1
|
Heiduschka S, Prigione A. iPSC models of mitochondrial diseases. Neurobiol Dis 2025; 207:106822. [PMID: 39892770 DOI: 10.1016/j.nbd.2025.106822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/17/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025] Open
Abstract
Mitochondrial diseases are historically difficult to study. They cause multi-systemic defects with prevalent impairment of hard-to-access tissues such as the brain and the heart. Furthermore, they suffer from a paucity of conventional model systems, especially because of the challenges associated with mitochondrial DNA (mtDNA) engineering. Consequently, most mitochondrial diseases are currently untreatable. Human induced pluripotent stem cells (iPSCs) represent a promising approach for developing human model systems and assessing therapeutic avenues in a patient- and tissue-specific context. iPSCs are being increasingly used to investigate mitochondrial diseases, either for dissecting mutation-specific defects within two-dimensional (2D) or three-dimensional (3D) progenies or for unveiling the impact of potential treatment options. Here, we review how iPSC-derived 2D cells and 3D organoid models have been applied to the study of mitochondrial diseases caused by either nuclear or mtDNA defects. We anticipate that the field of iPSC-driven modeling of mitochondrial diseases will continue to grow, likely leading to the development of innovative platforms for treatment discovery and toxicity that could benefit the patient community suffering from these debilitating disorders with highly unmet medical needs.
Collapse
Affiliation(s)
- Sonja Heiduschka
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany.
| |
Collapse
|
2
|
Vales JP, Barbaric I. Culture-acquired genetic variation in human pluripotent stem cells: Twenty years on. Bioessays 2024; 46:e2400062. [PMID: 38873900 PMCID: PMC11589660 DOI: 10.1002/bies.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Genetic changes arising in human pluripotent stem cells (hPSC) upon culture may bestow unwanted or detrimental phenotypes to cells, thus potentially impacting on the applications of hPSCs for clinical use and basic research. In the 20 years since the first report of culture-acquired genetic aberrations in hPSCs, a characteristic spectrum of recurrent aberrations has emerged. The preponderance of such aberrations implies that they provide a selective growth advantage to hPSCs upon expansion. However, understanding the consequences of culture-acquired variants for specific applications in cell therapy or research has been more elusive. The rapid progress of hPSC-based therapies to clinics is galvanizing the field to address this uncertainty and provide definitive ways both for risk assessment of variants and reducing their prevalence in culture. Here, we aim to provide a timely update on almost 20 years of research on this fascinating, but a still unresolved and concerning, phenomenon.
Collapse
Affiliation(s)
- John P. Vales
- Centre for Stem Cell BiologySchool of BiosciencesUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
- INSIGNEO InstituteUniversity of SheffieldSheffieldUK
| | - Ivana Barbaric
- Centre for Stem Cell BiologySchool of BiosciencesUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
- INSIGNEO InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
3
|
Dobner J, Diecke S, Krutmann J, Prigione A, Rossi A. Reassessment of marker genes in human induced pluripotent stem cells for enhanced quality control. Nat Commun 2024; 15:8547. [PMID: 39358374 PMCID: PMC11447164 DOI: 10.1038/s41467-024-52922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Human induced pluripotent stem cells (iPSCs) have great potential in research, but pluripotency testing faces challenges due to non-standardized methods and ambiguous markers. Here, we use long-read nanopore transcriptome sequencing to discover 172 genes linked to cell states not covered by current guidelines. We validate 12 genes by qPCR as unique markers for specific cell fates: pluripotency (CNMD, NANOG, SPP1), endoderm (CER1, EOMES, GATA6), mesoderm (APLNR, HAND1, HOXB7), and ectoderm (HES5, PAMR1, PAX6). Using these genes, we develop a machine learning-based scoring system, "hiPSCore", trained on 15 iPSC lines and validated on 10 more. hiPSCore accurately classifies pluripotent and differentiated cells and predicts their potential to become specialized 2D cells and 3D organoids. Our re-evaluation of cell fate marker genes identifies key targets for future studies on cell fate assessment. hiPSCore improves iPSC testing by reducing time, subjectivity, and resource use, thus enhancing iPSC quality for scientific and medical applications.
Collapse
Affiliation(s)
- Jochen Dobner
- Genome Engineering and Model Development Lab (GEMD), IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Sebastian Diecke
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Jean Krutmann
- Genome Engineering and Model Development Lab (GEMD), IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Andrea Rossi
- Genome Engineering and Model Development Lab (GEMD), IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
4
|
Dobner J, Nguyen T, Pavez-Giani MG, Cyganek L, Distelmaier F, Krutmann J, Prigione A, Rossi A. mtDNA analysis using Mitopore. Mol Ther Methods Clin Dev 2024; 32:101231. [PMID: 38572068 PMCID: PMC10988129 DOI: 10.1016/j.omtm.2024.101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Mitochondrial DNA (mtDNA) analysis is crucial for the diagnosis of mitochondrial disorders, forensic investigations, and basic research. Existing pipelines are complex, expensive, and require specialized personnel. In many cases, including the diagnosis of detrimental single nucleotide variants (SNVs), mtDNA analysis is still carried out using Sanger sequencing. Here, we developed a simple workflow and a publicly available webserver named Mitopore that allows the detection of mtDNA SNVs, indels, and haplogroups. To simplify mtDNA analysis, we tailored our workflow to process noisy long-read sequencing data for mtDNA analysis, focusing on sequence alignment and parameter optimization. We implemented Mitopore with eliBQ (eliminate bad quality reads), an innovative quality enhancement that permits the increase of per-base quality of over 20% for low-quality data. The whole Mitopore workflow and webserver were validated using patient-derived and induced pluripotent stem cells harboring mtDNA mutations. Mitopore streamlines mtDNA analysis as an easy-to-use fast, reliable, and cost-effective analysis method for both long- and short-read sequencing data. This significantly enhances the accessibility of mtDNA analysis and reduces the cost per sample, contributing to the progress of mtDNA-related research and diagnosis.
Collapse
Affiliation(s)
- Jochen Dobner
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Thach Nguyen
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Mario Gustavo Pavez-Giani
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Lukas Cyganek
- Clinic for Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jean Krutmann
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
- Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Andrea Rossi
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Dobner J, Nguyen T, Dunkel A, Prigione A, Krutmann J, Rossi A. Mitochondrial DNA integrity and metabolome profile are preserved in the human induced pluripotent stem cell reference line KOLF2.1J. Stem Cell Reports 2024; 19:343-350. [PMID: 38402620 PMCID: PMC10937150 DOI: 10.1016/j.stemcr.2024.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Quality control of human induced pluripotent stem cells (iPSCs) is critical to ensure reproducibility of research. Recently, KOLF2.1J was characterized and published as a male iPSC reference line to study neurological disorders. Emerging evidence suggests potential negative effects of mtDNA mutations, but its integrity was not analyzed in the original publication. To assess mtDNA integrity, we conducted a targeted mtDNA analysis followed by untargeted metabolomics analysis. We found that KOLF2.1J mtDNA integrity was intact at the time of publication and is still preserved in the commercially distributed cell line. In addition, the basal KOLF2.1J metabolome profile was similar to that of the two commercially available iPSC lines IMR90 and iPSC12, but clearly distinct from an in-house-generated ERCC6R683X/R683X iPSC line modeling Cockayne syndrome. Conclusively, we validate KOLF2.1J as a reference iPSC line, and encourage scientists to conduct mtDNA analysis and unbiased metabolomics whenever feasible.
Collapse
Affiliation(s)
- Jochen Dobner
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Thach Nguyen
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jean Krutmann
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Andrea Rossi
- Institut für Umweltmedizinische Forschung (IUF)-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
6
|
Tolle I, Tiranti V, Prigione A. Modeling mitochondrial DNA diseases: from base editing to pluripotent stem-cell-derived organoids. EMBO Rep 2023; 24:e55678. [PMID: 36876467 PMCID: PMC10074100 DOI: 10.15252/embr.202255678] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/12/2023] [Accepted: 02/15/2023] [Indexed: 03/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) diseases are multi-systemic disorders caused by mutations affecting a fraction or the entirety of mtDNA copies. Currently, there are no approved therapies for the majority of mtDNA diseases. Challenges associated with engineering mtDNA have in fact hindered the study of mtDNA defects. Despite these difficulties, it has been possible to develop valuable cellular and animal models of mtDNA diseases. Here, we describe recent advances in base editing of mtDNA and the generation of three-dimensional organoids from patient-derived human-induced pluripotent stem cells (iPSCs). Together with already available modeling tools, the combination of these novel technologies could allow determining the impact of specific mtDNA mutations in distinct human cell types and might help uncover how mtDNA mutation load segregates during tissue organization. iPSC-derived organoids could also represent a platform for the identification of treatment strategies and for probing the in vitro effectiveness of mtDNA gene therapies. These studies have the potential to increase our mechanistic understanding of mtDNA diseases and may open the way to highly needed and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Isabella Tolle
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
7
|
Zink A, Haferkamp U, Wittich A, Beller M, Pless O, Prigione A. High-content screening of mitochondrial polarization in neural cells derived from human pluripotent stem cells. STAR Protoc 2022; 3:101602. [PMID: 35959496 PMCID: PMC9361325 DOI: 10.1016/j.xpro.2022.101602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We present a high-content screening (HCS) protocol for quantifying mitochondrial activity in live neural cells from human induced pluripotent stem cells (iPSCs). The assessment is based on mitochondrial membrane potential, which is influenced by the efficiency of mitochondrial bioenergetics. We describe how to perform the analysis using both an HCS platform and the open-source software CellProfiler. The protocol can identify the mitochondrial fitness of human neurons and may be used to carry out high-throughput compound screenings in patient-derived neural cells. For complete details on the use and execution of this protocol, please refer to Lorenz et al. (2017) and Zink et al. (2020).
Collapse
Affiliation(s)
- Annika Zink
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Undine Haferkamp
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPort, 22525 Hamburg, Germany
| | - Annika Wittich
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPort, 22525 Hamburg, Germany
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPort, 22525 Hamburg, Germany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
8
|
Molina-Ruiz FJ, Introna C, Bombau G, Galofre M, Canals JM. Standardization of Cell Culture Conditions and Routine Genomic Screening under a Quality Management System Leads to Reduced Genomic Instability in hPSCs. Cells 2022; 11:cells11131984. [PMID: 35805069 PMCID: PMC9265327 DOI: 10.3390/cells11131984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 01/27/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) have generated unprecedented interest in the scientific community, given their potential applications in regenerative medicine, disease modeling, toxicology and drug screening. However, hPSCs are prone to acquire genomic alterations in vitro, mainly due to suboptimal culture conditions and inappropriate routines to monitor genome integrity. This poses a challenge to both the safety of clinical applications and the reliability of basic and translational hPSC research. In this study, we aim to investigate if the implementation of a Quality Management System (QMS) such as ISO9001:2015 to ensure reproducible and standardized cell culture conditions and genomic screening strategies can decrease the prevalence of genomic alterations affecting hPSCs used for research applications. To this aim, we performed a retrospective analysis of G-banding karyotype and Comparative Genomic Hybridization array (aCGH) data generated by our group over a 5-year span of different hESC and hiPSC cultures. This work demonstrates that application of a QMS to standardize cell culture conditions and genomic monitoring routines leads to a striking improvement of genomic stability in hPSCs cultured in vitro, as evidenced by a reduced probability of potentially pathogenic chromosomal aberrations and subchromosomal genomic alterations. These results support the need to implement QMS in academic laboratories performing hPSC research.
Collapse
Affiliation(s)
- Francisco J. Molina-Ruiz
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Clelia Introna
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Georgina Bombau
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Mireia Galofre
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (F.J.M.-R.); (C.I.); (G.B.); (M.G.)
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Science, University of Barcelona, 08036 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-035-288
| |
Collapse
|