1
|
Chippalkatti R, Parisi B, Kouzi F, Laurini C, Ben Fredj N, Abankwa DK. RAS isoform specific activities are disrupted by disease associated mutations during cell differentiation. Eur J Cell Biol 2024; 103:151425. [PMID: 38795504 DOI: 10.1016/j.ejcb.2024.151425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024] Open
Abstract
The RAS-MAPK-pathway is aberrantly regulated in cancer and developmental diseases called RASopathies. While typically the impact of Ras on the proliferation of various cancer cell lines is assessed, it is poorly established how Ras affects cellular differentiation. Here we implement the C2C12 myoblast cell line to systematically study the effect of Ras mutants and Ras-pathway drugs on differentiation. We first provide evidence that a minor pool of Pax7+ progenitors replenishes a major pool of transit amplifying cells that are ready to differentiate. Our data indicate that Ras isoforms have distinct roles in the differentiating culture, where K-Ras depletion increases and H-Ras depletion decreases terminal differentiation. This assay could therefore provide significant new insights into Ras biology and Ras-driven diseases. In line with this, we found that all oncogenic Ras mutants block terminal differentiation of transit amplifying cells. By contrast, RASopathy associated K-Ras variants were less able to block differentiation. Profiling of eight targeted Ras-pathway drugs on seven oncogenic Ras mutants revealed their allele-specific activities and distinct abilities to restore normal differentiation as compared to triggering cell death. In particular, the MEK-inhibitor trametinib could broadly restore differentiation, while the mTOR-inhibitor rapamycin broadly suppressed differentiation. We expect that this quantitative assessment of the impact of Ras-pathway mutants and drugs on cellular differentiation has great potential to complement cancer cell proliferation data.
Collapse
Affiliation(s)
- Rohan Chippalkatti
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Bianca Parisi
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Farah Kouzi
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Christina Laurini
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Nesrine Ben Fredj
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Daniel Kwaku Abankwa
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg.
| |
Collapse
|
2
|
Verma S, Lin X, Coulson-Thomas VJ. The Potential Reversible Transition between Stem Cells and Transient-Amplifying Cells: The Limbal Epithelial Stem Cell Perspective. Cells 2024; 13:748. [PMID: 38727284 PMCID: PMC11083486 DOI: 10.3390/cells13090748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Stem cells (SCs) undergo asymmetric division, producing transit-amplifying cells (TACs) with increased proliferative potential that move into tissues and ultimately differentiate into a specialized cell type. Thus, TACs represent an intermediary state between stem cells and differentiated cells. In the cornea, a population of stem cells resides in the limbal region, named the limbal epithelial stem cells (LESCs). As LESCs proliferate, they generate TACs that move centripetally into the cornea and differentiate into corneal epithelial cells. Upon limbal injury, research suggests a population of progenitor-like cells that exists within the cornea can move centrifugally into the limbus, where they dedifferentiate into LESCs. Herein, we summarize recent advances made in understanding the mechanism that governs the differentiation of LESCs into TACs, and thereafter, into corneal epithelial cells. We also outline the evidence in support of the existence of progenitor-like cells in the cornea and whether TACs could represent a population of cells with progenitor-like capabilities within the cornea. Furthermore, to gain further insights into the dynamics of TACs in the cornea, we outline the most recent findings in other organ systems that support the hypothesis that TACs can dedifferentiate into SCs.
Collapse
Affiliation(s)
- Sudhir Verma
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA;
- Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Xiao Lin
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA;
| | | |
Collapse
|
3
|
Turovsky L, Kheshaiboun G, Yassen G, Nagosa S, Boyango I, Amitai-Lange A, Bhattacharya S, Ilan N, Vlodavsky I, Aberdam D, Shalom-Feuerstein R, Avitan-Hersh E. miR-184 represses β-catenin and behaves as a skin tumor suppressor. Cell Death Dis 2024; 15:174. [PMID: 38409173 PMCID: PMC10897217 DOI: 10.1038/s41419-024-06554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/27/2024] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
miR-184-knockout mice display perturbed epidermal stem cell differentiation. However, the potential role of miR-184 in skin pathology is unclear. Here, we report that miR-184 controls epidermal stem cell dynamics and that miR-184 ablation enhances skin carcinogenesis in mice. In agreement, repression of miR-184 in human squamous cell carcinoma (SCC) enhances neoplastic hallmarks of human SCC cells in vitro and tumor development in vivo. Characterization of miR-184-regulatory network, suggests that miR-184 inhibits pro-oncogenic pathways, cell proliferation, and epithelial to mesenchymal transformation. Of note, depletion of miR-184 enhances the levels of β-catenin under homeostasis and following experimental skin carcinogenesis. Finally, the repression of β-catenin by miR-184, inhibits the neoplastic phenotype of SCC cells. Taken together, miR-184 behaves as an epidermal tumor suppressor, and may provide a potentially useful target for skin SCC therapy.
Collapse
Affiliation(s)
- Lubov Turovsky
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, 31096, Israel
- Skin Cancer Research lab, Clinical research institute (CRIR), Rambam Health Care Campus, Haifa, 31096, Israel
| | - Ghazal Kheshaiboun
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, 31096, Israel
- Skin Cancer Research lab, Clinical research institute (CRIR), Rambam Health Care Campus, Haifa, 31096, Israel
| | - Gharam Yassen
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, 31096, Israel
| | - Sara Nagosa
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, 31096, Israel
| | - Ilanit Boyango
- Skin Cancer Research lab, Clinical research institute (CRIR), Rambam Health Care Campus, Haifa, 31096, Israel
| | - Aya Amitai-Lange
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, 31096, Israel
| | - Swarnabh Bhattacharya
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, 31096, Israel
| | - Neta Ilan
- Cell Biology and Cancer Science, The Ruth and Bruce Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa, 31096, Israel
| | - Israel Vlodavsky
- Cell Biology and Cancer Science, The Ruth and Bruce Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa, 31096, Israel
| | - Daniel Aberdam
- Université de Paris Cité, INSERM U1138, Centre des Cordeliers, Paris, France
| | - Ruby Shalom-Feuerstein
- Department of Genetics & Developmental Biology, The Rappaport Faculty of Medicine & Research Institute, Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, 31096, Israel
| | - Emily Avitan-Hersh
- Skin Cancer Research lab, Clinical research institute (CRIR), Rambam Health Care Campus, Haifa, 31096, Israel.
- Cell Biology and Cancer Science, The Ruth and Bruce Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa, 31096, Israel.
| |
Collapse
|
4
|
Rengifo AC, Rivera J, Álvarez-Díaz DA, Naizaque J, Santamaria G, Corchuelo S, Gómez CY, Torres-Fernández O. Morphological and Molecular Changes in the Cortex and Cerebellum of Immunocompetent Mice Infected with Zika Virus. Viruses 2023; 15:1632. [PMID: 37631975 PMCID: PMC10458311 DOI: 10.3390/v15081632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Zika virus (ZIKV) disease continues to be a threat to public health, and it is estimated that millions of people have been infected and that there have been more cases of serious complications than those already reported. Despite many studies on the pathogenesis of ZIKV, several of the genes involved in the malformations associated with viral infection are still unknown. In this work, the morphological and molecular changes in the cortex and cerebellum of mice infected with ZIKV were evaluated. Neonatal BALB/c mice were inoculated with ZIKV intraperitoneally, and the respective controls were inoculated with a solution devoid of the virus. At day 10 postinoculation, the mice were euthanized to measure the expression of the markers involved in cortical and cerebellar neurodevelopment. The infected mice presented morphological changes accompanied by calcifications, as well as a decrease in most of the markers evaluated in the cortex and cerebellum. The modifications found could be predictive of astrocytosis, dendritic pathology, alterations in the regulation systems of neuronal excitation and inhibition, and premature maturation, conditions previously described in other models of ZIKV infection and microcephaly.
Collapse
Affiliation(s)
- Aura Caterine Rengifo
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Jorge Rivera
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Diego Alejandro Álvarez-Díaz
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
- Genómica de Microorganismos Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia
| | - Julián Naizaque
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Gerardo Santamaria
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Sheryll Corchuelo
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Claudia Yadira Gómez
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| | - Orlando Torres-Fernández
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud (INS), Avenue 26 No. 51-20–Zone 6 CAN, Bogotá 111321, Colombia; (J.R.); (D.A.Á.-D.); (J.N.); (G.S.); (S.C.); (C.Y.G.); (O.T.-F.)
| |
Collapse
|
5
|
Baral I, Shirude MB, Jothi DL, Mukherjee A, Dutta D. Characterization of a Distinct State in the Continuum of Pluripotency Facilitated by Inhibition of PKCζ in Mouse Embryonic Stem Cells. Stem Cell Rev Rep 2023; 19:1098-1115. [PMID: 36781773 DOI: 10.1007/s12015-023-10513-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Inhibition of PKC (PKCi) signaling maintains pluripotency of embryonic stem cells (ESCs) across different mammalian species. However, the position of PKCi maintained ESCs in the pluripotency continuum is largely unknown. Here we demonstrate that mouse ESCs when cultured continuously, with PKCi, for 75 days are retained in naïve state of pluripotency. Gene expression analysis and proteomics studies demonstrated enhanced naïve character of PKCi maintained ESCs in comparison to classical serum/LIF (S/L) supported ESCs. Molecular analysis revealed that activation of PKCζ isoform associate with primed state of pluripotency, present in epiblast-like stem cells generated in vitro while inhibition of PKCζ phosphorylation associated with naïve state of pluripotency in vitro and in vivo. Phosphoproteomics and chromatin modification enzyme array based studies showed loss in DNA methyl transferase 3B (DNMT3B) and its phosphorylation level upon functional inhibition of PKCζ as one of the crucial components of this regulatory pathway. Unlike ground state of pluripotency maintained by MEK/GSK3 inhibitor in addition to LIF (2i/LIF), loss in DNMT3B is a reversible phenomenon in PKCi maintained ESCs. Absence of phosphorylation of c-MYC, RAF1, SPRY4 while presence of ERF, DUSP6, CIC and YAP1 phosphorylation underlined the phosphoproteomics signature of PKCi mediated maintenance of naïve pluripotency. States of pluripotency represent the developmental continuum and the existence of PKCi mediated mouse ESCs in a distinct state in the continuum of pluripotency (DiSCo) might contribute to the establishment of stages of murine embryonic development that were non-permissible till date.
Collapse
Affiliation(s)
- Ishita Baral
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India.,Manipal Academy of Higher Education, Karnataka State, Manipal, 576104, India
| | - Mayur Balkrishna Shirude
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India.,Manipal Academy of Higher Education, Karnataka State, Manipal, 576104, India
| | - Dhana Lakshmi Jothi
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India
| | - Ananda Mukherjee
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
6
|
Koo KM, Go YH, Kim SM, Kim CD, Do JT, Kim TH, Cha HJ. Label-free and non-destructive identification of naïve and primed embryonic stem cells based on differences in cellular metabolism. Biomaterials 2023; 293:121939. [PMID: 36521427 DOI: 10.1016/j.biomaterials.2022.121939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/25/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022]
Abstract
Pluripotent stem cells (PSCs) exist in naïve or primed states based on their origin. For in vitro culture, these PSCs require different supplements and growth factors. However, owing to their similar phenotypic features, identifying both cell types without harming cellular functions is challenging. This study reports an electrochemical method that enables simple, label-free, and non-destructive detection of naïve embryonic stem cells (ESCs) derived from mouse ESCs, based on the differences in cellular metabolism. Two major metabolic pathways to generate adenosine triphosphate (ATP)-glycolysis and oxidative phosphorylation (OXPHOS)-were blocked, and it was found that mitochondrial energy generation is the origin of the strong electrochemical signals of naïve ESCs. The number of ESCs is quantified when mixed with primed ESCs or converted from naïve-primed switchable metastable ESCs. The mouse PSCs derived from doxycycline-inducible mouse embryonic fibroblasts (MEFs) are also sensitively identified among other cell types such as unconverted MEFs and primed PSCs. The developed sensing platform operates in a non-invasive and label-free manner. Thus, it can be useful in the development of stem cell-derived therapeutics.
Collapse
Affiliation(s)
- Kyeong-Mo Koo
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young-Hyun Go
- Research Institute of Pharmaceutical Science, Seoul National University, Seoul, 08826, Republic of Korea; College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seong-Min Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang-Dae Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Chen F, Shi D, Zou L, Yang X, Qiao S, Zhang R, Yang S, Deng Y. Two Small Molecule Inhibitors Promote Reprogramming of Guangxi Bama Mini-Pig Mesenchymal Stem Cells Into Naive-Like State Induced Pluripotent Stem Cells. Cell Reprogram 2021; 23:158-167. [PMID: 33956517 DOI: 10.1089/cell.2020.0094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Past researches have shown that pluripotency maintenance of naive and primed-state pluripotent stem cells (PSCs) depends on different signaling pathways, and naive-state PSCs possess the ability to produce chimeras when they are introduced into a blastocyst. Considering porcine is an attractive model for preclinical studies, many researches about pig induced pluripotent stem cells (piPSCs) have been reported. Some cytokines and small molecule compounds could transform primed piPSCs into naive state. However, there are no suitable culture conditions for generation of naive-state piPSCs with high efficiency; other small molecule compounds need further exploration. In this study, we investigated whether p38 MAPK and JNK signal pathway inhibitor SB203580 and SP600125 could be of benefit for acquiring naive-state piPSCs. By comparing reprogramming efficiencies under conditions of different donor cells and culture environment, we found that porcine bone marrow mesenchymal stem cells (PBMSCs) have higher efficiency on piPSC induction, and the culture condition of CHIR99021+PD0325901(2i)+Lif+bFGF is more suitable for subculturing of piPSCs. Our results also indicate that SB203580 and SP600125 could promote reprogramming of PBMSCs into naive-like state piPSCs. These results provide guidance for choosing donor cells, culture conditions, and research of different state iPSCs during the process of reprogramming pig somatic cells.
Collapse
Affiliation(s)
- Feng Chen
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China
| | - Deshun Shi
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China
| | - Lingxiu Zou
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China
| | - Xiaoling Yang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China
| | - Shuye Qiao
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China
| | - Ruimen Zhang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China
| | - Sufang Yang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China.,International Zhuang Medical Hospital Affiliated to Guangxi University Chinese Medicine, Nanning, P.R. China
| | - Yanfei Deng
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, P.R. China
| |
Collapse
|
8
|
Pecori F, Yokota I, Hanamatsu H, Miura T, Ogura C, Ota H, Furukawa JI, Oki S, Yamamoto K, Yoshie O, Nishihara S. A defined glycosylation regulatory network modulates total glycome dynamics during pluripotency state transition. Sci Rep 2021; 11:1276. [PMID: 33446700 PMCID: PMC7809059 DOI: 10.1038/s41598-020-79666-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Embryonic stem cells (ESCs) and epiblast-like cells (EpiLCs) recapitulate in vitro the epiblast first cell lineage decision, allowing characterization of the molecular mechanisms underlying pluripotent state transition. Here, we performed a comprehensive and comparative analysis of total glycomes of mouse ESCs and EpiLCs, revealing that overall glycosylation undergoes dramatic changes from early stages of development. Remarkably, we showed for the first time the presence of a developmentally regulated network orchestrating glycosylation changes and identified polycomb repressive complex 2 (PRC2) as a key component involved in this process. Collectively, our findings provide novel insights into the naïve-to-primed pluripotent state transition and advance the understanding of glycosylation complex regulation during early mouse embryonic development.
Collapse
Affiliation(s)
- Federico Pecori
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Ikuko Yokota
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hisatoshi Hanamatsu
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Taichi Miura
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Chika Ogura
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Hayato Ota
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Jun-Ichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Osamu Yoshie
- Health and Kampo Institute, 1-11-10 Murasakiyama, Izumi, Sendai, Miyagi, 981-3205, Japan
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan.
- Glycan and Life System Integration Center (GaLSIC), Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan.
| |
Collapse
|
9
|
McKee C, Brown C, Bakshi S, Walker K, Govind CK, Chaudhry GR. Transcriptomic Analysis of Naïve Human Embryonic Stem Cells Cultured in Three-Dimensional PEG Scaffolds. Biomolecules 2020; 11:E21. [PMID: 33379237 PMCID: PMC7824559 DOI: 10.3390/biom11010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
Naïve human embryonic stem cells (ESCs) are characterized by improved viability, proliferation, and differentiation capacity in comparison to traditionally derived primed human ESCs. However, currently used two-dimensional (2-D) cell culture techniques fail to mimic the three-dimensional (3-D) in vivo microenvironment, altering morphological and molecular characteristics of ESCs. Here, we describe the use of 3-D self-assembling scaffolds that support growth and maintenance of the naïve state characteristics of ESC line, Elf1. Scaffolds were formed via a Michael addition reaction upon the combination of two 8-arm polyethylene glycol (PEG) polymers functionalized with thiol (PEG-8-SH) and acrylate (PEG-8-Acr) end groups. 3-D scaffold environment maintained the naïve state and supported the long-term growth of ESCs. RNA-sequencing demonstrated significant changes in gene expression profiles between 2-D and 3-D grown cells. Gene ontology analysis revealed upregulation of biological processes involved in the regulation of transcription and translation, extracellular matrix organization, and chromatin remodeling in 3-D grown cells. 3-D culture conditions also induced upregulation of genes associated with Wnt and focal adhesion signaling, while p53 signaling pathway associated genes were downregulated. Our findings, for the first time, provide insight into the possible mechanisms of self-renewal of naïve ESCs stimulated by the transduction of mechanical signals from the 3-D microenvironment.
Collapse
Affiliation(s)
- Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Shreeya Bakshi
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Keegan Walker
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Chhabi K. Govind
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - G. Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| |
Collapse
|
10
|
"Reprogram Enablement" as an Assay for Identifying Early Oncogenic Pathways by Their Ability to Allow Neoplastic Cells to Reacquire an Epiblast State. Stem Cell Reports 2020; 15:761-775. [PMID: 32795421 PMCID: PMC7486218 DOI: 10.1016/j.stemcr.2020.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/31/2022] Open
Abstract
One approach to understanding how tissue-specific cancers emerge is to determine the requirements for “reprograming” such neoplastic cells back to their developmentally normal primordial pre-malignant epiblast-like pluripotent state and then scrutinizing their spontaneous reconversion to a neoplasm, perhaps rendering salient the earliest pivotal oncogenic pathway(s) (before other aberrations accumulate in the adult tumor). For the prototypical malignancy anaplastic thyroid carcinoma (ATC), we found that tonic RAS reduction was obligatory for reprogramming cancer cells to a normal epiblast-emulating cells, confirmed by changes in their transcriptomic and epigenetic profiles, loss of neoplastic behavior, and ability to derive normal somatic cells from their “epiblast organoids.” Without such suppression, ATCs re-emerged from the clones. Hence, for ATC, RAS inhibition was its “reprogram enablement” (RE) factor. Each cancer likely has its own RE factor; identifying it may illuminate pre-malignant risk markers, better classifications, therapeutic targets, and tissue-specification of a previously pluripotent, now neoplastic, cell. The factors for reprogramming a cancer cell to an epiblast-like cell can be assayed “Reprogram enablement” can yield insights into the earliest pivotal oncogenic steps For anaplastic thyroid carcinoma, RAS inhibition was obligatory for reprograming Each tissue-specific cancer will have its own reprogramming enablement requirement
Collapse
|
11
|
Barilani M, Cherubini A, Peli V, Polveraccio F, Bollati V, Guffanti F, Del Gobbo A, Lavazza C, Giovanelli S, Elvassore N, Lazzari L. A circular RNA map for human induced pluripotent stem cells of foetal origin. EBioMedicine 2020; 57:102848. [PMID: 32574961 PMCID: PMC7322262 DOI: 10.1016/j.ebiom.2020.102848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adult skin fibroblasts represent the most common starting cell type used to generate human induced pluripotent stem cells (F-hiPSC) for clinical studies. Yet, a foetal source would offer unique advantages, primarily the absence of accumulated somatic mutations. Herein, we generated hiPSC from cord blood multipotent mesenchymal stromal cells (MSC-hiPSC) and compared them with F-hiPSC. Assessment of the full activation of the pluripotency gene regulatory network (PGRN) focused on circular RNA (circRNA), recently proposed to participate in the control of pluripotency. METHODS Reprogramming was achieved by a footprint-free strategy. Self-renewal and pluripotency of cord blood MSC-hiPSC were investigated in vitro and in vivo, compared to parental MSC, to embryonic stem cells and to F-hiPSC. High-throughput array-based approaches and bioinformatics analyses were applied to address the PGRN. FINDINGS Cord blood MSC-hiPSC successfully acquired a complete pluripotent identity. Functional comparison with F-hiPSC showed no differences in terms of i) generation of mesenchymal-like derivatives, ii) their subsequent adipogenic, osteogenic and chondrogenic commitment, and iii) their hematopoietic support ability. At the transcriptional level, specific subsets of mRNA, miRNA and circRNA (n = 4,429) were evidenced, casting a further layer of complexity on the PGRN regulatory crosstalk. INTERPRETATION A circRNA map of transcripts associated to naïve and primed pluripotency is provided for hiPSC of clinical-grade foetal origin, offering insights on still unreported regulatory circuits of the PGRN to consider for the optimization and development of efficient differentiation protocols for clinical translation. FUNDING This research was funded by Ricerca Corrente 2012-2018 by the Italian Ministry of Health.
Collapse
Affiliation(s)
- Mario Barilani
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy; EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Alessandro Cherubini
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - Valeria Peli
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - Francesca Polveraccio
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy; Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | | | - Alessandro Del Gobbo
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristiana Lavazza
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy
| | - Silvia Giovanelli
- Milano Cord Blood Bank, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nicola Elvassore
- Department of Industrial Engineering, University of Padova, Padova, Italy; Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China; Venetian Institute of Molecular Medicine, Padova, Italy; Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Lorenza Lazzari
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milano, Italy.
| |
Collapse
|
12
|
Tsogtbaatar E, Landin C, Minter-Dykhouse K, Folmes CDL. Energy Metabolism Regulates Stem Cell Pluripotency. Front Cell Dev Biol 2020; 8:87. [PMID: 32181250 PMCID: PMC7059177 DOI: 10.3389/fcell.2020.00087] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/31/2020] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells (PSCs) are characterized by their unique capacity for both unlimited self-renewal and their potential to differentiate to all cell lineages contained within the three primary germ layers. While once considered a distinct cellular state, it is becoming clear that pluripotency is in fact a continuum of cellular states, all capable of self-renewal and differentiation, yet with distinct metabolic, mitochondrial and epigenetic features dependent on gestational stage. In this review we focus on two of the most clearly defined states: “naïve” and “primed” PSCs. Like other rapidly dividing cells, PSCs have a high demand for anabolic precursors necessary to replicate their genome, cytoplasm and organelles, while concurrently consuming energy in the form of ATP. This requirement for both anabolic and catabolic processes sufficient to supply a highly adapted cell cycle in the context of reduced oxygen availability, distinguishes PSCs from their differentiated progeny. During early embryogenesis PSCs adapt their substrate preference to match the bioenergetic requirements of each specific developmental stage. This is reflected in different mitochondrial morphologies, membrane potentials, electron transport chain (ETC) compositions, and utilization of glycolysis. Additionally, metabolites produced in PSCs can directly influence epigenetic and transcriptional programs, which in turn can affect self-renewal characteristics. Thus, our understanding of the role of metabolism in PSC fate has expanded from anabolism and catabolism to include governance of the pluripotent epigenetic landscape. Understanding the roles of metabolism and the factors influencing metabolic pathways in naïve and primed pluripotent states provide a platform for understanding the drivers of cell fate during development. This review highlights the roles of the major metabolic pathways in the acquisition and maintenance of the different states of pluripotency.
Collapse
Affiliation(s)
- Enkhtuul Tsogtbaatar
- Stem Cell and Regenerative Metabolism Laboratory, Departments of Cardiovascular Diseases and Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, United States
| | - Chelsea Landin
- Stem Cell and Regenerative Metabolism Laboratory, Departments of Cardiovascular Diseases and Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, United States
| | - Katherine Minter-Dykhouse
- Stem Cell and Regenerative Metabolism Laboratory, Departments of Cardiovascular Diseases and Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, United States
| | - Clifford D L Folmes
- Stem Cell and Regenerative Metabolism Laboratory, Departments of Cardiovascular Diseases and Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ, United States
| |
Collapse
|
13
|
Triana-Martínez F, Loza MI, Domínguez E. Beyond Tumor Suppression: Senescence in Cancer Stemness and Tumor Dormancy. Cells 2020; 9:cells9020346. [PMID: 32028565 PMCID: PMC7072600 DOI: 10.3390/cells9020346] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Here, we provide an overview of the importance of cellular fate in cancer as a group of diseases of abnormal cell growth. Tumor development and progression is a highly dynamic process, with several phases of evolution. The existing evidence about the origin and consequences of cancer cell fate specification (e.g., proliferation, senescence, stemness, dormancy, quiescence, and cell cycle re-entry) in the context of tumor formation and metastasis is discussed. The interplay between these dynamic tumor cell phenotypes, the microenvironment, and the immune system is also reviewed in relation to cancer. We focus on the role of senescence during cancer progression, with a special emphasis on its relationship with stemness and dormancy. Selective interventions on senescence and dormancy cell fates, including the specific targeting of cancer cell populations to prevent detrimental effects in aging and disease, are also reviewed. A new conceptual framework about the impact of synthetic lethal strategies by using senogenics and then senolytics is given, with the promise of future directions on innovative anticancer therapies.
Collapse
|
14
|
Guo Q, Ni J, Zhang F, Guo Y, Zhang Y, Fang H, Tian Q, Zhang S. DjERas plays an important role in planarian regeneration and homeostasis. Biochem Biophys Res Commun 2019; 514:205-209. [PMID: 31029418 DOI: 10.1016/j.bbrc.2019.04.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 10/26/2022]
Abstract
The mechanisms of cell turnover including cell proliferation and cell differentiation were complex. Planarians possess amazing regeneration ability and undergo cell turnover throughout life. We identified a homologous gene of ERas by RNAi in Dugesia japonica. Knocking-down DjERas resulted in regeneration and homeostasis defects. Furthermore, we found that the expression of neoblasts and late progeny marker gene decreased in DjERas RNAi planarians. Our studies indicated that down-regulation of DjERas inhibited the proliferation and differentiation of stem cells through the conserved signaling pathway, resulted in the inability of the planarian to regenerate and maintain homeostasis. Our results suggest that DjERas plays a crucial role in the process of cell turnover.
Collapse
Affiliation(s)
- Qi Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiajia Ni
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fangfang Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanan Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yizhe Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Huimin Fang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qingnan Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Shoutao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
15
|
Abstract
Diabetes mellitus is a multifactorial disease affecting increasing numbers of patients worldwide. Progression to insulin-dependent diabetes mellitus is characterized by the loss or dysfunction of pancreatic β-cells, but the pathomechanisms underlying β-cell failure in type 1 diabetes mellitus and type 2 diabetes mellitus are still poorly defined. Regeneration of β-cell mass from residual islet cells or replacement by β-like cells derived from stem cells holds great promise to stop or reverse disease progression. However, the development of new treatment options is hampered by our limited understanding of human pancreas organogenesis due to the restricted access to primary tissues. Therefore, the challenge is to translate results obtained from preclinical model systems to humans, which requires comparative modelling of β-cell biology in health and disease. Here, we discuss diverse modelling systems across different species that provide spatial and temporal resolution of cellular and molecular mechanisms to understand the evolutionary conserved genotype-phenotype relationship and translate them to humans. In addition, we summarize the latest knowledge on organoids, stem cell differentiation platforms, primary micro-islets and pseudo-islets, bioengineering and microfluidic systems for studying human pancreas development and homeostasis ex vivo. These new modelling systems and platforms have opened novel avenues for exploring the developmental trajectory, physiology, biology and pathology of the human pancreas.
Collapse
Affiliation(s)
- Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Technical University of Munich, Medical Faculty, Munich, Germany.
| |
Collapse
|
16
|
Deng Y, Huang G, Chen F, Testroet ED, Li H, Li H, Nong T, Yang X, Cui J, Shi D, Yang S. Hypoxia enhances buffalo adipose‐derived mesenchymal stem cells proliferation, stemness, and reprogramming into induced pluripotent stem cells. J Cell Physiol 2019; 234:17254-17268. [DOI: 10.1002/jcp.28342] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Yanfei Deng
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources Guangxi University Nanning China
| | - Guiting Huang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources Guangxi University Nanning China
- Reproductive Medicine Center Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region Nanning China
| | - Feng Chen
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources Guangxi University Nanning China
| | - Eric David Testroet
- Department of Animal and Veterinary Sciences University of Vermont Burlington Vermont
| | - Hui Li
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources Guangxi University Nanning China
| | - Haiyang Li
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources Guangxi University Nanning China
| | - Tianying Nong
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources Guangxi University Nanning China
| | - Xiaoling Yang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources Guangxi University Nanning China
| | - Jiayu Cui
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources Guangxi University Nanning China
| | - Deshun Shi
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources Guangxi University Nanning China
| | - Sufang Yang
- Animal Reproduction Institute, State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources Guangxi University Nanning China
| |
Collapse
|
17
|
Panepucci RA, de Souza Lima IM. Arrayed functional genetic screenings in pluripotency reprogramming and differentiation. Stem Cell Res Ther 2019; 10:24. [PMID: 30635073 PMCID: PMC6330485 DOI: 10.1186/s13287-018-1124-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Thoroughly understanding the molecular mechanisms responsible for the biological properties of pluripotent stem cells, as well as for the processes involved in reprograming, differentiation, and transition between Naïve and Primed pluripotent states, is of great interest in basic and applied research. Although pluripotent cells have been extensively characterized in terms of their transcriptome and miRNome, a comprehensive understanding of how these gene products specifically impact their biology, depends on gain- or loss-of-function experimental approaches capable to systematically interrogate their function. We review all studies carried up to date that used arrayed screening approaches to explore the function of these genetic elements on those biological contexts, using focused or genome-wide genetic libraries. We further discuss the limitations and advantages of approaches based on assays with population-level primary readouts, derived from single-parameter plate readers, or cell-level primary readouts, obtained using multiparametric flow cytometry or quantitative fluorescence microscopy (i.e., high-content screening). Finally, we discuss technical limitation and future perspectives, highlighting how the integration of screening data may lead to major advances in the field of stem cell research and therapy.
Collapse
Affiliation(s)
- Rodrigo Alexandre Panepucci
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP CEP: 14051-140 Brazil
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP Brazil
| | - Ildercílio Mota de Souza Lima
- Laboratory of Functional Biology (LFBio), Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP CEP: 14051-140 Brazil
- Department of Genetics, Ribeirao Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, SP Brazil
| |
Collapse
|
18
|
Chao SC, Wu GJ, Huang SF, Dai NT, Huang HK, Chou MF, Tsai YT, Lee SP, Loh SH. Functional and molecular mechanism of intracellular pH regulation in human inducible pluripotent stem cells. World J Stem Cells 2018; 10:196-211. [PMID: 30613313 PMCID: PMC6306555 DOI: 10.4252/wjsc.v10.i12.196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To establish a functional and molecular model of the intracellular pH (pHi) regulatory mechanism in human induced pluripotent stem cells (hiPSCs).
METHODS hiPSCs (HPS0077) were kindly provided by Dr. Dai from the Tri-Service General Hospital (IRB No. B-106-09). Changes in the pHi were detected either by microspectrofluorimetry or by a multimode reader with a pH-sensitive fluorescent probe, BCECF, and the fluorescent ratio was calibrated by the high K+/nigericin method. NH4Cl and Na-acetate prepulse techniques were used to induce rapid intracellular acidosis and alkalization, respectively. The buffering power (β) was calculated from the ΔpHi induced by perfusing different concentrations of (NH4)2SO4. Western blot techniques and immunocytochemistry staining were used to detect the protein expression of pHi regulators and pluripotency markers.
RESULTS In this study, our results indicated that (1) the steady-state pHi value was found to be 7.5 ± 0.01 (n = 20) and 7.68 ± 0.01 (n =20) in HEPES and 5% CO2/HCO3--buffered systems, respectively, which were much greater than that in normal adult cells (7.2); (2) in a CO2/HCO3--buffered system, the values of total intracellular buffering power (β) can be described by the following equation: βtot = 107.79 (pHi)2 - 1522.2 (pHi) + 5396.9 (correlation coefficient R2 = 0.85), in the estimated pHi range of 7.1-8.0; (3) the Na+/H+ exchanger (NHE) and the Na+/HCO3- cotransporter (NBC) were found to be functionally activated for acid extrusion for pHi values less than 7.5 and 7.68, respectively; (4) V-ATPase and some other unknown Na+-independent acid extruder(s) could only be functionally detected for pHi values less than 7.1; (5) the Cl-/ OH- exchanger (CHE) and the Cl-/HCO3- anion exchanger (AE) were found to be responsible for the weakening of intracellular proton loading; (6) besides the CHE and the AE, a Cl--independent acid loading mechanism was functionally identified; and (7) in hiPSCs, a strong positive correlation was observed between the loss of pluripotency and the weakening of the intracellular acid extrusion mechanism, which included a decrease in the steady-state pHi value and diminished the functional activity and protein expression of the NHE and the NBC.
CONCLUSION For the first time, we established a functional and molecular model of a pHi regulatory mechanism and demonstrated its strong positive correlation with hiPSC pluripotency.
Collapse
Affiliation(s)
- Shih-Chi Chao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Gwo-Jang Wu
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Shu-Fu Huang
- Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Niann-Tzyy Dai
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsu-Kai Huang
- Division of Chest Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Mei-Fang Chou
- Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yi-Ting Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Shiao-Pieng Lee
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei 11490, Taiwan
| | - Shih-Hurng Loh
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Pharmacology, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
19
|
Haghighi F, Dahlmann J, Nakhaei-Rad S, Lang A, Kutschka I, Zenker M, Kensah G, Piekorz RP, Ahmadian MR. bFGF-mediated pluripotency maintenance in human induced pluripotent stem cells is associated with NRAS-MAPK signaling. Cell Commun Signal 2018; 16:96. [PMID: 30518391 PMCID: PMC6282345 DOI: 10.1186/s12964-018-0307-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Human pluripotent stem cells (PSCs) open new windows for basic research and regenerative medicine due to their remarkable properties, i.e. their ability to self-renew indefinitely and being pluripotent. There are different, conflicting data related to the role of basic fibroblast growth factor (bFGF) in intracellular signal transduction and the regulation of pluripotency of PSCs. Here, we investigated the effect of bFGF and its downstream pathways in pluripotent vs. differentiated human induced (hi) PSCs. METHODS bFGF downstream signaling pathways were investigated in long-term culture of hiPSCs from pluripotent to differentiated state (withdrawing bFGF) using immunoblotting, immunocytochemistry and qPCR. Subcellular distribution of signaling components were investigated by simple fractionation and immunoblotting upon bFGF stimulation. Finally, RAS activity and RAS isoforms were studied using RAS assays both after short- and long-term culture in response to bFGF stimulation. RESULTS Our results revealed that hiPSCs were differentiated into the ectoderm lineage upon withdrawing bFGF as an essential pluripotency mediator. Pluripotency markers OCT4, SOX2 and NANOG were downregulated, following a drastic decrease in MAPK pathway activity levels. Notably, a remarkable increase in phosphorylation levels of p38 and JAK/STAT3 was observed in differentiated hiPSCs, while the PI3K/AKT and JNK pathways remained active during differentiation. Our data further indicate that among the RAS paralogs, NRAS predominantly activates the MAPK pathway in hiPSCs. CONCLUSION Collectively, the MAPK pathway appears to be the prime signaling pathway downstream of bFGF for maintaining pluripotency in hiPSCs and among the MAPK pathways, the activity of NRAS-RAF-MEK-ERK is decreased during differentiation, whereas p38 is activated and JNK remains constant.
Collapse
Affiliation(s)
- Fereshteh Haghighi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Julia Dahlmann
- Department of Thoracic and Cardiovascular Surgery, University of Göttingen, Göttingen, Germany.,Department of Cardiothoracic Surgery, University Clinic, Otto von Guericke-University, Magdeburg, Germany
| | - Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Lang
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany.,Present address: Department of Urology, Medical Faculty of Heinrich Heine University, Düsseldorf, Germany
| | - Ingo Kutschka
- Department of Cardiothoracic Surgery, University Clinic, Otto von Guericke-University, Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto von Guericke-University, Magdeburg, Germany
| | - George Kensah
- Department of Thoracic and Cardiovascular Surgery, University of Göttingen, Göttingen, Germany.,Department of Cardiothoracic Surgery, University Clinic, Otto von Guericke-University, Magdeburg, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
20
|
Liu Z, Zhang QB, Bu C, Wang D, Yu K, Gan Z, Chang J, Cheng Z, Liu Z. Quantitative Dynamics of Proteome, Acetylome, and Succinylome during Stem-Cell Differentiation into Hepatocyte-like Cells. J Proteome Res 2018; 17:2491-2498. [PMID: 29882676 DOI: 10.1021/acs.jproteome.8b00238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Stem-cell differentiation is a complex biological process controlled by a series of functional protein clusters and signaling transductions, especially metabolism-related pathways. Although previous studies have quantified the proteome and phosphoproteome for stem-cell differentiation, the investigation of acylation-mediated regulation is still absent. In this study, we quantitatively profiled the proteome, acetylome, and succinylome in pluripotent human embryonic stem cells (hESCs) and differentiated hepatocyte-like cells (HLCs). In total, 3843 proteins, 185 acetylation sites in 103 proteins, and 602 succinylation sites in 391 proteins were quantified. The quantitative proteome showed that in differentiated HLCs the TGF-β, JAK-STAT, and RAS signaling pathways were activated, whereas ECM-related processes such as sulfates and leucine degradation were depressed. Interestingly, it was observed that the acetylation and succinylation were more intensive in hESCs, whereas protein processing in endoplasmic reticulum and the carbon metabolic pathways were especially highly succinylated. Because the metabolism patterns in pluripotent hESCs and the differentiated HLCs were different, we proposed that the dynamic acylations, especially succinylation, might regulate the Warburg-like effect and TCA cycle during differentiation. Taken together, we systematically profiled the protein and acylation levels of regulation in pluripotent hESCs and differentiated HLCs, and the results indicated the important roles of acylation in pluripotency maintenance and differentiation.
Collapse
Affiliation(s)
- Zekun Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China , Collaborative Innovation Center for Cancer Medicine , Guangzhou 510060 , China
| | - Qing-Bin Zhang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease , Stomatology Hospital of Guangzhou Medical University , Guangzhou 510140 , China
| | - Chen Bu
- Jingjie PTM BioLabs (Hangzhou), Co. Ltd. , Hangzhou 310018 , China
| | - Dawei Wang
- Department of Thoracic Surgery , China Meitan General Hospital , Beijing 100028 , China
| | - Kai Yu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China , Collaborative Innovation Center for Cancer Medicine , Guangzhou 510060 , China
| | - Zhixue Gan
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology , Tongji University , Shanghai 200092 , China
| | - Jianfeng Chang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology , Tongji University , Shanghai 200092 , China
| | - Zhongyi Cheng
- Jingjie PTM BioLabs (Hangzhou), Co. Ltd. , Hangzhou 310018 , China
| | - Zexian Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China , Collaborative Innovation Center for Cancer Medicine , Guangzhou 510060 , China
| |
Collapse
|