1
|
Xia H, Yang C, Li H, Huang L, Zeng Z, Chi R, Yang Z, Wang Y, Chang J, Jiao Y, Li W. Combined magnesium and silicon ions synergistically promote functional regeneration of skeletal muscle by regulating satellite cell fate. Regen Biomater 2025; 12:rbaf008. [PMID: 40130074 PMCID: PMC11932723 DOI: 10.1093/rb/rbaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/05/2025] [Accepted: 02/05/2025] [Indexed: 03/26/2025] Open
Abstract
Muscle satellite cells (MuSCs) play a vital role in skeletal muscle regeneration. However, in intractable muscle diseases such as volumetric muscle loss (VML), the quantity and function of MuSCs are significantly reduced, severely limiting the body's inherent muscle regeneration capability. In this study, we propose a novel strategy to modulate the fate of MuSCs using a combination of bioactive magnesium (Mg) and silicon (Si) ions, sustainably delivered through magnesium silicate (MgSiO3, MS) bioceramic-based scaffolds. In vitro, Mg and Si ions synergistically promote the proliferation and differentiation of MuSCs. Similarly, Mg and Si ions derived from MS/poly(L-lactic acid) (MS/PLLA) composite scaffold also increase the proliferation and differentiation ability of MuSCs. Furthermore, MS/PLLA composite scaffolds facilitate the activation of MuSCs, regeneration of muscle fiber and neovascularization, while inhibiting fibrosis, thereby effectively restoring muscle function and promoting tibialis anterior muscle functional regeneration in a VML mouse model. Mechanistically, the combination of Mg and Si ions promotes the activation and proliferation of MuSCs by activating the Notch1-Hes1 pathway. Besides, the combination of Mg and Si ions also improves the differentiation of MuSCs by up-regulating Myod and Myog, and enhances fusion by up-regulating Mymk and Mymx expression. The outcomes of our research introduce a promising approach to the treatment of skeletal muscle injuries and related diseases.
Collapse
Affiliation(s)
- Hangbin Xia
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chen Yang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Huili Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lingwei Huang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Zhen Zeng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Runrun Chi
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ziwei Yang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuzen Wang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jiang Chang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yiren Jiao
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Wenzhong Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
2
|
Kim YE, Hann SH, Jo YW, Yoo K, Kim JH, Lee JW, Kong YY. Mll4 in skeletal muscle fibers maintains muscle stem cells. Skelet Muscle 2024; 14:35. [PMID: 39710699 DOI: 10.1186/s13395-024-00369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Muscle stem cells (MuSCs) undergo numerous state transitions throughout life, which are critical for supporting normal muscle growth and regeneration. Epigenetic modifications in skeletal muscle play a significant role in influencing the niche and cellular states of MuSCs. Mixed-lineage leukemia 4 (Mll4) is a histone methyltransferase critical for activating the transcription of various target genes and is highly expressed in skeletal muscle. This raises the question of whether Mll4 has a regulatory function in modulating the state transitions of MuSCs, warranting further investigation. METHODS To assess if myofiber-expressed Mll4, a histone methyltransferase, contributes to the maintenance of MuSCs, we crossed MCKCre/+ or HSAMerCreMer/+ mice to Mll4f/f mice to generate myofiber-specific Mll4-deleted mice. Investigations were conducted using 8-week-old and 4-week-old MCKCre/+;Mll4f/f mice, and adult HSAMerCreMer/+;Mll4f/f mice between the ages of 3 months and 6 months. RESULTS During postnatal myogenesis, Mll4 deleted muscles were observed with increased number of cycling MuSCs that proceeded to a differentiation state, leading to MuSC deprivation. This phenomenon occurred independently of gender. When Mll4 was ablated in adult muscles using the inducible method, adult MuSCs lost their quiescence and differentiated into myoblasts, also causing the depletion of MuSCs. Such roles of Mll4 in myofibers coincided with decreased expression levels of distinct Notch ligands: Jag1 and Dll1 in pubertal and Jag2 and Dll4 in adult muscles. CONCLUSIONS Our study suggests that Mll4 is crucial for maintaining MuSCs in both pubertal and adult muscles, which may be accomplished through the modulation of distinct Notch ligand expressions in myofibers. These findings offer new insights into the role of myofiber-expressed Mll4 as a master regulator of MuSCs, highlighting its significance not only in developmental myogenesis but also in adult muscle, irrespective of sex.
Collapse
Affiliation(s)
- Yea-Eun Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Hyeon Hann
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Woo Jo
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyusang Yoo
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji-Hoon Kim
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jae W Lee
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 142604, USA
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Kim YE, Hann SH, Jo YW, Yoo K, Kim JH, Lee JW, Kong YY. Mll4 in Skeletal Muscle Fiber Maintains Muscle Stem Cells by Regulating Notch Ligands. RESEARCH SQUARE 2024:rs.3.rs-5413133. [PMID: 39649158 PMCID: PMC11623770 DOI: 10.21203/rs.3.rs-5413133/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Background Muscle stem cells (MuSCs) undergo numerous state transitions throughout life, which are critical for supporting normal muscle growth and regeneration. Therefore, it is crucial to investigate the regulatory mechanisms governing the transition of MuSC states across different postnatal developmental stages. Methods To assess if myofiber-expressed Mll4 contributes to the maintenance of MuSCs, we crossed MCK Cre/+ or HSA MerCreMer/+ mice to Mll4 f/f mice to generate myofiber-specific Mll4-deleted mice. Investigations were conducted using 8-week-old and 4-week-old MCK Cre/+ ;Mll4 f/f mice Investigations were conducted using 8-week-old and 4-week-old HSA Cre/+ ;Mll4 f/f mice were utilized. Results During postnatal myogenesis, Mll4 deleted muscles were observed with increased number of cycling MuSCs that proceeded to a differentiation state, leading to MuSC deprivation. This phenomenon occurred independently of gender. When Mll4 was ablated in adult muscles using the inducible method, adult MuSCs lost their quiescence and differentiated into myoblasts, also causing the depletion of MuSCs. Such roles of Mll4 in myofibers coincided with decreased expression levels of distinct Notch ligands: Jag1 and Dll1 in pubertal and Jag2 and Dll4 in adult muscles. Conclusions Our study suggests that Mll4 is crucial for maintaining MuSCs in both pubertal and adult muscles, which may be accomplished through the modulation of distinct Notch ligand expressions in myofibers. These findings offer new insights into the role of myofiber-expressed Mll4 as a master regulator of MuSCs, highlighting its significance not only in developmental myogenesis but also in adult muscle, irrespective of sex.
Collapse
|
4
|
Tran MP, Ochoa Reyes D, Weitzel AJ, Saxena A, Hiller M, Cooper KL. Gene expression differences associated with intrinsic hindfoot muscle loss in the jerboa, Jaculus jaculus. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:453-464. [PMID: 38946691 DOI: 10.1002/jez.b.23268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Vertebrate animals that run or jump across sparsely vegetated habitats, such as horses and jerboas, have reduced the number of distal limb bones, and many have lost most or all distal limb muscle. We previously showed that nascent muscles are present in the jerboa hindfoot at birth and that these myofibers are rapidly and completely lost soon after by a process that shares features with pathological skeletal muscle atrophy. Here, we apply an intra- and interspecies differential RNA-Seq approach, comparing jerboa and mouse muscles, to identify gene expression differences associated with the initiation and progression of jerboa hindfoot muscle loss. We show evidence for reduced hepatocyte growth factor and fibroblast growth factor signaling and an imbalance in nitric oxide signaling; all are pathways that are necessary for skeletal muscle development and regeneration. We also find evidence for phagosome formation, which hints at how myofibers may be removed by autophagy or by nonprofessional phagocytes without evidence for cell death or immune cell activation. Last, we show significant overlap between genes associated with jerboa hindfoot muscle loss and genes that are differentially expressed in a variety of human muscle pathologies and rodent models of muscle loss disorders. All together, these data provide molecular insight into the process of evolutionary and developmental muscle loss in jerboa hindfeet.
Collapse
Affiliation(s)
- Mai P Tran
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Daniel Ochoa Reyes
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Alexander J Weitzel
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Aditya Saxena
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Faculty of Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Kimberly L Cooper
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Gustafsson T, Ulfhake B. Aging Skeletal Muscles: What Are the Mechanisms of Age-Related Loss of Strength and Muscle Mass, and Can We Impede Its Development and Progression? Int J Mol Sci 2024; 25:10932. [PMID: 39456714 PMCID: PMC11507513 DOI: 10.3390/ijms252010932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
As we age, we lose muscle strength and power, a condition commonly referred to as sarcopenia (ICD-10-CM code (M62.84)). The prevalence of sarcopenia is about 5-10% of the elderly population, resulting in varying degrees of disability. In this review we emphasise that sarcopenia does not occur suddenly. It is an aging-induced deterioration that occurs over time and is only recognised as a disease when it manifests clinically in the 6th-7th decade of life. Evidence from animal studies, elite athletes and longitudinal population studies all confirms that the underlying process has been ongoing for decades once sarcopenia has manifested. We present hypotheses about the mechanism(s) underlying this process and their supporting evidence. We briefly review various proposals to impede sarcopenia, including cell therapy, reducing senescent cells and their secretome, utilising targets revealed by the skeletal muscle secretome, and muscle innervation. We conclude that although there are potential candidates and ongoing preclinical and clinical trials with drug treatments, the only evidence-based intervention today for humans is exercise. We present different exercise programmes and discuss to what extent the interindividual susceptibility to developing sarcopenia is due to our genetic predisposition or lifestyle factors.
Collapse
Affiliation(s)
| | - Brun Ulfhake
- Department of Laboratory Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
| |
Collapse
|
6
|
Smith J, Jerome-Majewska LA. Reprint of: Fibroblast Growth Factor 6. Differentiation 2024; 139:100805. [PMID: 39214748 DOI: 10.1016/j.diff.2024.100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Fibroblast Growth Factor 6 (FGF6), also referred to as HST2 or HBGF6, is a member of the Fibroblast Growth Factor (FGF), the Heparin Binding Growth Factor (HBGF) and the Heparin Binding Secretory Transforming Gene (HST) families. The genomic and protein structure of FGF6 is highly conserved among varied species, as is its expression in muscle and muscle progenitor cells. Like other members of the FGF family, FGF6 regulates cell proliferation, differentiation, and migration. Specifically, it plays key roles in myogenesis and muscular regeneration, angiogenesis, along with iron transport and lipid metabolism. Similar to others from the FGF family, FGF6 also possesses oncogenic transforming activity, and as such is implicated in a variety of cancers.
Collapse
Affiliation(s)
- Jennelle Smith
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 2B2, Canada; Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC, H4A 3J1, Canada
| | - Loydie A Jerome-Majewska
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 2B2, Canada; Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada; Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC, H4A 3J1, Canada; Department of Paediatrics, McGill University, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
7
|
Park J, Na CS. Weighted single-step genome-wide association study to reveal new candidate genes for productive traits of Landrace pig in Korea. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:702-716. [PMID: 39165735 PMCID: PMC11331376 DOI: 10.5187/jast.2024.e104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/12/2023] [Accepted: 10/04/2023] [Indexed: 08/22/2024]
Abstract
The objective of this study was to identify genomic regions and candidate genes associated with productive traits using a total of 37,099 productive records and 6,683 single nucleotide polymorphism (SNP) data obtained from five Great-Grand-Parents (GGP) farms in Landrace. The estimated of heritabilities for days to 105 kg (AGE), average daily gain (ADG), backfat thickness (BF), and eye muscle area (EMA) were 0.49, 0.49, 0.56, and 0.23, respectively. We identified a genetic window that explained 2.05%-2.34% for each trait of the total genetic variance. We observed a clear partitioning of the four traits into two groups, and the most significant genomic region for AGE and ADG were located on the Sus scrofa chromosome (SSC) 1, while BF and EMA were located on SSC 2. We conducted Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), which revealed results in three biological processes, four cellular component, three molecular function, and six KEGG pathway. Significant SNPs can be used as markers for quantitative trait loci (QTL) investigation and genomic selection (GS) for productive traits in Landrace pig.
Collapse
Affiliation(s)
- Jun Park
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
| | - Chong-Sam Na
- Department of Animal Biotechnology,
Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
8
|
Smith J, Jerome-Majewska LA. Fibroblast Growth Factor 6. Differentiation 2024; 137:100780. [PMID: 38626632 DOI: 10.1016/j.diff.2024.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 04/18/2024]
Abstract
Fibroblast Growth Factor 6 (FGF6), also referred to as HST2 or HBGF6, is a member of the Fibroblast Growth Factor (FGF), the Heparin Binding Growth Factor (HBGF) and the Heparin Binding Secretory Transforming Gene (HST) families. The genomic and protein structure of FGF6 is highly conserved among varied species, as is its expression in muscle and muscle progenitor cells. Like other members of the FGF family, FGF6 regulates cell proliferation, differentiation, and migration. Specifically, it plays key roles in myogenesis and muscular regeneration, angiogenesis, along with iron transport and lipid metabolism. Similar to others from the FGF family, FGF6 also possesses oncogenic transforming activity, and as such is implicated in a variety of cancers.
Collapse
Affiliation(s)
- Jennelle Smith
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 2B2, Canada; Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC, H4A 3J1, Canada
| | - Loydie A Jerome-Majewska
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 2B2, Canada; Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada; Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC, H4A 3J1, Canada; Department of Paediatrics, McGill University, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
9
|
Yang J, Dong X, Wen H, Li Y, Wang X, Yan S, Zuo C, Lyu L, Zhang K, Qi X. FGFs function in regulating myoblasts differentiation in spotted sea bass (Lateolabrax maculatus). Gen Comp Endocrinol 2024; 347:114426. [PMID: 38103843 DOI: 10.1016/j.ygcen.2023.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Fibroblast growth factors (FGFs) are a family of structurally related peptides that regulate processes such as cell proliferation, differentiation, and damage repair. In our previous study, fibroblast growth factor receptor 4 (fgfr4) was detected in the most significant quantitative trait loci (QTL), when identified of QTLs and genetic markers for growth-related traits in spotted sea bass. However, knowledge of the function of fgfr4 is lacking, even the legends to activate the receptor is unknown in fish. To remedy this problem, in the present study, a total of 33 fgfs were identified from the genomic and transcriptomic databases of spotted sea bass, of which 10 were expressed in the myoblasts. According to the expression pattern during myoblasts proliferation and differentiation, fgf6a, fgf6b and fgf18 were selected for further prokaryotic expression and purification. The recombinant proteins FGF6a, FGF6b and FGF18 were found to inhibit myoblast differentiation. Overall, our results provide a theoretical basis for the molecular mechanisms of growth regulation in economic fish such as spotted sea bass.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Ximeng Dong
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Xiaojie Wang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Shaojing Yan
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Chenpeng Zuo
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Kaiqiang Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao 266003.
| |
Collapse
|
10
|
Wei Y, Guo D, Bai Y, Liu Z, Li J, Chen Z, Shi B, Zhao Z, Hu J, Han X, Wang J, Liu X, Li S, Zhao F. Transcriptome Analysis of mRNA and lncRNA Related to Muscle Growth and Development in Gannan Yak and Jeryak. Int J Mol Sci 2023; 24:16991. [PMID: 38069312 PMCID: PMC10707067 DOI: 10.3390/ijms242316991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
The production performance of Jeryak, resulting from the F1 generation of the cross between Gannan yak and Jersey cattle, exhibits a significantly superior outcome compared with that of Gannan yak. Therefore, we used an RNA-seq approach to identify differentially expressed mRNAs (DEMs) and differentially expressed lncRNAs (DELs) influencing muscle growth and development in Gannan yaks and Jeryaks. A total of 304 differentially expressed lncRNAs and 1819 differentially expressed mRNAs were identified based on the screening criteria of |log 2 FC| > 1 and FDR < 0.05. Among these, 132 lncRNAs and 1081 mRNAs were found to be down-regulated, while 172 lncRNAs and 738 mRNAs were up-regulated. GO and KEGG analyses showed that the identified DELs and DEMs were enriched in the entries of pathways associated with muscle growth and development. On this basis, we constructed an lncRNA-mRNA interaction network. Interestingly, two candidate DELs (MSTRG.16260.9 and MSTRG.22127.1) had targeting relationships with 16 (MYC, IGFBP5, IGFBP2, MYH4, FGF6, etc.) genes related to muscle growth and development. These results could provide a basis for further studies on the roles of lncRNAs and mRNAs in muscle growth in Gannan yaks and Jeryak breeds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.W.); (D.G.); (B.S.)
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.W.); (D.G.); (B.S.)
| | | | | | | | | | | |
Collapse
|
11
|
Yeh CJ, Sattler KM, Lepper C. Molecular regulation of satellite cells via intercellular signaling. Gene 2023; 858:147172. [PMID: 36621659 PMCID: PMC9928918 DOI: 10.1016/j.gene.2023.147172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Somatic stem cells are tissue-specific reserve cells tasked to sustain tissue homeostasis in adulthood and/or effect tissue regeneration after traumatic injury. The stem cells of skeletal muscle tissue are the satellite cells, which were originally described and named after their localization beneath the muscle fiber lamina and attached to the multi-nucleated muscle fibers. During adult homeostasis, satellite cells are maintained in quiescence, a state of reversible cell cycle arrest. Yet, upon injury, satellite cells are rapidly activated, becoming highly mitotically active to generate large numbers of myoblasts that differentiate and fuse to regenerate the injured muscle fibers. A subset self-renews to replenish the pool of muscle stem cells.Complex intrinsic gene regulatory networks maintain the quiescent state of satellite cells, or upon injury, direct their activation, proliferation, differentiation and self-renewal. Molecular cues from the satellite cells' environment provide the essential information as to when and where satellite cells are to stay quiescent or break quiescence and effect regenerative myogenesis. Predominantly, these cues are secreted, diffusible or membrane-bound ligands that bind to and activate their specific cognate receptors on the satellite cell to activate downstream signaling cascades and elicit context-specific cell behavior. This review aims to offer a concise overview of major intercellular signaling pathways regulating satellite cells during quiescence and in injury-induced skeletal muscle regeneration.
Collapse
Affiliation(s)
- Chung-Ju Yeh
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Kristina M Sattler
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Christoph Lepper
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
12
|
Liu R, Li X, Zhang X, Ren R, Sun Y, Tian X, Zhang Q, Zhao S, Yu M, Cao J. Long-range interaction within the chromatin domain determines regulatory patterns in porcine skeletal muscle. Genomics 2022; 114:110482. [PMID: 36113676 DOI: 10.1016/j.ygeno.2022.110482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 01/14/2023]
Abstract
Spatial chromatin structure is crucial for understanding the early growth and development of porcine skeletal muscle. However, its characteristic of 3D architecture and elaborate regulation of gene transcription remains unclear. In this study, ChIA-PET method is used to study the changes of early chromatin three-dimensional structure in skeletal muscle of lean type Yorkshire pig and fat type Meishan pig. Integrating the in situ Hi-C data revealed the 3D architecture and long-range interaction of the porcine muscle. The results showed the CTCF/RNAPII mediated long-range interaction shapes the different chromatin architecture and dominates the unique regulation of enhancers. In addition, the results revealed that key myogenic genes like ssc-mir-1 had a unique enhancer regulation function in myogenesis. Interestingly, the FGF6 gene is of breed-specific regulation, implying the difference between two breeds in skeletal muscle development. Our research thus may provide a clue for the porcine genetic improvement of skeletal muscle.
Collapse
Affiliation(s)
- Ru Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolong Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqian Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruimin Ren
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohuan Tian
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhua Cao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China; 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
13
|
Tan Q, Li J, Yin Y, Shao W. The Role of Growth Factors in the Repair of Motor Injury. Front Pharmacol 2022; 13:898152. [PMID: 35662720 PMCID: PMC9160921 DOI: 10.3389/fphar.2022.898152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Qiaoyin Tan
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Jiayu Li
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Yanmin Yin
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Weide Shao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
14
|
Jacques E, Kuang Y, Kann AP, Le Grand F, Krauss RS, Gilbert PM. The mini-IDLE 3D biomimetic culture assay enables interrogation of mechanisms governing muscle stem cell quiescence and niche repopulation. eLife 2022; 11:81738. [PMID: 36537758 PMCID: PMC9904761 DOI: 10.7554/elife.81738] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Adult skeletal muscle harbours a population of muscle stem cells (MuSCs) that are required for repair after tissue injury. In youth, MuSCs return to a reversible state of cell-cycle arrest termed 'quiescence' after injury resolution. Conversely, some MuSCs in aged muscle remain semi-activated, causing a premature response to injuries that results in incomplete repair and eventual stem cell depletion. Regulating this balance between MuSC quiescence and activation may hold the key to restoring tissue homeostasis with age, but is incompletely understood. To fill this gap, we developed a simple and tractable in vitro method, to rapidly inactivate MuSCs freshly isolated from young murine skeletal muscle, and return them to a quiescent-like state for at least 1-week, which we name mini-IDLE (Inactivation and Dormancy LEveraged in vitro). This was achieved by introducing MuSCs into a 3D bioartificial niche comprised of a thin sheet of mouse myotubes, which we demonstrate provides the minimal cues necessary to induce quiescence. With different starting numbers of MuSCs, the assay revealed cellular heterogeneity and population-level adaptations that converged on a common niche repopulation density; behaviours previously observed only in vivo. Quiescence-associated hallmarks included a Pax7+CalcR+DDX6+MyoD-c-FOS- signature, quiescent-like morphologies, and polarized niche markers. Leveraging high-content bioimaging pipelines, we demonstrate a relationship between morphology and cell fate signatures for possible real-time morphology-based screening. When using MuSCs from aged muscle, they displayed aberrant proliferative activities and delayed inactivation kinetics, among other quiescence-associated defects that we show are partially rescued by wortmannin treatment. Thus, the assay offers an unprecedented opportunity to systematically investigate long-standing queries in areas such as regulation of pool size and functional heterogeneity within the MuSC population, and to uncover quiescence regulators in youth and age.
Collapse
Affiliation(s)
- Erik Jacques
- Institute of Biomedical Engineering, University of TorontoTorontoCanada,Donnelly Centre, University of TorontoTorontoCanada
| | - Yinni Kuang
- Donnelly Centre, University of TorontoTorontoCanada,Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Allison P Kann
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States,Black Family Stem Cell Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Fabien Le Grand
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Institut NeuroMyoGène - Pathophysiology and Genetics of Neuron and MuscleLyonFrance
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States,Black Family Stem Cell Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Penney M Gilbert
- Institute of Biomedical Engineering, University of TorontoTorontoCanada,Donnelly Centre, University of TorontoTorontoCanada,Department of Cell and Systems Biology, University of TorontoTorontoCanada
| |
Collapse
|