1
|
Crossman VG, Tiong CF, Coles CA, Bozaoglu K, Forbes R, Yiu EM, Ruparelia AA, Currie PD, Vlahos K, Howden SE, North KN, Lamandé SR, Houweling PJ. Generation of an iPSC line (with isogenic control) from the PBMCs of a COL6A1 (c.1056 + 2T > A) Bethlem myopathy patient. Stem Cell Res 2025; 84:103673. [PMID: 39954549 DOI: 10.1016/j.scr.2025.103673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 12/17/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
To produce an in vitro model of Bethlem myopathy, we reprogrammed the peripheral blood mononuclear cells (PBMCs) of a patient with a heterozygous COL6A1 c.1056 + 2T > A mutation at the exon/intron 14 boundary of the COL6A1 gene to induced pluripotent stem cells (iPSCs). Using CRISPR/Cas9 gene editing, we corrected the mutation to generate an isogenic control line. Both the patient and isogenic control iPSCs show a normal karyotype, express pluripotency markers and can differentiate into cell states that represent the three embryonic germ layers (endoderm, mesoderm and ectoderm). These cell lines will be differentiated and used to explore disease mechanisms and evaluate novel therapeutics for Bethlem myopathy.
Collapse
Affiliation(s)
| | - Chrystal F Tiong
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Chantal A Coles
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, The University of Melbourne, Victoria, Australia
| | - Kiymet Bozaoglu
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Robin Forbes
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Eppie M Yiu
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, The University of Melbourne, Victoria, Australia; Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Avnika A Ruparelia
- Centre for Muscle Research, The University of Melbourne, Victoria, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Katerina Vlahos
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sara E Howden
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, The University of Melbourne, Victoria, Australia
| | - Shireen R Lamandé
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Peter J Houweling
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Quan ZJ, Li SA, Yang ZX, Zhao JJ, Li GH, Zhang F, Wen W, Cheng T, Zhang XB. GREPore-seq: A Robust Workflow to Detect Changes After Gene Editing Through Long-range PCR and Nanopore Sequencing. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1221-1236. [PMID: 35752289 PMCID: PMC11082256 DOI: 10.1016/j.gpb.2022.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 05/19/2022] [Accepted: 06/13/2022] [Indexed: 05/09/2023]
Abstract
To achieve the enormous potential of gene-editing technology in clinical therapies, one needs to evaluate both the on-target efficiency and unintended editing consequences comprehensively. However, there is a lack of a pipelined, large-scale, and economical workflow for detecting genome editing outcomes, in particular insertion or deletion of a large fragment. Here, we describe an approach for efficient and accurate detection of multiple genetic changes after CRISPR/Cas9 editing by pooled nanopore sequencing of barcoded long-range PCR products. Recognizing the high error rates of Oxford nanopore sequencing, we developed a novel pipeline to capture the barcoded sequences by grepping reads of nanopore amplicon sequencing (GREPore-seq). GREPore-seq can assess nonhomologous end-joining (NHEJ)-mediated double-stranded oligodeoxynucleotide (dsODN) insertions with comparable accuracy to Illumina next-generation sequencing (NGS). GREPore-seq also reveals a full spectrum of homology-directed repair (HDR)-mediated large gene knock-in, correlating well with the fluorescence-activated cell sorting (FACS) analysis results. Of note, we discovered low-level fragmented and full-length plasmid backbone insertion at the CRISPR cutting site. Therefore, we have established a practical workflow to evaluate various genetic changes, including quantifying insertions of short dsODNs, knock-ins of long pieces, plasmid insertions, and large fragment deletions after CRISPR/Cas9-mediated editing. GREPore-seq is freely available at GitHub (https://github.com/lisiang/GREPore-seq) and the National Genomics Data Center (NGDC) BioCode (https://ngdc.cncb.ac.cn/biocode/tools/BT007293).
Collapse
Affiliation(s)
- Zi-Jun Quan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Si-Ang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Zhi-Xue Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Juan-Juan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Guo-Hua Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Wei Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin 300020, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
3
|
Lotfi M, Morshedi Rad D, Mashhadi SS, Ashouri A, Mojarrad M, Mozaffari-Jovin S, Farrokhi S, Hashemi M, Lotfi M, Ebrahimi Warkiani M, Abbaszadegan MR. Recent Advances in CRISPR/Cas9 Delivery Approaches for Therapeutic Gene Editing of Stem Cells. Stem Cell Rev Rep 2023; 19:2576-2596. [PMID: 37723364 PMCID: PMC10661828 DOI: 10.1007/s12015-023-10585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 09/20/2023]
Abstract
Rapid advancement in genome editing technologies has provided new promises for treating neoplasia, cardiovascular, neurodegenerative, and monogenic disorders. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful gene editing tool offering advantages, including high editing efficiency and low cost over the conventional approaches. Human pluripotent stem cells (hPSCs), with their great proliferation and differentiation potential into different cell types, have been exploited in stem cell-based therapy. The potential of hPSCs and the capabilities of CRISPR/Cas9 genome editing has been paradigm-shifting in medical genetics for over two decades. Since hPSCs are categorized as hard-to-transfect cells, there is a critical demand to develop an appropriate and effective approach for CRISPR/Cas9 delivery into these cells. This review focuses on various strategies for CRISPR/Cas9 delivery in stem cells.
Collapse
Affiliation(s)
- Malihe Lotfi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Samaneh Sharif Mashhadi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Ashouri
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Farrokhi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia.
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, Australia.
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Pugsley K, Namipashaki A, Vlahos K, Furley K, Graham A, Johnson BP, Kallady K, Kuah JY, Mohanakumar Sindhu VP, Suter A, Hawi Z, Bellgrove MA. Generation of induced pluripotent stem cell lines from three individuals with autism spectrum disorder. Stem Cell Res 2023; 71:103170. [PMID: 37494850 DOI: 10.1016/j.scr.2023.103170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023] Open
Abstract
Uncovering the molecular mechanisms of autism spectrum disorder (autism) necessitates development of relevant experimental models that are capable of recapitulating features of the clinical phenotype. Using non-integrative episomal vectors, peripheral blood mononuclear cells derived from three unrelated individuals diagnosed with autism were reprogrammed to induced pluripotent stem cells (iPSCs). The resultant lines exhibited the expected cellular morphology, karyotype, and evidence of pluripotency. These iPSCs constitute a valuable resource to support investigations of the underlying aetiology of autism.
Collapse
Affiliation(s)
- Kealan Pugsley
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Atefeh Namipashaki
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Katerina Vlahos
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Kirsten Furley
- Department of Paediatrics, Monash Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Alison Graham
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Beth P Johnson
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia; Department of Paediatrics, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Kathryn Kallady
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Jia Yi Kuah
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Vishnu Priya Mohanakumar Sindhu
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia; Department of Paediatrics, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Annabelle Suter
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Ziarih Hawi
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia.
| | - Mark A Bellgrove
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Oyefeso FA, Goldberg G, Opoku NYPS, Vazquez M, Bertucci A, Chen Z, Wang C, Muotri AR, Pecaut MJ. Effects of acute low-moderate dose ionizing radiation to human brain organoids. PLoS One 2023; 18:e0282958. [PMID: 37256873 PMCID: PMC10231836 DOI: 10.1371/journal.pone.0282958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/27/2023] [Indexed: 06/02/2023] Open
Abstract
Human exposure to low-to-moderate dose ionizing radiation (LMD-IR) is increasing via environmental, medical, occupational sources. Acute exposure to LMD-IR can cause subclinical damage to cells, resulting in altered gene expression and cellular function within the human brain. It has been difficult to identify diagnostic and predictive biomarkers of exposure using traditional research models due to factors including lack of 3D structure in monolayer cell cultures, limited ability of animal models to accurately predict human responses, and technical limitations of studying functional human brain tissue. To address this gap, we generated brain/cerebral organoids from human induced pluripotent stem cells to study the radiosensitivity of human brain cells, including neurons, astrocytes, and oligodendrocytes. While organoids have become popular models for studying brain physiology and pathology, there is little evidence to confirm that exposing brain organoids to LMD-IR will recapitulate previous in vitro and in vivo observations. We hypothesized that exposing brain organoids to proton radiation would (1) cause a time- and dose-dependent increase in DNA damage, (2) induce cell type-specific differences in radiosensitivity, and (3) increase expression of oxidative stress and DNA damage response genes. Organoids were exposed to 0.5 or 2 Gy of 250 MeV protons and samples were collected at 30 minute, 24 hour, and 48 hour timepoints. Using immunofluorescence and RNA sequencing, we found time- and dose-dependent increases in DNA damage in irradiated organoids; no changes in cell populations for neurons, oligodendrocytes, and astrocytes by 24 hours; decreased expression of genes related to oligodendrocyte lineage, astrocyte lineage, mitochondrial function, and cell cycle progression by 48 hours; increased expression of genes related to neuron lineage, oxidative stress, and DNA damage checkpoint regulation by 48 hours. Our findings demonstrate the possibility of using organoids to characterize cell-specific radiosensitivity and early radiation-induced gene expression changes within the human brain, providing new avenues for further study of the mechanisms underlying acute neural cell responses to IR exposure at low-to-moderate doses.
Collapse
Affiliation(s)
- Foluwasomi A. Oyefeso
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Gabriela Goldberg
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Nana Yaa P. S. Opoku
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Marcelo Vazquez
- Departments of Pediatrics and Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archealization Center (ArchC), University of California San Diego, La Jolla, California, United States of America
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Antonella Bertucci
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Zhong Chen
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Charles Wang
- Departments of Pediatrics and Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archealization Center (ArchC), University of California San Diego, La Jolla, California, United States of America
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Alysson R. Muotri
- Department of Radiation Medicine, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Michael J. Pecaut
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Departments of Pediatrics and Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archealization Center (ArchC), University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
6
|
Chen W, Wang C, Yang ZX, Zhang F, Wen W, Schaniel C, Mi X, Bock M, Zhang XB, Qiu H, Wang C. Reprogramming of human peripheral blood mononuclear cells into induced mesenchymal stromal cells using non-integrating vectors. Commun Biol 2023; 6:393. [PMID: 37041280 PMCID: PMC10090171 DOI: 10.1038/s42003-023-04737-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/20/2023] [Indexed: 04/13/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have great value in cell therapies. The MSC therapies have many challenges due to its inconsistent potency and limited quantity. Here, we report a strategy to generate induced MSCs (iMSCs) by directly reprogramming human peripheral blood mononuclear cells (PBMCs) with OCT4, SOX9, MYC, KLF4, and BCL-XL using a nonintegrating episomal vector system. While OCT4 was not required to reprogram PBMCs into iMSCs, omission of OCT4 significantly impaired iMSC functionality. The omission of OCT4 resulted in significantly downregulating MSC lineage specific and mesoderm-regulating genes, including SRPX, COL5A1, SOX4, SALL4, TWIST1. When reprogramming PBMCs in the absence of OCT4, 67 genes were significantly hypermethylated with reduced transcriptional expression. These data indicate that transient expression of OCT4 may serve as a universal reprogramming factor by increasing chromatin accessibility and promoting demethylation. Our findings represent an approach to produce functional MSCs, and aid in identifying putative function associated MSC markers.
Collapse
Affiliation(s)
- Wanqiu Chen
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Chenguang Wang
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Xue Yang
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- State Key Laboratory of Experimental Hematology, Tianjin, China
| | - Feng Zhang
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- State Key Laboratory of Experimental Hematology, Tianjin, China
| | - Wei Wen
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- State Key Laboratory of Experimental Hematology, Tianjin, China
| | - Christoph Schaniel
- Division of Hematology and Medical Oncology, Black Family Stem Cell Institute, Tisch Cancer Institute, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianqiang Mi
- Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences, Shanghai, China
| | - Matthew Bock
- Department of Pediatrics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Xiao-Bing Zhang
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA.
| | - Hongyu Qiu
- Translational Cardiovascular Research Center, Department of Internal Medicine, University of Arizona - College of Medicine at Phoenix, Phoenix, AZ, USA.
| | - Charles Wang
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
- Division of Microbiology & Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
7
|
Shakirova A, Karpov T, Komarova Y, Lepik K. In search of an ideal template for therapeutic genome editing: A review of current developments for structure optimization. Front Genome Ed 2023; 5:1068637. [PMID: 36911237 PMCID: PMC9992834 DOI: 10.3389/fgeed.2023.1068637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Gene therapy is a fast developing field of medicine with hundreds of ongoing early-stage clinical trials and numerous preclinical studies. Genome editing (GE) now is an increasingly important technology for achieving stable therapeutic effect in gene correction, with hematopoietic cells representing a key target cell population for developing novel treatments for a number of hereditary diseases, infections and cancer. By introducing a double strand break (DSB) in the defined locus of genomic DNA, GE tools allow to knockout the desired gene or to knock-in the therapeutic gene if provided with an appropriate repair template. Currently, the efficiency of methods for GE-mediated knock-in is limited. Significant efforts were focused on improving the parameters and interaction of GE nuclease proteins. However, emerging data suggests that optimal characteristics of repair templates may play an important role in the knock-in mechanisms. While viral vectors with notable example of AAVs as a donor template carrier remain the mainstay in many preclinical trials, non-viral templates, including plasmid and linear dsDNA, long ssDNA templates, single and double-stranded ODNs, represent a promising alternative. Furthermore, tuning of editing conditions for the chosen template as well as its structure, length, sequence optimization, homology arm (HA) modifications may have paramount importance for achieving highly efficient knock-in with favorable safety profile. This review outlines the current developments in optimization of templates for the GE mediated therapeutic gene correction.
Collapse
Affiliation(s)
- Alena Shakirova
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia
| | - Timofey Karpov
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia.,Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Yaroslava Komarova
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia
| | - Kirill Lepik
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia
| |
Collapse
|
8
|
Tsai HC, Pietrobon V, Peng M, Wang S, Zhao L, Marincola FM, Cai Q. Current strategies employed in the manipulation of gene expression for clinical purposes. J Transl Med 2022; 20:535. [PMID: 36401279 PMCID: PMC9673226 DOI: 10.1186/s12967-022-03747-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Abnormal gene expression level or expression of genes containing deleterious mutations are two of the main determinants which lead to genetic disease. To obtain a therapeutic effect and thus to cure genetic diseases, it is crucial to regulate the host's gene expression and restore it to physiological conditions. With this purpose, several molecular tools have been developed and are currently tested in clinical trials. Genome editing nucleases are a class of molecular tools routinely used in laboratories to rewire host's gene expression. Genome editing nucleases include different categories of enzymes: meganucleses (MNs), zinc finger nucleases (ZFNs), clustered regularly interspaced short palindromic repeats (CRISPR)- CRISPR associated protein (Cas) and transcription activator-like effector nuclease (TALENs). Transposable elements are also a category of molecular tools which includes different members, for example Sleeping Beauty (SB), PiggyBac (PB), Tol2 and TcBuster. Transposons have been used for genetic studies and can serve as gene delivery tools. Molecular tools to rewire host's gene expression also include episomes, which are divided into different categories depending on their molecular structure. Finally, RNA interference is commonly used to regulate gene expression through the administration of small interfering RNA (siRNA), short hairpin RNA (shRNA) and bi-functional shRNA molecules. In this review, we will describe the different molecular tools that can be used to regulate gene expression and discuss their potential for clinical applications. These molecular tools are delivered into the host's cells in the form of DNA, RNA or protein using vectors that can be grouped into physical or biochemical categories. In this review we will also illustrate the different types of payloads that can be used, and we will discuss recent developments in viral and non-viral vector technology.
Collapse
Affiliation(s)
| | | | - Maoyu Peng
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Suning Wang
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Lihong Zhao
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | | | - Qi Cai
- Kite Pharma Inc, Santa Monica, CA, 90404, USA.
| |
Collapse
|
9
|
Abstract
Embryonic development and cell specification have been viewed as an epigenetically rigid process. Through accumulation of irreversible epigenetic marks, the differentiation process has been considered unidirectional, and once completed cell specification would be permanent and stable. However, somatic cell nuclear transfer that involved the implantation of a somatic nucleus into a previously enucleated oocyte accomplished in amphibians in the 1950s and in mammals in the late 1990s-resulting in the birth of "Dolly the sheep"-clearly showed that "terminal" differentiation is reversible. In parallel, work on lineage-determining factors like MyoD revealed surprising potential to modulate lineage identity in somatic cells. This work culminated in the discovery that a set of four defined factors can reprogram fibroblasts into induced pluripotent stem (iPS) cells, which were shown to be molecularly and functionally equivalent to blastocyst-derived embryonic stem (ES) cells, thus essentially showing that defined factors can induce authentic reprogramming without the need of oocytes. This concept was further extended when it was shown that fibroblasts can be directly converted into neurons, showing induced lineage conversion is possible even between cells representing two different germ layers. These findings suggest that "everything is possible" (i.e., once key lineage reprogramming factors are identified, cells should be able to convert into any desired lineage).
Collapse
Affiliation(s)
- Hannah Shelby
- Departments of Pathology and Chemical and Systems Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Tara Shelby
- Departments of Pathology and Chemical and Systems Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Marius Wernig
- Departments of Pathology and Chemical and Systems Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
10
|
CRISPR-Cas9 gene editing induced complex on-target outcomes in human cells. Exp Hematol 2022; 110:13-19. [PMID: 35304271 DOI: 10.1016/j.exphem.2022.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022]
Abstract
CRISPR-Cas9 is a powerful tool to edit the genome and holds great promise for gene therapy applications. Initial concerns of gene engineering focus on off-target effects. However, in addition to short indel mutations (often < 50 bp), an increasing number of studies have revealed complex on-target results after double-strand break repair by CRISPR-Cas9, such as large deletions, gene rearrangement, and loss of heterozygosity. These unintended mutations are potential safety concerns in clinical gene editing. Here, in this review, we summarize the significant findings of CRISPR-Cas9-induced on-target deleterious outcomes and discuss putative ways to achieve safe gene therapy.
Collapse
|
11
|
Jalil S, Keskinen T, Maldonado R, Sokka J, Trokovic R, Otonkoski T, Wartiovaara K. Simultaneous high-efficiency base editing and reprogramming of patient fibroblasts. Stem Cell Reports 2021; 16:3064-3075. [PMID: 34822772 PMCID: PMC8693657 DOI: 10.1016/j.stemcr.2021.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/22/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) allow in vitro study of genetic diseases and hold potential for personalized stem cell therapy. Gene editing, precisely modifying specifically targeted loci, represents a valuable tool for different hiPSC applications. This is especially useful in monogenic diseases to dissect the function of unknown mutations or to create genetically corrected, patient-derived hiPSCs. Here we describe a highly efficient method for simultaneous base editing and reprogramming of fibroblasts employing a CRISPR-Cas9 adenine base editor. As a proof of concept, we apply this approach to generate gene-edited hiPSCs from skin biopsies of four patients carrying a Finnish-founder pathogenic point mutation in either NOTCH3 or LDLR genes. We also show LDLR activity restoration after the gene correction. Overall, this method yields tens of gene-edited hiPSC monoclonal lines with unprecedented efficiency and robustness while considerably reducing the cell culture time and thus the risk for in vitro alterations.
Collapse
Affiliation(s)
- Sami Jalil
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Uusimaa, Finland
| | - Timo Keskinen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Uusimaa, Finland
| | - Rocío Maldonado
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Uusimaa, Finland
| | - Joonas Sokka
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Uusimaa, Finland
| | - Ras Trokovic
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Uusimaa, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Uusimaa, Finland; Department of Pediatrics, Helsinki University Hospital, 00290 Helsinki, Uusimaa, Finland
| | - Kirmo Wartiovaara
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Uusimaa, Finland; Department of Clinical Genetics, Helsinki University Hospital, 00290 Helsinki, Uusimaa, Finland.
| |
Collapse
|
12
|
Wen W, Quan ZJ, Li SA, Yang ZX, Fu YW, Zhang F, Li GH, Zhao M, Yin MD, Xu J, Zhang JP, Cheng T, Zhang XB. Effective control of large deletions after double-strand breaks by homology-directed repair and dsODN insertion. Genome Biol 2021; 22:236. [PMID: 34416913 PMCID: PMC8377869 DOI: 10.1186/s13059-021-02462-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/06/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND After repairing double-strand breaks (DSBs) caused by CRISPR-Cas9 cleavage, genomic damage, such as large deletions, may have pathogenic consequences. RESULTS We show that large deletions are ubiquitous but are dependent on editing sites and cell types. Human primary T cells display more significant deletions than hematopoietic stem and progenitor cells (HSPCs), whereas we observe low levels in induced pluripotent stem cells (iPSCs). We find that the homology-directed repair (HDR) with single-stranded oligodeoxynucleotides (ssODNs) carrying short homology reduces the deletion damage by almost half, while adeno-associated virus (AAV) donors with long homology reduce large deletions by approximately 80%. In the absence of HDR, the insertion of a short double-stranded ODN by NHEJ reduces deletion indexes by about 60%. CONCLUSIONS Timely bridging of broken ends by HDR and NHEJ vastly decreases the unintended consequences of dsDNA cleavage. These strategies can be harnessed in gene editing applications to attenuate unintended outcomes.
Collapse
Affiliation(s)
- Wei Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Zi-Jun Quan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Si-Ang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Zhi-Xue Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Ya-Wen Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Guo-Hua Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Mei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Meng-Di Yin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jing Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jian-Ping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
13
|
Houweling PJ, Coles CA, Tiong CF, Nielsen B, Graham A, McDonald P, Suter A, Piers AT, Forbes R, Ryan MM, Howden SE, Lamandé SR, North KN. Generating an iPSC line (with isogenic control) from the PBMCs of an ACTA1 (p.Gly148Asp) nemaline myopathy patient. Stem Cell Res 2021; 54:102429. [PMID: 34157503 DOI: 10.1016/j.scr.2021.102429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 11/28/2022] Open
Abstract
To produce an in vitro model of nemaline myopathy, we reprogrammed the peripheral blood mononuclear cells (PBMCs) of a patient with a heterozygous p.Gly148Asp mutation in exon 3 of the ACTA1 gene to iPSCs. Using CRISPR/Cas9 gene editing we corrected the mutation to generate an isogenic control line. Both the mutant and control show a normal karyotype, express pluripotency markers and could differentiae into the three cell states that represent embryonic germ layers (endoderm, mesoderm and neuroectoderm) and the dermomyotome (precursor of skeletal muscle). When differentiated these cell lines will be used to explore disease mechanisms and evaluate novel therapeutics.
Collapse
Affiliation(s)
- Peter J Houweling
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, The University of Melbourne, Victoria, Australia
| | - Chantal A Coles
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, The University of Melbourne, Victoria, Australia
| | - Chrystal F Tiong
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Bridget Nielsen
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Alison Graham
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Penny McDonald
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Annabelle Suter
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Adam T Piers
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Robin Forbes
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Royal Children's Hospital, Melbourne, Victoria, Australia; Victorian Clinical Genetics Services, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Monique M Ryan
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, The University of Melbourne, Victoria, Australia; Royal Children's Hospital, Melbourne, Victoria, Australia; Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sara E Howden
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, The University of Melbourne, Victoria, Australia
| | - Shireen R Lamandé
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, The University of Melbourne, Victoria, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Pediatrics, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Generation of an induced pluripotent stem cell line, FJMUUHi001-A, from a hereditary Parkinson's disease patient with homozygous mutation of c.189dupA in PARK7. Stem Cell Res 2021; 51:102175. [PMID: 33485186 DOI: 10.1016/j.scr.2021.102175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 11/21/2022] Open
Abstract
PARK7 mutations are accountable for the inherited Parkinson's disease. An induced pluripotent stem cell (iPSC) line FJMUUHi001-A was generated by expressing five reprogramming factors, OCT3/4, SOX2, c-MYC, KLF4 and BCL-XL, in peripheral blood mononuclear cells from a 32-year old patient carrying a homozygous mutation of c.189dupA in PARK7. The iPSCs with a normal karyotype had the abilities to differentiate into three germ layers and expressed pluripotency markers without detectable residual plasmids. The cell line FJMUUHi001-A carrying the truncating protein PARK7 could be a useful tool to help comprehend the function of PARK7 in the iPSCs and differentiated cells from them.
Collapse
|
15
|
Zhang Y, Hu W, Ma K, Zhang C, Fu X. Reprogramming of Keratinocytes as Donor or Target Cells Holds Great Promise for Cell Therapy and Regenerative Medicine. Stem Cell Rev Rep 2020; 15:680-689. [PMID: 31197578 DOI: 10.1007/s12015-019-09900-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
One of the most crucial branches of regenerative medicine is cell therapy, in which cellular material is injected into the patient to initiate the regenerative process. Cells obtained by reprogramming of the patient's own cells offer ethical and clinical advantages could provide a new source of material for therapeutic applications. Studies to date have shown that only a subset of differentiated cell types can be reprogrammed. Among these, keratinocytes, which are the most abundant proliferating cell type in the epidermis, have gained increasing attention as both donor and target cells for reprogramming and have become a new focus of regenerative medicine. As target cells for the treatment of skin defects, keratinocytes can be differentiated or reprogrammed from embryonic stem cells, induced pluripotent stem cells, fibroblasts, adipose tissue stem cells, and mesenchymal cells. As donor cells, keratinocytes can be reprogrammed or direct reprogrammed into a number of cell types, including induced pluripotent stem cells, neural cells, and Schwann cells. In this review, we discuss recent advances in keratinocyte reprogramming, focusing on the induction methods, potential molecular mechanisms, conversion efficiency, and safety for clinical applications. Graphical Abstract KCs as target cells can be reprogrammed or differentiated from fibroblasts, iPSCs, ATSCs, and mesenchymal cells. And as donor cells, KCs can be reprogrammed or directly reprogrammded into iPSCs, neural cells, Schwann cells, and epidermal stem cells.
Collapse
Affiliation(s)
- Yuehou Zhang
- School of Medicine, NanKai University, 94 Wei Jin Road, NanKai District, Tianjin, 300071, People's Republic of China.,Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China
| | - Wenzhi Hu
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China
| | - Kui Ma
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China
| | - Cuiping Zhang
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China.
| | - Xiaobing Fu
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center of General Hospital of PLA, 51 Fu Cheng Road, HaiDian District, Beijing, 100048, People's Republic of China.
| |
Collapse
|
16
|
Wang AYL, Loh CYY. Episomal Induced Pluripotent Stem Cells: Functional and Potential Therapeutic Applications. Cell Transplant 2019; 28:112S-131S. [PMID: 31722555 PMCID: PMC7016470 DOI: 10.1177/0963689719886534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/11/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
The term episomal induced pluripotent stem cells (EiPSCs) refers to somatic cells that are reprogrammed into induced pluripotent stem cells (iPSCs) using non-integrative episomal vector methods. This reprogramming process has a better safety profile compared with integrative methods using viruses. There is a current trend toward using episomal plasmid reprogramming to generate iPSCs because of the improved safety profile. Clinical reports of potential human cell sources that have been successfully reprogrammed into EiPSCs are increasing, but no review or summary has been published. The functional applications of EiPSCs and their potential uses in various conditions have been described, and these may be applicable to clinical scenarios. This review summarizes the current direction of EiPSC research and the properties of these cells with the aim of explaining their potential role in clinical applications and functional restoration.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- *Both the authors contributed equally to this article
| | - Charles Yuen Yung Loh
- St Andrew’s Center for Burns and Plastic Surgery, Chelmsford, United Kingdom
- *Both the authors contributed equally to this article
| |
Collapse
|
17
|
Li XL, Li GH, Fu J, Fu YW, Zhang L, Chen W, Arakaki C, Zhang JP, Wen W, Zhao M, Chen WV, Botimer GD, Baylink D, Aranda L, Choi H, Bechar R, Talbot P, Sun CK, Cheng T, Zhang XB. Highly efficient genome editing via CRISPR-Cas9 in human pluripotent stem cells is achieved by transient BCL-XL overexpression. Nucleic Acids Res 2019; 46:10195-10215. [PMID: 30239926 PMCID: PMC6212847 DOI: 10.1093/nar/gky804] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022] Open
Abstract
Genome editing of human induced pluripotent stem cells (iPSCs) is instrumental for functional genomics, disease modeling, and regenerative medicine. However, low editing efficiency has hampered the applications of CRISPR–Cas9 technology in creating knockin (KI) or knockout (KO) iPSC lines, which is largely due to massive cell death after electroporation with editing plasmids. Here, we report that the transient delivery of BCL-XL increases iPSC survival by ∼10-fold after plasmid transfection, leading to a 20- to 100-fold increase in homology-directed repair (HDR) KI efficiency and a 5-fold increase in non-homologous end joining (NHEJ) KO efficiency. Treatment with a BCL inhibitor ABT-263 further improves HDR efficiency by 70% and KO efficiency by 40%. The increased genome editing efficiency is attributed to higher expressions of Cas9 and sgRNA in surviving cells after electroporation. HDR or NHEJ efficiency reaches 95% with dual editing followed by selection of cells with HDR insertion of a selective gene. Moreover, KO efficiency of 100% can be achieved in a bulk population of cells with biallelic HDR KO followed by double selection, abrogating the necessity for single cell cloning. Taken together, these simple yet highly efficient editing strategies provide useful tools for applications ranging from manipulating human iPSC genomes to creating gene-modified animal models.
Collapse
Affiliation(s)
- Xiao-Lan Li
- State Key Laboratory of Experimental Hematology, Tianjin 300020, China.,Institute of Hematology and Blood Disease Hospital, Tianjin 300020, China
| | - Guo-Hua Li
- State Key Laboratory of Experimental Hematology, Tianjin 300020, China.,Institute of Hematology and Blood Disease Hospital, Tianjin 300020, China
| | - Juan Fu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Institute for Brain Disorders, Dalian Medical University, Dalian 116044, China.,Department of Obstetrics and Gynecology, the First Affiliated Hospital of Dalian Medical University, Dalian 116044, China
| | - Ya-Wen Fu
- State Key Laboratory of Experimental Hematology, Tianjin 300020, China.,Institute of Hematology and Blood Disease Hospital, Tianjin 300020, China
| | - Lu Zhang
- State Key Laboratory of Experimental Hematology, Tianjin 300020, China.,Institute of Hematology and Blood Disease Hospital, Tianjin 300020, China
| | - Wanqiu Chen
- Department of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Cameron Arakaki
- Department of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jian-Ping Zhang
- State Key Laboratory of Experimental Hematology, Tianjin 300020, China.,Institute of Hematology and Blood Disease Hospital, Tianjin 300020, China.,CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin 300020, China
| | - Wei Wen
- State Key Laboratory of Experimental Hematology, Tianjin 300020, China.,Institute of Hematology and Blood Disease Hospital, Tianjin 300020, China
| | - Mei Zhao
- State Key Laboratory of Experimental Hematology, Tianjin 300020, China.,Institute of Hematology and Blood Disease Hospital, Tianjin 300020, China
| | | | - Gary D Botimer
- Department of Orthopaedic Surgery, Loma Linda University, Loma Linda, CA 92350, USA
| | - David Baylink
- Department of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Leslie Aranda
- Department of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Hannah Choi
- Department of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Rachel Bechar
- UCR Stem Cell Center and Core, University of California at Riverside, Riverside, CA 92521, USA
| | - Prue Talbot
- UCR Stem Cell Center and Core, University of California at Riverside, Riverside, CA 92521, USA
| | - Chang-Kai Sun
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Institute for Brain Disorders, Dalian Medical University, Dalian 116044, China.,Research & Educational Center for the Control Engineering of Translational Precision Medicine (R-ECCE-TPM), School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China.,State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Tianjin 300020, China.,Institute of Hematology and Blood Disease Hospital, Tianjin 300020, China.,Research & Educational Center for the Control Engineering of Translational Precision Medicine (R-ECCE-TPM), School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin 300020, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China.,Collaborative Innovation Center for Cancer Medicine, Tianjin 300020, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, Tianjin 300020, China.,Institute of Hematology and Blood Disease Hospital, Tianjin 300020, China.,Department of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin 300020, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
18
|
Gridina ММ. Improvement of the knock-in effciency in the genome of human induced pluripotent stem cells using the CRISPR/Cas9 system. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj18.446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human induced pluripotent stem (hiPS) cells are a powerful tool for biomedical research. The ability to create patient-specifc pluripotent cells and their subsequent differentiation into any somatic cell type makes hiPS cells a valuable object for creating in vitro models of human diseases, screening drugs and a future source of cells for regenerative medicine. To realize entirely a potential of hiPScells, effective and precise methods for their genome editing are needed. The CRISPR/Cas9 system is the most widely used method for introducing site-specifc double-stranded breaks into DNA. It allows genes of interest to be knocked out with high efciency. However, knock-in into the target site of the genome is a much more difcult task. Moreover, many researchers have noted a low efciency of introducing target constructs into the hiPS cells’ genome. In this review, I attempt to describe the currently known information regarding the matter of increasing efciency of targeted insertions into hiPS cells’ genome. Here I will describe the most effective strategies for designing the donor template for homology-directed repair, methods to manipulate the double-strand break repair pathways introduced by a nuclease, including control of CRISPR/Cas9 delivery time. A low survival rate of hiPS cells following genome editing experiments is another difculty on the way towards successful knock-in, and here several highly effective approaches addressing it are proposed. Finally, I describe the most promising strategies, one-step reprogramming and genome editing, which allows gene-modifed integration-free hiPS cells to be efciently generated directly from somatic cells.
Collapse
|
19
|
Melo US, de Souza Leite F, Costa S, Rosenberg C, Zatz M. A fast method to reprogram and CRISPR/Cas9 gene editing from erythroblasts. Stem Cell Res 2018; 31:52-54. [PMID: 30015173 DOI: 10.1016/j.scr.2018.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/18/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022] Open
Abstract
An efficient one-step procedure to reprogram fibroblasts into human induced pluripotent stem cells (hiPSC) and perform CRISPR/Cas9 gene editing simultaneously was recently reported. Here we show that such simultaneous reprogramming and gene editing can be efficiently done from erythroblasts. We successfully obtained human induced pluripotent stem cells colonies together with in frame and out of frame CAPN1 mutations in one or both alleles. We did not identify off-targets in edited cell lines. The entire process, from blood collection to mutated hiPSC took approximately 5 weeks, a much shorter period than standard multi-step methodologies using fibroblasts. Noteworthy, blood drawing is a less invasive procedure than a skin biopsy.
Collapse
Affiliation(s)
- Uirá Souto Melo
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo, SP 05508-900, Brazil
| | - Felipe de Souza Leite
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo, SP 05508-900, Brazil
| | - Silvia Costa
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo, SP 05508-900, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo, SP 05508-900, Brazil
| | - Mayana Zatz
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo, SP 05508-900, Brazil.
| |
Collapse
|