.ircmb.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Acute myeloid leukemia (AML) is a complex cancer, yet advances in recent years from integrated genomics methods have helped improve diagnosis, treatment, and means of patient stratification. A recent example of a powerful, multimodal method is DOGMA-seq, which can measure chromatin accessibility, gene expression, and cell-surface protein levels from the same individual cell simultaneously. Previous bimodal single-cell techniques, such as CITE-seq (Cellular indexing of transcriptomes and epitopes), have only permitted the transcriptome and cell-surface protein expression measurement. DOGMA-seq, however, builds on this foundation and has implications for examining epigenomic, transcriptomic, and proteomic interactions between various cell types. This technique has the potential to be particularly useful in the study of cancers such as AML. This is because the cellular mechanisms that drive AML are rather heterogeneous and require a more complete understanding of the interplay between the genetic mutations, disruptions in RNA transcription and translation, and surface protein expression that cause these cancers to develop and evolve. This technique will hopefully contribute to a more clear and complete understanding of the growth and progression of complex cancers.
Collapse
Affiliation(s)
- JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Nathan Schanzer
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Ruth Subhash Singh
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Mohammed I Zaman
- Department of Biophysics and Physiology, Stony Brook University, Stony Brook, NY, United States
| | - J Sebastian Garcia-Medina
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Jacqueline Proszynski
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Saravanan Ganesan
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States; New York Genome Center, New York, NY, United States
| | - Dan Landau
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | | | - Ari M Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
7
|
Li H, Bräunig S, Scheding S. Isolation of Human Bone Marrow Non-hematopoietic Cells for Single-cell RNA Sequencing. Bio Protoc 2024; 14:e5020. [PMID: 38948257 PMCID: PMC11211075 DOI: 10.21769/bioprotoc.5020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
The intricate composition, heterogeneity, and hierarchical organization of the human bone marrow hematopoietic microenvironment (HME) present challenges for experimentation, which is primarily due to the scarcity of HME-forming cells, notably bone marrow stromal cells (BMSCs). The limited understanding of non-hematopoietic cell phenotypes complicates the unraveling of the HME's intricacies and necessitates a precise isolation protocol for systematic studies. The protocol presented herein puts special emphasis on the accuracy and high quality of BMSCs obtained for downstream sequencing analysis. Utilizing CD45 and CD235a as negative markers ensures sufficient enrichment of non-hematopoietic cells within the HME. By adding positive selection based on CD271 expression, this protocol allows for selectively isolating the rare and pivotal bona fide stromal cell population with high precision. The outlined step-by-step protocol provides a robust tool for isolating and characterizing non-hematopoietic cells, including stromal cells, from human bone marrow preparations. This approach thus contributes valuable information to promote research in a field that is marked by a scarcity of studies and helps to conduct important experimentation that will deepen our understanding of the intricate cellular interactions within the bone marrow niche. Key features • Isolation of high-quality human non-hematopoietic bone marrow cells for scRNAseq • Targeted strategy for enriching low-frequency stromal cells.
Collapse
Affiliation(s)
- Hongzhe Li
- Division of Molecular Hematology and Stem Cell Center, Lund University, Lund, Sweden
| | - Sandro Bräunig
- Division of Molecular Hematology and Stem Cell Center, Lund University, Lund, Sweden
| | - Stefan Scheding
- Division of Molecular Hematology and Stem Cell Center, Lund University, Lund, Sweden
- Department of Hematology, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
8
|
Ashaq MS, Zhang S, Xu M, Li Y, Zhao B. The regulatory role of CD36 in hematopoiesis beyond fatty acid uptake. Life Sci 2024; 339:122442. [PMID: 38244916 DOI: 10.1016/j.lfs.2024.122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
CD36 is a transmembrane glycoprotein, located on surface of numerous cell types. This review is aimed to explore regulatory role of CD36 in hematopoiesis beyond fatty acid uptake. CD36 acts as a pattern recognition receptor, regulates cellular fatty acid homeostasis, and negatively monitors angiogenesis. CD36 also mediates free fatty acid transportation to hematopoietic stem cells in response to infections. During normal physiology and pathophysiology, CD36 significantly participates in the activation and metabolic needs of platelets, macrophages, monocytes, T cells, B cells, and dendritic cells. CD36 has shown a unique relationship with Plasmodium falciparum-infected erythrocytes (PfIEs) as a beneficiary for both parasite and host. CD36 actively participates in pathogenesis of various hematological cancers as a significant prognostic biomarker including AML, HL, and NHL. CD36-targeting antibodies, CD36 antagonists (small molecules), and CD36 expression inhibitors/modulators are used to target CD36, depicting its therapeutic potential. Many preclinical studies or clinical trials were performed to assess CD36 as a therapeutic target; some are still under investigation. This review reflects the role of CD36 in hematopoiesis which requires more consideration in future research.
Collapse
Affiliation(s)
- Muhammad Sameer Ashaq
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shujing Zhang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Miaomiao Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuan Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baobing Zhao
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
9
|
Heydari SR, Ghahremani MH, Atyabi F, Bafkary R, Jaafari MR, Dinarvand R. Aptamer-modified chitosan-capped mesoporous silica nanoparticles for co-delivery of cytarabine and daunorubicin in leukemia. Int J Pharm 2023; 646:123495. [PMID: 37806507 DOI: 10.1016/j.ijpharm.2023.123495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
In this study, surface modified mesoporous silica nanoparticles (MSNs) were prepared for the targeted delivery of the anticancer agents, daunorubicin (DNR) and cytarabine (CTR), against K562 leukemia cancer cell lines. The MSNs were surface-modified with pH-sensitive chitosan (CS) to prevent the burst release of anticancer agents at the physiological pH of 7.4 and to enable a higher drug release at lower pH and higher concentration of glutathione. Finally, the MSNs were surface modified with KK1B10 aptamer (Apt) to enhance their uptake by K562 cells through ligand-receptor interactions. The MSNs were characterized using different methods and both in vitro and in vivo experiments were utilized to demonstrate their suitability as targeted anticancer agents. The resultant MSNs exhibited an average particle size of 295 nm, a surface area of 39.06 m2/g, and a cumulative pore volume of 0.09 cm3/g. Surface modification of MSNs with chitosan (CS) resulted in a more regulated and acceptable continuous release rate of DNR. The drug release rate was significantly higher at pH 5 media enriched with glutathione, compared to pH 7.4. Furthermore, MSNs coated with CS and conjugated with aptamer (MSN-DNR + CTR@CS-Apt) exhibited a lower IC50 value of 2.34 µg/ml, compared to MSNs without aptamer conjugation, which displayed an IC50 value of 12.27 µg/ml. The results of the cell cycle analysis indicated that the administration of MSN-DNR + CTR@CS-Apt led to a significant increase in the population of apoptotic cells in the sub-G1 phase. Additionally, the treatment arrested the remaining cells in various other phases of the cell cycle. Furthermore, the interactions between Apt-receptors were found to enhance the uptake of MSNs by cancer cells. The results of in vivo studies demonstrated that the administration of MSN-DNR + CTR@CS-Apt led to a significant reduction in the expression levels of CD71 and CD235a markers, as compared to MSN-DNR + CTR@CS (p < 0.001). In conclusion, the surface modified MSNs prepared in this study showed lower IC50 against cancer cell lines and higher anticancer activity in animal models.
Collapse
Affiliation(s)
- Seyed Reza Heydari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology-Toxicology, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Bafkary
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Jaafari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
10
|
Martell DJ, Merens HE, Caulier A, Fiorini C, Ulirsch JC, Ietswaart R, Choquet K, Graziadei G, Brancaleoni V, Cappellini MD, Scott C, Roberts N, Proven M, Roy NBA, Babbs C, Higgs DR, Sankaran VG, Churchman LS. RNA polymerase II pausing temporally coordinates cell cycle progression and erythroid differentiation. Dev Cell 2023; 58:2112-2127.e4. [PMID: 37586368 PMCID: PMC10615711 DOI: 10.1016/j.devcel.2023.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Controlled release of promoter-proximal paused RNA polymerase II (RNA Pol II) is crucial for gene regulation. However, studying RNA Pol II pausing is challenging, as pause-release factors are almost all essential. In this study, we identified heterozygous loss-of-function mutations in SUPT5H, which encodes SPT5, in individuals with β-thalassemia. During erythropoiesis in healthy human cells, cell cycle genes were highly paused as cells transition from progenitors to precursors. When the pathogenic mutations were recapitulated by SUPT5H editing, RNA Pol II pause release was globally disrupted, and as cells began transitioning from progenitors to precursors, differentiation was delayed, accompanied by a transient lag in erythroid-specific gene expression and cell cycle kinetics. Despite this delay, cells terminally differentiate, and cell cycle phase distributions normalize. Therefore, hindering pause release perturbs proliferation and differentiation dynamics at a key transition during erythropoiesis, identifying a role for RNA Pol II pausing in temporally coordinating the cell cycle and erythroid differentiation.
Collapse
Affiliation(s)
- Danya J Martell
- Department of Genetics, Harvard University, Boston, MA, USA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hope E Merens
- Department of Genetics, Harvard University, Boston, MA, USA
| | - Alexis Caulier
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Claudia Fiorini
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jacob C Ulirsch
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Karine Choquet
- Department of Genetics, Harvard University, Boston, MA, USA
| | - Giovanna Graziadei
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca'Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Valentina Brancaleoni
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca'Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca'Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Caroline Scott
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nigel Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Melanie Proven
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Noémi B A Roy
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre and BRC/NHS Translational Molecular Diagnostics Centre, John Radcliffe Hospital, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | | |
Collapse
|
11
|
Liu QR, Liu JY, Zhao JY, Lin SB, Deng J, Xu XZ, Zhou Y. Do anti-CD36 antibodies cause only fetal/neonatal alloimmune thrombocytopenia? Br J Haematol 2023; 202:e62-e66. [PMID: 37455425 DOI: 10.1111/bjh.18969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Quan-Rui Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing-Yu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing-Ya Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shao-Bin Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Deng
- Institute of Blood Transfusion, Guangzhou Blood Centre, Guangzhou, Guangdong, China
| | - Xiu-Zhang Xu
- Institute of Blood Transfusion, Guangzhou Blood Centre, Guangzhou, Guangdong, China
| | - Yi Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Zheng H, Chen Y, Luo Q, Zhang J, Huang M, Xu Y, Huo D, Shan W, Tie R, Zhang M, Qian P, Huang H. Generating hematopoietic cells from human pluripotent stem cells: approaches, progress and challenges. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:31. [PMID: 37656237 PMCID: PMC10474004 DOI: 10.1186/s13619-023-00175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Human pluripotent stem cells (hPSCs) have been suggested as a potential source for the production of blood cells for clinical application. In two decades, almost all types of blood cells can be successfully generated from hPSCs through various differentiated strategies. Meanwhile, with a deeper understanding of hematopoiesis, higher efficiency of generating progenitors and precursors of blood cells from hPSCs is achieved. However, how to generate large-scale mature functional cells from hPSCs for clinical use is still difficult. In this review, we summarized recent approaches that generated both hematopoietic stem cells and mature lineage cells from hPSCs, and remarked their efficiency and mechanisms in producing mature functional cells. We also discussed the major challenges in hPSC-derived products of blood cells and provided some potential solutions. Our review summarized efficient, simple, and defined methodologies for developing good manufacturing practice standards for hPSC-derived blood cells, which will facilitate the translation of these products into the clinic.
Collapse
Affiliation(s)
- Haiqiong Zheng
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Yijin Chen
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Qian Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Jie Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Mengmeng Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Yulin Xu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Dawei Huo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Wei Shan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China
| | - Meng Zhang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310012, China.
| |
Collapse
|
13
|
Martell DJ, Merens HE, Fiorini C, Caulier A, Ulirsch JC, Ietswaart R, Choquet K, Graziadei G, Brancaleoni V, Cappellini MD, Scott C, Roberts N, Proven M, Roy NB, Babbs C, Higgs DR, Sankaran VG, Churchman LS. RNA Polymerase II pausing temporally coordinates cell cycle progression and erythroid differentiation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.03.23286760. [PMID: 36945604 PMCID: PMC10029049 DOI: 10.1101/2023.03.03.23286760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The controlled release of promoter-proximal paused RNA polymerase II (Pol II) into productive elongation is a major step in gene regulation. However, functional analysis of Pol II pausing is difficult because factors that regulate pause release are almost all essential. In this study, we identified heterozygous loss-of-function mutations in SUPT5H , which encodes SPT5, in individuals with β-thalassemia unlinked to HBB mutations. During erythropoiesis in healthy human cells, cell cycle genes were highly paused at the transition from progenitors to precursors. When the pathogenic mutations were recapitulated by SUPT5H editing, Pol II pause release was globally disrupted, and the transition from progenitors to precursors was delayed, marked by a transient lag in erythroid-specific gene expression and cell cycle kinetics. Despite this delay, cells terminally differentiate, and cell cycle phase distributions normalize. Therefore, hindering pause release perturbs proliferation and differentiation dynamics at a key transition during erythropoiesis, revealing a role for Pol II pausing in the temporal coordination between the cell cycle and differentiation.
Collapse
Affiliation(s)
- Danya J Martell
- Harvard University, Department of Genetics, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Hope E Merens
- Harvard University, Department of Genetics, Boston, MA
| | - Claudia Fiorini
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Alexis Caulier
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Jacob C Ulirsch
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | | | | | - Giovanna Graziadei
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca'Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Valentina Brancaleoni
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca'Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca'Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Caroline Scott
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Nigel Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Melanie Proven
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Noémi Ba Roy
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and BRC/NHS Translational Molecular Diagnostics Centre, John Radcliffe Hospital, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | | |
Collapse
|
14
|
Gene Expression Landscape of Chronic Myeloid Leukemia K562 Cells Overexpressing the Tumor Suppressor Gene PTPRG. Int J Mol Sci 2022; 23:ijms23179899. [PMID: 36077295 PMCID: PMC9456469 DOI: 10.3390/ijms23179899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
This study concerns the analysis of the modulation of Chronic Myeloid Leukemia (CML) cell model K562 transcriptome following transfection with the tumor suppressor gene encoding for Protein Tyrosine Phosphatase Receptor Type G (PTPRG) and treatment with the tyrosine kinase inhibitor (TKI) Imatinib. Specifically, we aimed at identifying genes whose level of expression is altered by PTPRG modulation and Imatinib concentration. Statistical tests as differential expression analysis (DEA) supported by gene set enrichment analysis (GSEA) and modern methods of ontological term analysis are presented along with some results of current interest for forthcoming experimental research in the field of the transcriptomic landscape of CML. In particular, we present two methods that differ in the order of the analysis steps. After a gene selection based on fold-change value thresholding, we applied statistical tests to select differentially expressed genes. Therefore, we applied two different methods on the set of differentially expressed genes. With the first method (Method 1), we implemented GSEA, followed by the identification of transcription factors. With the second method (Method 2), we first selected the transcription factors from the set of differentially expressed genes and implemented GSEA on this set. Method 1 is a standard method commonly used in this type of analysis, while Method 2 is unconventional and is motivated by the intention to identify transcription factors more specifically involved in biological processes relevant to the CML condition. Both methods have been equipped in ontological knowledge mining and word cloud analysis, as elements of novelty in our analytical procedure. Data analysis identified RARG and CD36 as a potential PTPRG up-regulated genes, suggesting a possible induction of cell differentiation toward an erithromyeloid phenotype. The prediction was confirmed at the mRNA and protein level, further validating the approach and identifying a new molecular mechanism of tumor suppression governed by PTPRG in a CML context.
Collapse
|
15
|
Boss AL, Damani T, Wickman TJ, Chamley LW, James JL, Brooks AES. Full spectrum flow cytometry reveals mesenchymal heterogeneity in first trimester placentae and phenotypic convergence in culture, providing insight into the origins of placental mesenchymal stromal cells. eLife 2022; 11:76622. [PMID: 35920626 PMCID: PMC9371602 DOI: 10.7554/elife.76622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 08/01/2022] [Indexed: 12/05/2022] Open
Abstract
Single-cell technologies (RNA-sequencing, flow cytometry) are critical tools to reveal how cell heterogeneity impacts developmental pathways. The placenta is a fetal exchange organ, containing a heterogeneous mix of mesenchymal cells (fibroblasts, myofibroblasts, perivascular, and progenitor cells). Placental mesenchymal stromal cells (pMSC) are also routinely isolated, for therapeutic and research purposes. However, our understanding of the diverse phenotypes of placental mesenchymal lineages, and their relationships remain unclear. We designed a 23-colour flow cytometry panel to assess mesenchymal heterogeneity in first-trimester human placentae. Four distinct mesenchymal subsets were identified; CD73+CD90+ mesenchymal cells, CD146+CD271+ perivascular cells, podoplanin+CD36+ stromal cells, and CD26+CD90+ myofibroblasts. CD73+CD90+ and podoplanin + CD36+ cells expressed markers consistent with cultured pMSCs, and were explored further. Despite their distinct ex-vivo phenotype, in culture CD73+CD90+ cells and podoplanin+CD36+ cells underwent phenotypic convergence, losing CD271 or CD36 expression respectively, and homogenously exhibiting a basic MSC phenotype (CD73+CD90+CD31-CD144-CD45-). However, some markers (CD26, CD146) were not impacted, or differentially impacted by culture in different populations. Comparisons of cultured phenotypes to pMSCs further suggested cultured pMSCs originate from podoplanin+CD36+ cells. This highlights the importance of detailed cell phenotyping to optimise therapeutic capacity, and ensure use of relevant cells in functional assays.
Collapse
Affiliation(s)
- Anna Leabourn Boss
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Tanvi Damani
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Tayla J Wickman
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Larry W Chamley
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Jo L James
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Dong Y, Zhang Y, Zhang Y, Pan X, Bai J, Chen Y, Zhou Y, Lai Z, Chen Q, Hu S, Zhou Q, Zhang Y, Ma F. Dissecting the process of human neutrophil lineage determination by using alpha-lipoic acid inducing neutrophil deficiency model. Redox Biol 2022; 54:102392. [PMID: 35797799 PMCID: PMC9287745 DOI: 10.1016/j.redox.2022.102392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/25/2022] Open
Abstract
Granulocyte-monocyte progenitors (GMPs) differentiate into both neutrophils and monocytes. Recently, uni-potential neutrophil progenitors have been identified both in mice and humans using an array of surface markers. However, how human GMPs commit to neutrophil progenitors and the regulatory mechanisms of fate determination remain incompletely understood. In the present study, we established a human neutrophil deficiency model using the small molecule alpha-lipoic acid. Using this neutrophil deficiency model, we determined that the neutrophil progenitor commitment process from CD371+ CD115– GMPs defined by CD34 and CD15 and discovered that critical signals generated by RNA splicing and rRNA biogenesis regulate the process of early commitment for human early neutrophil progenitors derived from CD371+ CD115– GMPs. These processes were elucidated by single-cell RNA sequencing both in vitro and in vivo derived cells. Sequentially, we identified that the transcription factor ELK1 is essential for human neutrophil lineage commitment using the alpha-lipoic acid (ALA)-inducing neutrophil deficiency model. Finally, we also revealed differential roles for long-ELK1 and short-ELK1, balanced by SF3B1, in the commitment process of neutrophil progenitors. Taken together, we discovered a novel function of ALA in regulating neutrophil lineage specification and identified that the SF3B1-ELK axis regulates the commitment of human neutrophil progenitors from CD371+ CD115– GMPs. ALA completely blocks the differentiation of human neutrophils derived from CD34+ stem cells in ex-vivo culture. CD34 and CD15 could be used to define the early differentiation stages of human neutrophil lineage determination. SF3B1-ELK1 signal axis regulates human neutrophil lineage determination.
Collapse
|
17
|
Xu C, He J, Wang H, Zhang Y, Wu J, Zhao L, Li Y, Gao J, Geng G, Wang B, Chen X, Zheng Z, Shen B, Zeng Y, Bai Z, Yang H, Shi S, Dong F, Ma S, Jiang E, Cheng T, Lan Y, Zhou J, Liu B, Shi L. Single-cell transcriptomic analysis identifies an immune-prone population in erythroid precursors during human ontogenesis. Nat Immunol 2022; 23:1109-1120. [PMID: 35761081 DOI: 10.1038/s41590-022-01245-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/17/2022] [Indexed: 01/03/2023]
Abstract
Nonimmune cells can have immunomodulatory roles that contribute to healthy development. However, the molecular and cellular mechanisms underlying the immunomodulatory functions of erythroid cells during human ontogenesis remain elusive. Here, integrated, single-cell transcriptomic studies of erythroid cells from the human yolk sac, fetal liver, preterm umbilical cord blood (UCB), term UCB and adult bone marrow (BM) identified classical and immune subsets of erythroid precursors with divergent differentiation trajectories. Immune-erythroid cells were present from the yolk sac to the adult BM throughout human ontogenesis but failed to be generated in vitro from human embryonic stem cells. Compared with classical-erythroid precursors, these immune-erythroid cells possessed dual erythroid and immune regulatory networks, showed immunomodulatory functions and interacted more frequently with various innate and adaptive immune cells. Our findings provide important insights into the nature of immune-erythroid cells and their roles during development and diseases.
Collapse
Affiliation(s)
- Changlu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,CAMS Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, PUMC, Tianjin, China
| | - Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,CAMS Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, PUMC, Tianjin, China
| | - Yingnan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,CAMS Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, PUMC, Tianjin, China
| | - Jing Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,CAMS Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, PUMC, Tianjin, China
| | - Lu Zhao
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Yue Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,CAMS Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, PUMC, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,CAMS Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, PUMC, Tianjin, China
| | - Guangfeng Geng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,CAMS Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, PUMC, Tianjin, China
| | - Bingrui Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,CAMS Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, PUMC, Tianjin, China
| | - Xiaoyuan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,CAMS Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, PUMC, Tianjin, China
| | - Zhaofeng Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,CAMS Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, PUMC, Tianjin, China
| | - Biao Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,CAMS Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, PUMC, Tianjin, China
| | - Yang Zeng
- Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Hua Yang
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Shujuan Shi
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Fang Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,CAMS Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, PUMC, Tianjin, China
| | - Shihui Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,CAMS Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, PUMC, Tianjin, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,CAMS Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, PUMC, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,CAMS Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, PUMC, Tianjin, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,CAMS Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, PUMC, Tianjin, China.
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China. .,Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China. .,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China. .,CAMS Center for Stem Cell Medicine, Department of Stem Cell and Regenerative Medicine, PUMC, Tianjin, China.
| |
Collapse
|
18
|
Prime Editor 3 Mediated Beta-Thalassemia Mutations of the HBB Gene in Human Erythroid Progenitor Cells. Int J Mol Sci 2022; 23:ijms23095002. [PMID: 35563395 PMCID: PMC9099916 DOI: 10.3390/ijms23095002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Recently developed Prime Editor 3 (PE3) has been implemented to induce genome editing in various cell types but has not been proven in human hematopoietic stem and progenitor cells. Using PE3, we successfully installed the beta-thalassemia (beta-thal) mutations in the HBB gene in the erythroid progenitor cell line HUDEP-2. We inserted the mCherry reporter gene cassette into editing plasmids, each including the prime editing guide RNA (pegRNA) and nick sgRNA. The plasmids were electroporated into HUDEP-2 cells, and the PE3 modified cells were identified by mCherry expression and collected using fluorescence-activated cell sorting (FACS). Sanger sequencing of the positive cells confirmed that PE3 induced precise beta-thal mutations with editing ratios from 4.55 to 100%. Furthermore, an off-target analysis showed no unintentional edits occurred in the cells. The editing ratios and parameters of pegRNA and nick sgRNA were also analyzed and summarized and will contribute to enhanced PE3 design in future studies. The characterization of the HUDEP-2 beta-thal cells showed typical thalassemia phenotypes, involving ineffective erythropoiesis, abnormal erythroid differentiation, high apoptosis rate, defective alpha-globin colocalization, cell viability deterioration, and ROS resisting deficiency. These HUDEP-2 beta-thal cells could provide ideal models for future beta-thal gene therapy studies.
Collapse
|
19
|
Yu S, Vassilev S, Lim ZR, Sivalingam J, Lam ATL, Ho V, Renia L, Malleret B, Reuveny S, Oh SKW. Selection of O-negative induced pluripotent stem cell clones for high-density red blood cell production in a scalable perfusion bioreactor system. Cell Prolif 2022; 55:e13218. [PMID: 35289971 PMCID: PMC9357363 DOI: 10.1111/cpr.13218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/27/2022] [Accepted: 02/18/2022] [Indexed: 12/31/2022] Open
Abstract
Objectives Large‐scale generation of universal red blood cells (RBCs) from O‐negative (O‐ve) human induced pluripotent stem cells (hiPSCs) holds the potential to alleviate worldwide shortages of blood and provide a safe and secure year‐round supply. Mature RBCs and reticulocytes, the immature counterparts of RBCs generated during erythropoiesis, could also find important applications in research, for example in malaria parasite infection studies. However, one major challenge is the lack of a high‐density culture platform for large‐scale generation of RBCs in vitro. Materials and Methods We generated 10 O‐ve hiPSC clones and evaluated their potential for mesoderm formation and erythroid differentiation. We then used a perfusion bioreactor system to perform studies with high‐density cultures of erythroblasts in vitro. Results Based on their tri‐lineage (and specifically mesoderm) differentiation potential, we isolated six hiPSC clones capable of producing functional erythroblasts. Using the best performing clone, we demonstrated the small‐scale generation of high‐density cultures of erythroblasts in a perfusion bioreactor system. After process optimization, we were able to achieve a peak cell density of 34.7 million cells/ml with 92.2% viability in the stirred bioreactor. The cells expressed high levels of erythroblast markers, showed oxygen carrying capacity, and were able to undergo enucleation. Conclusions This study demonstrated a scalable platform for the production of functional RBCs from hiPSCs. The perfusion culture platform we describe here could pave the way for large volume‐controlled bioreactor culture for the industrial generation of high cell density erythroblasts and RBCs.
Collapse
Affiliation(s)
- SuE Yu
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Svetlan Vassilev
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Zhong Ri Lim
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Jaichandran Sivalingam
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Alan Tin Lun Lam
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Valerie Ho
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Laurent Renia
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Republic of Singapore.,A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Republic of Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Republic of Singapore.,Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Republic of Singapore
| | - Shaul Reuveny
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Steve Kah Weng Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| |
Collapse
|
20
|
Wang S, Zhao H, Zhang H, Gao C, Guo X, Chen L, Lobo C, Yazdanbakhsh K, Zhang S, An X. Analyses of erythropoiesis from embryonic stem cell‐CD34
+
and cord blood‐CD34
+
cells reveal mechanisms for defective expansion and enucleation of embryomic stem cell‐erythroid cells. J Cell Mol Med 2022; 26:2404-2416. [PMID: 35249258 PMCID: PMC8995447 DOI: 10.1111/jcmm.17263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022] Open
Abstract
Red blood cells (RBCs) generated ex vivo have the potential to be used for transfusion. Human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) possess unlimited self‐renewal capacity and are the preferred cell sources to be used for ex vivo RBC generation. However, their applications are hindered by the facts that the expansion of ES/iPS‐derived erythroid cells is limited and the enucleation of ES/iPS‐derived erythroblasts is low compared to that derived from cord blood (CB) or peripheral blood (PB). To address this, we sought to investigate the underlying mechanisms by comparing the in vitro erythropoiesis profiles of CB CD34+ and ES CD34+ cells. We found that the limited expansion of ES CD34+ cell‐derived erythroid cells was associated with defective cell cycle of erythroid progenitors. In exploring the cellular and molecular mechanisms for the impaired enucleation of ES CD34+ cell‐derived orthochromatic erythroblasts (ES‐ortho), we found the chromatin of ES‐ortho was less condensed than that of CB CD34+ cell‐derived orthochromatic erythroblasts (CB‐ortho). At the molecular level, both RNA‐seq and ATAC‐seq analyses revealed that pathways involved in chromatin modification were down‐regulated in ES‐ortho. Additionally, the expression levels of molecules known to play important role in chromatin condensation or/and enucleation were significantly lower in ES‐ortho compared to that in CB‐ortho. Together, our findings have uncovered mechanisms for the limited expansion and impaired enucleation of ES CD34+ cell‐derived erythroid cells and may help to improve ex vivo RBC production from stem cells.
Collapse
Affiliation(s)
- Shihui Wang
- School of Life Sciences Zhengzhou University Zhengzhou China
- Laboratory of Membrane Biology New York Blood Center New York New York USA
| | - Huizhi Zhao
- School of Life Sciences Zhengzhou University Zhengzhou China
| | - Huan Zhang
- Laboratory of Membrane Biology New York Blood Center New York New York USA
| | - Chengjie Gao
- Laboratory of Membrane Biology New York Blood Center New York New York USA
| | - Xinhua Guo
- Laboratory of Membrane Biology New York Blood Center New York New York USA
| | - Lixiang Chen
- School of Life Sciences Zhengzhou University Zhengzhou China
| | - Cheryl Lobo
- Laboratory of Blood Borne Parasites New York Blood Center New York New York USA
| | - Karina Yazdanbakhsh
- Laboratory of Complement Biology New York Blood Center New York New York USA
| | - Shijie Zhang
- School of Life Sciences Zhengzhou University Zhengzhou China
| | - Xiuli An
- Laboratory of Membrane Biology New York Blood Center New York New York USA
| |
Collapse
|
21
|
Menezes AC, Dixon C, Scholz A, Nicholson R, Leckenby A, Azevedo A, Baker S, Gilkes AF, Davies S, Darley RL, Tonks A. RUNX3 overexpression inhibits normal human erythroid development. Sci Rep 2022; 12:1243. [PMID: 35075235 PMCID: PMC8786893 DOI: 10.1038/s41598-022-05371-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
RUNX proteins belong to a family of transcription factors essential for cellular proliferation, differentiation, and apoptosis with emerging data implicating RUNX3 in haematopoiesis and haematological malignancies. Here we show that RUNX3 plays an important regulatory role in normal human erythropoiesis. The impact of altering RUNX3 expression on erythropoiesis was determined by transducing human CD34+ cells with RUNX3 overexpression or shRNA knockdown vectors. Analysis of RUNX3 mRNA expression showed that RUNX3 levels decreased during erythropoiesis. Functionally, RUNX3 overexpression had a modest impact on early erythroid growth and development. However, in late-stage erythroid development, RUNX3 promoted growth and inhibited terminal differentiation with RUNX3 overexpressing cells exhibiting lower expression of glycophorin A, greater cell size and less differentiated morphology. These results suggest that suppression of RUNX3 is required for normal erythropoiesis. Overexpression of RUNX3 increased colony formation in liquid culture whilst, corresponding RUNX3 knockdown suppressed colony formation but otherwise had little impact. This study demonstrates that the downregulation of RUNX3 observed in normal human erythropoiesis is important in promoting the terminal stages of erythroid development and may further our understanding of the role of this transcription factor in haematological malignancies.
Collapse
Affiliation(s)
- Ana Catarina Menezes
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Christabel Dixon
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Anna Scholz
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Rachael Nicholson
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Adam Leckenby
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Aleksandra Azevedo
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Sarah Baker
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK.,Cardiff Experimental Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Amanda F Gilkes
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK.,Cardiff Experimental Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Sara Davies
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Richard L Darley
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Alex Tonks
- Division of Cancer & Genetics, Department of Haematology, School of Medicine, Cardiff University, Cardiff, Wales, CF14 4XN, UK.
| |
Collapse
|
22
|
Chen Y, Dong Y, Lu X, Li W, Zhang Y, Mao B, Pan X, Li X, Zhou Y, An Q, Xie F, Wang S, Xue Y, Cai X, Lai M, Zhou Q, Yan Y, Fu R, Wang H, Nakahata T, An X, Shi L, Zhang Y, Ma F. Inhibition of aryl hydrocarbon receptor signaling promotes the terminal differentiation of human erythroblasts. J Mol Cell Biol 2022; 14:6504013. [PMID: 35022784 PMCID: PMC9122643 DOI: 10.1093/jmcb/mjac001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/12/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) plays an important role during mammalian embryo development. Inhibition of AHR signaling promotes the development of hematopoietic stem/progenitor cells. AHR also regulates the functional maturation of blood cells, such as T cells and megakaryocytes. However, little is known about the role of AHR modulation during the development of erythroid cells. In this study, we used the AHR antagonist StemRegenin 1 (SR1) and the AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during different stages of human erythropoiesis to elucidate the function of AHR. We found that antagonizing AHR signaling improved the production of human embryonic stem cell (hESC)-derived erythrocytes and enhanced erythroid terminal differentiation. RNA-sequencing showed that SR1 treatment of proerythroblasts upregulated the expression of erythrocyte differentiation-related genes and downregulated actin organization-associated genes. We found that SR1 accelerated F-actin remodeling in terminally differentiated erythrocytes, favoring their maturation of the cytoskeleton and enucleation. We demonstrated that the effects of AHR inhibition on erythroid maturation were associated with F-actin remodeling. Our findings help uncover the mechanism for AHR-mediated human erythroid cell differentiation. We also provide a new approach toward the large-scale production of functionally mature human pluripotent stem cell-derived erythrocytes for use in translational applications.
Collapse
Affiliation(s)
- Yijin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yong Dong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xulin Lu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin, China
| | - Wanjing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yimeng Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Bin Mao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xu Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xiaohong Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Ya Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Quanming An
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Fangxin Xie
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | | | - Yuan Xue
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xinping Cai
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Mowen Lai
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Qiongxiu Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yan Yan
- Jinjiang Maternity and child health hospital, Chengdu, China
| | - Ruohan Fu
- Jinjiang Maternity and child health hospital, Chengdu, China
| | - Hong Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Tatsutoshi Nakahata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin, China
| | - Yonggang Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin, China
| |
Collapse
|
23
|
Wang Y, Wang H, Guo J, Gao J, Wang M, Xia M, Wen Y, Su P, Yang M, Liu M, Shi L, Cheng T, Zhou W, Zhou J. LGR4, Not LGR5, Enhances hPSC Hematopoiesis by Facilitating Mesoderm Induction via TGF-Beta Signaling Activation. Cell Rep 2021; 31:107600. [PMID: 32375050 DOI: 10.1016/j.celrep.2020.107600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/12/2019] [Accepted: 04/10/2020] [Indexed: 10/24/2022] Open
Abstract
Attempts to generate functional blood cells from human pluripotent stem cells (hPSCs) remain largely unsuccessful, mainly due to the lack of understanding of the regulatory network of human hematopoiesis. In this study, we identified leucine-rich-repeat-containing G-protein-coupled receptor 4 (LGR4) as an essential regulator of early hematopoietic differentiation of hPSCs. The deletion of LGR4 severely impairs mesoderm development, thereby limiting hematopoietic differentiation both in vitro and in vivo. In contrast, LGR5 is dispensable for hPSC hematopoiesis. The four R-spondin proteins show differential activities and dependencies on LGR4 in hematopoietic differentiation. The deletion of LGR4 almost entirely abolishes the enhancement induced by R-spondin1 and R-spondin3, but not R-spondin2. In addition, ZNRF3 is required for the response of R-spondin1-R-spondin3. At the mechanistic level, LGR4 regulates transforming growth factor beta (TGF-beta) signaling to control hematopoietic differentiation. Together, our results reveal vital roles of LGR4 in hematopoietic development and uncover distinct functions and underlying mechanisms for R-spondins.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Jiaojiao Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning Commission; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Mengge Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Meijuan Xia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Yuqi Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Ming Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Wen Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education; Key Laboratory of Carcinogenesis, National Health and Family Planning Commission; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
24
|
Zeng J, Yi D, Sun W, Liu Y, Chang J, Zhu L, Zhang Y, Pan X, Dong Y, Zhou Y, Lai M, Bian G, Zhou Q, Liu J, Chen B, Ma F. Overexpression of HOXA9 upregulates NF-κB signaling to promote human hematopoiesis and alter the hematopoietic differentiation potentials. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:9. [PMID: 33426581 PMCID: PMC7797385 DOI: 10.1186/s13619-020-00066-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022]
Abstract
Background The HOX genes are master regulators of embryogenesis that are also involved in hematopoiesis. HOXA9 belongs to a cluster of HOX genes that play extensively studied roles in hematopoiesis and leukemogenesis. Methods We established HOXA9-inducible human embryonic stem cells (HOXA9/hESCs) with normal pluripotency and potential for hematopoiesis, which could be used to analyze gene function with high accuracy. HOXA9/hESCs co-cultured with aorta–gonad–mesonephros-derived stromal cells (AGM-S3) were induced to overexpress HOXA9 with doxycycline (DOX) at various times after hematopoiesis started and then subjected to flow cytometry. Results Induction of HOXA9 from Day 4 (D4) or later notably promoted hematopoiesis and also increased the production of CD34+ cells and derived populations. The potential for myelogenesis was significantly elevated while the potential for erythrogenesis was significantly reduced. At D14, a significant promotion of S phase was observed in green fluorescent protein positive (GFP+) cells overexpressing HOXA9. NF-κB signaling was also up-regulated at D14 following induction of HOXA9 on D4. All of these effects could be counteracted by addition of an NF-κB inhibitor or siRNA against NFKB1 along with DOX. Conclusions Overexpression of HOXA9 starting at D4 or later during hematopoiesis significantly promoted hematopoiesis and the production of myeloid progenitors while reduced the production of erythroid progenitors, indicating that HOXA9 plays a key role in hematopoiesis and differentiation of hematopoietic lineages. Supplementary Information The online version contains supplementary material available at 10.1186/s13619-020-00066-0.
Collapse
Affiliation(s)
- Jiahui Zeng
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Danying Yi
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Wencui Sun
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Yuanlin Liu
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Jing Chang
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Lijiao Zhu
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Yonggang Zhang
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Xu Pan
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Yong Dong
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Ya Zhou
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Mowen Lai
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Guohui Bian
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Qiongxiu Zhou
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Jiaxin Liu
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Bo Chen
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China.
| | - Feng Ma
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China. .,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610065, China. .,State Key Laboratory of Experimental Hematology, CAMS & PUMC, Tianjin, 300020, China.
| |
Collapse
|
25
|
van den Bosch QCC, van Beek JGM, Kiliç E, Verdijk RM. Transient Expression of Lymphatic Markers in Retrobulbar Intraconal Orbital Vasculature During Fetal Development. Invest Ophthalmol Vis Sci 2021; 61:22. [PMID: 32516408 PMCID: PMC7415295 DOI: 10.1167/iovs.61.6.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The aim of this study is to investigate the presence of orbital lymphatic vessels during fetal and neonatal development and in adults using a panel of lymphatic markers. Methods This was a retrospective observational case series. For analyzing lymphatic vessels, we used formalin-fixed paraffin-embedded enucleated eyes from 25 human fetuses between 13 and 24 weeks of gestation and postnatal eyes from 15 children and 5 adults. Immunohistochemical analysis of lymphatic vessels was performed for the markers: lymphatic vessel endothelial hyaluronic acid receptor-1 (LYVE-1), podoplanin (D2-40), Prospero-related homeobox gene-1 (Prox-1), pan-endothelial marker CD31, and blood vessel endothelium specific CD34. Results Vasculature showing endothelial expression of LYVE-1, D2-40, Prox-1, and CD31 in combination with absence or weak expression of CD34, as would be expected for lymphatic vessels, was seen in 11 of 25 fetuses in an age range from 14 weeks to 23 weeks of gestation (44%). This lymphatic vascular staining pattern was also observed in 4 of 15 liveborn children (27%), all within 1 month of age, of which two were born prematurely at 32 and 34 weeks of gestation. Interestingly, an incomplete lymphatic staining pattern was observed in another 4 fetuses and two liveborn children of 4 months and 7 years old. No expression of lymphatic markers was observed in adult orbital vasculature. Conclusions No retrobulbar intraorbital lymphatic vessels were observed in adults, however, we did observe transient expression of lymphatic markers in retrobulbar intraconal orbital vasculature during fetal and early neonatal development. The orbit may, therefore, be proposed to possess a full range of lymphatic plasticity.
Collapse
|
26
|
Dutta R, Zhang TY, Köhnke T, Thomas D, Linde M, Gars E, Stafford M, Kaur S, Nakauchi Y, Yin R, Azizi A, Narla A, Majeti R. Enasidenib drives human erythroid differentiation independently of isocitrate dehydrogenase 2. J Clin Invest 2020; 130:1843-1849. [PMID: 31895700 DOI: 10.1172/jci133344] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer-related anemia is present in more than 60% of newly diagnosed cancer patients and is associated with substantial morbidity and high medical costs. Drugs that enhance erythropoiesis are urgently required to decrease transfusion rates and improve quality of life. Clinical studies have observed an unexpected improvement in hemoglobin and RBC transfusion-independence in patients with acute myeloid leukemia (AML) treated with the isocitrate dehydrogenase 2 (IDH2) mutant-specific inhibitor enasidenib, leading to improved quality of life without a reduction in AML disease burden. Here, we demonstrate that enasidenib enhanced human erythroid differentiation of hematopoietic progenitors. The phenomenon was not observed with other IDH1/2 inhibitors and occurred in IDH2-deficient CRISPR-engineered progenitors independently of D-2-hydroxyglutarate. The effect of enasidenib on hematopoietic progenitors was mediated by protoporphyrin accumulation, driving heme production and erythroid differentiation in committed CD71+ progenitors rather than hematopoietic stem cells. Our results position enasidenib as a promising therapeutic agent for improvement of anemia and provide the basis for a clinical trial using enasidenib to decrease transfusion dependence in a wide array of clinical contexts.
Collapse
Affiliation(s)
- Ritika Dutta
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.,Stanford School of Medicine, Stanford, California, USA
| | - Tian Yi Zhang
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.,Stanford School of Medicine, Stanford, California, USA
| | - Thomas Köhnke
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Daniel Thomas
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Miles Linde
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Eric Gars
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Melissa Stafford
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Satinder Kaur
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Yusuke Nakauchi
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Raymond Yin
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Armon Azizi
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Anupama Narla
- Department of Pediatrics, Division of Hematology/Oncology, Stanford University, Stanford, California, USA
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.,Stanford School of Medicine, Stanford, California, USA
| |
Collapse
|
27
|
Definition of Erythroid Differentiation Subsets in Normal Human Bone Marrow Using FlowSOM Unsupervised Cluster Analysis of Flow Cytometry Data. Hemasphere 2020; 5:e512. [PMID: 33364551 PMCID: PMC7755522 DOI: 10.1097/hs9.0000000000000512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/09/2020] [Indexed: 11/26/2022] Open
|
28
|
Sivalingam J, SuE Y, Lim ZR, Lam ATL, Lee AP, Lim HL, Chen HY, Tan HK, Warrier T, Hang JW, Nazir NB, Tan AHM, Renia L, Loh YH, Reuveny S, Malleret B, Oh SKW. A Scalable Suspension Platform for Generating High-Density Cultures of Universal Red Blood Cells from Human Induced Pluripotent Stem Cells. Stem Cell Reports 2020; 16:182-197. [PMID: 33306988 PMCID: PMC7897557 DOI: 10.1016/j.stemcr.2020.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
Abstract
Universal red blood cells (RBCs) differentiated from O-negative human induced pluripotent stem cells (hiPSCs) could find applications in transfusion medicine. Given that each transfusion unit of blood requires 2 trillion RBCs, efficient bioprocesses need to be developed for large-scale in vitro generation of RBCs. We have developed a scalable suspension agitation culture platform for differentiating hiPSC-microcarrier aggregates into functional RBCs and have demonstrated scalability of the process starting with 6 well plates and finally demonstrating in 500 mL spinner flasks. Differentiation of the best-performing hiPSCs generated 0.85 billion erythroblasts in 50 mL cultures with cell densities approaching 1.7 × 107 cells/mL. Functional (oxygen binding, hemoglobin characterization, membrane integrity, and fluctuations) and transcriptomics evaluations showed minimal differences between hiPSC-derived and adult-derived RBCs. The scalable agitation suspension culture differentiation process we describe here could find applications in future large-scale production of RBCs in controlled bioreactors. Scalable process for differentiating hiPSC-microcarrier aggregates into RBCs Erythroid differentiation potential of multiple hiPSC lines was evaluated hiPSC RBCs and adult RBCs revealed minor differences functionally and transcriptionally Co-culture of hiPSC RBCs with OP9 cells (2D and 3D) promoted improved enucleation
Collapse
Affiliation(s)
- Jaichandran Sivalingam
- Stem Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros 06-01, Singapore 138668, Singapore
| | - Yu SuE
- Stem Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros 06-01, Singapore 138668, Singapore
| | - Zhong Ri Lim
- Stem Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros 06-01, Singapore 138668, Singapore
| | - Alan T L Lam
- Stem Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros 06-01, Singapore 138668, Singapore
| | - Alison P Lee
- Transcriptomics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Hsueh Lee Lim
- Transcriptomics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Hong Yu Chen
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Hong Kee Tan
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Tushar Warrier
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Jing Wen Hang
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore
| | - Nazmi B Nazir
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore
| | - Andy H M Tan
- Transcriptomics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore; Immunology Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Laurent Renia
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Yuin Han Loh
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore 138668, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Shaul Reuveny
- Stem Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros 06-01, Singapore 138668, Singapore
| | - Benoit Malleret
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Steve K W Oh
- Stem Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros 06-01, Singapore 138668, Singapore.
| |
Collapse
|
29
|
Bian G, Gu Y, Xu C, Yang W, Pan X, Chen Y, Lai M, Zhou Y, Dong Y, Mao B, Zhou Q, Chen B, Nakathata T, Shi L, Wu M, Zhang Y, Ma F. Early development and functional properties of tryptase/chymase double-positive mast cells from human pluripotent stem cells. J Mol Cell Biol 2020; 13:104-115. [PMID: 33125075 PMCID: PMC8104937 DOI: 10.1093/jmcb/mjaa059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Mast cells (MCs) play a pivotal role in the hypersensitivity reaction by regulating the innate and adaptive immune responses. Humans have two types of MCs. The first type, termed MCTC, is found in the skin and other connective tissues and expresses both tryptase and chymase, while the second, termed MCT, which only expresses tryptase, is found primarily in the mucosa. MCs induced from human adult-type CD34+ cells are reported to be of the MCT type, but the development of MCs during embryonic/fetal stages is largely unknown. Using an efficient coculture system, we identified that a CD34+c-kit+ cell population, which appeared prior to the emergence of CD34+CD45+ hematopoietic stem and progenitor cells (HSPCs), stimulated robust production of pure Tryptase+Chymase+ MCs (MCTCs). Single-cell analysis revealed dual development directions of CD34+c-kit+ progenitors, with one lineage developing into erythro-myeloid progenitors (EMP) and the other lineage developing into HSPC. Interestingly, MCTCs derived from early CD34+c-kit+ cells exhibited strong histamine release and immune response functions. Particularly, robust release of IL-17 suggested that these early developing tissue-type MCTCs could play a central role in tumor immunity. These findings could help elucidate the mechanisms controlling early development of MCTCs and have significant therapeutic implications.
Collapse
Affiliation(s)
- Guohui Bian
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Yanzheng Gu
- Stem Cell Key Laboratory of Jiangsu Province, Institute of Medical Biotechnology, Suzhou University, Suzhou 215123, China
| | - Changlu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Wenyu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Xu Pan
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Yijin Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Mowen Lai
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Ya Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Yong Dong
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Bin Mao
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Qiongxiu Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Bo Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Tatsutoshi Nakathata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Feng Ma
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China.,State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| |
Collapse
|
30
|
Sawaengdee W, Cui K, Zhao K, Hongeng S, Fucharoen S, Wongtrakoongate P. Genome-Wide Transcriptional Regulation of the Long Non-coding RNA Steroid Receptor RNA Activator in Human Erythroblasts. Front Genet 2020; 11:850. [PMID: 32849830 PMCID: PMC7431964 DOI: 10.3389/fgene.2020.00850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/13/2020] [Indexed: 01/21/2023] Open
Abstract
Erythropoiesis of human hematopoietic stem cells (HSCs) maintains generation of red blood cells throughout life. However, little is known how human erythropoiesis is regulated by long non-coding RNAs (lncRNAs). By using ChIRP-seq, we report here that the lncRNA steroid receptor RNA activator (SRA) occupies chromatin, and co-localizes with CTCF, H3K4me3, and H3K27me3 genome-wide in human erythroblast cell line K562. CTCF binding sites that are also occupied by SRA are enriched for either H3K4me3 or H3K27me3. Transcriptome-wide analyses reveal that SRA facilitates expression of erythroid-associated genes, while repressing leukocyte-associated genes in both K562 and CD36-positive primary human proerythroblasts derived from HSCs. We find that SRA-regulated genes are enriched by both CTCF and SRA bindings. Further, silencing of SRA decreases expression of the erythroid-specific markers TFRC and GYPA, and down-regulates expression of globin genes in both K562 and human proerythroblast cells. Taken together, our findings establish that the lncRNA SRA occupies chromatin, and promotes transcription of erythroid genes, therefore facilitating human erythroid transcriptional program.
Collapse
Affiliation(s)
- Waritta Sawaengdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
31
|
Zeng J, Zhang H, Liu Y, Sun W, Yi D, Zhu L, Zhang Y, Pan X, Chen Y, Zhou Y, Bian G, Lai M, Zhou Q, Liu J, Chen B, Ma F. Overexpression of p21 Has Inhibitory Effect on Human Hematopoiesis by Blocking Generation of CD43+ Cells via Cell-Cycle Regulation. Int J Stem Cells 2020; 13:202-211. [PMID: 32587134 PMCID: PMC7378898 DOI: 10.15283/ijsc20033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/07/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background and Objectives p21, an important member of the Cip/Kip family, is involved in inhibitory effects of RUNX1b overexpression during the early stage of human hematopoiesis. Methods and Results We established a human embryonic stem cell (hESC) line with inducible expression of p21 (p21/hESCs). Overexpression of p21 did not influence either mesoderm induction or emergence of CD34+ cells, but it significantly decreased the production of CD43+ cells and changed the expression profile of hematopoiesis-related factors, leading to the negative effects of p21 on hematopoiesis. Conclusions In RUNX1b/hESC co-cultures when RUNX1b was induced from D0, perturbation of the cell cycle caused by upregulation of p21 probably prevented the appearance of CD43+ cells, but not CD34+ cells. The mechanisms via which CD34+ cells are blocked by RUNX1b overexpression remain to be elucidated.
Collapse
Affiliation(s)
- Jiahui Zeng
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Huifang Zhang
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yuanling Liu
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Wencui Sun
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Danying Yi
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Lijiao Zhu
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yonggang Zhang
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xu Pan
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yijing Chen
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Ya Zhou
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Guohui Bian
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Mowen Lai
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Qiongxiu Zhou
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Jiaxin Liu
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Bo Chen
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Feng Ma
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.,State Key Laboratory of Experimental Hematology, CAMS & PUMC, Tianjin, China
| |
Collapse
|
32
|
Dong Y, Bai J, Zhang Y, Zhou Y, Pan X, Li X, Zhou Q, Chen Y, Lai M, Mao B, Bian G, Feng J, Xie F, Chen B, Nakahata T, Zhang Y, Ma F. Alpha lipoic acid promotes development of hematopoietic progenitors derived from human embryonic stem cells by antagonizing ROS signals. J Leukoc Biol 2020; 108:1711-1725. [PMID: 32640500 PMCID: PMC7754144 DOI: 10.1002/jlb.1a0520-179r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/18/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Antagonism of ROS signaling can inhibit cell apoptosis and autophagy, thus favoring the maintenance and expansion of hematopoietic stem cells. Alpha lipoic acid (ALA), a small antioxidant molecule, affects cell apoptosis by lowering the ROS level. In this study, we show that ALA promoted production of human pluripotent stem cells (hPSCs) derived hemogenic endothelial cells and hematopoietic stem/progenitor cells in vitro. Transcriptome analysis of hPSCs derived hemogenic endothelial cells showed that ALA promoted endothelial‐to‐hematopoietic transition by up‐regulating RUNX1, GFI1, GFI1B, MEIS2, and HIF1A and down‐regulating SOX17, TGFB1, TGFB2, TGFB3, TGFBR1, and TGFBR2. ALA also up‐regulated sensor genes of ROS signals, including HIF1A, FOXO1, FOXO3, ATM, PETEN, SIRT1, and SIRT3, during the process of hPSCs derived hemogenic endothelial cells generation. However, in more mature hPSC‐derived hematopoietic stem/progenitor cells, ALA reduced ROS levels and inhibited apoptosis. In particular, ALA enhanced development of hPSCs derived hematopoietic stem/progenitor cells by up‐regulating HIF1A in response to a hypoxic environment. Furthermore, addition of ALA in ex vivo culture greatly improved the maintenance of functional cord blood HSCs by in vivo transplantation assay. Our findings support the conjecture that ALA plays an important role in efficient regeneration of hematopoietic stem/progenitor cells from hPSCs and maintenance of functional HSCs, providing insight into understanding of regeneration of early hematopoiesis for engineering clinically useful hPSCs derived hematopoietic stem/progenitor cells transplantation. Thus, ALA can be used in the study of hPSCs derived HSCs.
Collapse
Affiliation(s)
- Yong Dong
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Ju Bai
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yimeng Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Ya Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xu Pan
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xiaohong Li
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Qiongxiu Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yijin Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Mowen Lai
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Bin Mao
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Guohui Bian
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Jia Feng
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Fangxin Xie
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Bo Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Tatsutoshi Nakahata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Feng Ma
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin, China
| |
Collapse
|
33
|
Sun W, Zeng J, Chang J, Xue Y, Zhang Y, Pan X, Zhou Y, Lai M, Bian G, Zhou Q, Liu J, Chen B, Ma F. RUNX1-205, a novel splice variant of the human RUNX1 gene, has blockage effect on mesoderm-hemogenesis transition and promotion effect during the late stage of hematopoiesis. J Mol Cell Biol 2020; 12:386-396. [PMID: 32313936 PMCID: PMC7288743 DOI: 10.1093/jmcb/mjaa019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/07/2019] [Accepted: 11/19/2019] [Indexed: 11/13/2022] Open
Abstract
Runt-related transcription factor 1 (RUNX1) is required for definitive hematopoiesis; however, the functions of most human RUNX1 isoforms are unclear. In particular, the effects of RUNX1-205 (a novel splice variant that lacks exon 6 in comparison with RUNX1b) on human hematopoiesis are not clear. In this study, a human embryonic stem cell (hESC) line with inducible RUNX1-205 overexpression was established. Analyses of these cells revealed that induction of RUNX1-205 overexpression at early stage did not influence the induction of mesoderm but blocked the emergence of CD34+ cells, and the production of hematopoietic stem/progenitor cells was significantly reduced. In addition, the expression of hematopoiesis-related factors was downregulated. However, these effects were abolished when RUNX1-205 overexpression was induced after Day 6 in co-cultures of hESCs and AGM-S3 cells, indicating that the inhibitory effect occurred prior to generation of hemogenic endothelial cells, while the promotive effect could be observed during the late stage of hematopoiesis. This is very similar to that of RUNX1b. Interestingly, the mRNA expression profile of RUNX1-205 during hematopoiesis was distinct from that of RUNX1b, and the protein stability of RUNX1-205 was much higher than that of RUNX1b. Thus, the function of RUNX1-205 in normal and diseased models should be further explored.
Collapse
Affiliation(s)
- Wencui Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Jiahui Zeng
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Jing Chang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Yuan Xue
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Yonggang Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Xu Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Ya Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Mowen Lai
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Guohui Bian
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Qiongxiu Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Jiaxing Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Bo Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu 61006, China.,State Key Laboratory of Experimental Hematology, CAMS & PUMC, Tianjin 300020, China
| |
Collapse
|
34
|
Dynamic regulation of GATA2 in fate determination in hematopoiesis: possible approach to hPSC-derived hematopoietic stem/progenitor cells. BLOOD SCIENCE 2020; 2:1-6. [PMID: 35399862 PMCID: PMC8974898 DOI: 10.1097/bs9.0000000000000040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 12/26/2019] [Indexed: 01/07/2023] Open
Abstract
GATA2, a principal member of the GATA family, plays important roles in the generation and maintenance of hematopoietic stem/progenitor cells. Among the three mRNA transcripts, the distal first exon of GATA2 (IS exon) is specific for hematopoietic and neuronal cells. GATA2 mutants with abnormal expression are often present in acute myeloid leukemia-related familial diseases and myelodysplastic syndrome, indicating the crucial significance of GATA2 in the proper maintenance of blood system functions. This article offers an overview of the regulation dynamics and function of GATA2 in the generation, proliferation, and function of hematopoietic stem cells in both mouse and human models. We acknowledge the current progress in the cell fate determination mechanism by dynamic GATA2 expression. The gene modification approaches for inspecting the role of GATA2 in definitive hematopoiesis demonstrate the potential for acquiring hPSC-derived hematopoietic stem cells via manipulated GATA2 regulation.
Collapse
|
35
|
Bernecker C, Ackermann M, Lachmann N, Rohrhofer L, Zaehres H, Araúzo-Bravo MJ, van den Akker E, Schlenke P, Dorn I. Enhanced Ex Vivo Generation of Erythroid Cells from Human Induced Pluripotent Stem Cells in a Simplified Cell Culture System with Low Cytokine Support. Stem Cells Dev 2019; 28:1540-1551. [PMID: 31595840 PMCID: PMC6882453 DOI: 10.1089/scd.2019.0132] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Red blood cell (RBC) differentiation from human induced pluripotent stem cells (hiPSCs) offers great potential for developmental studies and innovative therapies. However, ex vivo erythropoiesis from hiPSCs is currently limited by low efficiency and unphysiological conditions of common culture systems. Especially, the absence of a physiological niche may impair cell growth and lineage-specific differentiation. We here describe a simplified, xeno- and feeder-free culture system for prolonged RBC generation that uses low numbers of supporting cytokines [stem cell factor (SCF), erythropoietin (EPO), and interleukin 3 (IL-3)] and is based on the intermediate development of a “hematopoietic cell forming complex (HCFC).” From this HCFC, CD43+ hematopoietic cells (purity >95%) were continuously released into the supernatant and could be collected repeatedly over a period of 6 weeks for further erythroid differentiation. The released cells were mainly CD34+/CD45+ progenitors with high erythroid colony-forming potential and CD36+ erythroid precursors. A total of 1.5 × 107 cells could be harvested from the supernatant of one six-well plate, showing 100- to 1000-fold amplification during subsequent homogeneous differentiation into GPA+ erythroid cells. Mean enucleation rates near 40% (up to 60%) further confirmed the potency of the system. These benefits may be explained by the generation of a niche within the HCFC that mimics the spatiotemporal signaling of the physiological microenvironment in which erythropoiesis occurs. Compared to other protocols, this method provides lower complexity, less cytokine and medium consumption, higher cellular output, and better enucleation. In addition, slight modifications in cytokine addition shift the system toward continuous generation of granulocytes and macrophages.
Collapse
Affiliation(s)
- Claudia Bernecker
- Department of Blood Group Serology and Transfusion Medicine, Medical University Graz, Graz, Austria
| | - Mania Ackermann
- RG Translational Hematology of Congenital Diseases, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- RG Translational Hematology of Congenital Diseases, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Lisa Rohrhofer
- Department of Blood Group Serology and Transfusion Medicine, Medical University Graz, Graz, Austria
| | - Holm Zaehres
- Department of Anatomy and Molecular Embryology, Ruhr-University Bochum, Bochum, Germany
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine Research Group, Biodonostia Health Research Institute, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | | - Peter Schlenke
- Department of Blood Group Serology and Transfusion Medicine, Medical University Graz, Graz, Austria
| | - Isabel Dorn
- Department of Blood Group Serology and Transfusion Medicine, Medical University Graz, Graz, Austria
| |
Collapse
|
36
|
Chang J, Sun W, Zeng J, Xue Y, Zhang Y, Pan X, Zhou Y, Lai M, Bian G, Zhou Q, Liu J, Chen B, Guo F, Ma F. Establishment of an in vitro system based on AGM-S3 co-culture for screening traditional herbal medicines that stimulate hematopoiesis. JOURNAL OF ETHNOPHARMACOLOGY 2019; 240:111938. [PMID: 31077780 DOI: 10.1016/j.jep.2019.111938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/05/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Spatholobus suberectus Dunn is a traditional Chinese medicine (TCM) that can activate blood, dispel stasis, inhibit platelet aggregation, and stimulate hematopoiesis, and thereby treat anemia and diseases related to blood stasis syndrome (BSS). However, its hematopoiesis-stimulating activity is not well understood. AIM OF STUDY Four phenolic compounds (daidzein, formononetin, catechin, and procyandin B2) were isolated and purified from stems of S. suberectus, and tested using an in vitro hematopoiesis system. MATERIALS AND METHODS An AGM-S3 co-culture system for hematopoiesis derived from human embryonic stem cells (hESCs) was employed to explore effects on hematopoiesis. At different stages, extracts from Spatholobus suberectus Dunn were added to the co-culture system at concentrations of 2, 10, or 50 μM, and fluorescence-activated cell sorting (FACS), hematopoietic colony culturing, and quantitative reverse transcription PCR (qRT-PCR) were used to probe changes in hematopoietic progenitors and erythroid progenitors. RESULTS When H1 hESCs co-cultured with AGM-S3 were added along with 10 μM catechin from day 12 (D12), proliferation and differentiation of hematopoietic and erythroid progenitors from hESCs was increased based on FACS with antibodies recognizing CD34/CD45 and GPA/CD71. Hematopoiesis colony culturing further confirmed the promotion effect of catechin on hematopoiesis, and other active fractions did not significantly promote hematopoiesis. qRT-PCR revealed that some important genes related to hematopoiesis and erythroid were up-regulated followed catechin exposure. CONCLUSIONS Our results demonstrate that catechin, an active ingredient of Spatholobus suberectus Dunn, can increase the efficiency of hematopoiesis, including hematopoietic and erythroid progenitors, consistent with previous reports. The AGM-S3 co-culture system could provide an effective tool for screening active compounds in TCMs that promote hematopoiesis, and may be of clinical and pharmaceutical use.
Collapse
Affiliation(s)
- Jing Chang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Wencui Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Jiahui Zeng
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Yuan Xue
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Yonggang Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Xu Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Ya Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Mowen Lai
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Guohui Bian
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Qiongxiu Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Jiaxing Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Bo Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China.
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China; State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 61006, China; State Key Laboratory of Experimental Hematology, CAMS & PUMC, Tianjin, 300020, China.
| |
Collapse
|
37
|
Human Hematopoietic Stem Cells: Concepts and Perspectives on the Biology and Use of Fresh Versus In Vitro–Generated Cells for Therapeutic Applications. CURRENT STEM CELL REPORTS 2019. [DOI: 10.1007/s40778-019-00162-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
38
|
Zhou Y, Zhang Y, Chen B, Dong Y, Zhang Y, Mao B, Pan X, Lai M, Chen Y, Bian G, Zhou Q, Nakahata T, Zhou J, Wu M, Ma F. Overexpression of GATA2 Enhances Development and Maintenance of Human Embryonic Stem Cell-Derived Hematopoietic Stem Cell-like Progenitors. Stem Cell Reports 2019; 13:31-47. [PMID: 31178416 PMCID: PMC6626852 DOI: 10.1016/j.stemcr.2019.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022] Open
Abstract
GATA2 is essential for the endothelial-to-hematopoietic transition (EHT) and generation of hematopoietic stem cells (HSCs). It is poorly understood how GATA2 controls the development of human pluripotent stem cell (hPSC)-derived HS-like cells. Here, using human embryonic stem cells (hESCs) in which GATA2 overexpression was induced by doxycycline (Dox), we elucidated the dual functions of GATA2 in definitive hematopoiesis before and after the emergence of CD34+CD45+CD90+CD38- HS-like cells. Specifically, GATA2 promoted expansion of hemogenic precursors via the EHT and then helped to maintain HS-like cells in a quiescent state by regulating cell cycle. RNA sequencing showed that hPSC-derived HS-like cells were very similar to human fetal liver-derived HSCs. Our findings will help to elucidate the mechanism that controls the early stages of human definitive hematopoiesis and may help to develop a strategy to generate hPSC-derived HSCs.
Collapse
Affiliation(s)
- Ya Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China.
| | - Bo Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Yong Dong
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Yimeng Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Bin Mao
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Xu Pan
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Mowen Lai
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Yijin Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Guohui Bian
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Qiongxiu Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Tatsutoshi Nakahata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks ND 58203, USA
| | - Feng Ma
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China; State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China.
| |
Collapse
|
39
|
Xia K, Gong Z, Zhu J, Yu W, Wang Y, Wang J, Xu A, Zhou X, Tao H, Li F, Liang C. Differentiation of Pluripotent Stem Cells into Nucleus Pulposus Progenitor Cells for Intervertebral Disc Regeneration. Curr Stem Cell Res Ther 2019; 14:57-64. [PMID: 30227822 DOI: 10.2174/1574888x13666180918095121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/31/2018] [Accepted: 09/11/2018] [Indexed: 02/08/2023]
Abstract
Low back pain (LBP) is one of the world's most common musculoskeletal diseases and is frequently associated with intervertebral disc degeneration (IDD). While the main cause of IDD is commonly attributed to a reduced number of nucleus pulposus (NP) cells, current treatment strategies (both surgical and more conservative) fail to replenish NP cells or reverse the pathology. Cell replacement therapies are an attractive alternative for treating IDD. However, injecting intervertebral disc (IVD) cells, chondrocytes, or mesenchymal stem cells into various animal models of IDD indicate that transplanted cells generally fail to survive and engraft into the avascular IVD niche. Whereas pluripotent stem cells (PSCs), including induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs), hold great potential for revolutionizing regenerative medicine, current protocols for differentiating these cells into NP-like cells are inadequate. Nucleus pulposus progenitor cells (NPPCs), which are derived from the embryonic notochord, can not only survive within the harsh hypoxic environment of the IVD, but they also efficiently differentiate into NP-like cells. Here we provide an overview of the latest progress in repairing degenerated IVDs using PSCs and NPPCs. We also discuss the molecular pathways by which PSCs differentiate into NPPCs in vitro and in vivo and propose a new, in vivo IDD therapy.
Collapse
Affiliation(s)
- Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Zhe Gong
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Yitian Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Junjie Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Ankai Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Xiaopeng Zhou
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Fangcai Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| |
Collapse
|
40
|
Carulli G, Sammuri P, Domenichini C, Rousseau M, Ottaviano V, Ferreri MI, Azzarà A, Caracciolo F, Petrini M. Morphologic and immunophenotypic features of a case of acute monoblastic leukemia with unusual positivity for Glycophorin-A. Hematol Rep 2018; 10:7823. [PMID: 30631409 PMCID: PMC6297862 DOI: 10.4081/hr.2018.7823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/29/2018] [Indexed: 11/23/2022] Open
Abstract
Acute monoblastic leukemia (AMoL) is characterized by cells with highly undifferentiated morphology. Cytochemistry with non-specific esterases is negative in up to 20% of cases. Immunophenotyping by flow cytometry has an essential role in diagnosing such a subtype of leukemia and a multiparametric approach with a wide monoclonal antibody panel is necessary. We describe a case of AMoL with morphology resembling either plasma blasts or very immature erythroblasts. Diagnosis was made by alpha-naphtyl-acetate esterase staining and with immunophenotyping, which was made with a wide monoclonal antibody panel. Blasts were positive for monocytic markers. Most of leukemic cells, however, were positive for Glycophorin-A. The presence of Glycophorin-A, which is considered as a specific marker of the erythroid lineage, has never been reported previously in cases of AMoL. This peculiar immunophenotype might be interpreted as deriving from a common myelo-erythroid precursor undergone leukemic transformation.
Collapse
|
41
|
Zidovudine-Based Treatments Inhibit the Glycosylation of ADAM17 and Reduce CD163 Shedding From Monocytes. J Acquir Immune Defic Syndr 2018; 79:126-134. [PMID: 29794822 DOI: 10.1097/qai.0000000000001769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND sCD163, a biomarker of monocyte-macrophage activation, has been identified as a predictor of all-cause mortality in treated HIV-infected individuals. Nevertheless, little is known about whether different antiretroviral drugs differentially regulate sCD163 levels and monocyte activation. METHODS A total of 123 patients receiving zidovudine (ZDV)-based (n = 55) or tenofovir disoproxil fumarate (TDF)-based (n = 68) antiretroviral regimens were enrolled, and their viral loads, CD4 counts, as well as plasma sCD163 and sCD14 levels were quantified. Twenty-eight (14 in each group) patients donated additional blood samples for flow cytometry and gene expression analyses using purified monocytes. THP-1 cultures were also used to investigate the effect of ZDV on ADAM17, which is responsible for CD163 shedding. RESULTS As compared to the TDF-treated group, the ZDV-treated group had lower plasma sCD163 levels and higher CD163 expression on CD14++CD16 monocytes. Five metabolic-inflammatory genes exhibited significantly different expression levels between purified monocytes of the ZDV and TDF groups (IL-6, 2.90-fold lower in ZDV group, P < 0.001; iNOS, 1.81-fold higher; CX3CR1, 1.72-fold lower; MIP-1β, 1.10-fold lower; and PPARγ-1, 1.36-fold higher, P < 0.05). Moreover, we show that ZDV treatment increases the surface expression of CD163 in cultured THP-1 cells, accompanied by the inhibition of glycosylation and surface expression of ADAM17. CONCLUSIONS Compared with TDF treatment, ZDV treatment causes lower plasma sCD163 levels, probably by inhibiting the glycosylation of ADAM17 and CD163 shedding. Our results show that ZDV functions as an ADAM17 inhibitor in vivo and extend our understanding of its immune-modulatory effects and adverse effects.
Collapse
|
42
|
Chen B, Teng J, Liu H, Pan X, Zhou Y, Huang S, Lai M, Bian G, Mao B, Sun W, Zhou Q, Yang S, Nakahata T, Ma F. Inducible overexpression of RUNX1b/c in human embryonic stem cells blocks early hematopoiesis from mesoderm. J Mol Cell Biol 2018; 9:262-273. [PMID: 28992293 DOI: 10.1093/jmcb/mjx032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 08/12/2017] [Indexed: 12/16/2022] Open
Abstract
RUNX1 is absolutely required for definitive hematopoiesis, but the function of RUNX1b/c, two isoforms of human RUNX1, is unclear. We established inducible RUNX1b/c-overexpressing human embryonic stem cell (hESC) lines, in which RUNX1b/c overexpression prevented the emergence of CD34+ cells from early stage, thereby drastically reducing the production of hematopoietic stem/progenitor cells. Simultaneously, the expression of hematopoiesis-related factors was downregulated. However, such blockage effect disappeared from day 6 in hESC/AGM-S3 cell co-cultures, proving that the blockage occurred before the generation of hemogenic endothelial cells. This blockage was partially rescued by RepSox, an inhibitor of the transforming growth factor (TGF)-β signaling pathway, indicating a close relationship between RUNX1b/c and TGF-β pathway. Our results suggest a unique inhibitory function of RUNX1b/c in the development of early hematopoiesis and may aid further understanding of its biological function in normal and diseased models.
Collapse
Affiliation(s)
- B Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Jiawen Teng
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Hongwei Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - X Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Y Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Shu Huang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Mowen Lai
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Guohui Bian
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Bin Mao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Wencui Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Qiongxiu Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610065, China
| | - Tatsutoshi Nakahata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Experimental Hematology, CAMS & PUMC, Tianjin 300020, China
| |
Collapse
|
43
|
Allenby MC, Tahlawi A, Morais JCF, Li K, Panoskaltsis N, Mantalaris A. Ceramic Hollow Fibre Constructs for Continuous Perfusion and Cell Harvest from 3D Hematopoietic Organoids. Stem Cells Int 2018; 2018:6230214. [PMID: 29760729 PMCID: PMC5901824 DOI: 10.1155/2018/6230214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/19/2017] [Accepted: 01/04/2018] [Indexed: 01/05/2023] Open
Abstract
Tissue vasculature efficiently distributes nutrients, removes metabolites, and possesses selective cellular permeability for tissue growth and function. Engineered tissue models have been limited by small volumes, low cell densities, and invasive cell extraction due to ineffective nutrient diffusion and cell-biomaterial attachment. Herein, we describe the fabrication and testing of ceramic hollow fibre membranes (HFs) able to separate red blood cells (RBCs) and mononuclear cells (MNCs) and be incorporated into 3D tissue models to improve nutrient and metabolite exchange. These HFs filtered RBCs from human umbilical cord blood (CB) suspensions of 20% RBCs to produce 90% RBC filtrate suspensions. When incorporated within 5 mL of 3D collagen-coated polyurethane porous scaffold, medium-perfused HFs maintained nontoxic glucose, lactate, pH levels, and higher cell densities over 21 days of culture in comparison to nonperfused 0.125 mL scaffolds. This hollow fibre bioreactor (HFBR) required a smaller per-cell medium requirement and operated at cell densities > 10-fold higher than current 2D methods whilst allowing for continuous cell harvest through HFs. Herein, we propose HFs to improve 3D cell culture nutrient and metabolite diffusion, increase culture volume and cell density, and continuously harvest products for translational cell therapy biomanufacturing protocols.
Collapse
Affiliation(s)
- Mark C. Allenby
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London, UK
| | - Asma Tahlawi
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London, UK
| | - José C. F. Morais
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London, UK
| | - Kang Li
- Transport & Separation Laboratory, Department of Chemical Engineering, Imperial College London, London, UK
| | - Nicki Panoskaltsis
- Biological Systems Engineering Laboratory, Department of Hematology, Imperial College London, London, UK
| | - Athanasios Mantalaris
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
44
|
Wang H, Liu C, Liu X, Wang M, Wu D, Gao J, Su P, Nakahata T, Zhou W, Xu Y, Shi L, Ma F, Zhou J. MEIS1 Regulates Hemogenic Endothelial Generation, Megakaryopoiesis, and Thrombopoiesis in Human Pluripotent Stem Cells by Targeting TAL1 and FLI1. Stem Cell Reports 2018; 10:447-460. [PMID: 29358086 PMCID: PMC5830947 DOI: 10.1016/j.stemcr.2017.12.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/11/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) provide an unlimited source for generating various kinds of functional blood cells. However, efficient strategies for generating large-scale functional blood cells from hPSCs are still lacking, and the mechanism underlying human hematopoiesis remains largely unknown. In this study, we identified myeloid ectopic viral integration site 1 homolog (MEIS1) as a crucial regulator of hPSC early hematopoietic differentiation. MEIS1 is vital for specification of APLNR+ mesoderm progenitors to functional hemogenic endothelial progenitors (HEPs), thereby controlling formation of hematopoietic progenitor cells (HPCs). TAL1 mediates the function of MEIS1 in HEP specification. In addition, MEIS1 is vital for megakaryopoiesis and thrombopoiesis from hPSCs. Mechanistically, FLI1 acts as a downstream gene necessary for the function of MEIS1 during megakaryopoiesis. Thus, MEIS1 controls human hematopoiesis in a stage-specific manner and can be potentially manipulated for large-scale generation of HPCs or platelets from hPSCs for therapeutic applications in regenerative medicine. MEIS1 knockout impairs hematopoiesis of hPSCs by suppressing HEP specification MEIS1−/− megakaryocytes fail to undergo polyploidization and thrombopoiesis TAL1 mediates the function of MEIS1 in HEP specification FLI1 acts as a downstream target of MEIS1 during megakaryopoiesis and thrombopoiesis
Collapse
Affiliation(s)
- Hongtao Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Cuicui Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Xin Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Mengge Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Dan Wu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Tatsutoshi Nakahata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Wen Zhou
- School of Basic Medical Science and Cancer Research Institute, Central South University, Changsha 410013, China
| | - Yuanfu Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Feng Ma
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences & Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|