1
|
Xu Z, Song R, Chen Z, Sun Y, Xia Y, Miao H, Wang W, Zhang Y, Jiang X, Chen G. Hydrogen generators-protected mesenchymal stem cells reverse articular redox imbalance-induced immune dysfunction for osteoarthritis treatment. Biomaterials 2025; 320:123239. [PMID: 40054376 DOI: 10.1016/j.biomaterials.2025.123239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/07/2025] [Accepted: 03/03/2025] [Indexed: 04/06/2025]
Abstract
Stem cell therapy has revolutionized the management of osteoarthritis (OA), but the articular dysregulated redox status diminishes cell engraftment efficiency and disrupts immune homeostasis, therefore compromising the overall therapeutic efficacy. Here, we present hydrogen (H2) generators-backpacked mesenchymal stem cells (MSCs) which preserve the biological functions and survival of transplanted cells and reverse articular immune dysfunction, mitigating OA. Specifically, post systemic transplantation, H2 generators-laden MSCs home to OA joints, and upon stimulation in acidic OA environment, H2 produced from the generators remodels articular redox balance, thereby relieving the loss of mitochondrial membrane potential, decreasing cell apoptosis rate, and maintaining pluripotent and paracrine functions of MSCs. Furthermore, the reactive oxygen species scavenging by H2 in combination with paracrine effects of the MSCs promote macrophage polarization towards the anti-inflammatory M2 phenotype, which contributes to reversing synovial immune disorder. In severe OA model, the backpacked MSCs reduce osteoarthritic degeneration, osteophyte formation and joint inflammation, and promote cartilage regeneration. In sum, our work demonstrates that arming with H2 generators effectively boosts the therapeutic efficacy of MSCs, which hold great potential for alleviating redox imbalance-related tissue lesions, including but not limited to OA.
Collapse
Affiliation(s)
- Zhou Xu
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China; Shandong Provincial Key Medical and Health Laboratory of Neuro-oncology of Innovative Integrated Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Qingdao, 266024, China; Northern Jiangsu People's Hospital, Yangzhou, 225001, China; Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Ruilong Song
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Zhiling Chen
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Yu Sun
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Yinhe Xia
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Haixiang Miao
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Weijie Wang
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Yuankai Zhang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Xinyi Jiang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Gang Chen
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China; Shandong Provincial Key Medical and Health Laboratory of Neuro-oncology of Innovative Integrated Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Qingdao, 266024, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Ma X, Chen C, Chen X, Dan S, Li J, Zhang X, She S, Hu J, Zhou YW, Kang B, Wang YJ, Chen W. ATR regulates OCT4 phosphorylation and safeguards human naïve pluripotency. Sci Rep 2025; 15:15274. [PMID: 40312477 DOI: 10.1038/s41598-025-97829-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Abstract
Under specific conditions, cultured human embryonic stem cells (hESCs) corresponding to primed post-implantation epiblasts can be converted back to a 'naïve pluripotency' state that resembles the pre-implantation epiblasts. The core pluripotency factor OCT4 is known to be crucial in regulating different states of pluripotency, but its potential regulatory role in human naïve pluripotency remains unexplored. In this study, we systematically mapped out phosphorylation sites in OCT4 protein that are differentially phosphorylated between two states of pluripotency, and further identified ATR as a key kinase that phosphorylated OCT4 in naïve but not primed hESCs. The kinase activity levels of ATR in naïve hESCs were higher than those in primed hESCs. Ablating cellular ATR activity significantly halted the induction of naïve hESCs from their primed counterparts, and increased early apoptotic death of naïve hESCs upon UV and CPT treatment. Thus, our work reveals the importance of ATR activity in safeguarding human naïve pluripotency, and implicates a potential association of OCT4 phosphorylation, DNA damage sensing and repairing system in regulating different states of pluripotency during early development.
Collapse
Affiliation(s)
- Xudong Ma
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Cheng Chen
- Shaoxing People's Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang, China
| | - Xinyu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Songsong Dan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Jianqiong Li
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Xiaobing Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Shiqi She
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Zhejiang Museum of Natural History, Hangzhou, 310014, Zhejiang, China
| | - Jianwen Hu
- Shanghai Bioprofile Technology Co., Ltd., Shanghai, 200241, China
| | - Yan-Wen Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Bo Kang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Wenjie Chen
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
3
|
Vaezijoze S, Irani S, Siadat SD, Zali M. Modulation of satiety hormones by Bacteroides thetaiotaomicron, Bacteroides fragilis and their derivatives. AMB Express 2025; 15:41. [PMID: 40044987 PMCID: PMC11883081 DOI: 10.1186/s13568-025-01852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
Obesity is a complex disorder influenced by various factors, including gut microbiota, which play a crucial role in metabolic regulation. This study is aimed to investigate the effects of Bacteroides thetaiotaomicron and Bacteroides fragilis, along with their derivatives-outer membrane vesicles (OMVs) and cell-free supernatant (CFS)-on the expression and secretion of satiety hormones in the murine intestinal secretin tumor cell line (STC-1). We examined the expression of peptide YY (PYY), glucagon-like peptide-1 and -2 (GLP-1 and GLP-2, encoded by the GCG gene), the enzyme prohormone convertase-1 (PC1/PCSK1 gene), and the receptors G protein-coupled receptor 119 and 120 (GPR119 and GPR120), and G-protein-coupled bile acid receptor (TGR5). Our results demonstrate that live B. fragilis significantly increased PYY expression and secretion. B. thetaiotaomicron CFS notably upregulated GCG, PCSK1, GPR119, GPR120, and TGR5 expression, leading to elevated GLP-1 secretion. B. fragilis CFS decreased GPR119, GPR120, and GCG expression. OMVs from B. thetaiotaomicron at 50 µg/ml significantly enhanced GCG and PCSK1 expression, while B. fragilis OMVs generally decreased gene expression, except for PYY protein abundance. Inactive B. thetaiotaomicron and B. fragilis increased GCG mRNA levels and GLP-1 concentration, with inactive B. fragilis also elevating GLP-2 protein levels.This study suggests that B. thetaiotaomicron and its derivatives, particularly CFS and OMVs, have potential as next-generation probiotics, postbiotics, and paraprobiotics for modulating satiety hormones and managing obesity. Further research is warranted to explore their mechanisms and therapeutic applications in vivo.
Collapse
Affiliation(s)
- Somayeh Vaezijoze
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Mohammadreza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Hao Y, Li X, Qin K, Shi Y, He Y, Zhang C, Cheng B, Zhang X, Hu G, Liang S, Tang Q, Chen X. Chemoproteomic and Transcriptomic Analysis Reveals that O-GlcNAc Regulates Mouse Embryonic Stem Cell Fate through the Pluripotency Network. Angew Chem Int Ed Engl 2023; 62:e202300500. [PMID: 36852467 DOI: 10.1002/anie.202300500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Self-renewal and differentiation of embryonic stem cells (ESCs) are influenced by protein O-linked β-N-acetylglucosamine (O-GlcNAc) modification, but the underlying mechanism remains incompletely understood. Herein, we report the identification of 979 O-GlcNAcylated proteins and 1340 modification sites in mouse ESCs (mESCs) by using a chemoproteomics method. In addition to OCT4 and SOX2, the third core pluripotency transcription factor (PTF) NANOG was found to be modified and functionally regulated by O-GlcNAc. Upon differentiation along the neuronal lineage, the O-GlcNAc stoichiometry at 123 sites of 83 proteins-several of which were PTFs-was found to decline. Transcriptomic profiling reveals 2456 differentially expressed genes responsive to OGT inhibition during differentiation, of which 901 are target genes of core PTFs. By acting on the core PTF network, suppression of O-GlcNAcylation upregulates neuron-related genes, thus contributing to mESC fate determination.
Collapse
Affiliation(s)
- Yi Hao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Xiang Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Ke Qin
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Yujie Shi
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Yanwen He
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Che Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Bo Cheng
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Xiwen Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Guangyu Hu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Shuyu Liang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Qi Tang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Chen G, Yin S, Zeng H, Li H, Wan X. Regulation of Embryonic Stem Cell Self-Renewal. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081151. [PMID: 36013330 PMCID: PMC9410528 DOI: 10.3390/life12081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Embryonic stem cells (ESCs) are a type of cells capable of self-renewal and multi-directional differentiation. The self-renewal of ESCs is regulated by factors including signaling pathway proteins, transcription factors, epigenetic regulators, cytokines, and small molecular compounds. Similarly, non-coding RNAs, small RNAs, and microRNAs (miRNAs) also play an important role in the process. Functionally, the core transcription factors interact with helper transcription factors to activate the expression of genes that contribute to maintaining pluripotency, while suppressing the expression of differentiation-related genes. Additionally, cytokines such as leukemia suppressor factor (LIF) stimulate downstream signaling pathways and promote self-renewal of ESCs. Particularly, LIF binds to its receptor (LIFR/gp130) to trigger the downstream Jak-Stat3 signaling pathway. BMP4 activates the downstream pathway and acts in combination with Jak-Stat3 to promote pluripotency of ESCs in the absence of serum. In addition, activation of the Wnt-FDZ signaling pathway has been observed to facilitate the self-renewal of ESCs. Small molecule modulator proteins of the pathway mentioned above are widely used in in vitro culture of stem cells. Multiple epigenetic regulators are involved in the maintenance of ESCs self-renewal, making the epigenetic status of ESCs a crucial factor in this process. Similarly, non-coding RNAs and cellular energetics have been described to promote the maintenance of the ESC's self-renewal. These factors regulate the self-renewal and differentiation of ESCs by forming signaling networks. This review focused on the role of major transcription factors, signaling pathways, small molecular compounds, epigenetic regulators, non-coding RNAs, and cellular energetics in ESC's self-renewal.
Collapse
Affiliation(s)
- Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Shasha Yin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, China;
| | - Haisen Li
- School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| |
Collapse
|
6
|
Lee M, Oh JN, Choe GC, Kim SH, Choi KH, Lee DK, Jeong J, Lee CK. Changes in OCT4 expression play a crucial role in the lineage specification and proliferation of preimplantation porcine blastocysts. Cell Prolif 2022; 55:e13313. [PMID: 35883229 DOI: 10.1111/cpr.13313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES Curiosity about the role of OCT4, a core transcription factor that maintains inner cell mass (ICM) formation during preimplantation embryogenesis and the pluripotent state in embryonic development, has long been an issue. OCT4 has a species-specific expression pattern in mammalian preimplantation embryogenesis and is known to play an essential role in ICM formation. However, there is a need to study new roles for OCT4-related pluripotency networks and second-cell fate decisions. MATERIALS AND METHODS To determine the functions of OCT4 in lineage specification and embryo proliferation, loss- and gain-of-function studies were performed on porcine parthenotes using microinjection. Then, we performed immunocytochemistry and quantitative real-time polymerase chain reaction (PCR) to examine the association of OCT4 with other lineage markers and its effect on downstream genes. RESULTS In OCT4-targeted late blastocysts, SOX2, NANOG, and SOX17 positive cells were decreased, and the total cell number of blastocysts was also decreased. According to real-time PCR analysis, NANOG, SOX17, and CDK4 were decreased in OCT4-targeted blastocysts, but trophoblast-related genes were increased. In OCT4-overexpressing blastocysts, SOX2 and NANOG positive cells increased, while SOX17 positive cells decreased, and while total cell number of blastocysts increased. As a result of real-time PCR analysis, the expression of SOX2, NANOG, and CDK4 was increased, but the expression of SOX17 was decreased. CONCLUSION Taken together, our results demonstrated that OCT4 leads pluripotency in porcine blastocysts and also plays an important role in ICM formation, secondary cell fate decision, and cell proliferation.
Collapse
Affiliation(s)
- Mingyun Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jong-Nam Oh
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Gyung Cheol Choe
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seung-Hun Kim
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Dong-Kyung Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jinsol Jeong
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
| |
Collapse
|
7
|
Abstract
POUV is a relatively newly emerged class of POU transcription factors present in jawed vertebrates (Gnathostomata). The function of POUV-class proteins is inextricably linked to zygotic genome activation (ZGA). A large body of evidence now extends the role of these proteins to subsequent developmental stages. While some functions resemble those of other POU-class proteins and are related to neuroectoderm development, others have emerged de novo. The most notable of the latter functions is pluripotency control by Oct4 in mammals. In this review, we focus on these de novo functions in the best-studied species harbouring POUV proteins-zebrafish, Xenopus (anamniotes) and mammals (amniotes). Despite the broad diversity of their biological functions in vertebrates, POUV proteins exert a common feature related to their role in safeguarding the undifferentiated state of cells. Here we summarize numerous pieces of evidence for these specific functions of the POUV-class proteins and recap available loss-of-function data.
Collapse
Affiliation(s)
- Evgeny I. Bakhmet
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Alexey N. Tomilin
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| |
Collapse
|
8
|
Bai M, Li G, Jiapaer Z, Guo X, Xi J, Wang G, Ye D, Chen W, Duan B, Kang J. Linc1548 promotes the transition of epiblast stem cells into neural progenitors by engaging OCT6 and SOX2. Stem Cells 2022; 40:22-34. [DOI: 10.1093/stmcls/sxab003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/17/2021] [Indexed: 11/12/2022]
Abstract
Abstract
The transition of embryonic stem cells from the epiblast stem cells (EpiSCs) to neural progenitor cells (NPCs), name as the neural induction process, is crucial for cell fate determination of neural differentiation. However, the mechanism of this transition is unclear. Here, we identified a long non-coding RNA (linc1548) as a critical regulator of neural differentiation of mouse embryonic stem cells (mESCs). Knockout of linc1548 did not affect the conversion of mESCs to EpiSCs, but delayed the transition from EpiSCs to NPCs. Moreover, linc1548 interacts with the transcription factors OCT6 and SOX2 forming an RNA-protein complex to regulate the transition from EpiSCs to NPCs. Finally, we showed that Zfp521 is an important target gene of this RNA-protein complex regulating neural differentiation. Our findings prove how the intrinsic transcription complex mediated by a lncRNA linc1548 and can better understand the intrinsic mechanism of neural fate determination.
Collapse
Affiliation(s)
- Mingliang Bai
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guoping Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeyidan Jiapaer
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Xinjiang Key Laboratory of Biology Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute for Advanced Study, Tongji University, Shanghai, China
| | - Jiajie Xi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Dan Ye
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Baoyu Duan
- College of Medical Technology, Shanghai University of Medical and Health Sciences, Shanghai, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Bakhmet EI, Tomilin AN. Key features of the POU transcription factor Oct4 from an evolutionary perspective. Cell Mol Life Sci 2021; 78:7339-7353. [PMID: 34698883 PMCID: PMC11072838 DOI: 10.1007/s00018-021-03975-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/16/2021] [Accepted: 10/12/2021] [Indexed: 01/06/2023]
Abstract
Oct4, a class V POU-domain protein that is encoded by the Pou5f1 gene, is thought to be a key transcription factor in the early development of mammals. This transcription factor plays indispensable roles in pluripotent stem cells as well as in the acquisition of pluripotency during somatic cell reprogramming. Oct4 has also been shown to play a role as a pioneer transcription factor during zygotic genome activation (ZGA) from zebrafish to human. However, during the past decade, several studies have brought these conclusions into question. It was clearly shown that the first steps in mouse development are not affected by the loss of Oct4. Subsequently, the role of Oct4 as a genome activator was brought into doubt. It was also found that the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) could proceed without Oct4. In this review, we summarize recent findings, reassess the role of Oct4 in reprogramming and ZGA, and point to structural features that may underlie this role. We speculate that pluripotent stem cells resemble neural stem cells more closely than previously thought. Oct4 orthologs within the POUV class hold key roles in genome activation during early development of species with late ZGA. However, in Placentalia, eutherian-specific proteins such as Dux overtake Oct4 in ZGA and endow them with the formation of an evolutionary new tissue-the placenta.
Collapse
Affiliation(s)
- Evgeny I Bakhmet
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Alexey N Tomilin
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
10
|
O-GlcNAcylation of Sox2 at threonine 258 regulates the self-renewal and early cell fate of embryonic stem cells. Exp Mol Med 2021; 53:1759-1768. [PMID: 34819616 PMCID: PMC8639819 DOI: 10.1038/s12276-021-00707-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/13/2021] [Accepted: 09/26/2021] [Indexed: 12/27/2022] Open
Abstract
Sox2 is a core transcription factor in embryonic stem cells (ESCs), and O-GlcNAcylation is a type of post-translational modification of nuclear-cytoplasmic proteins. Although both factors play important roles in the maintenance and differentiation of ESCs and the serine 248 (S248) and threonine 258 (T258) residues of Sox2 are modified by O-GlcNAcylation, the function of Sox2 O-GlcNAcylation is unclear. Here, we show that O-GlcNAcylation of Sox2 at T258 regulates mouse ESC self-renewal and early cell fate. ESCs in which wild-type Sox2 was replaced with the Sox2 T258A mutant exhibited reduced self-renewal, whereas ESCs with the Sox2 S248A point mutation did not. ESCs with the Sox2 T258A mutation heterologously introduced using the CRISPR/Cas9 system, designated E14-Sox2TA/WT, also exhibited reduced self-renewal. RNA sequencing analysis under self-renewal conditions showed that upregulated expression of early differentiation genes, rather than a downregulated expression of self-renewal genes, was responsible for the reduced self-renewal of E14-Sox2TA/WT cells. There was a significant decrease in ectodermal tissue and a marked increase in cartilage tissue in E14-Sox2TA/WT-derived teratomas compared with normal E14 ESC-derived teratomas. RNA sequencing of teratomas revealed that genes related to brain development had generally downregulated expression in the E14-Sox2TA/WT-derived teratomas. Our findings using the Sox2 T258A mutant suggest that Sox2 T258 O-GlcNAc has a positive effect on ESC self-renewal and plays an important role in the proper development of ectodermal lineage cells. Overall, our study directly links O-GlcNAcylation and early cell fate decisions.
Collapse
|
11
|
Mehravar M, Ghaemimanesh F, Poursani EM. An Overview on the Complexity of OCT4: at the Level of DNA, RNA and Protein. Stem Cell Rev Rep 2021; 17:1121-1136. [PMID: 33389631 DOI: 10.1007/s12015-020-10098-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
OCT4 plays critical roles in self-renewal and pluripotency maintenance of embryonic stem cells, and is considered as one of the main stemness markers. It also has pivotal roles in early stages of embryonic development. Most studies on OCT4 have focused on the expression and function of OCT4A, which is the biggest isoform of OCT4 known so far. Recently, many studies have shown that OCT4 has various transcript variants, protein isoforms, as well as pseudogenes. Distinguishing the expression and function of these variants and isoforms is a big challenge in expression profiling studies of OCT4. Understanding how OCT4 is functioning in different contexts, depends on knowing of where and when each of OCT4 transcripts, isoforms and pseudogenes are expressed. Here, we review OCT4 known transcripts, isoforms and pseudogenes, as well as its interactions with other proteins, and emphasize the importance of discriminating each of them in order to understand the exact function of OCT4 in stem cells, normal development and development of diseases.
Collapse
Affiliation(s)
- Majid Mehravar
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Fatemeh Ghaemimanesh
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ensieh M Poursani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Zhang Q, Han Z, Zhu Y, Chen J, Li W. The Role and Specific Mechanism of OCT4 in Cancer Stem Cells: A Review. Int J Stem Cells 2020; 13:312-325. [PMID: 32840233 PMCID: PMC7691851 DOI: 10.15283/ijsc20097] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Recently, evidences show that cancer stem cells (CSCs) are a type of cancer cell group with self-renewal and play a huge role in tumor recurrence, metastasis, and drug resistance. Finding new treatment directions and targets for cancer prognosis and reducing mortality has become a top priority. OCT4, as a transcription factor, participates in maintaining the stem characteristics of CSCs, but the mechanism of OCT4 is often overlooked. In this review, we try to illustrate the mechanism by which OCT4 plays a role in CSCs from the perspective of genetic modification of OCT4, non-coding RNA, complexes and signaling pathways associated with OCT4. Our ultimate goal is to provide new targets for cancer treatment to prolong the survival of cancer patients.
Collapse
Affiliation(s)
- Qi Zhang
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Zhenzhen Han
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yanbo Zhu
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jingcheng Chen
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Kim DK, Song B, Han S, Jang H, Bae SH, Kim HY, Lee SH, Lee S, Kim JK, Kim HS, Hong KM, Lee BI, Youn HD, Kim SY, Kang SW, Jang H. Phosphorylation of OCT4 Serine 236 Inhibits Germ Cell Tumor Growth by Inducing Differentiation. Cancers (Basel) 2020; 12:cancers12092601. [PMID: 32932964 PMCID: PMC7565739 DOI: 10.3390/cancers12092601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Octamer-binding transcription factor 4 (OCT4) plays an important role in early embryonic development, but is rarely expressed in adults. However, in many cancer cells, this gene is re-expressed, making the cancer malignant. This present study revealed that inhibiting OCT4 transcriptional activity induces cancer cell differentiation and growth retardation. Specifically, when the phosphorylation of OCT4 serine 236 increases by interfering with the binding of protein phosphatase 1 (PP1) to OCT4, OCT4 loses its transcriptional activity and cancer cells differentiate. Therefore, this study presents the basis for the development of protein-protein interaction inhibitors that inhibit the binding of OCT4 and PP1 for cancer treatment. Abstract Octamer-binding transcription factor 4 (Oct4) plays an important role in maintaining pluripotency in embryonic stem cells and is closely related to the malignancies of various cancers. Although posttranslational modifications of Oct4 have been widely studied, most of these have not yet been fully characterized, especially in cancer. In this study, we investigated the role of phosphorylation of serine 236 of OCT4 [OCT4 (S236)] in human germ cell tumors (GCTs). OCT4 was phosphorylated at S236 in a cell cycle-dependent manner in a patient sample and GCT cell lines. The substitution of endogenous OCT4 by a mimic of phosphorylated OCT4 with a serine-to-aspartate mutation at S236 (S236D) resulted in tumor cell differentiation, growth retardation, and inhibition of tumor sphere formation. GCT cells expressing OCT4 S236D instead of endogenous OCT4 were similar to cells with OCT4 depletion at the mRNA transcript level as well as in the phenotype. OCT4 S236D also induced tumor cell differentiation and growth retardation in mouse xenograft experiments. Inhibition of protein phosphatase 1 by chemicals or short hairpin RNAs increased phosphorylation at OCT4 (S236) and resulted in the differentiation of GCTs. These results reveal the role of OCT4 (S236) phosphorylation in GCTs and suggest a new strategy for suppressing OCT4 in cancer.
Collapse
Affiliation(s)
- Dong Keon Kim
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
| | - Bomin Song
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea;
| | - Suji Han
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
| | - Hansol Jang
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Seung-Hyun Bae
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Hee Yeon Kim
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea;
| | - Seon-Hyeong Lee
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
| | - Seungjin Lee
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Jong Kwang Kim
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
| | - Han-Seong Kim
- Department of Pathology, Inje University Ilsan Paik Hospital, Goyang 10308, Korea;
| | - Kyeong-Man Hong
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
| | - Byung Il Lee
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Hong-Duk Youn
- National Creative Research Center for Epigenome Reprogramming Network, Department of Biomedical Sciences, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080; Korea;
| | - Soo-Youl Kim
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
| | - Sang Won Kang
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea;
| | - Hyonchol Jang
- Research Institute, National Cancer Center, Goyang 10408, Korea; (D.K.K.); (B.S.); (S.H.); (H.J.); (S.-H.B.); (H.Y.K.); (S.-H.L.); (S.L.); (J.K.K.); (K.-M.H.); (B.I.L.); (S.-Y.K.)
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
- Correspondence: ; Tel.: +82-31-920-2239
| |
Collapse
|
14
|
Zhang J, Lin X, Wu L, Huang JJ, Jiang WQ, Kipps TJ, Zhang S. Aurora B induces epithelial-mesenchymal transition by stabilizing Snail1 to promote basal-like breast cancer metastasis. Oncogene 2020; 39:2550-2567. [PMID: 31996785 DOI: 10.1038/s41388-020-1165-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 01/06/2023]
Abstract
Aurora B is a serine/threonine kinase that has been implicated in regulating cell proliferation in distinct cancers, including breast cancer. Here we show that Aurora B expression is elevated in basal-like breast cancer (BLBC) compared with other breast cancer subtypes. This high level of expression seems to correlate with poor metastasis-free survival and relapse-free survival in affected patients. Mechanistically, we show that elevated Aurora B expression in breast cancer cells activates AKT/GSK3β to stabilize Snail1 protein, a master regulator of epithelial-mesenchymal transition (EMT), leading to EMT induction in a kinase-dependent manner. Conversely, Aurora B knock down by short-hairpin RNAs (shRNAs) suppresses AKT/GSK3β/Snail1 signaling, reverses EMT and reduces breast cancer metastatic potential in vitro and in vivo. Finally, we identified a specific OCT4 phosphorylation site (T343) responsible for mediating Aurora B-induced AKT/GSK3β/Snail1 signaling and EMT that could be attenuated by Aurora B kinase inhibitor treatment. These findings support that Aurora B induces EMT to promote breast cancer metastasis via OCT4/AKT/GSK3β/Snail1 signaling. Pharmacologic Aurora B inhibition might be a potential effective treatment for breast cancer patients with metastatic disease.
Collapse
Affiliation(s)
- Jianchao Zhang
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China
| | - Xinxin Lin
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China
| | - Liufeng Wu
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China
| | - Jia-Jia Huang
- State Key Laboratory of Oncology in South China, Department of Medical Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wen-Qi Jiang
- State Key Laboratory of Oncology in South China, Department of Medical Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Thomas J Kipps
- Moores UCSD Cancer Center, University of California, 9310 Athena Circle, La Jolla, San Diego, CA, 92093, USA
| | - Suping Zhang
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China. .,Moores UCSD Cancer Center, University of California, 9310 Athena Circle, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
15
|
lncARSR promotes liver cancer stem cells expansion via STAT3 pathway. Gene 2019; 687:73-81. [DOI: 10.1016/j.gene.2018.10.087] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/29/2018] [Indexed: 01/10/2023]
|
16
|
Xue Y, Zhan X, Sun S, Karuppagounder SS, Xia S, Dawson VL, Dawson TM, Laterra J, Zhang J, Ying M. Synthetic mRNAs Drive Highly Efficient iPS Cell Differentiation to Dopaminergic Neurons. Stem Cells Transl Med 2019; 8:112-123. [PMID: 30387318 PMCID: PMC6344911 DOI: 10.1002/sctm.18-0036] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 08/03/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022] Open
Abstract
Proneural transcription factors (TFs) drive highly efficient differentiation of pluripotent stem cells to lineage-specific neurons. However, current strategies mainly rely on genome-integrating viruses. Here, we used synthetic mRNAs coding two proneural TFs (Atoh1 and Ngn2) to differentiate induced pluripotent stem cells (iPSCs) into midbrain dopaminergic (mDA) neurons. mRNAs coding Atoh1 and Ngn2 with defined phosphosite modifications led to higher and more stable protein expression, and induced more efficient neuron conversion, as compared to mRNAs coding wild-type proteins. Using these two modified mRNAs with morphogens, we established a 5-day protocol that can rapidly generate mDA neurons with >90% purity from normal and Parkinson's disease iPSCs. After in vitro maturation, these mRNA-induced mDA (miDA) neurons recapitulate key biochemical and electrophysiological features of primary mDA neurons and can provide high-content neuron cultures for drug discovery. Proteomic analysis of Atoh1-binding proteins identified the nonmuscle myosin II (NM-II) complex as a new binding partner of nuclear Atoh1. The NM-II complex, commonly known as an ATP-dependent molecular motor, binds more strongly to phosphosite-modified Atoh1 than the wild type. Blebbistatin, an NM-II complex antagonist, and bradykinin, an NM-II complex agonist, inhibited and promoted, respectively, the transcriptional activity of Atoh1 and the efficiency of miDA neuron generation. These findings established the first mRNA-driven strategy for efficient iPSC differentiation to mDA neurons. We further identified the NM-II complex as a positive modulator of Atoh1-driven neuron differentiation. The methodology described here will facilitate the development of mRNA-driven differentiation strategies for generating iPSC-derived progenies widely applicable to disease modeling and cell replacement therapy. Stem Cells Translational Medicine 2019;8:112&12.
Collapse
Affiliation(s)
- Yingchao Xue
- Department of Immunology, Research Center on Pediatric Development and DiseasesInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular BiologyBeijingPeople's Republic of China
- Hugo W. Moser Research Institute at Kennedy KriegerBaltimoreMarylandUSA
| | - Xiping Zhan
- Department of Physiology and BiophysicsHoward UniversityWashingtonDistrict of ColumbiaUSA
| | - Shisheng Sun
- College of Life Sciences, Northwest UniversityXi'anPeople's Republic of China
| | - Senthilkumar S. Karuppagounder
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Adrienne Helis Malvin Medical Research FoundationNew OrleansLouisianaUSA
| | - Shuli Xia
- Hugo W. Moser Research Institute at Kennedy KriegerBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Valina L. Dawson
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Adrienne Helis Malvin Medical Research FoundationNew OrleansLouisianaUSA
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ted M. Dawson
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Adrienne Helis Malvin Medical Research FoundationNew OrleansLouisianaUSA
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy KriegerBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and DiseasesInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular BiologyBeijingPeople's Republic of China
| | - Mingyao Ying
- Hugo W. Moser Research Institute at Kennedy KriegerBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
17
|
Cheng Z, Lei Z, Yang P, Si A, Xiang D, Zhou J, Hüser N. Long non-coding RNA THOR promotes liver cancer stem cells expansion via β-catenin pathway. Gene 2018; 684:95-103. [PMID: 30359743 DOI: 10.1016/j.gene.2018.10.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/14/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive liver tumor containing cancer stem cells (CSCs), which participate in tumor invasion, therapeutic resistance, and tumor relapse leading to poor outcome and limited therapeutic options. Recently, a novel lncRNA, THOR (testis-associated highly conserved oncogenic long non-coding RNA), was characterized in human cancers and shown to exhibit an oncogenic role. However, the role of THOR in liver cancer stem cells (CSCs) remains obscure. Herein, we observed high expression of THOR in chemoresistant hepatocellular carcinomas (HCCs). A remarkable increase of THOR expression in OV6 or EpCAM-positive liver CSCs as well as in CSC-enriched hepatoma spheres. Interference THOR suppressed liver CSC expansion by inhibiting the dedifferentiation of hepatoma cells and decreasing the self-renewal ability of liver CSCs. Mechanistically, we found β-catenin as the downstream of THOR in HCC cells. The special β-catenin inhibitor FH535 abolished the discrepancy in liver CSC proportion and the self-renewal capacity between THOR knockdown HCC cells and control cells, which further confirmed that β-catenin was required in THOR promoted liver CSCs expansion. Moreover, interference THOR hepatoma cells were more sensitive to sorafenib treatment, indicates that HCC patients with low THOR expression may benefit from sorafenib treatment. Collectively, THOR was upregulated in liver CSCs and could promote HCC cells dedifferentiation and liver CSCs expansion by targeting β-catenin signaling.
Collapse
Affiliation(s)
- Zhangjun Cheng
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| | - Zhengqing Lei
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Pinghua Yang
- Department of Laparoscope, The Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Anfeng Si
- Department of Surgical Oncology, The Bayi Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Daimin Xiang
- National Liver Cancer Science Center, Second Military Medical University, Shanghai, China
| | - Jiahua Zhou
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Norbert Hüser
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| |
Collapse
|
18
|
Jiang ZB, Ma BQ, Liu SG, Li J, Yang GM, Hou YB, Si RH, Gao P, Yan HT. miR-365 regulates liver cancer stem cells via RAC1 pathway. Mol Carcinog 2018; 58:55-65. [PMID: 30182377 PMCID: PMC6585981 DOI: 10.1002/mc.22906] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022]
Abstract
Liver cancer stem cells (CSCs) were involved in tumorigenesis, progression, recurrence, and drug resistance of hepatocellular carcinoma (HCC). miR-365 was downregulated in hepatocellular carcinoma and inhibited HCC cell proliferation and invasion. However, the role of miR-365 in liver cancer stem cells was unknown. Herein, we observed a remarkable decrease of miR-365 expression in CD133 or EpCAM-positive liver CSCs as well as in CSC-enriched hepatoma spheres. Up-regulated miR-365 suppressed liver CSC expansion by inhibiting the dedifferentiation of hepatoma cells and decreasing the self-renewal ability of liver CSCs. Mechanistically, bioinformatic and luciferase reporter analysis identified Ras-related C3 botulinum toxin substrate 1 (RAC1) as a direct target of miR-365. Overexpression of miR-365 in hepatoma cells downregulated the RAC1 mRNA and protein expression. RAC1 also could promote the expansion of liver CSCs. The special RAC1 inhibitor EHop-106 or RAC1 overexpression abolished the discrepancy in liver CSC proportion and the self-renewal capacity between miR-365 overexpression hepatoma cells and control cells, which further confirmed that RAC1 was required in miR-365-suppressed liver CSCs expansion. miR-365 was downregulated in liver CSCs and could inhibit HCC cells dedifferentiation and liver CSCs expansion by targeting RAC1 signaling.
Collapse
Affiliation(s)
- Ze-Bin Jiang
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Bing-Qiang Ma
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Shao-Guang Liu
- Department of Emergency Surgery, Gansu Provincial Hospital, Gansu, China
| | - Jing Li
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Guang-Ming Yang
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Ya-Bo Hou
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Ruo-Huang Si
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Peng Gao
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Hui-Ting Yan
- Department of Nursing Department, Gansu Provincial Hospital, Gansu, China
| |
Collapse
|