1
|
Raposo AC, Caldas P, Jeremias J, Arez M, Cazaux Mateus F, Barbosa P, Sousa-Luís R, Água F, Oxley D, Mupo A, Eckersley-Maslin M, Casanova M, Grosso AR, da Rocha ST. Gene reactivation upon erosion of X chromosome inactivation in female hiPSCs is predictable yet variable and persists through differentiation. Stem Cell Reports 2025; 20:102472. [PMID: 40185090 DOI: 10.1016/j.stemcr.2025.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025] Open
Abstract
Female human induced pluripotent stem cells frequently undergo X-chromosome inactivation (XCI) erosion, marked by X-inactive specific transcript (XIST) RNA loss and partial reactivation of the inactive X (Xi). This overlooked phenomenon limits our understanding of its impact on stem cell applications. Here, we show that XCI erosion is frequent and heterogeneous, leading to the reactivation of several X-linked genes. These are primarily located on the short arm of the X chromosome, particularly near escape genes and within H3K27me3-enriched domains, with reactivation linked to reduced promoter DNA methylation. Interestingly, escape genes further increase their expression from Xi upon XCI erosion, highlighting the critical role of XIST in their dosage regulation. Importantly, global (hydroxy)methylation levels and imprinted regions remain unaffected, and analysis of trilineage commitment and cardiomyocyte formation reveals that XCI erosion persists across differentiation. These findings underscore the need for greater awareness of the implications of XCI erosion for stem cell research and clinical applications.
Collapse
Affiliation(s)
- Ana Cláudia Raposo
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Paulo Caldas
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Life Sciences, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Joana Jeremias
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Arez
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Francisca Cazaux Mateus
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Barbosa
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Rui Sousa-Luís
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Frederico Água
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Life Sciences, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - David Oxley
- Mass Spectrometry Facility, The Babraham Institute, Cambridge, UK
| | - Annalisa Mupo
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Altos Labs, Cambridge, UK
| | - Melanie Eckersley-Maslin
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Miguel Casanova
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Grosso
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Life Sciences, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Simão Teixeira da Rocha
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
2
|
Yammine KM, Mirda Abularach S, Kim SY, Bikovtseva AA, Lilianty J, Butty VL, Schiavoni RP, Bateman JF, Lamandé SR, Shoulders MD. ER procollagen storage defect without coupled unfolded protein response drives precocious arthritis. Life Sci Alliance 2024; 7:e202402842. [PMID: 38981683 PMCID: PMC11234256 DOI: 10.26508/lsa.202402842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Collagenopathies are a group of clinically diverse disorders caused by defects in collagen folding and secretion. For example, mutations in the gene encoding collagen type-II, the primary collagen in cartilage, can lead to diverse chondrodysplasias. One example is the Gly1170Ser substitution in procollagen-II, which causes precocious osteoarthritis. Here, we biochemically and mechanistically characterize an induced pluripotent stem cell-based cartilage model of this disease, including both hetero- and homozygous genotypes. We show that Gly1170Ser procollagen-II is notably slow to fold and secrete. Instead, procollagen-II accumulates intracellularly, consistent with an endoplasmic reticulum (ER) storage disorder. Likely owing to the unique features of the collagen triple helix, this accumulation is not recognized by the unfolded protein response. Gly1170Ser procollagen-II interacts to a greater extent than wild-type with specific ER proteostasis network components, consistent with its slow folding. These findings provide mechanistic elucidation into the etiology of this disease. Moreover, the easily expandable cartilage model will enable rapid testing of therapeutic strategies to restore proteostasis in the collagenopathies.
Collapse
Affiliation(s)
- Kathryn M Yammine
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Seo-Yeon Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Agata A Bikovtseva
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jinia Lilianty
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Vincent L Butty
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Richard P Schiavoni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John F Bateman
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Shireen R Lamandé
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Australia
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
3
|
Thomas H, Alix T, Renard É, Renaud M, Wourms J, Zuily S, Leheup B, Geneviève D, Dreumont N, Schmitt E, Bronner M, Muller M, Divoux M, Wandzel M, Ravel JM, Dexheimer M, Becker A, Roth V, Willems M, Coubes C, Vieville G, Devillard F, Schaefer É, Baer S, Piton A, Gérard B, Vincent M, Nizon M, Cogné B, Ruaud L, Couque N, Putoux A, Edery P, Lesca G, Chatron N, Till M, Faivre L, Tran-Mau-Them F, Alessandri JL, Lebrun M, Quélin C, Odent S, Dubourg C, David V, Faoucher M, Mignot C, Keren B, Pisan É, Afenjar A, Julia S, Bieth É, Banneau G, Goldenberg A, Husson T, Campion D, Lecoquierre F, Nicolas G, Charbonnier C, De Saint Martin A, Naudion S, Degoutin M, Rondeau S, Michot C, Cormier-Daire V, Oussalah A, Pourié C, Lambert L, Bonnet C. Expanding the genetic and clinical spectrum of Tatton-Brown-Rahman syndrome in a series of 24 French patients. J Med Genet 2024; 61:878-885. [PMID: 38937076 DOI: 10.1136/jmg-2024-110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Tatton-Brown-Rahman syndrome (TBRS; OMIM 615879), also known as DNA methyltransferase 3 alpha (DNMT3A)-overgrowth syndrome (DOS), was first described by Tatton-Brown in 2014. This syndrome is characterised by overgrowth, intellectual disability and distinctive facial features and is the consequence of germline loss-of-function variants in DNMT3A, which encodes a DNA methyltransferase involved in epigenetic regulation. Somatic variants of DNMT3A are frequently observed in haematological malignancies, including acute myeloid leukaemia (AML). To date, 100 individuals with TBRS with de novo germline variants have been described. We aimed to further characterise this disorder clinically and at the molecular level in a nationwide series of 24 French patients and to investigate the correlation between the severity of intellectual disability and the type of variant. METHODS We collected genetic and medical information from 24 individuals with TBRS using a questionnaire released through the French National AnDDI-Rares Network. RESULTS Here, we describe the first nationwide French cohort of 24 individuals with germline likely pathogenic/pathogenic variants in DNMT3A, including 17 novel variants. We confirmed that the main phenotypic features were intellectual disability (100% of individuals), distinctive facial features (96%) and overgrowth (87%). We highlighted novel clinical features, such as hypertrichosis, and further described the neurological features and EEG results. CONCLUSION This study of a nationwide cohort of individuals with TBRS confirms previously published data and provides additional information and clarifies clinical features to facilitate diagnosis and improve care. This study adds value to the growing body of knowledge on TBRS and broadens its clinical and molecular spectrum.
Collapse
Affiliation(s)
- Hortense Thomas
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
- Service de Génétique Clinique, CHRU de Nancy, Nancy, France
| | - Tom Alix
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Émeline Renard
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Endocrinologie pédiatrique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Mathilde Renaud
- Service de Génétique Clinique, CHRU de Nancy, Nancy, France
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Service de Neurologie, CHRU de Nancy, Nancy, France
| | - Justine Wourms
- Service de Génétique Clinique, CHRU de Nancy, Nancy, France
| | - Stéphane Zuily
- Médecine Vasculaire, CHRU de Nancy, Vandœuvre-lès-Nancy, France
- UMR_S 916 DCAC, INSERM, Vandœuvre-lès-Nancy, France
| | - Bruno Leheup
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - David Geneviève
- Centre de référence anomalies du développement et syndromes malformatifs, Département de Génétique Medicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
- Inserm U1183, Université Montpellier 1, Faculté de Médecine Montpellier-Nîmes, Montpellier, France
| | - Natacha Dreumont
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | | - Myriam Bronner
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Marc Muller
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Marion Divoux
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Marion Wandzel
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Jean-Marie Ravel
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Mylène Dexheimer
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Aurélie Becker
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Virginie Roth
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Marjolaine Willems
- Centre de référence anomalies du développement et syndromes malformatifs, Département de Génétique Medicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Christine Coubes
- Centre de référence anomalies du développement et syndromes malformatifs, Département de Génétique Medicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Gaëlle Vieville
- Département de Génétique et Procréation, Hôpital Couple Enfant, CHU Grenoble Alpes, Grenoble, France
| | - Françoise Devillard
- Département de Génétique et Procréation, Hôpital Couple Enfant, CHU Grenoble Alpes, Grenoble, France
| | - Élise Schaefer
- Service de Génétique médicale, Institut de Génétique Médicale d'Alsace, CHU de Strasbourg, Strasbourg, France
| | - Sarah Baer
- Service de Génétique médicale, Institut de Génétique Médicale d'Alsace, CHU de Strasbourg, Strasbourg, France
| | - Amélie Piton
- Service de Génétique médicale, Institut de Génétique Médicale d'Alsace, CHU de Strasbourg, Strasbourg, France
| | - Bénédicte Gérard
- Service de Génétique médicale, Institut de Génétique Médicale d'Alsace, CHU de Strasbourg, Strasbourg, France
| | - Marie Vincent
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
- CNRS, INSERM, Institut du thorax, Nantes Université, Nantes, France
| | - Mathilde Nizon
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
- CNRS, INSERM, Institut du thorax, Nantes Université, Nantes, France
| | - Benjamin Cogné
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
- CNRS, INSERM, Institut du thorax, Nantes Université, Nantes, France
| | - Lyse Ruaud
- Département de Génétique, Hôpital Robert Debré, APHP Nord, Paris, France
| | - Nathalie Couque
- Département de Génétique, Hôpital Robert Debré, APHP Nord, Paris, France
| | - Audrey Putoux
- Service de Génétique, Hospices Civils de Lyon, Groupe Hospitalier Est, Bron, France
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGene PNMG, Université Claude Bernard Lyon 1, Lyon, France
| | - Patrick Edery
- Service de Génétique, Hospices Civils de Lyon, Groupe Hospitalier Est, Bron, France
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGene PNMG, Université Claude Bernard Lyon 1, Lyon, France
| | - Gaëtan Lesca
- Service de Génétique, Hospices Civils de Lyon, Groupe Hospitalier Est, Bron, France
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGene PNMG, Université Claude Bernard Lyon 1, Lyon, France
| | - Nicolas Chatron
- Service de Génétique, Hospices Civils de Lyon, Groupe Hospitalier Est, Bron, France
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGene PNMG, Université Claude Bernard Lyon 1, Lyon, France
| | - Marianne Till
- Service de Génétique, Hospices Civils de Lyon, Groupe Hospitalier Est, Bron, France
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGene PNMG, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurence Faivre
- Centre de référence anomalies du développement et syndromes malformatifs et Centre de référence Déficiences Intellectuelles de causes rares, FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France
- UMR1231 GAD, Inserm, Université Bourgogne Franche-Comté, Dijon, France
| | - Frédéric Tran-Mau-Them
- UMR1231 GAD, Inserm, Université Bourgogne Franche-Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Jean-Luc Alessandri
- Service de génétique médicale, CHU de La Réunion, Hôpital Félix Guyon, Bellepierre, Saint-Denis, Réunion
| | - Marine Lebrun
- Département de Génétique, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
| | - Chloé Quélin
- Département de génétique moléculaire et génomique, CHU Rennes, Rennes, France
| | - Sylvie Odent
- Département de génétique moléculaire et génomique, CHU Rennes, Rennes, France
| | - Christèle Dubourg
- Département de génétique moléculaire et génomique, CHU Rennes, Rennes, France
| | - Véronique David
- Département de génétique moléculaire et génomique, CHU Rennes, Rennes, France
| | - Marie Faoucher
- Département de génétique moléculaire et génomique, CHU Rennes, Rennes, France
| | - Cyril Mignot
- Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP Sorbonne Université, Paris, France
| | - Boris Keren
- Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP Sorbonne Université, Paris, France
| | - Élise Pisan
- Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP Sorbonne Université, Paris, France
| | - Alexandra Afenjar
- Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP Sorbonne Université, Paris, France
| | - Sophie Julia
- Département de Génétique médicale, CHU Toulouse, Toulouse, France
| | - Éric Bieth
- Département de Génétique médicale, CHU Toulouse, Toulouse, France
| | | | - Alice Goldenberg
- Department of Genetics and Reference Center for Developmental Disorders, CHU de Rouen, Rouen, France
- Inserm U1245, Université de Rouen Normandie, Rouen, France
| | - Thomas Husson
- Inserm U1245, Université de Rouen Normandie, Rouen, France
- Department of Psychiatry, CHU de Rouen, Rouen, France
- Department of Research, Centre hospitalier du Rouvray, Sotteville-Lès-Rouen, France
| | - Dominique Campion
- Inserm U1245, Université de Rouen Normandie, Rouen, France
- Department of Psychiatry, CHU de Rouen, Rouen, France
- Department of Research, Centre hospitalier du Rouvray, Sotteville-Lès-Rouen, France
| | - François Lecoquierre
- Department of Genetics and Reference Center for Developmental Disorders, CHU de Rouen, Rouen, France
- Inserm U1245, Université de Rouen Normandie, Rouen, France
| | - Gaël Nicolas
- Department of Genetics and Reference Center for Developmental Disorders, CHU de Rouen, Rouen, France
- Inserm U1245, Université de Rouen Normandie, Rouen, France
| | - Camille Charbonnier
- Inserm U1245, Université de Rouen Normandie, Rouen, France
- Department of Biotatistics, CHU de Rouen, Rouen, France
| | - Anne De Saint Martin
- Centre de Référence des épilepsies Rares, Hopitaux universitaires de Strasbourg, Strasbourg, France
| | - Sophie Naudion
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, Groupe hospitalier Pellegrin, Bordeaux, France
| | - Manon Degoutin
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, Groupe hospitalier Pellegrin, Bordeaux, France
| | - Sophie Rondeau
- Centre de référence des maladies osseuses constitutionnelles, Necker-Enfants Malades Hospitals, Paris, France
- INSERM UMR 1163, Imagine Institute, Paris, France
| | - Caroline Michot
- Centre de référence des maladies osseuses constitutionnelles, Necker-Enfants Malades Hospitals, Paris, France
- INSERM UMR 1163, Imagine Institute, Paris, France
| | - Valérie Cormier-Daire
- Centre de référence des maladies osseuses constitutionnelles, Necker-Enfants Malades Hospitals, Paris, France
- INSERM UMR 1163, Imagine Institute, Paris, France
| | - Abderrahim Oussalah
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, CHRU de Nancy, Nancy, France
| | - Carine Pourié
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Laëtitia Lambert
- Service de Génétique Clinique, CHRU de Nancy, Nancy, France
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Céline Bonnet
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
4
|
Hu D, Zhao T, Xu C, Pan X, Zhou Z, Wang S. Epigenetic Modifiers in Cancer Metastasis. Biomolecules 2024; 14:916. [PMID: 39199304 PMCID: PMC11352731 DOI: 10.3390/biom14080916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Metastasis is the primary cause of cancer-related death, with the dissemination and colonization of primary tumor cells at the metastatic site facilitated by various molecules and complex pathways. Understanding the biological mechanisms underlying the metastatic process is critical for the development of effective interventions. Several epigenetic modifications have been identified that play critical roles in regulating cancer metastasis. This review aims to provide a comprehensive summary of recent advances in understanding the role of epigenetic modifiers, including histone modifications, DNA methylation, non-coding RNAs, enhancer reprogramming, chromatin accessibility, and N6-methyladenosine, in metastasis-associated processes, such as epithelial-mesenchymal transition (EMT), cancer cell migration, and invasion. In particular, this review provides a detailed and in-depth description of the role of crosstalk between epigenetic regulators in tumor metastasis. Additionally, we explored the potential and limitations of epigenetics-related target molecules in the diagnosis, treatment, and prognosis of cancer metastasis.
Collapse
Affiliation(s)
- Die Hu
- Key Laboratory of Molecular Genetics between Kangda College of Nanjing Medical University and Suzhou Medical College of Soochow University, Suzhou 215123, China;
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
| | - Tianci Zhao
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China;
| | - Chenxing Xu
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
| | - Xinyi Pan
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
| | - Zhengyu Zhou
- Key Laboratory of Molecular Genetics between Kangda College of Nanjing Medical University and Suzhou Medical College of Soochow University, Suzhou 215123, China;
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Shengjie Wang
- Key Laboratory of Molecular Genetics between Kangda College of Nanjing Medical University and Suzhou Medical College of Soochow University, Suzhou 215123, China;
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Limone F, Mordes DA, Couto A, Joseph BJ, Mitchell JM, Therrien M, Ghosh SD, Meyer D, Zhang Y, Goldman M, Bortolin L, Cobos I, Stevens B, McCarroll SA, Kadiu I, Burberry A, Pietiläinen O, Eggan K. Single-nucleus sequencing reveals enriched expression of genetic risk factors in extratelencephalic neurons sensitive to degeneration in ALS. NATURE AGING 2024; 4:984-997. [PMID: 38907103 PMCID: PMC11257952 DOI: 10.1038/s43587-024-00640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/01/2024] [Indexed: 06/23/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by a progressive loss of motor function linked to degenerating extratelencephalic neurons/Betz cells (ETNs). The reasons why these neurons are selectively affected remain unclear. Here, to understand the unique molecular properties that may sensitize ETNs to ALS, we performed RNA sequencing of 79,169 single nuclei from cortices of patients and controls. In both patients and unaffected individuals, we found significantly higher expression of ALS risk genes in THY1+ ETNs, regardless of diagnosis. In patients, this was accompanied by the induction of genes involved in protein homeostasis and stress responses that were significantly induced in a wide collection of ETNs. Examination of oligodendroglial and microglial nuclei revealed patient-specific downregulation of myelinating genes in oligodendrocytes and upregulation of an endolysosomal reactive state in microglia. Our findings suggest that selective vulnerability of extratelencephalic neurons is partly connected to their intrinsic molecular properties sensitizing them to genetics and mechanisms of degeneration.
Collapse
Affiliation(s)
- Francesco Limone
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
| | - Daniel A Mordes
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Alexander Couto
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Brian J Joseph
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jana M Mitchell
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martine Therrien
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Sulagna Dia Ghosh
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Daniel Meyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Yingying Zhang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Melissa Goldman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Laura Bortolin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Inma Cobos
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Beth Stevens
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Irena Kadiu
- Neuroinflammation Focus Area, UCB Pharma, Braine-l'Alleud, Belgium
| | - Aaron Burberry
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Olli Pietiläinen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
6
|
Topa H, Benoit-Pilven C, Tukiainen T, Pietiläinen O. X-chromosome inactivation in human iPSCs provides insight into X-regulated gene expression in autosomes. Genome Biol 2024; 25:144. [PMID: 38822397 PMCID: PMC11143737 DOI: 10.1186/s13059-024-03286-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/17/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Variation in X chromosome inactivation (XCI) in human-induced pluripotent stem cells (hiPSCs) can impact their ability to model biological sex biases. The gene-wise landscape of X chromosome gene dosage remains unresolved in female hiPSCs. To characterize patterns of de-repression and escape from inactivation, we performed a systematic survey of allele specific expression in 165 female hiPSC lines. RESULTS XCI erosion is non-random and primarily affects genes that escape XCI in human tissues. Individual genes and cell lines vary in the frequency and degree of de-repression. Bi-allelic expression increases gradually after modest decrease of XIST in cultures, whose loss is commonly used to mark lines with eroded XCI. We identify three clusters of female lines at different stages of XCI. Increased XCI erosion amplifies female-biased expression at hypomethylated sites and regions normally occupied by repressive histone marks, lowering male-biased differences in the X chromosome. In autosomes, erosion modifies sex differences in a dose-dependent way. Male-biased genes are enriched for hypermethylated regions, and de-repression of XIST-bound autosomal genes in female lines attenuates normal male-biased gene expression in eroded lines. XCI erosion can compensate for a dominant loss of function effect in several disease genes. CONCLUSIONS We present a comprehensive view of X chromosome gene dosage in hiPSCs and implicate a direct mechanism for XCI erosion in regulating autosomal gene expression in trans. The uncommon and variable reactivation of X chromosome genes in female hiPSCs can provide insight into X chromosome's role in regulating gene expression and sex differences in humans.
Collapse
Affiliation(s)
- Hande Topa
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Clara Benoit-Pilven
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Taru Tukiainen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Olli Pietiläinen
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
- The Stanley Center for Psychiatric Research at the Broad Institute, of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Yammine KM, Abularach SM, Kim SY, Bikovtseva AA, Lilianty J, Butty VL, Schiavoni RP, Bateman JF, Lamandé SR, Shoulders MD. ER procollagen storage defect without coupled unfolded protein response drives precocious arthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.19.562780. [PMID: 37905055 PMCID: PMC10614947 DOI: 10.1101/2023.10.19.562780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Collagenopathies are a group of clinically diverse disorders caused by defects in collagen folding and secretion. For example, mutations in the gene encoding collagen type-II, the primary collagen in cartilage, can lead to diverse chondrodysplasias. One example is the Gly1170Ser substitution in procollagen-II, which causes precocious osteoarthritis. Here, we biochemically and mechanistically characterize an induced pluripotent stem cell-based cartilage model of this disease, including both hetero- and homozygous genotypes. We show that Gly1170Ser procollagen-II is notably slow to fold and secrete. Instead, procollagen-II accumulates intracellularly, consistent with an endoplasmic reticulum (ER) storage disorder. Owing to unique features of the collagen triple helix, this accumulation is not recognized by the unfolded protein response. Gly1170Ser procollagen-II interacts to a greater extent than wild-type with specific proteostasis network components, consistent with its slow folding. These findings provide mechanistic elucidation into the etiology of this disease. Moreover, the cartilage model will enable rapid testing of therapeutic strategies to restore proteostasis in the collagenopathies.
Collapse
|
8
|
Motosugi N, Sugiyama A, Otomo A, Sakata Y, Araki T, Hadano S, Kumasaka N, Fukuda A. Effect of PCDH19 missense mutations on cell-to-cell proximity and neuronal development under heterotypic conditions. PNAS NEXUS 2024; 3:pgae060. [PMID: 38516276 PMCID: PMC10957236 DOI: 10.1093/pnasnexus/pgae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/30/2024] [Indexed: 03/23/2024]
Abstract
The mutation of the X-linked protocadherin (PCDH) 19 gene in heterozygous females causes epilepsy. However, because of the erosion of X-chromosome inactivation (XCI) in female human pluripotent stem cells, precise disease modeling often leads to failure. In this study, using a mathematical approach and induced pluripotent stem cells retaining XCI derived from patients with PCDH19 missense mutations, we found that heterotypic conditions, which are composed of wild-type and missense PCDH19, led to significant cell-to-cell proximity and impaired neuronal differentiation, accompanied by the aberrant accumulation of doublecortin, a microtubule-associated protein. Our findings suggest that ease of adhesion between cells expressing either wild-type or missense PCDH19 might lead to aberrant cell aggregation in early embryonic phases, causing poor neuronal development.
Collapse
Affiliation(s)
- Nami Motosugi
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Akiko Sugiyama
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Asako Otomo
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, Isehara 259-1193, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa 259-1193, Japan
| | - Yuka Sakata
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Takuma Araki
- Support Center for Medical Research and Education, Tokai University School of Medicine, Isehara, Kanagawa 259-1143, Japan
| | - Shinji Hadano
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, Isehara 259-1193, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa 259-1193, Japan
| | - Natsuhiko Kumasaka
- Genetics Division, Medical Support Center of the Japan Environment and Children's Study, National Center for Child Health and Development, Tokyo 157-0074, Japan
| | - Atsushi Fukuda
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, Isehara 259-1193, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa 259-1193, Japan
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo 157-0074, Japan
| |
Collapse
|
9
|
Gyobu‐Motani S, Yabuta Y, Mizuta K, Katou Y, Okamoto I, Kawasaki M, Kitamura A, Tsukiyama T, Iwatani C, Tsuchiya H, Tsujimura T, Yamamoto T, Nakamura T, Saitou M. Induction of fetal meiotic oocytes from embryonic stem cells in cynomolgus monkeys. EMBO J 2023; 42:e112962. [PMID: 36929479 PMCID: PMC10152148 DOI: 10.15252/embj.2022112962] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/18/2023] Open
Abstract
Human in vitro oogenesis provides a framework for clarifying the mechanism of human oogenesis. To create its benchmark, it is vital to promote in vitro oogenesis using a model physiologically close to humans. Here, we establish a foundation for in vitro oogenesis in cynomolgus (cy) monkeys (Macaca fascicularis): cy female embryonic stem cells harboring one active and one inactive X chromosome (Xa and Xi, respectively) differentiate robustly into primordial germ cell-like cells, which in xenogeneic reconstituted ovaries develop efficiently into oogonia and, remarkably, further into meiotic oocytes at the zygotene stage. This differentiation entails comprehensive epigenetic reprogramming, including Xi reprogramming, yet Xa and Xi remain epigenetically asymmetric with, as partly observed in vivo, incomplete Xi reactivation. In humans and monkeys, the Xi epigenome in pluripotent stem cells functions as an Xi-reprogramming determinant. We further show that developmental pathway over-activations with suboptimal up-regulation of relevant meiotic genes impede in vitro meiotic progression. Cy in vitro oogenesis exhibits critical homology with the human system, including with respect to bottlenecks, providing a salient model for advancing human in vitro oogenesis.
Collapse
Affiliation(s)
- Sayuri Gyobu‐Motani
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Ken Mizuta
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yoshitaka Katou
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Ikuhiro Okamoto
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Masanori Kawasaki
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Ayaka Kitamura
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Tomoyuki Tsukiyama
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Research Center for Animal Life ScienceShiga University of Medical ScienceOtsuJapan
| | - Chizuru Iwatani
- Research Center for Animal Life ScienceShiga University of Medical ScienceOtsuJapan
| | - Hideaki Tsuchiya
- Research Center for Animal Life ScienceShiga University of Medical ScienceOtsuJapan
| | - Taro Tsujimura
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
- Center for Advanced Intelligence Project, RIKENTokyoJapan
| | - Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
- The Hakubi Center for Advanced ResearchKyoto UniversityKyotoJapan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| |
Collapse
|
10
|
Sakata Y, Zhang H, Sugiyama A, Motosugi N, Kimura H, Okamura Y, Fukuda A. Nanosheet coating improves stability of human pluripotent stem cell culture on glass substrates. Biochem Biophys Res Commun 2023; 650:55-61. [PMID: 36773340 DOI: 10.1016/j.bbrc.2023.01.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023]
Abstract
High-resolution imaging analysis using various types of cells is an essential tool for dissecting cell functions. Generally, obtaining such images requires the cells to be cultured on glass substrates; however, it often results in the unstable status of cells. In this study, we report that coating the glass substrate using nanosheet composed of hydrophobic polystyrene, with Matrigel, significantly improves the viability of human pluripotent stem cells (hPSCs). Moreover, the nanosheet coating does not affect the transcriptome status of hPSC and enables researchers to perform the high-resolution imaging assay. These results indicate that the nanosheet coating is beneficial to the cells vulnerable to glass substrate culture. Using the nanosheet coating, we revealed that the spreading status of lnc RNA XIST, essential for X-chromosome inactivation (XCI) in female cells, in the nuclei significantly differs in each hPSC line. Taken together, our study provides a novel method to investigate biological questions using high-resolution imaging techniques.
Collapse
Affiliation(s)
- Yuka Sakata
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hong Zhang
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, Japan; School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Akiko Sugiyama
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Nami Motosugi
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroshi Kimura
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, Japan; Department of Bioengineering, School of Engineering, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Yosuke Okamura
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, Japan; Department of Applied Chemistry, School of Engineering, Tokai University, Hiratsuka, Kanagawa, Japan.
| | - Atsushi Fukuda
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan; The Institute of Medical Sciences, Tokai University, Isehara, Japan; Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, Japan; Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
11
|
Limone F, Guerra San Juan I, Mitchell JM, Smith JLM, Raghunathan K, Meyer D, Ghosh SD, Couto A, Klim JR, Joseph BJ, Gold J, Mello CJ, Nemesh J, Smith BM, Verhage M, McCarroll SA, Pietiläinen O, Nehme R, Eggan K. Efficient generation of lower induced motor neurons by coupling Ngn2 expression with developmental cues. Cell Rep 2023; 42:111896. [PMID: 36596304 PMCID: PMC10117176 DOI: 10.1016/j.celrep.2022.111896] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/01/2022] [Accepted: 12/08/2022] [Indexed: 01/03/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) are a powerful tool for disease modeling of hard-to-access tissues (such as the brain). Current protocols either direct neuronal differentiation with small molecules or use transcription-factor-mediated programming. In this study, we couple overexpression of transcription factor Neurogenin2 (Ngn2) with small molecule patterning to differentiate hPSCs into lower induced motor neurons (liMoNes/liMNs). This approach induces canonical MN markers including MN-specific Hb9/MNX1 in more than 95% of cells. liMNs resemble bona fide hPSC-derived MN, exhibit spontaneous electrical activity, express synaptic markers, and can contact muscle cells in vitro. Pooled, multiplexed single-cell RNA sequencing on 50 hPSC lines reveals reproducible populations of distinct subtypes of cervical and brachial MNs that resemble their in vivo, embryonic counterparts. Combining small molecule patterning with Ngn2 overexpression facilitates high-yield, reproducible production of disease-relevant MN subtypes, which is fundamental in propelling our knowledge of MN biology and its disruption in disease.
Collapse
Affiliation(s)
- Francesco Limone
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Leiden University Medical Center, LUMC, 2333 ZA Leiden, the Netherlands.
| | - Irune Guerra San Juan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Jana M Mitchell
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Janell L M Smith
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kavya Raghunathan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel Meyer
- Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sulagna Dia Ghosh
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander Couto
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joseph R Klim
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brian J Joseph
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Departments of Pathology and Cell Biology, Columbia University Irving Medical Centre, New York, NY 10032, USA
| | - John Gold
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Curtis J Mello
- Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James Nemesh
- Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Brittany M Smith
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Steven A McCarroll
- Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Olli Pietiläinen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ralda Nehme
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Stanley Centre for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
12
|
Motosugi N, Sugiyama A, Okada C, Otomo A, Umezawa A, Akutsu H, Hadano S, Fukuda A. De-erosion of X chromosome dosage compensation by the editing of XIST regulatory regions restores the differentiation potential in hPSCs. CELL REPORTS METHODS 2022; 2:100352. [PMID: 36590687 PMCID: PMC9795333 DOI: 10.1016/j.crmeth.2022.100352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/29/2022] [Accepted: 10/28/2022] [Indexed: 12/02/2022]
Abstract
Human pluripotent stem cells (hPSCs) regularly and irreversibly show the erosion of X chromosome inactivation (XCI) by long non-coding RNA (lncRNA) XIST silencing, causing challenges in various applications of female hPSCs. Here, we report reliable methods to reactivate XIST with monoallelic expression in female hPSCs. Surprisingly, we find that the editing of XIST regulatory regions by Cas9-mediated non-homologous end joining is sufficient for the reactivation of XIST by endogenous systems. Proliferated hPSCs with XIST reactivation show XCI from an eroded X chromosome, suggesting that hPSCs with normal dosage compensation might lead to a growth advantage. Furthermore, the use of targeting vectors, including the XIST regulatory region sequences and selection cassette, enables XIST reactivation in hPSCs with high efficiency. XIST-reactivated hPSCs can show the restoration of differentiation potential. Thus, our findings demonstrate that XIST re-expression is a beneficial method to maximize the use of female hPSCs in various applications, such as proper disease modeling.
Collapse
Affiliation(s)
- Nami Motosugi
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Akiko Sugiyama
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Chisa Okada
- Support Center for Medical Research and Education, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Asako Otomo
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Shinji Hadano
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Atsushi Fukuda
- Department of Molecular Life Sciences, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, Japan
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
13
|
Chao L, Yang S, Li H, Long C, Xi Q, Zuo Y. Competitive binding of TET1 and DNMT3A/B cooperates the DNA methylation pattern in human embryonic stem cells. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194861. [PMID: 35998875 DOI: 10.1016/j.bbagrm.2022.194861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
DNMT3A/B and TET1 play indispensable roles in regulating DNA methylation that undergoes extensive reprogramming during mammalian embryogenesis. Yet the competitive and cooperative relationships between TET1 and DNMT3A/B remain largely unknown in the human embryonic stem cells. Here, we revealed that the main DNA-binding domain of TET1 contains more positive charges by using charge reduction of amino acid alphabet, followed by DNMT3A and DNMT3B. The genome-wide binding profiles showed that TET1 prefers binding to the proximal promoters and CpG islands compared with DNMT3A/B. Moreover, the binding regions of these three transcription factors can be divided into specific and co-binding regions. And a stronger inhibitory effect of DNMT3A on TET1 demethylation was observed in co-binding regions. Furthermore, we integrated TET1 knockout data to further discuss the competitive binding patterns of TET1 and DNMT3A/B. The lack of TET1 increased the occupation of DNMT3A/B at the specific binding regions of TET1 causing focal hypermethylation. The knockout of TET1 was also accompanied by a reduction of DNMT3A/B binding in the co-binding regions, further confirming the cooperative binding function between TET1 and DNMT3A/B. In conclusion, our studies found that the competitive binding of TET1 and DNMT3A/B cooperatively shapes the global DNA methylation pattern in human embryonic stem cells.
Collapse
Affiliation(s)
- Lemuge Chao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Siqi Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hanshuang Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Chunshen Long
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Qilemuge Xi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China..
| |
Collapse
|
14
|
A lifelong duty: how Xist maintains the inactive X chromosome. Curr Opin Genet Dev 2022; 75:101927. [PMID: 35717799 PMCID: PMC9472561 DOI: 10.1016/j.gde.2022.101927] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 11/22/2022]
Abstract
Female eutherians transcriptionally silence one X chromosome to balance gene dosage between the sexes. X-chromosome inactivation (XCI) is initiated by the lncRNA Xist, which assembles many proteins within the inactive X chromosome (Xi) to trigger gene silencing and heterochromatin formation. It is well established that gene silencing on the Xi is maintained through repressive epigenetic processes, including histone deacetylation and DNA methylation. Recent studies revealed a new mechanism where RNA-binding proteins that interact directly with the RNA contribute to the maintenance of Xist localization and gene silencing. In addition, a surprising plasticity of the Xi was uncovered with many genes becoming upregulated upon experimental deletion of Xist. Intriguingly, immune cells normally lose Xist from the Xi, suggesting that thisXist dependence is utilized in vivo to dynamically regulate gene expression from the Xi. These new studies expose fundamental regulatory mechanisms for the chromatin association of RNAs, highlight the need for studying the maintenance of XCI and Xist localization in a gene- and cell-type-specific manner, and are likely to have clinical impact.
Collapse
|
15
|
Cloutier M, Kumar S, Buttigieg E, Keller L, Lee B, Williams A, Mojica-Perez S, Erliandri I, Rocha AMD, Cadigan K, Smith GD, Kalantry S. Preventing erosion of X-chromosome inactivation in human embryonic stem cells. Nat Commun 2022; 13:2516. [PMID: 35523820 PMCID: PMC9076865 DOI: 10.1038/s41467-022-30259-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
X-chromosome inactivation is a paradigm of epigenetic transcriptional regulation. Female human embryonic stem cells (hESCs) often undergo erosion of X-inactivation upon prolonged culture. Here, we investigate the sources of X-inactivation instability by deriving new primed pluripotent hESC lines. We find that culture media composition dramatically influenced the expression of XIST lncRNA, a key regulator of X-inactivation. hESCs cultured in a defined xenofree medium stably maintained XIST RNA expression and coating, whereas hESCs cultured in the widely used mTeSR1 medium lost XIST RNA expression. We pinpointed lithium chloride in mTeSR1 as a cause of XIST RNA loss. The addition of lithium chloride or inhibitors of GSK-3 proteins that are targeted by lithium to the defined hESC culture medium impeded XIST RNA expression. GSK-3 inhibition in differentiating female mouse embryonic stem cells and epiblast stem cells also resulted in a loss of XIST RNA expression. Together, these data may reconcile observed variations in X-inactivation in hESCs and inform the faithful culture of pluripotent stem cells.
Collapse
Affiliation(s)
- Marissa Cloutier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Surinder Kumar
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Emily Buttigieg
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Laura Keller
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Brandon Lee
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Aaron Williams
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sandra Mojica-Perez
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Indri Erliandri
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Andre Monteiro Da Rocha
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine & Cardiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Kenneth Cadigan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Gary D Smith
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Obstetrics & Gynecology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
16
|
Li J, Ming Z, Yang L, Wang T, Liu G, Ma Q. Long noncoding RNA XIST: Mechanisms for X chromosome inactivation, roles in sex-biased diseases, and therapeutic opportunities. Genes Dis 2022; 9:1478-1492. [PMID: 36157489 PMCID: PMC9485286 DOI: 10.1016/j.gendis.2022.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
Sexual dimorphism has been reported in various human diseases including autoimmune diseases, neurological diseases, pulmonary arterial hypertension, and some types of cancers, although the underlying mechanisms remain poorly understood. The long noncoding RNA (lncRNA) X-inactive specific transcript (XIST) is involved in X chromosome inactivation (XCI) in female placental mammals, a process that ensures the balanced expression dosage of X-linked genes between sexes. XIST is abnormally expressed in many sex-biased diseases. In addition, escape from XIST-mediated XCI and skewed XCI also contribute to sex-biased diseases. Therefore, its expression or modification can be regarded as a biomarker for the diagnosis and prognosis of many sex-biased diseases. Genetic manipulation of XIST expression can inhibit the progression of some of these diseases in animal models, and therefore XIST has been proposed as a potential therapeutic target. In this manuscript, we summarize the current knowledge about the mechanisms for XIST-mediated XCI and the roles of XIST in sex-biased diseases, and discuss potential therapeutic strategies targeting XIST.
Collapse
|
17
|
Impact of epigenetics on human health and possible tool for remediation. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
|