1
|
Fasciano S, Wheba A, Ddamulira C, Wang S. Recent advances in scaffolding biomaterials for cultivated meat. BIOMATERIALS ADVANCES 2024; 162:213897. [PMID: 38810509 DOI: 10.1016/j.bioadv.2024.213897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/07/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
The emergence of cultivated meat provides a sustainable and ethical alternative to traditional animal agriculture, highlighting its increasing importance in the food industry. Biomaterial scaffolds are critical components in cultivated meat production for enabling cell adhesion, proliferation, differentiation, and orientation. While there's extensive research on scaffolding biomaterials, applying them to cultivated meat production poses distinct challenges, with each material offering its own set of advantages and disadvantages. This review summarizes the most recent scaffolding biomaterials used in the last five years for cell-cultured meat, detailing their respective advantages and disadvantages. We suggest future research directions and provide recommendations for scaffolds that support scalable, cost-effective, and safe high-quality meat production. Additionally, we highlight commercial challenges cultivated meat faces, encompassing bioreactor design, cell culture mediums, and regulatory and food safety issues. In summary, this review provides a comprehensive guide and valuable insights for researchers and companies in the field of cultivated meat production.
Collapse
Affiliation(s)
- Samantha Fasciano
- Department of Cellular and Molecular Biology, University of New Haven, West Haven, CT, 06516, USA
| | - Anas Wheba
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, 06516, USA
| | - Christopher Ddamulira
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, 06516, USA
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, 06516, USA.
| |
Collapse
|
2
|
Kavand A, Noverraz F, Gerber-Lemaire S. Recent Advances in Alginate-Based Hydrogels for Cell Transplantation Applications. Pharmaceutics 2024; 16:469. [PMID: 38675129 PMCID: PMC11053880 DOI: 10.3390/pharmaceutics16040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
With its exceptional biocompatibility, alginate emerged as a highly promising biomaterial for a large range of applications in regenerative medicine. Whether in the form of microparticles, injectable hydrogels, rigid scaffolds, or bioinks, alginate provides a versatile platform for encapsulating cells and fostering an optimal environment to enhance cell viability. This review aims to highlight recent studies utilizing alginate in diverse formulations for cell transplantation, offering insights into its efficacy in treating various diseases and injuries within the field of regenerative medicine.
Collapse
Affiliation(s)
| | | | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.K.); (F.N.)
| |
Collapse
|
3
|
Mulaudzi PE, Abrahamse H, Crous A. Insights on Three Dimensional Organoid Studies for Stem Cell Therapy in Regenerative Medicine. Stem Cell Rev Rep 2024; 20:509-523. [PMID: 38095787 PMCID: PMC10837234 DOI: 10.1007/s12015-023-10655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 02/03/2024]
Abstract
Regenerative medicine has developed as a promising discipline that utilizes stem cells to address limitations in traditional therapies, using innovative techniques to restore and repair damaged organs and tissues. One such technique is the generation of three-dimensional (3D) organoids in stem cell therapy. Organoids are 3D constructs that resemble specific organs' structural and functional characteristics and are generated from stem cells or tissue-specific progenitor cells. The use of 3D organoids is advantageous in comparison to traditional two-dimensional (2D) cell culture by bridging the gap between in vivo and in vitro research. This review aims to provide an overview of the advancements made towards regenerative medicine using stem cells to generate organoids, explore the techniques used in generating 3D organoids and their applications and finally elucidate the challenges and future directions in regenerative medicine using 3D organoids.
Collapse
Affiliation(s)
- Precious Earldom Mulaudzi
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|
4
|
Franchi-Mendes T, Silva M, Cartaxo AL, Fernandes-Platzgummer A, Cabral JMS, da Silva CL. Bioprocessing Considerations towards the Manufacturing of Therapeutic Skeletal and Smooth Muscle Cells. Bioengineering (Basel) 2023; 10:1067. [PMID: 37760170 PMCID: PMC10525286 DOI: 10.3390/bioengineering10091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Tissue engineering approaches within the muscle context represent a promising emerging field to address the current therapeutic challenges related with multiple pathological conditions affecting the muscle compartments, either skeletal muscle or smooth muscle, responsible for involuntary and voluntary contraction, respectively. In this review, several features and parameters involved in the bioprocessing of muscle cells are addressed. The cell isolation process is depicted, depending on the type of tissue (smooth or skeletal muscle), followed by the description of the challenges involving the use of adult donor tissue and the strategies to overcome the hurdles of reaching relevant cell numbers towards a clinical application. Specifically, the use of stem/progenitor cells is highlighted as a source for smooth and skeletal muscle cells towards the development of a cellular product able to maintain the target cell's identity and functionality. Moreover, taking into account the need for a robust and cost-effective bioprocess for cell manufacturing, the combination of muscle cells with biomaterials and the need for scale-up envisioning clinical applications are also approached.
Collapse
Affiliation(s)
- Teresa Franchi-Mendes
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marília Silva
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Luísa Cartaxo
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Cláudia L. da Silva
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
5
|
Liu J, Feng Z, Liu P, Fang L, Wang X, Lao H, Wu Y, Lin Z. Transcriptome Analysis of Human Vascular Smooth Muscle Cells Cultured on a Polyglycolic Acid Mesh Scaffold. J Tissue Eng Regen Med 2023; 2023:9956190. [PMID: 40226402 PMCID: PMC11919212 DOI: 10.1155/2023/9956190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 04/15/2025]
Abstract
To construct tissue-engineered blood vessels (TEBVs) in vitro, it is necessary to transfer seed cells to three-dimensional (3D) scaffolds for culture. However, what happens to the behavior of the cells after they are transferred to the scaffold is unclear. Therefore, in this study, a transcriptome analysis was used to characterize the differentially expressed genes (DEGs) of vascular smooth muscle cells (VSMCs) before and after transfer to 3D polyglycolic acid (PGA) scaffolds and to understand the changes in functional gene expression in the early stage of 3D culture. Transcriptome sequencing results showed that DEGs in the seed cells were mainly enriched in cell proliferation and cell-cell adhesion. The DEGs of cells grown in a 3D PGA scaffold (PGA-VSMCs) were mainly enriched in signal transduction. Furthermore, we found that ERK1/2 was significantly activated in PGA-VSMCs and inhibiting the phosphorylation level of ERK 1/2 in PGA-VSMCs significantly increased the expression of elastin. In conclusion, the PGA scaffold material altered gene expression in VSMCs and affected the elastin production. This study advances our understanding of biomaterial-cell interactions and provides valuable insights for improving the cultivation of TEBVs.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Zibei Feng
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, Guangdong 528200, China
| | - Peng Liu
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, Guangdong 528200, China
| | - Lijun Fang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xichun Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Haiyan Lao
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Yueheng Wu
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, Guangdong 528200, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Zhanyi Lin
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, Guangdong 528200, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
6
|
Xuan Z, Peng Q, Larsen T, Gurevich L, de Claville Christiansen J, Zachar V, Pennisi CP. Tailoring Hydrogel Composition and Stiffness to Control Smooth Muscle Cell Differentiation in Bioprinted Constructs. Tissue Eng Regen Med 2023; 20:199-212. [PMID: 36401768 PMCID: PMC10070577 DOI: 10.1007/s13770-022-00500-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Reliable in vitro cellular models are needed to study the phenotypic modulation of smooth muscle cells (SMCs) in health and disease. The aim of this study was to optimize gelatin methacrylate (GelMA)/alginate hydrogels for bioprinting three-dimensional (3D) SMC constructs. METHODS Four different hydrogel groups were prepared by mixing different concentrations (% w/v) of GelMA and alginate: G1 (5/1.5), G2 (5/3), G3 (7.5/1.5), and G4 (7.5/3). GelMA 10% was used as control (G5). A circular structure containing human bladder SMCs was fabricated by using an extrusion-based bioprinter. The effects of the mixing ratios on printability, viability, proliferation, and differentiation of the cells were investigated. RESULTS Rheological analysis showed that the addition of alginate significantly stabilized the change in mechanical properties with temperature variations. The group with the highest GelMA and alginate concentrations (G4) exhibited the highest viscosity, resulting in better stability of the 3D construct after crosslinking. Compared to other hydrogel compositions, cells in G4 maintained high viability (> 80%), exhibited spindle-shaped morphology, and showed a significantly higher proliferation rate within an 8-day period. More importantly, G4 provided an optimal environment for the induction of a SMC contractile phenotype, as evidenced by significant changes in the expression of marker proteins and morphological parameters. CONCLUSION Adjusting the composition of GelMA/alginate hydrogels is an effective means of controlling the SMC phenotype. These hydrogels support bioprinting of 3D models to study phenotypic smooth muscle adaptation, with the prospect of using the constructs in the study of therapies for the treatment of urethral strictures.
Collapse
Affiliation(s)
- Zongzhe Xuan
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Frederik Bajers Vej 3B, 9220, Aalborg Ø, Denmark
| | - Qiuyue Peng
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Frederik Bajers Vej 3B, 9220, Aalborg Ø, Denmark
| | - Thomas Larsen
- Materials Science and Engineering Group, Department of Materials and Production, Aalborg University, Pontoppidanstræde 103, 9220, Aalborg, Denmark
| | - Leonid Gurevich
- Materials Science and Engineering Group, Department of Materials and Production, Aalborg University, Pontoppidanstræde 103, 9220, Aalborg, Denmark
| | - Jesper de Claville Christiansen
- Materials Science and Engineering Group, Department of Materials and Production, Aalborg University, Pontoppidanstræde 103, 9220, Aalborg, Denmark
| | - Vladimir Zachar
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Frederik Bajers Vej 3B, 9220, Aalborg Ø, Denmark
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Frederik Bajers Vej 3B, 9220, Aalborg Ø, Denmark.
| |
Collapse
|
7
|
Liu Q, Liu Z, Gu H, Ge Y, Wu X, Zuo F, Du Q, Lei Y, Wang Z, Lin H. Comparative study of differentiating human pluripotent stem cells into vascular smooth muscle cells in hydrogel-based culture methods. Regen Ther 2022; 22:39-49. [PMID: 36618488 PMCID: PMC9798140 DOI: 10.1016/j.reth.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/31/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs), which provides structural integrity and regulates the diameter of vasculature, are of great potential for modeling vascular-associated diseases and tissue engineering. Here, we presented a detailed comparison of differentiating human pluripotent stem cells (hPSCs) into VSMCs (hPSCs-VSMCs) in four different culture methods, including 2-dimensional (2D) culture, 3-dimensional (3D) PNIPAAm-PEG hydrogel culture, 3-dimensional (3D) alginate hydrogel culture, and transferring 3-dimensional alginate hydrogel culture to 2-dimensional (2D) culture. Both hydrogel-based culture methods could mimic in vivo microenvironment to protect cells from shear force, and avoid cells agglomeration, resulting in the extremely high culture efficiency (e.g., high viability, high purity and high yield) compared with 2D culture. We demonstrated hPSC-VSMCs produced from hydrogel-based culture methods had better contractile phenotypes and the potential of vasculature formation. The transcriptome analysis showed the hPSC-VSMCs derived from hydrogel-based culture methods displayed more upregulated genes in vasculature development, angiogenesis and blood vessel development, extracellular matrix compared with 2D culture. Taken together, hPSC-VSMCs produced from hydrogel-based culture system could be applied in various biomedical fields, and further indicated the suitable development of alginate hydrogel for industrial production by taking all aspects into consideration.
Collapse
Affiliation(s)
- Qing Liu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100006, China
| | - Zhen Liu
- Department of Neurosurgery, Beijing Shunyi District Hospital, Beijing, 101300, China
| | - Hongyu Gu
- Department of Thoracic Surgery Ward 3, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Yuxia Ge
- Department of Neurology, The Second Hospital of Harbin, Harbin, 150056, China
| | - Xuesheng Wu
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fuxing Zuo
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qian Du
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Yuguo Lei
- Department of Biomedical Engineering, Huck Life Science Institute, Pennsylvania State University, University Park, PA, 16802, USA,Corresponding author.
| | - Zhanqi Wang
- Department of Vascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China,Corresponding author.
| | - Haishuang Lin
- Department of Neurology, The Second Hospital of Harbin, Harbin, 150056, China,Corresponding author.
| |
Collapse
|
8
|
Xie Y, Kollampally SCR, Jorgensen M, Zhang X. Alginate microfibers as therapeutic delivery scaffolds and tissue mimics. Exp Biol Med (Maywood) 2022; 247:2103-2118. [PMID: 36000165 PMCID: PMC9837301 DOI: 10.1177/15353702221112905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Alginate, a naturally occurring polysaccharide, has been widely used in cell encapsulation, 3D culture, cell therapy, tissue engineering, and regenerative medicine. Alginate's frequent use comes from its biocompatibility and ability to easily form hydrogel in a variety of forms (e.g. microcapsules, microfibers, and porous scaffolds), which can provide immunoprotection for cell therapy and mimic the extracellular matrix for tissue engineering. During the past 15 years, alginate hydrogel microfibers have attracted more and more attention due to its continuous thin tubular structures (diameter or shell thickness ⩽ 200 µm), high-density cell growth, high handleability and retrievability, and scalability. This review article provides a concise overview of alginate and its resultant hydrogel microfibers for the purpose of promoting multidisciplinary, collaborative, and convergent research in the field. It starts with a historical review of alginate as biomaterials and provides basics about alginate structure, properties, and mechanisms of hydrogel formation, followed by current challenges in effective cell delivery and functional tissue engineering. In particular, this work discusses how alginate microfiber technology could provide solutions to unmet needs with a focus on the current state of the art of alginate microfiber technology and its applications in 3D cell culture, cell delivery, and tissue engineering. At last, we discuss future directions in the perspective of alginate-based advanced technology development in biology and medicine.
Collapse
Affiliation(s)
- Yubing Xie
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | | | - Matthew Jorgensen
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Xulang Zhang
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| |
Collapse
|
9
|
Wang O, Han L, Lin H, Tian M, Zhang S, Duan B, Chung S, Zhang C, Lian X, Wang Y, Lei Y. Fabricating 3-dimensional human brown adipose microtissues for transplantation studies. Bioact Mater 2022; 22:518-534. [PMID: 36330162 PMCID: PMC9619153 DOI: 10.1016/j.bioactmat.2022.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
Transplanting cell cultured brown adipocytes (BAs) represents a promising approach to prevent and treat obesity (OB) and its associated metabolic disorders, including type 2 diabetes mellitus (T2DM). However, transplanted BAs have a very low survival rate in vivo. The enzymatic dissociation during the harvest of fully differentiated BAs also loses significant cells. There is a critical need for novel methods that can avoid cell death during cell preparation, transplantation, and in vivo. Here, we reported that preparing BAs as injectable microtissues could overcome the problem. We found that 3D culture promoted BA differentiation and UCP-1 expression, and the optimal initial cell aggregate size was 100 μm. The microtissues could be produced at large scales via 3D suspension assisted with a PEG hydrogel and could be cryopreserved. Fabricated microtissues could survive in vivo for long term. They alleviated body weight and fat gain and improved glucose tolerance and insulin sensitivity in high-fat diet (HFD)-induced OB and T2DM mice. Transplanted microtissues impacted multiple organs, secreted protein factors, and influenced the secretion of endogenous adipokines. To our best knowledge, this is the first report on fabricating human BA microtissues and showing their safety and efficacy in T2DM mice. The proposal of transplanting fabricated BA microtissues, the microtissue fabrication method, and the demonstration of efficacy in T2DM mice are all new. Our results show that engineered 3D human BA microtissues have considerable advantages in product scalability, storage, purity, safety, dosage, survival, and efficacy.
Collapse
Affiliation(s)
- Ou Wang
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE, USA
- Biomedical Engineering Program, University of Nebraska-Lincoln, NE, USA
| | - Li Han
- Department of Biomedical Engineering, Pennsylvania State University, PA, USA
| | - Haishuang Lin
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE, USA
| | - Mingmei Tian
- China Novartis Institutes for BioMedical Research Co., Ltd., Beijing, China
| | - Shuyang Zhang
- Department of Chemistry, University of Nebraska-Lincoln, NE, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Soonkyu Chung
- Department of Nutrition, University of Massachusetts, Amherst, MA, USA
| | - Chi Zhang
- School of Biological Science, University of Nebraska-Lincoln, NE, USA
| | - Xiaojun Lian
- Department of Biomedical Engineering, Pennsylvania State University, PA, USA
| | - Yong Wang
- Department of Biomedical Engineering, Pennsylvania State University, PA, USA
| | - Yuguo Lei
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE, USA
- Department of Biomedical Engineering, Pennsylvania State University, PA, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, PA, USA
- Corresponding author. The Pennsylvania State University, PA, USA.
| |
Collapse
|
10
|
Poorna MR, Jayakumar R, Chen JP, Mony U. Hydrogels: A potential platform for induced pluripotent stem cell culture and differentiation. Colloids Surf B Biointerfaces 2021; 207:111991. [PMID: 34333302 DOI: 10.1016/j.colsurfb.2021.111991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 01/02/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can be used to generate desired types of cells that belong to the three germ layers (i.e., ectoderm, endoderm and mesoderm). These cells possess great potential in regenerative medicine. Before iPSCs are used in various biomedical applications, the existing xenogeneic culture methods must be improved to meet the technical standards of safety, cost effectiveness, and ease of handling. In addition to commonly used 2D substrates, a culture system that mimics the native cellular environment in tissues will be a good choice when culturing iPS cells and differentiating them into different lineages. Hydrogels are potential candidates that recapitulate the native complex three-dimensional microenvironment. They possess mechanical properties similar to those of many soft tissues. Moreover, hydrogels support iPSC adhesion, proliferation and differentiation to various cell types. They are xeno-free and cost-effective. In addition to other substrates, such as mouse embryonic fibroblast (MEF), Matrigel, and vitronectin, the use of hydrogel-based substrates for iPSC culture and differentiation may help generate large numbers of clinical-grade cells that can be used in potential clinical applications. This review mainly focuses on the use of hydrogels for the culture and differentiation of iPSCs into various cell types and their potential applications in regenerative medicine.
Collapse
Affiliation(s)
- M R Poorna
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - R Jayakumar
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan, ROC; Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan, ROC.
| | - Ullas Mony
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India; Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India.
| |
Collapse
|
11
|
Reid JA, McDonald A, Callanan A. Electrospun fibre diameter and its effects on vascular smooth muscle cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:131. [PMID: 34625853 PMCID: PMC8500900 DOI: 10.1007/s10856-021-06605-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/10/2021] [Indexed: 05/05/2023]
Abstract
Bypass grafting is a technique used in the treatment of vascular disease, which is currently the leading cause of mortality worldwide. While technology has moved forward over the years, synthetic grafts still show significantly lower rates of patency in small diameter bypass operations compared to the gold standard (autologous vessel grafts). Scaffold morphology plays an important role in vascular smooth muscle cell (VSMC) performance, with studies showing how fibre alignment and surface roughness can modulate phenotypic and genotypic changes. Herein, this study has looked at how the fibre diameter of electrospun polymer scaffolds can affect the performance of seeded VSMCs. Four different scaffolds were electrospun with increasing fibre sizes ranging from 0.75 to 6 µm. Culturing VSMCs on the smallest fibre diameter (0.75 µm) lead to a significant increase in cell viability after 12 days of culture. Furthermore, interesting trends were noted in the expression of two key phenotypic genes associated with mature smooth muscle cell contractility (myocardin and smooth muscle alpha-actin 1), whereby reducing the fibre diameter lead to relative upregulations compared to the larger fibre diameters. These results showed that the smallest (0.75 µm) fibre diameter may be best suited for the culture of VSMCs with the aim of increasing cell proliferation and aiding cell maturity.
Collapse
Affiliation(s)
| | - Alison McDonald
- School of Engineering, The University of Edinburgh, Edinburgh, UK
| | - Anthony Callanan
- School of Engineering, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
12
|
Yin S, Cao Y. Hydrogels for Large-Scale Expansion of Stem Cells. Acta Biomater 2021; 128:1-20. [PMID: 33746032 DOI: 10.1016/j.actbio.2021.03.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
Stem cells demonstrate considerable promise for various preclinical and clinical applications, including drug screening, disease treatments, and regenerative medicine. Producing high-quality and large amounts of stem cells is in demand for these applications. Despite challenges, as hydrogel-based cell culture technology has developed, tremendous progress has been made in stem cell expansion and directed differentiation. Hydrogels are soft materials with abundant water. Many hydrogel properties, including biodegradability, mechanical strength, and porosity, have been shown to play essential roles in regulating stem cell proliferation and differentiation. The biochemical and physical properties of hydrogels can be specifically tailored to mimic the native microenvironment that various stem cells reside in vivo. A few hydrogel-based systems have been developed for successful stem cell cultures and expansion in vitro. In this review, we summarize various types of hydrogels that have been designed to effectively enhance the proliferation of hematopoietic stem cells (HSCs), mesenchymal stem/stromal cells (MSCs), and pluripotent stem cells (PSCs), respectively. According to each stem cell type's preference, we also discuss strategies for fabricating hydrogels with biochemical and mechanical cues and other characteristics representing microenvironments of stem cells in vivo. STATEMENT OF SIGNIFICANCE: In this review article we summarize current progress on the construction of hydrogel systems for the culture and expansion of various stem cells, including hematopoietic stem cells (HSCs), mesenchymal stem/stromal cells (MSCs), and pluripotent stem cells (PSCs). The Significance includes: (1) Provide detailed discussion on the stem cell niches that should be considered for stem cell in vitro expansion. (2) Summarize various strategies to construct hydrogels that can largely recapture the microenvironment of native stem cells. (3) Suggest a few future directions that can be implemented to improve current in vitro stem cell expansion systems.
Collapse
Affiliation(s)
- Sheng Yin
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China; Chemistry and Biomedicine innovation center, Nanjing University, Nanjing, 210093, China; Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China; Shenzhen Research Institute of Nanjing University, Shenzhen, China, 518057
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China; Chemistry and Biomedicine innovation center, Nanjing University, Nanjing, 210093, China; Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China; Shenzhen Research Institute of Nanjing University, Shenzhen, China, 518057.
| |
Collapse
|
13
|
Jorgensen M, Gibbons A, Sui K, Carpenter R, Zhang X, Xie Y. Predictable fabrication of pre-made alginate hydrogel microtubes for stem cell aggregation using needle-in-needle devices. Biofabrication 2021; 13:035043. [PMID: 33930885 DOI: 10.1088/1758-5090/abfd7b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Alginate hydrogels in microtubular structures have great potential to advance three-dimensional (3D) culture, organoid formation, tissue engineering, and cell therapy. To address the need of fabricating consistent, stable hydrogel microtubes for efficient large organoid generation in a simple and quick manner, we have designed needle-in-needle devices to fabricate alginate hydrogel microtubes without any dead volume of the cell-alginate mixture and demonstrated the feasibility of injecting and culturing embryoid bodies in these pre-made hydrogel microtubes. We further used a reverse engineering approach to find out the optimal flow rates and alginate concentration for fabricating pre-made hydrogel microtubes with desired diameter using particular sets of needle-in-needle devices. We established the relationship of the alginate flow rate with diameter and wall thickness of the microtube using mathematic modeling. It offers a way to determine the flow rate for making microtubes with the desired dimension. Additionally, we evaluated the effect of CaCl2concentration on the diameter as well as stem cell viability. At last, we demonstrated the capacity of fabricating hydrogel microtubes of varying diameters using three sets of needle-in-needle devices and evaluated stem cell growth in these hydrogel microtubes. It provides a new avenue to accessible, repeatable, scalable, and easy to use pre-made 'off-the-shelf' hydrogel microtubes for 3D cell culture including, but not limiting to stem cells.
Collapse
Affiliation(s)
- Matthew Jorgensen
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, United States of America
| | - Ashley Gibbons
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, United States of America
| | - Kevin Sui
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, United States of America
| | - Rebecca Carpenter
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, United States of America
| | - Xulang Zhang
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, United States of America
| | - Yubing Xie
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, United States of America
| |
Collapse
|
14
|
Wang P, Sun Y, Shi X, Shen H, Ning H, Liu H. Bioscaffolds embedded with regulatory modules for cell growth and tissue formation: A review. Bioact Mater 2021; 6:1283-1307. [PMID: 33251379 PMCID: PMC7662879 DOI: 10.1016/j.bioactmat.2020.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
The demand for artificial organs has greatly increased because of various aging-associated diseases and the wide need for organ transplants. A recent trend in tissue engineering is the precise reconstruction of tissues by the growth of cells adhering to bioscaffolds, which are three-dimensional (3D) structures that guide tissue and organ formation. Bioscaffolds used to fabricate bionic tissues should be able to not only guide cell growth but also regulate cell behaviors. Common regulation methods include biophysical and biochemical stimulations. Biophysical stimulation cues include matrix hardness, external stress and strain, surface topology, and electromagnetic field and concentration, whereas biochemical stimulation cues include growth factors, proteins, kinases, and magnetic nanoparticles. This review discusses bioink preparation, 3D bioprinting (including extrusion-based, inkjet, and ultraviolet-assisted 3D bioprinting), and regulation of cell behaviors. In particular, it provides an overview of state-of-the-art methods and devices for regulating cell growth and tissue formation and the effects of biophysical and biochemical stimulations on cell behaviors. In addition, the fabrication of bioscaffolds embedded with regulatory modules for biomimetic tissue preparation is explained. Finally, challenges in cell growth regulation and future research directions are presented.
Collapse
Affiliation(s)
- Pengju Wang
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yazhou Sun
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoquan Shi
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Huixing Shen
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Haohao Ning
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Haitao Liu
- Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
15
|
Anastasio A, Gergues M, Lebhar MS, Rameshwar P, Fernandez-Moure J. Isolation and characterization of mesenchymal stem cells in orthopaedics and the emergence of compact bone mesenchymal stem cells as a promising surgical adjunct. World J Stem Cells 2020; 12:1341-1353. [PMID: 33312402 PMCID: PMC7705465 DOI: 10.4252/wjsc.v12.i11.1341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/26/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
The potential clinical and economic impact of mesenchymal stem cell (MSC) therapy is immense. MSCs act through multiple pathways: (1) as “trophic” cells, secreting various factors that are immunomodulatory, anti-inflammatory, anti-apoptotic, proangiogenic, proliferative, and chemoattractive; (2) in conjunction with cells native to the tissue they reside in to enhance differentiation of surrounding cells to facilitate tissue regrowth. Researchers have developed methods for the extraction and expansion of MSCs from animal and human tissues. While many sources of MSCs exist, including adipose tissue and iliac crest bone graft, compact bone (CB) MSCs have shown great potential for use in orthopaedic surgery. CB MSCs exert powerful immunomodulatory effects in addition to demonstrating excellent regenerative capacity for use in filling boney defects. CB MSCs have been shown to have enhanced response to hypoxic conditions when compared with other forms of MSCs. More work is needed to continue to characterize the potential applications for CB MSCs in orthopaedic trauma.
Collapse
Affiliation(s)
- Albert Anastasio
- Department of Orthopedic Surgery, Duke University Health System, Durham, NC 27710, United States
| | - Marina Gergues
- Department of Medicine, Hematology/Oncology, Rutgers University, New Jersey Medical School, Newark, NJ 07103, United States
| | - Michael S Lebhar
- School of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
| | - Pranela Rameshwar
- Department of Medicine-Hematology/Oncology, Rutgers School of Biomedical Health Science, Newark, NJ 07103, United States
| | - Joseph Fernandez-Moure
- Department of Surgery, Division of Trauma, Acute, and Critical Care Surgery, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
16
|
Davaapil H, Shetty DK, Sinha S. Aortic "Disease-in-a-Dish": Mechanistic Insights and Drug Development Using iPSC-Based Disease Modeling. Front Cell Dev Biol 2020; 8:550504. [PMID: 33195187 PMCID: PMC7655792 DOI: 10.3389/fcell.2020.550504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022] Open
Abstract
Thoracic aortic diseases, whether sporadic or due to a genetic disorder such as Marfan syndrome, lack effective medical therapies, with limited translation of treatments that are highly successful in mouse models into the clinic. Patient-derived induced pluripotent stem cells (iPSCs) offer the opportunity to establish new human models of aortic diseases. Here we review the power and potential of these systems to identify cellular and molecular mechanisms underlying disease and discuss recent advances, such as gene editing, and smooth muscle cell embryonic lineage. In particular, we discuss the practical aspects of vascular smooth muscle cell derivation and characterization, and provide our personal insights into the challenges and limitations of this approach. Future applications, such as genotype-phenotype association, drug screening, and precision medicine are discussed. We propose that iPSC-derived aortic disease models could guide future clinical trials via “clinical-trials-in-a-dish”, thus paving the way for new and improved therapies for patients.
Collapse
Affiliation(s)
- Hongorzul Davaapil
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Deeti K Shetty
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| |
Collapse
|
17
|
Ino K, Fukuda MT, Hiramoto K, Taira N, Nashimoto Y, Shiku H. Fabrication of three-dimensional calcium alginate hydrogels using sacrificial templates of sugar. J Biosci Bioeng 2020; 130:539-544. [PMID: 32758401 DOI: 10.1016/j.jbiosc.2020.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022]
Abstract
Hydrogels are receiving increasing attention in bioapplications. Among hydrogels, calcium alginate (Ca-alginate) hydrogels are widely used for their biocompatibility, low toxicity, low cost, and rapid fabrication by simple mixing of Ca2+ and sodium alginate (Na-alginate). For bioapplications using hydrogels, it is necessary to construct designed hydrogel structures. Although several methods have been proposed for fabricating designed hydrogels, a simple and low-cost method is desirable. Therefore, we developed a new method using sacrificial templates of sugar structures to fabricate three-dimensional (3D) designed Ca-alginate hydrogels. In this method, Na-alginate solution is mixed with molten sugar, and the resulting highly viscous material used to mold 3D sugar structures as sacrificial templates. Since sugar constructs are easily handled compared to hydrogels, sugar templates are useful for preparing 3D constructs. Finally, the sugar and Na-alginate structure is immersed in a CaCl2 solution to simultaneously dissolve the template and form the Ca-alginate hydrogel. The resulting hydrogel takes the shape of the sugar template. By stacking and fusing various sugar structures, such as fibers and blocks, 3D designed Ca-alginate hydrogels can be successfully fabricated. This simple and low-cost method shows excellent potential for application to a variety of bioapplications.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Mika T Fukuda
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Kaoru Hiramoto
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Noriko Taira
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yuji Nashimoto
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
18
|
Floy ME, Mateyka TD, Foreman KL, Palecek SP. Human pluripotent stem cell-derived cardiac stromal cells and their applications in regenerative medicine. Stem Cell Res 2020; 45:101831. [PMID: 32446219 PMCID: PMC7931507 DOI: 10.1016/j.scr.2020.101831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/16/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease is one of the leading causes of death in the United States. Recent advances in stem cell biology have led to the development and engineering of human pluripotent stem cell (hPSC)-derived cardiac cells and tissues for application in cellular therapy and cardiotoxicity studies. Initial studies in this area have largely focused on improving differentiation efficiency and maturation states of cardiomyocytes. However, other cell types in the heart, including endothelial and stromal cells, play crucial roles in cardiac development, injury response, and cardiomyocyte function. This review discusses recent advances in differentiation of hPSCs to cardiac stromal cells, identification and classification of cardiac stromal cell types, and application of hPSC-derived cardiac stromal cells and tissues containing these cells in regenerative and drug development applications.
Collapse
Affiliation(s)
- Martha E Floy
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Taylor D Mateyka
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Koji L Foreman
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
19
|
Paik DT, Chandy M, Wu JC. Patient and Disease-Specific Induced Pluripotent Stem Cells for Discovery of Personalized Cardiovascular Drugs and Therapeutics. Pharmacol Rev 2020; 72:320-342. [PMID: 31871214 PMCID: PMC6934989 DOI: 10.1124/pr.116.013003] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) have emerged as an effective platform for regenerative therapy, disease modeling, and drug discovery. iPSCs allow for the production of limitless supply of patient-specific somatic cells that enable advancement in cardiovascular precision medicine. Over the past decade, researchers have developed protocols to differentiate iPSCs to multiple cardiovascular lineages, as well as to enhance the maturity and functionality of these cells. Despite significant advances, drug therapy and discovery for cardiovascular disease have lagged behind other fields such as oncology. We speculate that this paucity of drug discovery is due to a previous lack of efficient, reproducible, and translational model systems. Notably, existing drug discovery and testing platforms rely on animal studies and clinical trials, but investigations in animal models have inherent limitations due to interspecies differences. Moreover, clinical trials are inherently flawed by assuming that all individuals with a disease will respond identically to a therapy, ignoring the genetic and epigenomic variations that define our individuality. With ever-improving differentiation and phenotyping methods, patient-specific iPSC-derived cardiovascular cells allow unprecedented opportunities to discover new drug targets and screen compounds for cardiovascular disease. Imbued with the genetic information of an individual, iPSCs will vastly improve our ability to test drugs efficiently, as well as tailor and titrate drug therapy for each patient.
Collapse
Affiliation(s)
- David T Paik
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Mark Chandy
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| |
Collapse
|
20
|
Kwong G, Marquez HA, Yang C, Wong JY, Kotton DN. Generation of a Purified iPSC-Derived Smooth Muscle-like Population for Cell Sheet Engineering. Stem Cell Reports 2019; 13:499-514. [PMID: 31422908 PMCID: PMC6739689 DOI: 10.1016/j.stemcr.2019.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 10/31/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) provide a potential source for the derivation of smooth muscle cells (SMCs); however, current approaches are limited by the production of heterogeneous cell types and a paucity of tools or markers for tracking and purifying candidate SMCs. Here, we develop murine and human iPSC lines carrying fluorochrome reporters (Acta2hrGFP and ACTA2eGFP, respectively) that identify Acta2+/ACTA2+ cells as they emerge in vitro in real time during iPSC-directed differentiation. We find that Acta2hrGFP+ and ACTA2eGFP+ cells can be sorted to purity and are enriched in markers characteristic of an immature or synthetic SMC. We characterize the resulting GFP+ populations through global transcriptomic profiling and functional studies, including the capacity to form engineered cell sheets. We conclude that these reporter lines allow for generation of sortable, live iPSC-derived Acta2+/ACTA2+ cells highly enriched in smooth muscle lineages for basic developmental studies, tissue engineering, or future clinical regenerative applications.
Collapse
Affiliation(s)
- George Kwong
- Center for Regenerative Medicine, Boston University and Boston Medical Center, 670 Albany Street, 2(nd) Floor, Boston, MA 02118, USA; Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Hector A Marquez
- Center for Regenerative Medicine, Boston University and Boston Medical Center, 670 Albany Street, 2(nd) Floor, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Chian Yang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, 670 Albany Street, 2(nd) Floor, Boston, MA 02118, USA; Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Joyce Y Wong
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, 670 Albany Street, 2(nd) Floor, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.
| |
Collapse
|
21
|
Zhang J, McIntosh BE, Wang B, Brown ME, Probasco MD, Webster S, Duffin B, Zhou Y, Guo LW, Burlingham WJ, Kent C, Ferris M, Thomson JA. A Human Pluripotent Stem Cell-Based Screen for Smooth Muscle Cell Differentiation and Maturation Identifies Inhibitors of Intimal Hyperplasia. Stem Cell Reports 2019; 12:1269-1281. [PMID: 31080110 PMCID: PMC6565755 DOI: 10.1016/j.stemcr.2019.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 02/04/2023] Open
Abstract
Contractile to synthetic phenotypic switching of smooth muscle cells (SMCs) contributes to stenosis in vascular disease and vascular transplants. To generate more contractile SMCs, we performed a high-throughput differentiation screen using a MYH11-NLuc-tdTomato human embryonic stem cell reporter cell line. We identified RepSox as a factor that promotes differentiation of MYH11-positive cells by promoting NOTCH signaling. RepSox induces SMCs to exhibit a more contractile phenotype than SMCs generated using PDGF-BB and TGF-β1, two factors previously used for SMC differentiation but which also cause intimal hyperplasia. In addition, RepSox inhibited intimal hyperplasia caused by contractile to synthetic phenotypic switching of SMCs in a rat balloon injury model. Thus, in addition to providing more contractile SMCs that could prove useful for constructing artificial blood vessels, this study suggests a strategy for identifying drugs for inhibiting intimal hyperplasia that act by driving contractile differentiation rather than inhibiting proliferation non-specifically. Fully defined differentiation of contractile (95% MYH11+) smooth muscle cells (SMCs) RepSox-NOTCH signal promotes SMC differentiation and inhibits intimal hyperplasia RepSox-SMCs could reduce the risk of intimal hyperplasia compared with PDGF/TGF-SMCs Applying SMC differentiation for high-throughput screening of anti-restenosis drugs
Collapse
Affiliation(s)
- Jue Zhang
- Regenerative Biology, Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA.
| | - Brian E McIntosh
- Regenerative Biology, Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA
| | - Bowen Wang
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew E Brown
- Regenerative Biology, Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA; Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Mitchell D Probasco
- Regenerative Biology, Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA
| | - Sarah Webster
- Regenerative Biology, Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA
| | - Bret Duffin
- Regenerative Biology, Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA
| | - Ying Zhou
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Lian-Wang Guo
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | - Craig Kent
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA; College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Michael Ferris
- College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Computer Sciences, Industrial & Systems Engineering, Mathematics, Optimization, Wisconsin Institute for Discovery, Madison, WI 53715, USA
| | - James A Thomson
- Regenerative Biology, Morgridge Institute for Research, 330 North Orchard Street, Madison, WI 53715, USA; Department of Cell & Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, CA 93117, USA.
| |
Collapse
|