1
|
Parrotta EI, Lucchino V, Zannino C, Valente D, Scalise S, Bressan D, Benedetto GL, Iazzetta MR, Talarico M, Gagliardi M, Conforti F, Di Agostino S, Fiorenzano A, Quattrone A, Cuda G, Quattrone A. Modeling Sporadic Progressive Supranuclear Palsy in 3D Midbrain Organoids: Recapitulating Disease Features for In Vitro Diagnosis and Drug Discovery. Ann Neurol 2025; 97:845-859. [PMID: 39876539 PMCID: PMC12010066 DOI: 10.1002/ana.27172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 01/30/2025]
Abstract
OBJECTIVE Progressive Supranuclear Palsy (PSP) is a severe neurodegenerative disease characterized by tangles of hyperphosphorylated tau protein and tufted astrocytes. Developing treatments for PSP is challenging due to the lack of disease models reproducing its key pathological features. This study aimed to model sporadic PSP-Richardson's syndrome (PSP-RS) using multi-donor midbrain organoids (MOs). METHODS The MOs were generated by pooling induced pluripotent stem cells (iPSCs) from 4 patients with sporadic probable PSP-RS and compared them with MOs from 3 healthy control (HC) subjects. We performed comprehensive analyses of MOs over 120 days to assess neuronal death, reactive gliosis, and the accumulation of 4R-tau and hyperphosphorylated tau forms (pThr231, pSer396, pThr181, and pSer202/pThr205 [AT8]) using immunofluorescence microscopy and Western blot. On day 90, immunohistochemical analysis using pSer396 and AT8 antibodies was conducted to assess disease pathology. RESULTS PSP-derived MOs showed progressive size reduction compared with HC-derived MOs, linked to upregulated apoptosis-related mRNA markers. Dopaminergic neuron degeneration was marked by decreased tyrosine hydroxylase (TH) and increased neurofilament light chain (NfL). Immunofluorescence and Western blot revealed accumulation of all investigated tau forms with a peak at 90 days, along with a significant rise in GFAP-positive cells in PSP-derived MOs. Immunochemistry confirmed typical PSP histological alterations, such as neurofibrillary tangles and tufted-shaped astrocytes, absent in HC-derived organoids. INTERPRETATION We developed a robust in vitro PSP model reproducing the key molecular and histologic features of the disease. This result holds promise for advancing basic and clinical research in PSP, paving the way for in vitro molecular diagnosis and identification of novel therapeutic targets. ANN NEUROL 2025;97:845-859.
Collapse
Affiliation(s)
- Elvira Immacolata Parrotta
- Laboratory of Stem Cells, Department of Medical and Surgical SciencesUniversity “Magna Graecia”CatanzaroItaly
| | - Valeria Lucchino
- Department of Experimental and Clinical MedicineUniversity “Magna Graecia”CatanzaroItaly
| | - Clara Zannino
- Department of Experimental and Clinical MedicineUniversity “Magna Graecia”CatanzaroItaly
| | - Desirèe Valente
- Department of Experimental and Clinical MedicineUniversity “Magna Graecia”CatanzaroItaly
| | - Stefania Scalise
- Department of Experimental and Clinical MedicineUniversity “Magna Graecia”CatanzaroItaly
| | - Davide Bressan
- Laboratory of Stem Cells and Cancer Genomics Department of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Giorgia Lucia Benedetto
- Laboratory of Stem Cells, Department of Medical and Surgical SciencesUniversity “Magna Graecia”CatanzaroItaly
| | - Maria Roberta Iazzetta
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati Traverso,” IGB‐CNRNaplesItaly
- Department of Precision MedicineUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Mariagrazia Talarico
- Laboratory of Stem Cells, Department of Medical and Surgical SciencesUniversity “Magna Graecia”CatanzaroItaly
| | - Monica Gagliardi
- Neuroscience Research Center, Department of Medical and Surgical SciencesUniversity “Magna Graecia”CatanzaroItaly
| | | | | | - Alessandro Fiorenzano
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati Traverso,” IGB‐CNRNaplesItaly
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund, Stem Cell CenterLund UniversityLundSweden
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical SciencesUniversity “Magna Graecia”CatanzaroItaly
| | - Giovanni Cuda
- Department of Experimental and Clinical MedicineUniversity “Magna Graecia”CatanzaroItaly
| | - Andrea Quattrone
- Neuroscience Research Center, Department of Medical and Surgical SciencesUniversity “Magna Graecia”CatanzaroItaly
| |
Collapse
|
2
|
Tanabe H, Maeda S, Sano E, Sakai N, Endoh-Yamagami S, Okano H. Tau aggregation induces cell death in iPSC-derived neurons. AGING BRAIN 2025; 7:100136. [PMID: 40276591 PMCID: PMC12018045 DOI: 10.1016/j.nbas.2025.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Abnormal accumulation of tau proteins in the brain is a hallmark of neurodegenerative diseases such as Alzheimer's disease and is closely linked with neuronal cell death. Tau accumulation is a prominent therapeutic target for Alzheimer's disease, since tau accumulation correlates well with the disease progression, and tau-targeting drugs hold potentials to halt the disease progression. Given the differential response of human and mouse neuronal cells, there is a critical need for a human cellular platform to quickly screen for tau-related neurodegenerative disease therapeutics. However, inducing rapid, tau-dependent neuronal cell death in human models remains challenging. In this study, we established a human cellular model capable of inducing tau aggregation-dependent neuronal cell death within two weeks via tau overexpression. Additionally, we demonstrated the neuroprotective efficacy of known tau-targeting compounds within this system. These findings suggest that our cellular model recapitulates the molecular pathogenesis of tau-induced neurodegeneration and could serve as a valuable platform for drug screening in tauopathies.
Collapse
Affiliation(s)
- Hirokazu Tanabe
- FUJIFILM Corporation, Bio Science & Engineering Laboratories, Kanagawa, Japan
| | - Sumihiro Maeda
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Etsuko Sano
- Keio University Regenerative Medicine Research Center, Kanagawa, Japan
| | - Norio Sakai
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical & Health Sciences Hiroshima University, Hiroshima, Japan
| | | | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio University Regenerative Medicine Research Center, Kanagawa, Japan
| |
Collapse
|
3
|
Itsuno M, Tanabe H, Sano E, Sasaki T, Oyama C, Bannai H, Saito K, Nakata K, Endoh-Yamagami S, Okano H, Maeda S. MAPT-A152T mutation drives neuronal hyperactivity through Fyn-NMDAR signaling in human iPSC-Derived neurons: Insights into Alzheimer's pathogenesis. Regen Ther 2025; 28:201-213. [PMID: 39811068 PMCID: PMC11730958 DOI: 10.1016/j.reth.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction Tau protein plays a pivotal role in the pathogenesis of Alzheimer's disease (AD) and in regulating neuronal excitability. Among tau-coding microtubule associated protein tau (MAPT) gene mutations, the A152T mutation is reported to increase the risk of AD and neuronal excitability in mouse models. Methods To investigate the effects of MAPT gene expression and its mutations on neuronal activity in human neurons, we employed genome editing technology to introduce the A152T or P301S mutations into induced pluripotent stem cells (iPSCs). We then differentiated them into excitatory and inhibitory neurons. As a control, iPSCs in which the MAPT gene was replaced with a fluorescent protein were also created. Results In excitatory neuronal cultures, the A152T mutation was found to enhance spontaneous neuronal activity and the association of tau and Fyn. However, in inhibitory neuron-enriched cultures, the A152T mutation did not affect neuronal activity. Inhibition of NMDA receptors (NMDAR) and the reduction of tau protein levels decreased neuronal excitability in both A152T/A152T and healthy control (WT/WT) excitatory neurons. In addition, the A152T mutation increased the interaction between tau and Fyn. These findings suggest that the tau-Fyn interaction plays a critical role in regulating neuronal activity under physiological conditions, while the A152T mutation enhances neuronal activity by strengthening this endogenous interaction between tau and Fyn. In addition, transcriptomic analysis revealed structural changes specific to excitatory neurons with the A152T mutation. Common changes observed in both A152T and P301S lines recapitulated a dedifferentiation phenotype, consistent with previous reports. Conclusions These data demonstrate that the A152T mutation in the MAPT gene increases neuronal excitability through the tau-Fyn-NMDAR pathway in excitatory neurons, shedding light on its role in AD pathogenesis.
Collapse
Affiliation(s)
- Maika Itsuno
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Hirokazu Tanabe
- FUJIFILM Corporation, Bio Science & Engineering Laboratories, 577 Ushijima, Kaisei-cho, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Etsuko Sano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Keio University Regenerative Medicine Research Center (KRM), 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Takashi Sasaki
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Chisato Oyama
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-0056, Japan
| | - Hiroko Bannai
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-0056, Japan
| | - Koichi Saito
- FUJIFILM Corporation, Bio Science & Engineering Laboratories, 577 Ushijima, Kaisei-cho, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Kazuhiko Nakata
- FUJIFILM Corporation, Bio Science & Engineering Laboratories, 577 Ushijima, Kaisei-cho, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Setsu Endoh-Yamagami
- FUJIFILM Corporation, Bio Science & Engineering Laboratories, 577 Ushijima, Kaisei-cho, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Keio University Regenerative Medicine Research Center (KRM), 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Sumihiro Maeda
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
4
|
Bowles KR, Pedicone C, Pugh DA, Oja LM, Sousa FH, Keavey LK, Fulton-Howard B, Weitzman SA, Liu Y, Chen JL, Disney MD, Goate AM. Development of MAPT S305 mutation human iPSC lines exhibiting elevated 4R tau expression and functional alterations in neurons and astrocytes. Cell Rep 2024; 43:115013. [PMID: 39602304 DOI: 10.1016/j.celrep.2024.115013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 02/29/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
Due to the importance of 4R tau (with four microtubule-binding-repeat domains) in the pathogenicity of primary tauopathies, it has been challenging to model these diseases in induced pluripotent stem cell (iPSC)-derived neurons, which express very low levels of 4R tau. To address this, we have developed a panel of isogenic iPSC lines carrying MAPT splice-site mutations, S305S, S305I, or S305N, derived from four different donors. All mutations significantly increase 4R tau expression in iPSC neurons and astrocytes. Functional analyses of S305 mutant neurons reveal shared disruption in synaptic signaling and maturity but divergent effects on mitochondrial bioenergetics. In iPSC astrocytes, S305 mutations promote internalization of exogenous tau that may be a precursor to glial pathology. These lines recapitulate previously characterized tauopathy-relevant phenotypes and highlight functional differences between the wild-type 4R and the mutant 4R proteins in both neurons and astrocytes. As such, these lines enable a more complete understanding of pathogenic mechanisms underlying 4R tauopathies across different cell types.
Collapse
Affiliation(s)
- Kathryn R Bowles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA; UK Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh, UK; Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
| | - Chiara Pedicone
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Derian A Pugh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura-Maria Oja
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filipa H Sousa
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh, UK; Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Lois K Keavey
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh Medical School, Edinburgh, UK; Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Brian Fulton-Howard
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah A Weitzman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yiyuan Liu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan L Chen
- Department of Chemistry, Scripps Research Institute, Jupiter, FL, USA
| | - Matthew D Disney
- Department of Chemistry, Scripps Research Institute, Jupiter, FL, USA
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
5
|
Amini J, Sanchooli N, Milajerdi MH, Baeeri M, Haddadi M, Sanadgol N. The interplay between tauopathy and aging through interruption of UPR/Nrf2/autophagy crosstalk in the Alzheimer's disease transgenic experimental models. Int J Neurosci 2024; 134:1049-1067. [PMID: 37132251 DOI: 10.1080/00207454.2023.2210409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/14/2022] [Accepted: 04/24/2023] [Indexed: 05/04/2023]
Abstract
PURPOSE Alzheimer's disease (AD) is the most common form of tauopathy that usually occursduring aging and unfolded protein response (UPR), oxidative stress and autophagy play a crucialrole in tauopathy-induced neurotoxicity. The aim of this study was to investigate the effects oftauopathy on normal brain aging in a Drosophila model of AD. METHOD We investigated the interplay between aging (10, 20, 30, and 40 days) and human tauR406W (htau)-induced cell stress in transgenic fruit flies. RESULTS Tauopathy caused significant defects in eye morphology, a decrease in motor function and olfactory memory performance (after 20 days), and an increase in ethanol sensitivity (after 30 days). Our results showed a significant increase in UPR (GRP78 and ATF4), redox signalling (p-Nrf2, total GSH, total SH, lipid peroxidation, and antioxidant activity), and regulatory associated protein of mTOR complex 1 (p-Raptor) activity in the control group after 40 days, while the tauopathy model flies showed an advanced increase in the above markers at 20 days of age. Interestingly, only the control flies showed reduced autophagy by a significant decrease in the autophagosome formation protein (dATG1)/p-Raptor ratio at 40 days of age. Our results were also confirmed by bioinformatic analysis of microarray data from tauPS19 transgenic mice (3, 6, 9, and 12 months), in which tauopathy increased expression of heme oxygenase 1, and glutamate-cysteine ligase catalytic subunit and promote aging in transgenic animals. CONCLUSIONS Overall, we suggest that the neuropathological effects of tau aggregates may be accelerated brain aging, where redox signaling and autophagy efficacy play an important role.
Collapse
Affiliation(s)
- Javad Amini
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Naser Sanchooli
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | | | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences, and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Haddadi
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
6
|
Theofilas P, Wang C, Butler D, Morales DO, Petersen C, Ambrose A, Chin B, Yang T, Khan S, Ng R, Kayed R, Karch CM, Miller BL, Gestwicki JE, Gan L, Temple S, Arkin MR, Grinberg LT. iPSC-induced neurons with the V337M MAPT mutation are selectively vulnerable to caspase-mediated cleavage of tau and apoptotic cell death. Mol Cell Neurosci 2024; 130:103954. [PMID: 39032719 PMCID: PMC11866097 DOI: 10.1016/j.mcn.2024.103954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Tau post-translational modifications (PTMs) result in the gradual build-up of abnormal tau and neuronal degeneration in tauopathies, encompassing variants of frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). Tau proteolytically cleaved by active caspases, including caspase-6, may be neurotoxic and prone to self-aggregation. Also, our recent findings show that caspase-6 truncated tau represents a frequent and understudied aspect of tau pathology in AD in addition to phospho-tau pathology. In AD and Pick's disease, a large percentage of caspase-6 associated cleaved-tau positive neurons lack phospho-tau, suggesting that many vulnerable neurons to tau pathology go undetected when using conventional phospho-tau antibodies and possibly will not respond to phospho-tau based therapies. Therefore, therapeutic strategies against caspase cleaved-tau pathology could be necessary to modulate the extent of tau abnormalities in AD and other tauopathies. METHODS To understand the timing and progression of caspase activation, tau cleavage, and neuronal death, we created two mAbs targeting caspase-6 tau cleavage sites and probed postmortem brain tissue from an individual with FTLD due to the V337M MAPT mutation. We then assessed tau cleavage and apoptotic stress response in cortical neurons derived from induced pluripotent stem cells (iPSCs) carrying the FTD-related V337M MAPT mutation. Finally, we evaluated the neuroprotective effects of caspase inhibitors in these iPSC-derived neurons. RESULTS FTLD V337M MAPT postmortem brain showed positivity for both cleaved tau mAbs and active caspase-6. Relative to isogenic wild-type MAPT controls, V337M MAPT neurons cultured for 3 months post-differentiation showed a time-dependent increase in pathogenic tau in the form of caspase-cleaved tau, phospho-tau, and higher levels of tau oligomers. Accumulation of toxic tau species in V337M MAPT neurons was correlated with increased vulnerability to pro-apoptotic stress. Notably, this mutation-associated cell death was pharmacologically rescued by the inhibition of effector caspases. CONCLUSIONS Our results suggest an upstream, time-dependent accumulation of caspase-6 cleaved tau in V337M MAPT neurons promoting neurotoxicity. These processes can be reversed by caspase inhibition. These results underscore the potential of developing caspase-6 inhibitors as therapeutic agents for FTLD and other tauopathies. Additionally, they highlight the promise of using caspase-cleaved tau as biomarkers for these conditions.
Collapse
Affiliation(s)
- Panos Theofilas
- Memory and Aging Center, Department of Neurology, UCSF, San Francisco, CA, USA
| | - Chao Wang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | | | - Dulce O Morales
- Memory and Aging Center, Department of Neurology, UCSF, San Francisco, CA, USA
| | - Cathrine Petersen
- Memory and Aging Center, Department of Neurology, UCSF, San Francisco, CA, USA
| | - Andrew Ambrose
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, UCSF, San Francisco, CA, USA
| | | | | | - Shireen Khan
- ChemPartner San Francisco, South San Francisco, CA, USA
| | - Raymond Ng
- ChemPartner San Francisco, South San Francisco, CA, USA
| | - Rakez Kayed
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, UCSF, San Francisco, CA, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA
| | - Li Gan
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA; Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, UCSF, San Francisco, CA, USA.
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, UCSF, San Francisco, CA, USA; Department of Pathology, University of Sao Paulo Medical School, Brazil.
| |
Collapse
|
7
|
Wan Y, Ding J, Jia Z, Hong Y, Tian G, Zheng S, Pan P, Wang J, Liang H. Current trends and research topics regarding organoids: A bibliometric analysis of global research from 2000 to 2023. Heliyon 2024; 10:e32965. [PMID: 39022082 PMCID: PMC11253259 DOI: 10.1016/j.heliyon.2024.e32965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
The use of animal models for biological experiments is no longer sufficient for research related to human life and disease. The development of organ tissues has replaced animal models by mimicking the structure, function, development and homeostasis of natural organs. This provides more opportunities to study human diseases such as cancer, infectious diseases and genetic disorders. In this study, bibliometric methods were used to analyze organoid-related articles published over the last 20+ years to identify emerging trends and frontiers in organoid research. A total of 13,143 articles from 4125 institutions in 86 countries or regions were included in the analysis. The number of papers increased steadily over the 20-year period. The United States was the leading country in terms of number of papers and citations. Harvard Medical School had the highest number of papers published. Keyword analysis revealed research trends and focus areas such as organ tissues, stem cells, 3D culture and tissue engineering. In conclusion, this study used bibliometric and visualization methods to explore the field of organoid research and found that organ tissues are receiving increasing attention in areas such as cancer, drug discovery, personalized medicine, genetic disease modelling and gene repair, making them a current research hotspot and a future research trend.
Collapse
Affiliation(s)
- Yantong Wan
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong, 518109, China
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianan Ding
- School of Basic Medical Sciences, Southern Medical University Guangzhou, China
| | - Zixuan Jia
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yinghao Hong
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guijie Tian
- School of Laboratory Medicine and Biotechnology, Southern Medical University Guangzhou, China
| | - Shuqian Zheng
- School of Basic Medical Sciences, Southern Medical University Guangzhou, China
| | - Pinfei Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jieyan Wang
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong, 518109, China
| | - Hui Liang
- Department of Urology, People's Hospital of Longhua, Shenzhen, Guangdong, 518109, China
| |
Collapse
|
8
|
Bullmann T, Kaas T, Ritzau-Jost A, Wöhner A, Kirmann T, Rizalar FS, Holzer M, Nerlich J, Puchkov D, Geis C, Eilers J, Kittel RJ, Arendt T, Haucke V, Hallermann S. Human iPSC-Derived Neurons with Reliable Synapses and Large Presynaptic Action Potentials. J Neurosci 2024; 44:e0971232024. [PMID: 38724283 PMCID: PMC11170674 DOI: 10.1523/jneurosci.0971-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/14/2024] Open
Abstract
Understanding the function of the human brain requires determining basic properties of synaptic transmission in human neurons. One of the most fundamental parameters controlling neurotransmitter release is the presynaptic action potential, but its amplitude and duration remain controversial. Presynaptic action potentials have so far been measured with high temporal resolution only in a limited number of vertebrate but not in human neurons. To uncover properties of human presynaptic action potentials, we exploited recently developed tools to generate human glutamatergic neurons by transient expression of Neurogenin 2 (Ngn2) in pluripotent stem cells. During maturation for 3 to 9 weeks of culturing in different established media, the proportion of cells with multiple axon initial segments decreased, while the amount of axonal tau protein and neuronal excitability increased. Super-resolution microscopy revealed the alignment of the pre- and postsynaptic proteins, Bassoon and Homer. Synaptic transmission was surprisingly reliable at frequencies of 20, 50, and 100 Hz. The synchronicity of synaptic transmission during high-frequency transmission increased during 9 weeks of neuronal maturation. To analyze the mechanisms of synchronous high-frequency glutamate release, we developed direct presynaptic patch-clamp recordings from human neurons. The presynaptic action potentials had large overshoots to ∼25 mV and short durations of ∼0.5 ms. Our findings show that Ngn2-induced neurons represent an elegant model system allowing for functional, structural, and molecular analyses of glutamatergic synaptic transmission with high spatiotemporal resolution in human neurons. Furthermore, our data predict that glutamatergic transmission is mediated by large and rapid presynaptic action potentials in the human brain.
Collapse
Affiliation(s)
- Torsten Bullmann
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Thomas Kaas
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Andreas Ritzau-Jost
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Anne Wöhner
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Toni Kirmann
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Filiz Sila Rizalar
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
| | - Max Holzer
- Paul-Flechsig-Institute for Brain Research, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Jana Nerlich
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena 07747, Germany
| | - Jens Eilers
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Robert J Kittel
- Institute of Biology, Department of Animal Physiology, Leipzig University, Leipzig 04103, Germany
| | - Thomas Arendt
- Paul-Flechsig-Institute for Brain Research, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin 13125, Germany
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Stefan Hallermann
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
9
|
Pazzin DB, Previato TTR, Budelon Gonçalves JI, Zanirati G, Xavier FAC, da Costa JC, Marinowic DR. Induced Pluripotent Stem Cells and Organoids in Advancing Neuropathology Research and Therapies. Cells 2024; 13:745. [PMID: 38727281 PMCID: PMC11083827 DOI: 10.3390/cells13090745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 05/13/2024] Open
Abstract
This review delves into the groundbreaking impact of induced pluripotent stem cells (iPSCs) and three-dimensional organoid models in propelling forward neuropathology research. With a focus on neurodegenerative diseases, neuromotor disorders, and related conditions, iPSCs provide a platform for personalized disease modeling, holding significant potential for regenerative therapy and drug discovery. The adaptability of iPSCs, along with associated methodologies, enables the generation of various types of neural cell differentiations and their integration into three-dimensional organoid models, effectively replicating complex tissue structures in vitro. Key advancements in organoid and iPSC generation protocols, alongside the careful selection of donor cell types, are emphasized as critical steps in harnessing these technologies to mitigate tumorigenic risks and other hurdles. Encouragingly, iPSCs show promising outcomes in regenerative therapies, as evidenced by their successful application in animal models.
Collapse
Affiliation(s)
- Douglas Bottega Pazzin
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Thales Thor Ramos Previato
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Fernando Antonio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| |
Collapse
|
10
|
Bombieri C, Corsi A, Trabetti E, Ruggiero A, Marchetto G, Vattemi G, Valenti MT, Zipeto D, Romanelli MG. Advanced Cellular Models for Rare Disease Study: Exploring Neural, Muscle and Skeletal Organoids. Int J Mol Sci 2024; 25:1014. [PMID: 38256087 PMCID: PMC10815694 DOI: 10.3390/ijms25021014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Organoids are self-organized, three-dimensional structures derived from stem cells that can mimic the structure and physiology of human organs. Patient-specific induced pluripotent stem cells (iPSCs) and 3D organoid model systems allow cells to be analyzed in a controlled environment to simulate the characteristics of a given disease by modeling the underlying pathophysiology. The recent development of 3D cell models has offered the scientific community an exceptionally valuable tool in the study of rare diseases, overcoming the limited availability of biological samples and the limitations of animal models. This review provides an overview of iPSC models and genetic engineering techniques used to develop organoids. In particular, some of the models applied to the study of rare neuronal, muscular and skeletal diseases are described. Furthermore, the limitations and potential of developing new therapeutic approaches are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (C.B.); (A.C.); (E.T.); (A.R.); (G.M.); (G.V.); (M.T.V.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (C.B.); (A.C.); (E.T.); (A.R.); (G.M.); (G.V.); (M.T.V.)
| |
Collapse
|
11
|
Dai S, Qiu L, Veeraraghavan VP, Sheu CL, Mony U. Advances in iPSC Technology in Neural Disease Modeling, Drug Screening, and Therapy. Curr Stem Cell Res Ther 2024; 19:809-819. [PMID: 37291782 DOI: 10.2174/1574888x18666230608105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/16/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023]
Abstract
Neurodegenerative disorders (NDs) including Alzheimer's Disease, Parkinson's Disease, Amyotrophic Lateral Sclerosis (ALS), and Huntington's disease are all incurable and can only be managed with drugs for the associated symptoms. Animal models of human illnesses help to advance our understanding of the pathogenic processes of diseases. Understanding the pathogenesis as well as drug screening using appropriate disease models of neurodegenerative diseases (NDs) are vital for identifying novel therapies. Human-derived induced pluripotent stem cell (iPSC) models can be an efficient model to create disease in a dish and thereby can proceed with drug screening and identifying appropriate drugs. This technology has many benefits, including efficient reprogramming and regeneration potential, multidirectional differentiation, and the lack of ethical concerns, which open up new avenues for studying neurological illnesses in greater depth. The review mainly focuses on the use of iPSC technology in neuronal disease modeling, drug screening, and cell therapy.
Collapse
Affiliation(s)
- Sihan Dai
- Department of Biomedical Engineering, Shantou University, Shantou, 515063, China
| | - Linhui Qiu
- Department of Biomedical Engineering, Shantou University, Shantou, 515063, China
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Chia-Lin Sheu
- Department of Biomedical Engineering, Shantou University, Shantou, 515063, China
| | - Ullas Mony
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| |
Collapse
|
12
|
Lam M, Kuo SY, Reis S, Gestwicki JE, Silva MC, Haggarty SJ. Cholesterol Dysregulation Drives Seed-Dependent Tau Aggregation in Patient Stem Cell-Derived Models of Tauopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571147. [PMID: 38168389 PMCID: PMC10759997 DOI: 10.1101/2023.12.11.571147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Tauopathies are a class of neurodegenerative diseases characterized by the progressive misfolding and accumulation of pathological tau protein in focal regions of the brain, leading to insidious neurodegeneration. Abnormalities in cholesterol metabolism and homeostasis have also been implicated in various neurodegenerative diseases. However, the connection between cholesterol dysregulation and tau pathology remains largely unknown. To model and measure the impact of cholesterol dysregulation on tau, we utilized a combination of in vitro and ex vivo tau aggregation assays using an engineered tau biosensor cell line and human induced pluripotent stem cell (iPSC)-derived neuronal cultures from an individual harboring an autosomal dominant P301L tau mutation and from a healthy control. We demonstrate that excess cholesterol esters lead to an increased rate of tau aggregation in vitro and an increase in seed-dependent insoluble tau aggregates detected in the biosensor line. We observed a strong correlation between cholesterol ester concentration and the presence of high-molecular-weight, oligomeric tau species. Importantly, in tauopathy patient iPSC-derived neurons harboring a P301L tau mutation with endogenous forms of misfolded tau, we show that acute dysregulation of cholesterol homeostasis through acute exposure to human plasma-purified cholesterol esters formed by the linkage of fatty acids to the hydroxyl group of cholesterol leads to the rapid accumulation of phosphorylated tau. Conversely, treatment with the same cholesterol esters pool did not lead to subsequent accumulation of phosphorylated tau in control iPSC-derived neurons. Finally, treatment with a heterobifunctional, small-molecule degrader designed to selectively engage and catalyze the ubiquitination and proteasomal degradation of aberrant tau species prevented cholesterol ester-induced aggregation of tau in the biosensor cell line in a Cereblon E3 ligase-dependent manner. Degrader treatment also restored the resiliency of tauopathy patient-derived neurons towards cholesterol ester-induced tau aggregation phenotypes. Taken together, our study supports a key role of cholesterol dysregulation in tau aggregation. Moreover, it provides further pre-clinical validation of the therapeutic strategy of targeted protein degradation with heterobifunctional tau degraders for blocking tau seeding.
Collapse
|
13
|
Bar S, Wilson KA, Hilsabeck TA, Alderfer S, Dammer EB, Burton JB, Shah S, Holtz A, Carrera EM, Beck JN, Chen JH, Kauwe G, Tracy TE, Seyfried NT, Schilling B, Ellerby LM, Kapahi P. Neuronal Glycogen Breakdown Mitigates Tauopathy via Pentose Phosphate Pathway-Mediated Oxidative Stress Reduction. RESEARCH SQUARE 2023:rs.3.rs-3526342. [PMID: 37986935 PMCID: PMC10659530 DOI: 10.21203/rs.3.rs-3526342/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Tauopathies encompass a range of neurodegenerative disorders, such as Alzheimer's disease (AD) and frontotemporal dementia (FTD). Unfortunately, current treatment approaches for tauopathies have yielded limited success, underscoring the pressing need for novel therapeutic strategies. We observed distinct signatures of impaired glycogen metabolism in the Drosophila brain of the tauopathy model and the brain of AD patients, indicating a link between tauopathies and glycogen metabolism. We demonstrate that the breakdown of neuronal glycogen by activating glycogen phosphorylase (GlyP) ameliorates the tauopathy phenotypes in flies and induced pluripotent stem cell (iPSC) derived neurons from FTD patients. We observed that glycogen breakdown redirects the glucose flux to the pentose phosphate pathway to alleviate oxidative stress. Our findings uncover a critical role for increased GlyP activity in mediating the neuroprotection benefit of dietary restriction (DR) through the cAMP-mediated protein kinase A (PKA) activation. Our studies identify impaired glycogen metabolism as a key hallmark for tauopathies and offer a promising therapeutic target in tauopathy treatment.
Collapse
Affiliation(s)
- Sudipta Bar
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | | | | | | | - Eric B. Dammer
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory University, School of Medicine Core Labs, Atlanta, GA 30322, USA
| | | | - Samah Shah
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | - Anja Holtz
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | | | | | - Jackson H Chen
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | - Grant Kauwe
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | - Tara E. Tracy
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA 94947, USA
| |
Collapse
|
14
|
Bhagat R, Minaya MA, Renganathan A, Mehra M, Marsh J, Martinez R, Eteleeb AM, Nana AL, Spina S, Seeley WW, Grinberg LT, Karch CM. Long non-coding RNA SNHG8 drives stress granule formation in tauopathies. Mol Psychiatry 2023; 28:4889-4901. [PMID: 37730840 PMCID: PMC10914599 DOI: 10.1038/s41380-023-02237-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Tauopathies are a heterogenous group of neurodegenerative disorders characterized by tau aggregation in the brain. In a subset of tauopathies, rare mutations in the MAPT gene, which encodes the tau protein, are sufficient to cause disease; however, the events downstream of MAPT mutations are poorly understood. Here, we investigate the role of long non-coding RNAs (lncRNAs), transcripts >200 nucleotides with low/no coding potential that regulate transcription and translation, and their role in tauopathy. Using stem cell derived neurons from patients carrying a MAPT p.P301L, IVS10 + 16, or p.R406W mutation and CRISPR-corrected isogenic controls, we identified transcriptomic changes that occur as a function of the MAPT mutant allele. We identified 15 lncRNAs that were commonly differentially expressed across the three MAPT mutations. The commonly differentially expressed lncRNAs interact with RNA-binding proteins that regulate stress granule formation. Among these lncRNAs, SNHG8 was significantly reduced in a mouse model of tauopathy and in FTLD-tau, progressive supranuclear palsy, and Alzheimer's disease brains. We show that SNHG8 interacts with tau and stress granule-associated RNA-binding protein TIA1. Overexpression of mutant tau in vitro is sufficient to reduce SNHG8 expression and induce stress granule formation. Rescuing SNHG8 expression leads to reduced stress granule formation and reduced TIA1 levels in immortalized cells and in MAPT mutant neurons, suggesting that dysregulation of this non-coding RNA is a causal factor driving stress granule formation via TIA1 in tauopathies.
Collapse
Affiliation(s)
- Reshma Bhagat
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Miguel A Minaya
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Arun Renganathan
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Muneshwar Mehra
- Department of Neuroscience, Washington University in St Louis, St Louis, MO, USA
| | - Jacob Marsh
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Rita Martinez
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Abdallah M Eteleeb
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Alissa L Nana
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Salvatore Spina
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Lea T Grinberg
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of Sao Paulo, São Paulo, Brazil
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA.
- Knight Alzheimer Disease Research Center, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
15
|
Bowles KR, Pugh DA, Pedicone C, Oja L, Weitzman SA, Liu Y, Chen JL, Disney MD, Goate AM. Development of MAPT S305 mutation models exhibiting elevated 4R tau expression, resulting in altered neuronal and astrocytic function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543224. [PMID: 37333200 PMCID: PMC10274740 DOI: 10.1101/2023.06.02.543224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Due to the importance of 4R tau in the pathogenicity of primary tauopathies, it has been challenging to model these diseases in iPSC-derived neurons, which express very low levels of 4R tau. To address this problem we have developed a panel of isogenic iPSC lines carrying the MAPT splice-site mutations S305S, S305I or S305N, derived from four different donors. All three mutations significantly increased the proportion of 4R tau expression in iPSC-neurons and astrocytes, with up to 80% 4R transcripts in S305N neurons from as early as 4 weeks of differentiation. Transcriptomic and functional analyses of S305 mutant neurons revealed shared disruption in glutamate signaling and synaptic maturity, but divergent effects on mitochondrial bioenergetics. In iPSC-astrocytes, S305 mutations induced lysosomal disruption and inflammation and exacerbated internalization of exogenous tau that may be a precursor to the glial pathologies observed in many tauopathies. In conclusion, we present a novel panel of human iPSC lines that express unprecedented levels of 4R tau in neurons and astrocytes. These lines recapitulate previously characterized tauopathy-relevant phenotypes, but also highlight functional differences between the wild type 4R and mutant 4R proteins. We also highlight the functional importance of MAPT expression in astrocytes. These lines will be highly beneficial to tauopathy researchers enabling a more complete understanding of the pathogenic mechanisms underlying 4R tauopathies across different cell types.
Collapse
Affiliation(s)
- KR Bowles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - DA Pugh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - C Pedicone
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - L Oja
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - SA Weitzman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Y Liu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - JL Chen
- Department of Chemistry, Scripps Research Institute, Jupiter, FL, United States of America
| | - MD Disney
- Department of Chemistry, Scripps Research Institute, Jupiter, FL, United States of America
| | - AM Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| |
Collapse
|
16
|
Chen D, Bali S, Singh R, Wosztyl A, Mullapudi V, Vaquer-Alicea J, Jayan P, Melhem S, Seelaar H, van Swieten JC, Diamond MI, Joachimiak LA. FTD-tau S320F mutation stabilizes local structure and allosterically promotes amyloid motif-dependent aggregation. Nat Commun 2023; 14:1625. [PMID: 36959205 PMCID: PMC10036635 DOI: 10.1038/s41467-023-37274-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/10/2023] [Indexed: 03/25/2023] Open
Abstract
Amyloid deposition of the microtubule-associated protein tau is associated with neurodegenerative diseases. In frontotemporal dementia with abnormal tau (FTD-tau), missense mutations in tau enhance its aggregation propensity. Here we describe the structural mechanism for how an FTD-tau S320F mutation drives spontaneous aggregation, integrating data from in vitro, in silico and cellular experiments. We find that S320F stabilizes a local hydrophobic cluster which allosterically exposes the 306VQIVYK311 amyloid motif; identify a suppressor mutation that destabilizes S320F-based hydrophobic clustering reversing the phenotype in vitro and in cells; and computationally engineer spontaneously aggregating tau sequences through optimizing nonpolar clusters surrounding the S320 position. We uncover a mechanism for regulating tau aggregation which balances local nonpolar contacts with long-range interactions that sequester amyloid motifs. Understanding this process may permit control of tau aggregation into structural polymorphs to aid the design of reagents targeting disease-specific tau conformations.
Collapse
Affiliation(s)
- Dailu Chen
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sofia Bali
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ruhar Singh
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Aleksandra Wosztyl
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Vishruth Mullapudi
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jaime Vaquer-Alicea
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Parvathy Jayan
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shamiram Melhem
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - Harro Seelaar
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - John C van Swieten
- Department of Neurology & Alzheimer Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
17
|
Bhagat R, Minaya MA, Renganathan A, Mehra M, Marsh J, Martinez R, Nana AL, Spina S, Seeley WW, Grinberg LT, Karch CM. Long non-coding RNA SNHG8 drives stress granule formation in tauopathies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.27.23286548. [PMID: 36909621 PMCID: PMC10002771 DOI: 10.1101/2023.02.27.23286548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Tauopathies are a heterogenous group of neurodegenerative disorders characterized by tau aggregation in the brain. In a subset of tauopathies, rare mutations in the MAPT gene, which encodes the tau protein, are sufficient to cause disease; however, the events downstream of MAPT mutations are poorly understood. Here, we investigate the role of long non-coding RNAs (lncRNAs), transcripts >200 nucleotides with low/no coding potential that regulate transcription and translation, and their role in tauopathy. Using stem cell derived neurons from patients carrying a MAPT p.P301L, IVS10+16, or p.R406W mutation, and CRISPR-corrected isogenic controls, we identified transcriptomic changes that occur as a function of the MAPT mutant allele. We identified 15 lncRNAs that were commonly differentially expressed across the three MAPT mutations. The commonly differentially expressed lncRNAs interact with RNA-binding proteins that regulate stress granule formation. Among these lncRNAs, SNHG8 was significantly reduced in a mouse model of tauopathy and in FTLD-tau, progressive supranuclear palsy, and Alzheimer’s disease brains. We show that SNHG8 interacts with tau and stress granule-associated RNA-binding protein TIA1. Overexpression of mutant tau in vitro is sufficient to reduce SNHG8 expression and induce stress granule formation. Rescuing SNHG8 expression leads to reduced stress granule formation and reduced TIA1 levels, suggesting that dysregulation of this non-coding RNA is a causal factor driving stress granule formation via TIA1 in tauopathies.
Collapse
|
18
|
Minaya MA, Mahali S, Iyer AK, Eteleeb AM, Martinez R, Huang G, Budde J, Temple S, Nana AL, Seeley WW, Spina S, Grinberg LT, Harari O, Karch CM. Conserved gene signatures shared among MAPT mutations reveal defects in calcium signaling. Front Mol Biosci 2023; 10:1051494. [PMID: 36845551 PMCID: PMC9948093 DOI: 10.3389/fmolb.2023.1051494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction: More than 50 mutations in the MAPT gene result in heterogeneous forms of frontotemporal lobar dementia with tau inclusions (FTLD-Tau). However, early pathogenic events that lead to disease and the degree to which they are common across MAPT mutations remain poorly understood. The goal of this study is to determine whether there is a common molecular signature of FTLD-Tau. Methods: We analyzed genes differentially expressed in induced pluripotent stem cell-derived neurons (iPSC-neurons) that represent the three major categories of MAPT mutations: splicing (IVS10 + 16), exon 10 (p.P301L), and C-terminal (p.R406W) compared with isogenic controls. The genes that were commonly differentially expressed in MAPT IVS10 + 16, p.P301L, and p.R406W neurons were enriched in trans-synaptic signaling, neuronal processes, and lysosomal function. Many of these pathways are sensitive to disruptions in calcium homeostasis. One gene, CALB1, was significantly reduced across the three MAPT mutant iPSC-neurons and in a mouse model of tau accumulation. We observed a significant reduction in calcium levels in MAPT mutant neurons compared with isogenic controls, pointing to a functional consequence of this disrupted gene expression. Finally, a subset of genes commonly differentially expressed across MAPT mutations were also dysregulated in brains from MAPT mutation carriers and to a lesser extent in brains from sporadic Alzheimer disease and progressive supranuclear palsy, suggesting that molecular signatures relevant to genetic and sporadic forms of tauopathy are captured in a dish. The results from this study demonstrate that iPSC-neurons capture molecular processes that occur in human brains and can be used to pinpoint common molecular pathways involving synaptic and lysosomal function and neuronal development, which may be regulated by disruptions in calcium homeostasis.
Collapse
Affiliation(s)
- Miguel A. Minaya
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Sidhartha Mahali
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Abhirami K. Iyer
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Abdallah M. Eteleeb
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Rita Martinez
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Guangming Huang
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - John Budde
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY, United States
| | - Alissa L. Nana
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - William W. Seeley
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Salvatore Spina
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Lea T. Grinberg
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Pathology, University of Sao Paulo, Sao Paulo, Brazil
| | - Oscar Harari
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, United States
- NeuroGenomics and Informatics Center, Washington University in St Louis, St Louis, MO, United States
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, United States
- NeuroGenomics and Informatics Center, Washington University in St Louis, St Louis, MO, United States
| |
Collapse
|
19
|
Jiang Z, Xu Y, Fu M, Zhu D, Li N, Yang G. Genetically modified cell spheroids for tissue engineering and regenerative medicine. J Control Release 2023; 354:588-605. [PMID: 36657601 DOI: 10.1016/j.jconrel.2023.01.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
Cell spheroids offer cell-to-cell interactions and show advantages in survival rate and paracrine effect to solve clinical and biomedical inquiries ranging from tissue engineering and regenerative medicine to disease pathophysiology. Therefore, cell spheroids are ideal vehicles for gene delivery. Genetically modified spheroids can enhance specific gene expression to promote tissue regeneration. Gene deliveries to cell spheroids are via viral vectors or non-viral vectors. Some new technologies like CRISPR/Cas9 also have been used in genetically modified methods to deliver exogenous gene to the host chromosome. It has been shown that genetically modified cell spheroids had the potential to differentiate into bone, cartilage, vascular, nerve, cardiomyocytes, skin, and skeletal muscle as well as organs like the liver to replace the diseased organ in the animal and pre-clinical trials. This article reviews the recent articles about genetically modified spheroid cells and explains the fabrication, applications, development timeline, limitations, and future directions of genetically modified cell spheroid.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yi Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
20
|
Daoutsali E, Pepers BA, Stamatakis S, van der Graaf LM, Terwindt GM, Parfitt DA, Buijsen RAM, van Roon-Mom WMC. Amyloid beta accumulations and enhanced neuronal differentiation in cerebral organoids of Dutch-type cerebral amyloid angiopathy patients. Front Aging Neurosci 2023; 14:1048584. [PMID: 36733499 PMCID: PMC9887998 DOI: 10.3389/fnagi.2022.1048584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction ADutch-type cerebral amyloid angiopathy (D-CAA) is a hereditary brain disorder caused by a point mutation in the amyloid precursor protein (APP) gene. The mutation is located within the amyloid beta (Aβ) domain of APP and leads to Aβ peptide accumulation in and around the cerebral vasculature. There lack of disease models to study the cellular and molecular pathological mechanisms of D-CAA together with the absence of a disease phenotype in vitro in overexpression cell models, as well as the limited availability of D-CAA animal models indicates the need for a D-CAA patient-derived model. Methods We generated cerebral organoids from four D-CAA patients and four controls, cultured them up to 110 days and performed immunofluorescent and targeted gene expression analyses at two time points (D52 and D110). Results D-CAA cerebral organoids exhibited Aβ accumulations, showed enhanced neuronal and astrocytic gene expression and TGFβ pathway de-regulation. Conclusions These results illustrate the potential of cerebral organoids as in vitro disease model of D-CAA that can be used to understand disease mechanisms of D-CAA and can serve as therapeutic intervention platform for various Aβ-related disorders.
Collapse
Affiliation(s)
- Elena Daoutsali
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: Willeke M. C. van Roon-Mom, ; Elena Daoutsali,
| | - Barry A. Pepers
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Stavros Stamatakis
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Gisela M. Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - David A. Parfitt
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Ronald A. M. Buijsen
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Willeke M. C. van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: Willeke M. C. van Roon-Mom, ; Elena Daoutsali,
| |
Collapse
|
21
|
Mahali S, Martinez R, King M, Verbeck A, Harari O, Benitez BA, Horie K, Sato C, Temple S, Karch CM. Defective proteostasis in induced pluripotent stem cell models of frontotemporal lobar degeneration. Transl Psychiatry 2022; 12:508. [PMID: 36494352 PMCID: PMC9734180 DOI: 10.1038/s41398-022-02274-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Impaired proteostasis is associated with normal aging and is accelerated in neurodegeneration. This impairment may lead to the accumulation of protein, which can be toxic to cells and tissue. In a subset of frontotemporal lobar degeneration with tau pathology (FTLD-tau) cases, pathogenic mutations in the microtubule-associated protein tau (MAPT) gene are sufficient to cause tau accumulation and neurodegeneration. However, the pathogenic events triggered by the expression of the mutant tau protein remain poorly understood. Here, we show that molecular networks associated with lysosomal biogenesis and autophagic function are disrupted in brains from FTLD-tau patients carrying a MAPT p.R406W mutation. We then used human induced pluripotent stem cell (iPSC)-derived neurons and 3D cerebral organoids from patients carrying the MAPT p.R406W mutation and CRISPR/Cas9, corrected controls to evaluate proteostasis. MAPT p.R406W was sufficient to induce morphological and functional deficits in the lysosomal pathway in iPSC-neurons. These phenotypes were reversed upon correction of the mutant allele with CRISPR/Cas9. Treatment with mTOR inhibitors led to tau degradation specifically in MAPT p.R406W neurons. Together, our findings suggest that MAPT p.R406W is sufficient to cause impaired lysosomal function, which may contribute to disease pathogenesis and serve as a cellular phenotype for drug screening.
Collapse
Affiliation(s)
- Sidhartha Mahali
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Rita Martinez
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Melvin King
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Anthony Verbeck
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA
| | - Bruno A Benitez
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA
| | - Kanta Horie
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Chihiro Sato
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | | | - Celeste M Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
22
|
Ideno H, Imaizumi K, Shimada H, Sanosaka T, Nemoto A, Kohyama J, Okano H. Human PSCs determine the competency of cerebral organoid differentiation via FGF signaling and epigenetic mechanisms. iScience 2022; 25:105140. [PMID: 36185382 PMCID: PMC9523398 DOI: 10.1016/j.isci.2022.105140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/06/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Hirosato Ideno
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kent Imaizumi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Corresponding author
| | - Hiroko Shimada
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akisa Nemoto
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Corresponding author
| |
Collapse
|
23
|
Hasan MF, Trushina E. Advances in Recapitulating Alzheimer's Disease Phenotypes Using Human Induced Pluripotent Stem Cell-Based In Vitro Models. Brain Sci 2022; 12:552. [PMID: 35624938 PMCID: PMC9138647 DOI: 10.3390/brainsci12050552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disorder and the leading cause of death among older individuals. Available treatment strategies only temporarily mitigate symptoms without modifying disease progression. Recent studies revealed the multifaceted neurobiology of AD and shifted the target of drug development. Established animal models of AD are mostly tailored to yield a subset of disease phenotypes, which do not recapitulate the complexity of sporadic late-onset AD, the most common form of the disease. The use of human induced pluripotent stem cells (HiPSCs) offers unique opportunities to fill these gaps. Emerging technology allows the development of disease models that recapitulate a brain-like microenvironment using patient-derived cells. These models retain the individual's unraveled genetic background, yielding clinically relevant disease phenotypes and enabling cost-effective, high-throughput studies for drug discovery. Here, we review the development of various HiPSC-based models to study AD mechanisms and their application in drug discovery.
Collapse
Affiliation(s)
- Md Fayad Hasan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
24
|
Silva MC, Nandi G, Donovan KA, Cai Q, Berry BC, Nowak RP, Fischer ES, Gray NS, Ferguson FM, Haggarty SJ. Discovery and Optimization of Tau Targeted Protein Degraders Enabled by Patient Induced Pluripotent Stem Cells-Derived Neuronal Models of Tauopathy. Front Cell Neurosci 2022; 16:801179. [PMID: 35317195 PMCID: PMC8934437 DOI: 10.3389/fncel.2022.801179] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/26/2022] [Indexed: 12/21/2022] Open
Abstract
Accumulation of misfolded, aggregating proteins concurrent with disease onset and progression is a hallmark of neurodegenerative proteinopathies. An important class of these are tauopathies, such as frontotemporal dementia (FTD) and Alzheimer’s disease (AD), associated with accumulation of aberrant forms of tau protein in the brain. Pathological tau undergoes abnormal post-translational modifications, misfolding, oligomerization and changes in solubility, cellular redistribution, and spreading. Development and testing of experimental therapeutics that target these pathological tau conformers requires use of cellular models that recapitulate neuronal endogenous, non-heterologous tau expression under genomic and physiological contexts relevant to disease. In this study, we employed FTD-patient induced pluripotent stem cells (iPSC)-derived neurons, expressing a tau variant or mutation, as primary models for driving a medicinal chemistry campaign around tau targeting degrader series. Our screening goal was to establish structure-activity relationships (SAR) for the different chemical series to identify the molecular composition that most efficiently led to tau degradation in human FTD ex vivo neurons. We describe the identification of the lead compound QC-01-175 and follow-up optimization strategies for this molecule. We present three final lead molecules with tau degradation activity in mutant neurons, which establishes potential disease relevance and will drive future studies on specificity and pharmacological properties.
Collapse
Affiliation(s)
- M. Catarina Silva
- Chemical Neurobiology Laboratory, Department of Neurology and Psychiatry, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Ghata Nandi
- Chemical Neurobiology Laboratory, Department of Neurology and Psychiatry, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Quan Cai
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Bethany C. Berry
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Radoslaw P. Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Nathanael S. Gray
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Fleur M. Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
- *Correspondence: Fleur M. Ferguson,
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Department of Neurology and Psychiatry, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Stephen J. Haggarty,
| |
Collapse
|
25
|
Yoshimatsu S, Nakajima M, Qian E, Sanosaka T, Sato T, Okano H. Homologous Recombination-Enhancing Factors Identified by Comparative Transcriptomic Analyses of Pluripotent Stem Cell of Human and Common Marmoset. Cells 2022; 11:cells11030360. [PMID: 35159172 PMCID: PMC8834151 DOI: 10.3390/cells11030360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
A previous study assessing the efficiency of the genome editing technology CRISPR-Cas9 for knock-in gene targeting in common marmoset (marmoset; Callithrix jacchus) embryonic stem cells (ESCs) unexpectedly identified innately enhanced homologous recombination activity in marmoset ESCs. Here, we compared gene expression in marmoset and human pluripotent stem cells using transcriptomic and quantitative PCR analyses and found that five HR-related genes (BRCA1, BRCA2, RAD51C, RAD51D, and RAD51) were upregulated in marmoset cells. A total of four of these upregulated genes enhanced HR efficiency with CRISPR-Cas9 in human pluripotent stem cells. Thus, the present study provides a novel insight into species-specific mechanisms for the choice of DNA repair pathways.
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.Y.); (M.N.); (E.Q.); (T.S.); (T.S.)
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Mayutaka Nakajima
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.Y.); (M.N.); (E.Q.); (T.S.); (T.S.)
| | - Emi Qian
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.Y.); (M.N.); (E.Q.); (T.S.); (T.S.)
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.Y.); (M.N.); (E.Q.); (T.S.); (T.S.)
| | - Tsukika Sato
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.Y.); (M.N.); (E.Q.); (T.S.); (T.S.)
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (S.Y.); (M.N.); (E.Q.); (T.S.); (T.S.)
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Correspondence:
| |
Collapse
|
26
|
Fanizza F, Campanile M, Forloni G, Giordano C, Albani D. Induced pluripotent stem cell-based organ-on-a-chip as personalized drug screening tools: A focus on neurodegenerative disorders. J Tissue Eng 2022; 13:20417314221095339. [PMID: 35570845 PMCID: PMC9092580 DOI: 10.1177/20417314221095339] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/04/2022] [Indexed: 01/15/2023] Open
Abstract
The Organ-on-a-Chip (OoC) technology shows great potential to revolutionize the drugs development pipeline by mimicking the physiological environment and functions of human organs. The translational value of OoC is further enhanced when combined with patient-specific induced pluripotent stem cells (iPSCs) to develop more realistic disease models, paving the way for the development of a new generation of patient-on-a-chip devices. iPSCs differentiation capacity leads to invaluable improvements in personalized medicine. Moreover, the connection of single-OoC into multi-OoC or body-on-a-chip allows to investigate drug pharmacodynamic and pharmacokinetics through the study of multi-organs cross-talks. The need of a breakthrough thanks to this technology is particularly relevant within the field of neurodegenerative diseases, where the number of patients is increasing and the successful rate in drug discovery is worryingly low. In this review we discuss current iPSC-based OoC as drug screening models and their implication in development of new therapies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Francesca Fanizza
- Department of Chemistry, Materials and
Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Marzia Campanile
- Department of Chemistry, Materials and
Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di
Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Carmen Giordano
- Department of Chemistry, Materials and
Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Diego Albani
- Department of Neuroscience, Istituto di
Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
27
|
Allen GE, Dhanda AS, Julian LM. Emerging Methods in Modeling Brain Development and Disease with Human Pluripotent Stem Cells. Methods Mol Biol 2022; 2515:319-342. [PMID: 35776361 DOI: 10.1007/978-1-0716-2409-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Nobel Prize-winning discovery that human somatic cells can be readily reprogrammed into pluripotent cells has revolutionized our potential to understand the human brain. The rapid technological progression of this field has made it possible to easily obtain human neural cells and even intact tissues, offering invaluable resources to model human brain development. In this chapter, we present a brief history of hPSC-based approaches to study brain development and then, provide new insights into neurological diseases, focusing on those driven by aberrant cell death. Furthermore, we will shed light on the latest technologies and highlight the methods that researchers can use to employ established hPSC approaches in their research. Our intention is to demonstrate that hPSC-based modeling is a technical approach accessible to all researchers who seek a deeper understanding of the human brain.
Collapse
Affiliation(s)
- George E Allen
- Department of Biological Sciences; Centre for Cell Biology, Development, and Disease, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Aaron S Dhanda
- Department of Biological Sciences; Centre for Cell Biology, Development, and Disease, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa M Julian
- Department of Biological Sciences; Centre for Cell Biology, Development, and Disease, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
28
|
Kühn R, Mahajan A, Canoll P, Hargus G. Human Induced Pluripotent Stem Cell Models of Frontotemporal Dementia With Tau Pathology. Front Cell Dev Biol 2021; 9:766773. [PMID: 34858989 PMCID: PMC8631302 DOI: 10.3389/fcell.2021.766773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 12/04/2022] Open
Abstract
Neurodegenerative dementias are the most common group of neurodegenerative diseases affecting more than 40 million people worldwide. One of these diseases is frontotemporal dementia (FTD), an early onset dementia and one of the leading causes of dementia in people under the age of 60. FTD is a heterogeneous group of neurodegenerative disorders with pathological accumulation of particular proteins in neurons and glial cells including the microtubule-associated protein tau, which is deposited in its hyperphosphorylated form in about half of all patients with FTD. As for other patients with dementia, there is currently no cure for patients with FTD and thus several lines of research focus on the characterization of underlying pathogenic mechanisms with the goal to identify therapeutic targets. In this review, we provide an overview of reported disease phenotypes in induced pluripotent stem cell (iPSC)-derived neurons and glial cells from patients with tau-associated FTD with the aim to highlight recent progress in this fast-moving field of iPSC disease modeling. We put a particular focus on genetic forms of the disease that are linked to mutations in the gene encoding tau and summarize mutation-associated changes in FTD patient cells related to tau splicing and tau phosphorylation, microtubule function and cell metabolism as well as calcium homeostasis and cellular stress. In addition, we discuss challenges and limitations but also opportunities using differentiated patient-derived iPSCs for disease modeling and biomedical research on neurodegenerative diseases including FTD.
Collapse
Affiliation(s)
- Rebekka Kühn
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Aayushi Mahajan
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Gunnar Hargus
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| |
Collapse
|
29
|
Complex Organ Construction from Human Pluripotent Stem Cells for Biological Research and Disease Modeling with New Emerging Techniques. Int J Mol Sci 2021; 22:ijms221910184. [PMID: 34638524 PMCID: PMC8508560 DOI: 10.3390/ijms221910184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are grouped into two cell types; embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs). hESCs have provided multiple powerful platforms to study human biology, including human development and diseases; however, there were difficulties in the establishment of hESCs from human embryo and concerns over its ethical issues. The discovery of hiPSCs has expanded to various applications in no time because hiPSCs had already overcome these problems. Many hPSC-based studies have been performed using two-dimensional monocellular culture methods at the cellular level. However, in many physiological and pathophysiological conditions, intra- and inter-organ interactions play an essential role, which has hampered the establishment of an appropriate study model. Therefore, the application of recently developed technologies, such as three-dimensional organoids, bioengineering, and organ-on-a-chip technology, has great potential for constructing multicellular tissues, generating the functional organs from hPSCs, and recapitulating complex tissue functions for better biological research and disease modeling. Moreover, emerging techniques, such as single-cell transcriptomics, spatial transcriptomics, and artificial intelligence (AI) allowed for a denser and more precise analysis of such heterogeneous and complex tissues. Here, we review the applications of hPSCs to construct complex organs and discuss further prospects of disease modeling and drug discovery based on these PSC-derived organs.
Collapse
|
30
|
Strauß T, Marvian-Tayaranian A, Sadikoglou E, Dhingra A, Wegner F, Trümbach D, Wurst W, Heutink P, Schwarz SC, Höglinger GU. iPS Cell-Based Model for MAPT Haplotype as a Risk Factor for Human Tauopathies Identifies No Major Differences in TAU Expression. Front Cell Dev Biol 2021; 9:726866. [PMID: 34532319 PMCID: PMC8438159 DOI: 10.3389/fcell.2021.726866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
The H1 haplotype of the microtubule-associated protein tau (MAPT) gene is a common genetic risk factor for some neurodegenerative diseases such as progressive supranuclear palsy, corticobasal degeneration, and Parkinson's disease. The molecular mechanism causing the increased risk for the named diseases, however, remains unclear. In this paper, we present a valuable tool of eight small molecule neural precursor cell lines (smNPC) homozygous for the MAPT haplotypes (four H1/H1 and four H2/H2 cell lines), which can be used to identify MAPT-dependent phenotypes. The employed differentiation protocol is fast due to overexpression of NEUROGENIN-2 and therefore suitable for high-throughput approaches. A basic characterization of all human cell lines was performed, and their TAU and α-SYNUCLEIN profiles were compared during a differentiation time of 30 days. We could identify higher levels of conformationally altered TAU in cell lines carrying the H2 haplotype. Additionally, we found increased expression levels of α-SYNUCLEIN in H1/H1 cells. With this resource, we aim to fill a gap in neurodegenerative disease modeling with induced pluripotent stem cells (iPSC) for sporadic tauopathies.
Collapse
Affiliation(s)
- Tabea Strauß
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, Technical University Munich, Munich, Germany
| | - Amir Marvian-Tayaranian
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, Technical University Munich, Munich, Germany
| | - Eldem Sadikoglou
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ashutosh Dhingra
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Florian Wegner
- Department of Neurology, Hanover Medical School, Hanover, Germany
- Center for Systems Neuroscience, Hanover, Germany
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, Oberschleißheim, Germany
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Sigrid C. Schwarz
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, Technical University Munich, Munich, Germany
- Geriatric Clinic Haag, Haag in Oberbayern, Germany
| | - Günter U. Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, Technical University Munich, Munich, Germany
- Department of Neurology, Hanover Medical School, Hanover, Germany
- Center for Systems Neuroscience, Hanover, Germany
| |
Collapse
|
31
|
Bowles KR, Silva MC, Whitney K, Bertucci T, Berlind JE, Lai JD, Garza JC, Boles NC, Mahali S, Strang KH, Marsh JA, Chen C, Pugh DA, Liu Y, Gordon RE, Goderie SK, Chowdhury R, Lotz S, Lane K, Crary JF, Haggarty SJ, Karch CM, Ichida JK, Goate AM, Temple S. ELAVL4, splicing, and glutamatergic dysfunction precede neuron loss in MAPT mutation cerebral organoids. Cell 2021; 184:4547-4563.e17. [PMID: 34314701 PMCID: PMC8635409 DOI: 10.1016/j.cell.2021.07.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/06/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022]
Abstract
Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules. Over the following 4 months, mutant organoids accumulate splicing changes, disruption of autophagy function, and build-up of tau and P-tau-S396. By 6 months, tau-V337M organoids show specific loss of glutamatergic neurons as seen in individuals with FTD. Mutant neurons are susceptible to glutamate toxicity, which can be rescued pharmacologically by the PIKFYVE kinase inhibitor apilimod. Our results demonstrate a sequence of events that precede neurodegeneration, revealing molecular pathways associated with glutamate signaling as potential targets for therapeutic intervention in FTD.
Collapse
Affiliation(s)
- Kathryn R Bowles
- Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - M Catarina Silva
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kristen Whitney
- Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA; Department of Pathology, Neuropathology Brain Bank and Research Core, ISMMS, New York, NY 10029, USA
| | | | - Joshua E Berlind
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jesse D Lai
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Amgen Research, One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Jacob C Garza
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Sidhartha Mahali
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kevin H Strang
- Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA; Department of Pathology, Neuropathology Brain Bank and Research Core, ISMMS, New York, NY 10029, USA
| | - Jacob A Marsh
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Cynthia Chen
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Derian A Pugh
- Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Yiyuan Liu
- Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
| | - Ronald E Gordon
- Department of Pathology, Neuropathology Brain Bank and Research Core, ISMMS, New York, NY 10029, USA
| | | | | | - Steven Lotz
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | - Keith Lane
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA
| | - John F Crary
- Department of Pathology, Neuropathology Brain Bank and Research Core, ISMMS, New York, NY 10029, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Departments of Genetics and Genomic Sciences, Neuroscience, and Neurology, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA.
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA.
| |
Collapse
|
32
|
Hendriks D, Clevers H, Artegiani B. CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids. Cell Stem Cell 2021; 27:705-731. [PMID: 33157047 DOI: 10.1016/j.stem.2020.10.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CRISPR-Cas technology has revolutionized biological research and holds great therapeutic potential. Here, we review CRISPR-Cas systems and their latest developments with an emphasis on application to human cells. We also discuss how different CRISPR-based strategies can be used to accomplish a particular genome engineering goal. We then review how different CRISPR tools have been used in genome engineering of human stem cells in vitro, covering both the pluripotent (iPSC/ESC) and somatic adult stem cell fields and, in particular, 3D organoid cultures. Finally, we discuss the progress and challenges associated with CRISPR-based genome editing of human stem cells for therapeutic use.
Collapse
Affiliation(s)
- Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, and University Medical Center, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, and University Medical Center, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands; The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Benedetta Artegiani
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
33
|
Niewiadomska G, Niewiadomski W, Steczkowska M, Gasiorowska A. Tau Oligomers Neurotoxicity. Life (Basel) 2021; 11:28. [PMID: 33418848 PMCID: PMC7824853 DOI: 10.3390/life11010028] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Although the mechanisms of toxic activity of tau are not fully recognized, it is supposed that the tau toxicity is related rather not to insoluble tau aggregates but to its intermediate forms. It seems that neurofibrillar tangles (NFTs) themselves, despite being composed of toxic tau, are probably neither necessary nor sufficient for tau-induced neuronal dysfunction and toxicity. Tau oligomers (TauOs) formed during the early stages of tau aggregation are the pathological forms that play a key role in eliciting the loss of neurons and behavioral impairments in several neurodegenerative disorders called tauopathies. They can be found in tauopathic diseases, the most common of which is Alzheimer's disease (AD). Evidence of co-occurrence of b-amyloid, α-synuclein, and tau into their most toxic forms, i.e., oligomers, suggests that these species interact and influence each other's aggregation in several tauopathies. The mechanism responsible for oligomeric tau neurotoxicity is a subject of intensive investigation. In this review, we summarize the most recent literature on the damaging effect of TauOs on the stability of the genome and the function of the nucleus, energy production and mitochondrial function, cell signaling and synaptic plasticity, the microtubule assembly, neuronal cytoskeleton and axonal transport, and the effectiveness of the protein degradation system.
Collapse
Affiliation(s)
- Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.N.); (M.S.); (A.G.)
| | - Marta Steczkowska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.N.); (M.S.); (A.G.)
| | - Anna Gasiorowska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.N.); (M.S.); (A.G.)
| |
Collapse
|
34
|
Venkataraman L, Fair SR, McElroy CA, Hester ME, Fu H. Modeling neurodegenerative diseases with cerebral organoids and other three-dimensional culture systems: focus on Alzheimer's disease. Stem Cell Rev Rep 2020; 18:696-717. [PMID: 33180261 PMCID: PMC7658915 DOI: 10.1007/s12015-020-10068-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Many neurodegenerative diseases (NDs) such as Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, amyotrophic lateral sclerosis and Huntington’s disease, are characterized by the progressive accumulation of abnormal proteinaceous assemblies in specific cell types and regions of the brain, leading to cellular dysfunction and brain damage. Although animal- and in vitro-based studies of NDs have provided the field with an extensive understanding of some of the mechanisms underlying these diseases, findings from these studies have not yielded substantial progress in identifying treatment options for patient populations. This necessitates the development of complementary model systems that are better suited to recapitulate human-specific features of ND pathogenesis. Three-dimensional (3D) culture systems, such as cerebral organoids generated from human induced pluripotent stem cells, hold significant potential to model NDs in a complex, tissue-like environment. In this review, we discuss the advantages of 3D culture systems and 3D modeling of NDs, especially AD and FTD. We also provide an overview of the challenges and limitations of the current 3D culture systems. Finally, we propose a few potential future directions in applying state-of-the-art technologies in 3D culture systems to understand the mechanisms of NDs and to accelerate drug discovery. Graphical abstract ![]()
Collapse
Affiliation(s)
- Lalitha Venkataraman
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 616 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA
| | - Summer R Fair
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA
- College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Craig A McElroy
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Mark E Hester
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 616 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA.
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH, 43215, USA.
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Hongjun Fu
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 616 Biomedical Research Tower, 460 W. 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
35
|
Haghi M, Masoudi R, Najibi SM. Distinctive alteration in the expression of autophagy genes in Drosophila models of amyloidopathy and tauopathy. Ups J Med Sci 2020; 125:265-273. [PMID: 32657227 PMCID: PMC7594860 DOI: 10.1080/03009734.2020.1785063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is one the most common types of dementia. Plaques of amyloid beta and neurofibrillary tangles of tau are two major hallmarks of AD. Metabolism of these two proteins, in part, depends on autophagy pathways. Autophagy dysfunction and protein aggregation in AD may be involved in a vicious circle. The aim of this study was to investigate whether tau or amyloid beta 42 (Aβ42) could affect expression of autophagy genes, and whether they exert their effects in the same way or not. METHODS Expression levels of some autophagy genes, Hook, Atg6, Atg8, and Cathepsin D, were measured using quantitative PCR in transgenic Drosophila melanogaster expressing either Aβ42 or Tau R406W. RESULTS We found that Hook mRNA levels were downregulated in Aβ42-expressing flies both 5 and 25 days old, while they were increased in 25-day-old flies expressing Tau R406W. Both Atg6 and Atg8 were upregulated at day 5 and then downregulated in 25-day-old flies expressing either Aβ42 or Tau R406W. Cathepsin D expression levels were significantly increased in 5-day-old flies expressing Tau R406W, while there was no significant change in the expression levels of this gene in 5-day-old flies expressing Aβ42. Expression levels of Cathepsin D were significantly decreased in 25-day-old transgenic flies expressing Tau R406W or Aβ42. CONCLUSION We conclude that both Aβ42 and Tau R406W may affect autophagy through dysregulation of autophagy genes. Interestingly, it seems that these pathological proteins exert their toxic effects on autophagy through different pathways and independently.
Collapse
Affiliation(s)
- Mehrnaz Haghi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Raheleh Masoudi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
- CONTACT Raheleh Masoudi Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Seyed Morteza Najibi
- Center for Molecular Protein Science, Lund University, Lund, Sweden
- Department of Statistics, College of Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
36
|
Modelling frontotemporal dementia using patient-derived induced pluripotent stem cells. Mol Cell Neurosci 2020; 109:103553. [PMID: 32956830 DOI: 10.1016/j.mcn.2020.103553] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 08/27/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) describes a group of clinically heterogeneous conditions that frequently affect people under the age of 65 (Le Ber et al., 2013). There are multiple genetic causes of FTD, including coding or splice-site mutations in MAPT, GRN mutations that lead to haploinsufficiency of progranulin protein, and a hexanucleotide GGGGCC repeat expansion in C9ORF72. Pathologically, FTD is characterised by abnormal protein accumulations in neurons and glia. These aggregates can be composed of the microtubule-associated protein tau (observed in FTD with MAPT mutations), the DNA/RNA-binding protein TDP-43 (seen in FTD with mutations in GRN or C9ORF72 repeat expansions) or dipeptide proteins generated by repeat associated non-ATG translation of the C9ORF72 repeat expansion. There are currently no disease-modifying therapies for FTD and the availability of in vitro models that recapitulate pathologies in a disease-relevant cell type would accelerate the development of novel therapeutics. It is now possible to generate patient-specific stem cells through the reprogramming of somatic cells from a patient with a genotype/phenotype of interest into induced pluripotent stem cells (iPSCs). iPSCs can subsequently be differentiated into a plethora of cell types including neurons, astrocytes and microglia. Using this approach has allowed researchers to generate in vitro models of genetic FTD in human cell types that are largely inaccessible during life. In this review we explore the recent progress in the use of iPSCs to model FTD, and consider the merits, limitations and future prospects of this approach.
Collapse
|
37
|
Garcia-Leon JA, Caceres-Palomo L, Sanchez-Mejias E, Mejias-Ortega M, Nuñez-Diaz C, Fernandez-Valenzuela JJ, Sanchez-Varo R, Davila JC, Vitorica J, Gutierrez A. Human Pluripotent Stem Cell-Derived Neural Cells as a Relevant Platform for Drug Screening in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21186867. [PMID: 32962164 PMCID: PMC7558359 DOI: 10.3390/ijms21186867] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular amyloid-beta deposition and intraneuronal Tau-laden neurofibrillary tangles are prime features of Alzheimer's disease (AD). The pathology of AD is very complex and still not fully understood, since different neural cell types are involved in the disease. Although neuronal function is clearly deteriorated in AD patients, recently, an increasing number of evidences have pointed towards glial cell dysfunction as one of the main causative phenomena implicated in AD pathogenesis. The complex disease pathology together with the lack of reliable disease models have precluded the development of effective therapies able to counteract disease progression. The discovery and implementation of human pluripotent stem cell technology represents an important opportunity in this field, as this system allows the generation of patient-derived cells to be used for disease modeling and therapeutic target identification and as a platform to be employed in drug discovery programs. In this review, we discuss the current studies using human pluripotent stem cells focused on AD, providing convincing evidences that this system is an excellent opportunity to advance in the comprehension of AD pathology, which will be translated to the development of the still missing effective therapies.
Collapse
Affiliation(s)
- Juan Antonio Garcia-Leon
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
- Correspondence: (J.A.G.-L.); (A.G.); Tel.: +34-952131935 (J.A.G.-L.); +34-952133344 (A.G.)
| | - Laura Caceres-Palomo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Elisabeth Sanchez-Mejias
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Marina Mejias-Ortega
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Cristina Nuñez-Diaz
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Juan Jose Fernandez-Valenzuela
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Raquel Sanchez-Varo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Jose Carlos Davila
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Javier Vitorica
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Sevilla, Spain
| | - Antonia Gutierrez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain; (L.C.-P.); (E.S.-M.); (M.M.-O.); (C.N.-D.); (J.J.F.-V.); (R.S.-V.); (J.C.D.)
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
- Correspondence: (J.A.G.-L.); (A.G.); Tel.: +34-952131935 (J.A.G.-L.); +34-952133344 (A.G.)
| |
Collapse
|
38
|
Insights into Disease-Associated Tau Impact on Mitochondria. Int J Mol Sci 2020; 21:ijms21176344. [PMID: 32882957 PMCID: PMC7503371 DOI: 10.3390/ijms21176344] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022] Open
Abstract
Abnormal tau protein aggregation in the brain is a hallmark of tauopathies, such as frontotemporal lobar degeneration and Alzheimer’s disease. Substantial evidence has been linking tau to neurodegeneration, but the underlying mechanisms have yet to be clearly identified. Mitochondria are paramount organelles in neurons, as they provide the main source of energy (adenosine triphosphate) to these highly energetic cells. Mitochondrial dysfunction was identified as an early event of neurodegenerative diseases occurring even before the cognitive deficits. Tau protein was shown to interact with mitochondrial proteins and to impair mitochondrial bioenergetics and dynamics, leading to neurotoxicity. In this review, we discuss in detail the different impacts of disease-associated tau protein on mitochondrial functions, including mitochondrial transport, network dynamics, mitophagy and bioenergetics. We also give new insights about the effects of abnormal tau protein on mitochondrial neurosteroidogenesis, as well as on the endoplasmic reticulum-mitochondria coupling. A better understanding of the pathomechanisms of abnormal tau-induced mitochondrial failure may help to identify new targets for therapeutic interventions.
Collapse
|
39
|
Proukakis C. Somatic mutations in neurodegeneration: An update. Neurobiol Dis 2020; 144:105021. [PMID: 32712267 DOI: 10.1016/j.nbd.2020.105021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/12/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Mosaicism, the presence of genomic differences between cells due to post-zygotic somatic mutations, is widespread in the human body, including within the brain. A role for this in neurodegenerative diseases has long been hypothesised, and technical developments are now allowing the question to be addressed in detail. The rapidly accumulating evidence is discussed in this review, with a focus on recent developments. Somatic mutations of numerous types may occur, including single nucleotide variants (SNVs), copy number variants (CNVs), and retrotransposon insertions. They could act as initiators or risk factors, especially if they arise in development, although they could also result from the disease process, potentially contributing to progression. In common sporadic neurodegenerative disorders, relevant mutations have been reported in synucleinopathies, comprising somatic gains of SNCA in Parkinson's disease and multiple system atrophy, and in Alzheimer's disease, where a novel recombination mechanism leading to somatic variants of APP, as well as an excess of somatic SNVs affecting tau phosphorylation, have been reported. In Mendelian repeat expansion disorders, mosaicism due to somatic instability, first detected 25 years ago, has come to the forefront. Brain somatic SNVs occur in DNA repair disorders, and there is evidence for a role of several ALS genes in DNA repair. While numerous challenges, and need for further validation, remain, this new, or perhaps rediscovered, area of research has the potential to transform our understanding of neurodegeneration.
Collapse
Affiliation(s)
- Christos Proukakis
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
40
|
Gopal S, Rodrigues AL, Dordick JS. Exploiting CRISPR Cas9 in Three-Dimensional Stem Cell Cultures to Model Disease. Front Bioeng Biotechnol 2020; 8:692. [PMID: 32671050 PMCID: PMC7326781 DOI: 10.3389/fbioe.2020.00692] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) cell culture methods have been widely used on a range of cell types, including stem cells to modulate precisely the cellular biophysical and biochemical microenvironment and control various cell signaling cues. As a result, more in vivo-like microenvironments are recapitulated, particularly through the formation of multicellular spheroids and organoids, which may yield more valid mechanisms of disease. Recently, genome-engineering tools such as CRISPR Cas9 have expanded the repertoire of techniques to control gene expression, which complements external signaling cues with intracellular control elements. As a result, the combination of CRISPR Cas9 and 3D cell culture methods enhance our understanding of the molecular mechanisms underpinning several disease phenotypes and may lead to developing new therapeutics that may advance more quickly and effectively into clinical candidates. In addition, using CRISPR Cas9 tools to rescue genes brings us one step closer to its use as a gene therapy tool for various degenerative diseases. Herein, we provide an overview of bridging of CRISPR Cas9 genome editing with 3D spheroid and organoid cell culture to better understand disease progression in both patient and non-patient derived cells, and we address potential remaining gaps that must be overcome to gain widespread use.
Collapse
Affiliation(s)
- Sneha Gopal
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - André Lopes Rodrigues
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
41
|
Slanzi A, Iannoto G, Rossi B, Zenaro E, Constantin G. In vitro Models of Neurodegenerative Diseases. Front Cell Dev Biol 2020; 8:328. [PMID: 32528949 PMCID: PMC7247860 DOI: 10.3389/fcell.2020.00328] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are progressive degenerative conditions characterized by the functional deterioration and ultimate loss of neurons. These incurable and debilitating diseases affect millions of people worldwide, and therefore represent a major global health challenge with severe implications for individuals and society. Recently, several neuroprotective drugs have failed in human clinical trials despite promising pre-clinical data, suggesting that conventional cell cultures and animal models cannot precisely replicate human pathophysiology. To bridge the gap between animal and human studies, three-dimensional cell culture models have been developed from human or animal cells, allowing the effects of new therapies to be predicted more accurately by closely replicating some aspects of the brain environment, mimicking neuronal and glial cell interactions, and incorporating the effects of blood flow. In this review, we discuss the relative merits of different cerebral models, from traditional cell cultures to the latest high-throughput three-dimensional systems. We discuss their advantages and disadvantages as well as their potential to investigate the complex mechanisms of human neurodegenerative diseases. We focus on in vitro models of the most frequent age-related neurodegenerative disorders, such as Parkinson’s disease, Alzheimer’s disease and prion disease, and on multiple sclerosis, a chronic inflammatory neurodegenerative disease affecting young adults.
Collapse
Affiliation(s)
- Anna Slanzi
- Department of Medicine, University of Verona, Verona, Italy
| | - Giulia Iannoto
- Department of Medicine, University of Verona, Verona, Italy
| | - Barbara Rossi
- Department of Medicine, University of Verona, Verona, Italy
| | - Elena Zenaro
- Department of Medicine, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, University of Verona, Verona, Italy.,Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
| |
Collapse
|
42
|
Sonawane SK, Chinnathambi S. P301 L, an FTDP-17 Mutant, Exhibits Enhanced Glycation in vitro. J Alzheimers Dis 2020; 75:61-71. [PMID: 32250308 DOI: 10.3233/jad-191348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Frontotemporal dementia and parkinsonism-linked to chromosome-17 are a group of diseases with tau mutations leading to primary tauopathies which include progressive supranuclear palsy, corticobasal syndrome, and frontotemporal lobar degeneration. Alzheimer's disease is a non-primary tauopathy, which displays tau neuropathology of excess tangle formation and accumulation. FTDP-17 mutations are responsible for early onset of AD, which can be attributed to compromised physiological functions due to the mutations. Tau is a microtubule-binding protein that secures the integrity of polymerized microtubules in neuronal cells. It malfunctions owing to various insults and stress conditions-like mutations and post-translational modifications. OBJECTIVE In this study, we modified the wild type and tau mutants by methyl glyoxal and thus studied whether glycation can enhance the aggregation of predisposed mutant tau. METHODS Tau glycation was studied by fluorescence assays, SDS-PAGE analysis, conformational evaluation, and transmission electron microscopy. RESULTS Our study suggests that FTDP-17 mutant P301 L leads to enhanced glycation-induced aggregation as well as advanced glycation end products formation. Glycation forms amorphous aggregates of tau and its mutants without altering its native conformation. CONCLUSION The metabolic anomalies and genetic predisposition have found to accelerate tau-mediated neurodegeneration and prove detrimental for the early-onset of Alzheimer's disease.
Collapse
Affiliation(s)
- Shweta Kishor Sonawane
- Neurobiology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
43
|
Ishikawa M, Aoyama T, Shibata S, Sone T, Miyoshi H, Watanabe H, Nakamura M, Morota S, Uchino H, Yoo AS, Okano H. miRNA-Based Rapid Differentiation of Purified Neurons from hPSCs Advancestowards Quick Screening for Neuronal Disease Phenotypes In Vitro. Cells 2020; 9:E532. [PMID: 32106535 PMCID: PMC7140514 DOI: 10.3390/cells9030532] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Obtaining differentiated cells with high physiological functions by an efficient, but simple and rapid differentiation method is crucial for modeling neuronal diseases in vitro using human pluripotent stem cells (hPSCs). Currently, methods involving the transient expression of one or a couple of transcription factors have been established as techniques for inducing neuronal differentiation in a rapid, single step. It has also been reported that microRNAs can function as reprogramming effectors for directly reprogramming human dermal fibroblasts to neurons. In this study, we tested the effect of adding neuronal microRNAs, miRNA-9/9*, and miR-124 (miR-9/9*-124), for the neuronal induction method of hPSCs using Tet-On-driven expression of the Neurogenin2 gene (Ngn2), a proneural factor. While it has been established that Ngn2 can facilitate differentiation from pluripotent stem cells into neurons with high purity due to its neurogenic effect, a long or indefinite time is required for neuronal maturation with Ngn2 misexpression alone. With the present method, the cells maintained a high neuronal differentiation rate while exhibiting increased gene expression of neuronal maturation markers, spontaneous calcium oscillation, and high electrical activity with network bursts as assessed by a multipoint electrode system. Moreover, when applying this method to iPSCs from Alzheimer's disease (AD) patients with presenilin-1 (PS1) or presenilin-2 (PS2) mutations, cellular phenotypes such as increased amount of extracellular secretion of amyloid β42, abnormal oxygen consumption, and increased reactive oxygen species in the cells were observed in a shorter culture period than those previously reported. Therefore, it is strongly anticipated that the induction method combining Ngn2 and miR-9/9*-124 will enable more rapid and simple screening for various types of neuronal disease phenotypes and promote drug discovery.
Collapse
Affiliation(s)
- Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeshi Aoyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shoichiro Shibata
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takefumi Sone
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroyuki Miyoshi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mari Nakamura
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Saori Morota
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Hiroyuki Uchino
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Andrew S Yoo
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|