1
|
Lee JH, Meyer EJ, Nenke MA, Lightman SL, Torpy DJ. Cortisol, Stress, and Disease-Bidirectional Associations; Role for Corticosteroid-Binding Globulin? J Clin Endocrinol Metab 2024; 109:2161-2172. [PMID: 38941154 DOI: 10.1210/clinem/dgae412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 06/30/2024]
Abstract
Selye described stress as a unified neurohormonal mechanism maintaining homeostasis. Acute stress system activation is adaptive through neurocognitive, catecholaminergic, and immunomodulation mechanisms, followed by a reset via cortisol. Stress system components, the sympathoadrenomedullary system, hypothalamic-pituitary-adrenal axis, and limbic structures are implicated in many chronic diseases by establishing an altered homeostatic state, allostasis. Consequent "primary stress system disorders" were popularly accepted, with phenotypes based on conditions such as Cushing syndrome, pheochromocytoma, and adrenal insufficiency. Cardiometabolic and major depressive disorders are candidates for hypercortisolemic etiology, contrasting the "hypocortisolemic symptom triad" of stress sensitivity, chronic fatigue, and pain. However, acceptance of chronic stress etiology requires cause-and-effect associations, and practical utility such as therapeutics altering stress system function. Inherent predispositions to stress system perturbations may be relevant. Glucocorticoid receptor (GR) variants have been associated with metabolic/neuropsychological states. The SERPINA6 gene encoding corticosteroid-binding globulin (CBG), was the sole genetic factor in a single-nucleotide variation-genome-wide association study linkage study of morning plasma cortisol, a risk factor for cardiovascular disease, with alterations in tissue-specific GR-related gene expression. Studies showed genetically predicted high cortisol concentrations are associated with hypertension and anxiety, and low CBG concentrations/binding affinity, with the hypocortisolemic triad. Acquired CBG deficiency in septic shock results in 3-fold higher mortality when hydrocortisone administration produces equivocal results, consistent with CBG's role in spatiotemporal cortisol delivery. We propose some stress system disorders result from constitutional stress system variants rather than stressors themselves. Altered CBG:cortisol buffering may influence interstitial cortisol ultradian surges leading to pathological tissue effects, an example of stress system variants contributing to stress-related disorders.
Collapse
Affiliation(s)
- Jessica H Lee
- Department of Medicine, Adelaide University, Adelaide, SA 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Emily Jane Meyer
- Department of Medicine, Adelaide University, Adelaide, SA 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Endocrine and Diabetes Services, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Marni Anne Nenke
- Department of Medicine, Adelaide University, Adelaide, SA 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Endocrine and Diabetes Services, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Stafford L Lightman
- Systems Neuroendocrinology Research Group, University of Bristol, Bristol, BS1 3NY, UK
| | - David J Torpy
- Department of Medicine, Adelaide University, Adelaide, SA 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| |
Collapse
|
2
|
Шевэ А, Гаджимурадова ММ, Бельцевич ДГ, Романова АН, Бегова КШ, Багирова ХВ, Эбзеева АК, Мельниченко ГА. [The functional role and properties of transcortin in the human body]. PROBLEMY ENDOKRINOLOGII 2024; 70:27-34. [PMID: 39868445 PMCID: PMC11775720 DOI: 10.14341/probl13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/01/2024] [Accepted: 08/01/2024] [Indexed: 01/28/2025]
Abstract
Steroid hormones take an active part in a whole complex of physiological processes that are fundamental for the normal development and functioning of the human body. In the bloodstream steroid hormones are bind with specific transport proteins, in particular with transcortin. The matter of changes in hormone-protein complex in various conditions were actively studied in the second half of the twentieth century, but currently this issue has been taken a back seat by the development of high-precision diagnostic methods of steroid hormones determining. This literature review presents accumulated data on the physicochemical properties of transcortin, genetic factors affecting its synthesis and secretion. Published data on its physiological significance in the human body are analyzed in detail within the framework of not only the "free hormone" hypothesis, but also the reservoir hypothesis. Research results have shown that the synthesis of transcortin has been detected in some extrahepatic tissues, including the adrenal glands, however, its role is unknown.
Collapse
Affiliation(s)
- А. Шевэ
- Национальный медицинский исследовательский центр эндокринологии
| | | | - Д. Г. Бельцевич
- Национальный медицинский исследовательский центр эндокринологии
| | - А. Н. Романова
- Национальный медицинский исследовательский центр эндокринологии
| | - К. Ш. Бегова
- Национальный медицинский исследовательский центр эндокринологии
| | - Х. В. Багирова
- Национальный медицинский исследовательский центр эндокринологии
| | - А. К. Эбзеева
- Национальный медицинский исследовательский центр эндокринологии
| | | |
Collapse
|
3
|
Cortes S, Farhat E, Talarico G, Mennigen JA. The dynamic transcriptomic response of the goldfish brain under chronic hypoxia. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101233. [PMID: 38608489 DOI: 10.1016/j.cbd.2024.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Oxygen is essential to fuel aerobic metabolism. Some species evolved mechanisms to tolerate periods of severe hypoxia and even anoxia in their environment. Among them, goldfish (Carassius auratus) are unique, in that they do not enter a comatose state under severely hypoxic conditions. There is thus significant interest in the field of comparative physiology to uncover the mechanistic basis underlying hypoxia tolerance in goldfish, with a particular focus on the brain. Taking advantage of the recently published and annotated goldfish genome, we profile the transcriptomic response of the goldfish brain under normoxic (21 kPa oxygen saturation) and, following gradual reduction, constant hypoxic conditions after 1 and 4 weeks (2.1 kPa oxygen saturation). In addition to analyzing differentially expressed protein-coding genes and enriched pathways, we also profile differentially expressed microRNAs (miRs). Using in silico approaches, we identify possible miR-mRNA relationships. Differentially expressed transcripts compared to normoxia were either common to both timepoints of hypoxia exposure (n = 174 mRNAs; n = 6 miRs), or exclusive to 1-week (n = 441 mRNAs; n = 23 miRs) or 4-week hypoxia exposure (n = 491 mRNAs; n = 34 miRs). Under chronic hypoxia, an increasing number of transcripts, including those of paralogous genes, was downregulated over time, suggesting a decrease in transcription. GO-terms related to the vascular system, oxidative stress, stress signalling, oxidoreductase activity, nucleotide- and intermediary metabolism, and mRNA posttranscriptional regulation were found to be enriched under chronic hypoxia. Known 'hypoxamiRs', such as miR-210-3p/5p, and miRs such as miR-29b-3p likely contribute to posttranscriptional regulation of these pathways under chronic hypoxia in the goldfish brain.
Collapse
Affiliation(s)
- S Cortes
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada; Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - E Farhat
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada; Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Ggm Talarico
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada
| | - J A Mennigen
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Stead SM, Edwards PD, Persad R, Boonstra R, Teichroeb JA, Palme R, Bowman J. Coping with extreme free cortisol levels: Seasonal stress axis changes in sympatric North American flying squirrels. Gen Comp Endocrinol 2024; 349:114467. [PMID: 38342330 DOI: 10.1016/j.ygcen.2024.114467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/13/2024]
Abstract
Most environments exhibit predictable yearly changes, permitting animals to anticipate them. The hypothalamic-pituitary-adrenal (HPA) axis is a key physiological pathway that enables animals to cope with such changes. Monitoring glucocorticoid (the end products of the HPA axis) levels in wild animals throughout the year can improve our understanding of how this pathway responds to different conditions. For this study, we collected 18 months of data on two species of North American flying squirrels (Glaucomys sabrinus and G. volans) living in a southern Ontario forest where temperature and food availability fluctuate dramatically throughout the year. These squirrels are active year-round, nest communally, and rely on scatter hoarded foods in the winter months. Flying squirrels have extremely high levels of free plasma cortisol relative to other mammals, but it is unknown how these levels are affected by environmental and reproductive factors. For both species, our goals were to (1) validate an enzyme immunoassay (EIA) to measure their fecal glucocorticoid metabolite (FGM) concentrations and (2) assess yearly differences, seasonal changes, and the influence of sex, reproduction, and ambient temperature on FGM concentrations in each species. In the lab, we successfully validated the use of antibody 5α-pregnane-3β, 11β, 21-triol-20-one EIA for FGM analysis in both species. In the field, neither sex nor reproductive status (breeding condition or not) were linked to FGM concentrations in either species. FGM concentrations were higher in autumn compared to the spring and summer. There were no other seasonal differences. We discuss possible explanations for the autumn peak in FGM concentrations (increased energy expenditure and social nesting changes), as well as outline possible avenues for future research. Understanding how individuals and populations respond to environmental change is a critical goal in evolutionary ecology, particularly in the context of a rapidly changing Anthropocene.
Collapse
Affiliation(s)
- Samantha M Stead
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada.
| | - Phoebe D Edwards
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Rebekah Persad
- Environmental & Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, Ontario, Canada
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Julie A Teichroeb
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Rupert Palme
- Department of Biological Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Jeff Bowman
- Environmental & Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, Ontario, Canada; Wildlife Research & Monitoring Section, Ontario Ministry of Natural Resources & Forestry, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
5
|
Lee JH, Meyer EJ, Nenke MA, Falhammar H, Torpy DJ. Corticosteroid-binding globulin (CBG): spatiotemporal distribution of cortisol in sepsis. Trends Endocrinol Metab 2023; 34:181-190. [PMID: 36681594 DOI: 10.1016/j.tem.2023.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023]
Abstract
Corticosteroid-binding globulin (CBG) is a 50-60 kDa circulating glycoprotein with high affinity for cortisol. CBG is adapted for sepsis; its cortisol binding is reduced reversibly by pyrexia and acidaemia, and reduced irreversibly by neutrophil elastase (NE) cleavage, converting high cortisol-binding affinity CBG to a low affinity form. These characteristics allow for the targeted delivery of immunomodulatory cortisol to tissues at the time and body site where cortisol is required in sepsis and septic shock. In addition, high titer inflammatory cytokines in sepsis suppress CBG hepatic synthesis, increasing the serum free cortisol fraction. Recent clinical studies have highlighted the importance of CBG in septic shock, with CBG deficiency independently associated with mortality.
Collapse
Affiliation(s)
- Jessica H Lee
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Emily J Meyer
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia; Department of Endocrine and Diabetes, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Marne A Nenke
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia; Department of Endocrine and Diabetes, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden.
| | - David J Torpy
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Biphasic Response of Astrocytic Brain-Derived Neurotrophic Factor Expression following Corticosterone Stimulation. Biomolecules 2022; 12:biom12091322. [PMID: 36139161 PMCID: PMC9496348 DOI: 10.3390/biom12091322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Novel research studies indicate multivarious interactions of glucocorticoid hormones (GCs) with the brain-derived neurotrophic factor (BDNF), regulating important aspects of neuronal cell physiology. While there is recent evidence of the chronic effects of GC stimulation on BDNF levels, as well as of the role of BDNF stimulation in the type of genomic effects following activation of GC-sensitive receptors, no data exist concerning the acute effects of GC stimulation on BDNF/TrkB gene expression. To address this question, we conducted a chrono-pharmacological study on rodent glial cells, astrocytes, which express the BDNF receptor, TrkB, following corticosterone administration. mRNA levels of BDNF and TrkB were estimated 1, 6, 12 and 24 h post-treatment. Selective inhibitors for GC-sensitive receptors and TrkB were used to decipher the molecular pathways of the effects observed. Our data support a biphasic response of BDNF expression after corticosterone stimulation. This response is characterized by a rapid TrkB phosphorylation-dependent upregulation of BDNF mRNA within the first hour, followed by a glucocorticoid receptor (GR)-dependent downregulation of BDNF mRNA, evident at 6, 12 and 24 h, with a direct impact on the protein levels of mature BDNF. Finally, a second pulse of corticosterone administration 1 h prior to the 6, 12 or 24 h timepoints normalized BDNF expression for the corresponding timepoint (i.e., mRNA levels became indifferent from baseline). These results present for the first time a biphasic regulation of the neurotrophin system based on glucocorticoid rhythmicity, further indicating complex trophic responses to temporal hormonal mechanisms in the brain microenvironment.
Collapse
|
7
|
Lin HY, Song G, Lei F, Li D, Qu Y. Avian corticosteroid-binding globulin: biological function and regulatory mechanisms in physiological stress responses. Front Zool 2021; 18:22. [PMID: 33926473 PMCID: PMC8086359 DOI: 10.1186/s12983-021-00409-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/19/2021] [Indexed: 12/04/2022] Open
Abstract
Corticosteroid-binding globulin (CBG) is a high-affinity plasma protein that binds glucocorticoids (GCs) and regulates their biological activities. The structural and functional properties of CBG are crucial to understanding the biological actions of GCs in mediating stress responses and the underlying mechanisms. In response to stress, avian CBGs modulate the free and bound fractions of plasma corticosterone (CORT, the main GC), enabling them to mediate the physiological and behavioral responses that are fundamental for balancing the trade-off of energetic investment in reproduction, immunity, growth, metabolism and survival, including adaptations to extreme high-elevation or high-latitude environments. Unlike other vertebrates, avian CBGs substitute for sex hormone-binding globulin (SHBG) in transporting androgens and regulating their bioavailability, since birds lack an Shbg gene. The three-dimensional structures of avian and mammalian CBGs are highly conserved, but the steroid-binding site topographies and their modes of binding steroids differ. Given that CBG serves as the primary transporter of both GCs and reproductive hormones in birds, we aim to review the biological properties of avian CBGs in the context of steroid hormone transportation, stress responses and adaptation to harsh environments, and to provide insight into evolutionary adaptations in CBG functions occurred to accommodate physiological and endocrine changes in birds compared with mammals.
Collapse
Affiliation(s)
- Hai-Yan Lin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Dongming Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
8
|
Krause JS, Pérez JH, Reid AMA, Cheah J, Bishop V, Wingfield JC, Meddle SL. Acute restraint stress does not alter corticosteroid receptors or 11β-hydroxysteroid dehydrogenase gene expression at hypothalamic-pituitary-adrenal axis regulatory sites in captive male white-crowned sparrows (Zonotrichia leucophrys gambelii). Gen Comp Endocrinol 2021; 303:113701. [PMID: 33359801 DOI: 10.1016/j.ygcen.2020.113701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/04/2020] [Accepted: 12/13/2020] [Indexed: 01/27/2023]
Abstract
Capture-restraint is often used to investigate the acute hypothalamic-pituitary-adrenal axis (HPA) response to stress in wild and captive animals through the production of glucocorticoids. Although this approach is useful for understanding changes in glucocorticoids, it overlooks potential changes in the complex regulatory systems associated with the glucocorticoid response, including genomic receptors, steroid metabolizing enzymes, carrier proteins, and downstream target proteins (e.g. gonadotropin-inhibitory hormone; GnIH). The present study in captive male white-crowned sparrows (Zonotrichia leucophrys) tests the hypothesis that corticosteroid receptors (mineralocorticoid - MR and glucocorticoid - GR), 11β-hydroxysteroid dehydrogenase 1 (11βHSD1) and 2 (11βHSD2), corticosteroid binding globulin (CBG), and GnIH undergo rapid changes in expression to mediate the glucocorticoid response to acute stress. To determine dynamic changes in gene mRNA expression in the hippocampus, hypothalamus, pituitary gland, and liver, birds were sampled within 3 min of entering the room and after 10, 30, and 60 min of capture restraint stress in a cloth bag. Restraint stress handling increased CBG and decreased GnIH mRNA expression in the liver and hypothalamus, respectively. MR, GR, 11βHSD1, and 11βHSD2 mRNA expression in the brain, pituitary gland, and liver did not change. No correlations were found between gene expression and baseline or stress-induced plasma corticosterone levels. No rapid changes of MR, GR, 11βHSD1, and 11βHSD2 mRNA expression during a standardized acute restraint protocol suggests that tissue level sensitivity may remain constant during acute stressors. However, the observed rise in CBG mRNA expression could act to facilitate transport to target tissues or buffer the rise in circulating glucocorticoids. Further studies on tissue specific sensitivity are warranted.
Collapse
Affiliation(s)
- Jesse S Krause
- Department of Biology, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA; Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Jonathan H Pérez
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA; Department of Biology, University of South Alabama, 5871 USA Dr. N. Room 124, Mobile, AL 36688, USA; Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, Scotland, UK; The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - Angus M A Reid
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK; MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, EH4 2XU Scotland, UK
| | - Jeffrey Cheah
- Department of Biology, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA
| | - Valerie Bishop
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Simone L Meddle
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, Scotland, UK
| |
Collapse
|
9
|
Breuner CW, Beyl HE, Malisch JL. Corticosteroid-binding globulins: Lessons from biomedical research. Mol Cell Endocrinol 2020; 514:110857. [PMID: 32437784 DOI: 10.1016/j.mce.2020.110857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 11/19/2022]
Abstract
Glucocorticoids (GCs) circulate in the plasma bound to corticosteroid-binding globulin (CBG). Plasma CBG may limit access of glucocorticoids to tissues (acting as a sponge: the free hormone hypothesis), or may solely serve as a transport molecule, releasing GCs to tissues as the plasma moves through capillaries (the total hormone hypothesis). Both biomedical (focused on human health) and comparative (focused on ecological and evolutionary relevance) studies have worked to incorporate CBG in glucocorticoid physiology, and to understand whether free or total hormone is the biologically active plasma fraction. The biomedical field, however, has been well ahead of the comparative physiologists, and have produced results that can inform comparative research when considering the import of total vs. free plasma hormone. In fact, biomedical studies have made impressive strides regarding the function of CBG in tissues as well as plasma; we, however, focus solely on the plasma functions in this review as this is the primary area of disagreement amongst comparative physiologists. Here we present 5 sets of biomedical studies across genomics, pharmacology, cell culture, whole animal research, and human medicine that strongly support a role for CBG limiting hormone access to tissue. We also discuss three areas of concern across comparative researchers. In contrast to former publications, we are not suggesting that all comparative studies in glucocorticoid physiology must measure CBG, or that only free corticosterone levels are valid. However, we propose that comparative physiologists be aware of biomedical results as they investigate glucocorticoids and interpret how total hormone may or may not impact behavior and physiology of free-living vertebrates.
Collapse
Affiliation(s)
- Creagh W Breuner
- Organismal Biology, Ecology, and Evolution, The University of Montana. 32 Campus Drive, HS 104, Missoula, MT, 59801, USA; The Wildlife Biology Program, The University of Montana. 32 Campus Drive, HS 104, Missoula, MT, 59801, USA.
| | - Hannah E Beyl
- The Wildlife Biology Program, The University of Montana. 32 Campus Drive, HS 104, Missoula, MT, 59801, USA
| | - Jessica L Malisch
- Department of Biology, Schaeffer Hall 236, St. Mary's College of Maryland, St. Mary's City, MD, 20686, USA
| |
Collapse
|
10
|
Rensel MA, Schlinger BA. The stressed brain: regional and stress-related corticosterone and stress-regulated gene expression in the adult zebra finch (Taeniopygia guttata). J Neuroendocrinol 2020; 32:e12852. [PMID: 32364267 PMCID: PMC7286616 DOI: 10.1111/jne.12852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/16/2020] [Accepted: 04/01/2020] [Indexed: 11/30/2022]
Abstract
Glucocorticoids (CORT) are well-known as important regulators of behaviour and cognition at basal levels and under stress. However, the precise mechanisms governing CORT action and functional outcomes of this action in the brain remain unclear, particularly in model systems other than rodents. In the present study, we investigated the dynamics of CORT regulation in the zebra finch, an important model system for vocal learning, neuroplasticity and cognition. We tested the hypothesis that CORT is locally regulated in the zebra finch brain by quantifying regional and stress-related variation in total CORT across brain regions. In addition, we used an ex vivo slice culture system to test whether CORT regulates target gene expression uniquely in discrete regions of the brain. We documented a robust increase in brain CORT across regions after 30 minutes of restraint stress but, interestingly, baseline and stress-induced CORT levels varied between regions. In addition, CORT treatment of brain slice cultures differentially affected expression of three CORT target genes: it up-regulated expression of FKBP5 in most regions and SGK1 in the hypothalamus only, whereas GILZ was unaffected by CORT treatment across all brain regions investigated. The specific mechanisms producing regional variation in CORT and CORT-dependent downstream gene expression remain unknown, although these data provide additional support for the hypothesis that the songbird brain employs regulatory mechanisms that result in precise control over the influence of CORT on glucocorticoid-sensitive neural circuits.
Collapse
Affiliation(s)
- Michelle A. Rensel
- Institute for Society and Genetics, the University of California Los Angeles, Los Angeles, CA
- Laboratory of Neuroendocrinology, the University of California Los Angeles, Los Angeles, CA
- Corresponding author (MAR)
| | - Barney A. Schlinger
- Laboratory of Neuroendocrinology, the University of California Los Angeles, Los Angeles, CA
- Dept. of Integrative Biology and Physiology, the University of California Los Angeles, Los Angeles, CA
- Dept. of Ecology and Evolutionary Biology, the University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
11
|
Sivukhina EV, Jirikowski GF. Osmotic stress induces corticosteroid-binding globulin expression in the rat hypothalamo-hypophyseal system. J Chem Neuroanat 2019; 96:57-65. [DOI: 10.1016/j.jchemneu.2018.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 11/15/2022]
|
12
|
Caldwell JD, Londe K, Ochs SD, Hajdu Z, Rodewald A, Gebhart VM, Jirikowski GF. Three steroid-binding globulins, their localization in the brain and nose, and what they might be doing there. Steroids 2019; 142:48-54. [PMID: 29246492 DOI: 10.1016/j.steroids.2017.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 10/06/2017] [Accepted: 12/07/2017] [Indexed: 12/01/2022]
Abstract
Steroid-binding globulins (SBGs) such as sex hormone binding globulin, corticosteroid binding globulin, and vitamin-D binding protein are receiving increasing notice as being actively involved in steroid actions. This paper reviews data of all three of these SBGs, focusing on their presence and possible activity in the brain and nose. We have found all three proteins in the brain in limbic areas such as the paraventricular (PVN) and supraoptic nuclei (SON) as well as other areas of the hypothalamus, hippocampus, and medial preoptic area. There is also evidence that all three are made in the PVN and SON, in conjunction with the neuropeptides oxytocin and vasopressin. The localization of these three SBGs is more variable within areas of the main olfactory area and the vomeronasal organ. However, all three are found in the mucus of these areas, suggesting that one of their functions is to sequester aerosol steroids, such as pheromones, and deliver them to sensory cells and then to deeper sensory areas. In this manuscript, we present multiple models of SBG action including: A) SBG binding to a membrane receptor, B) this SBG receptor being associated with a larger protein complex including cytoplasmic steroid receptors, C) when the SBGs binds to their SBG receptors, second messengers within the cells respond, D) after SBG binding to its receptor, it releases its associated steroid into the membrane's lipid bilayer, from which it gains access into the cell only when bound by an internal protein, E) the SBG, possibly with its bound SBG receptor, is internalized into the cell from which it can gain access to numerous organelles and possibly the cell's nucleus or F) associate with intracellular steroid receptors, G) SBGs produced in target cells are released from those cells upon specific stimulation, and H) according to the Free Steroid Hypothesis steroids released from the extracellular SBG passively diffuse across the plasma membrane of the cell. These models move the area of steroid endocrinology forward by providing important paths of steroid activity within many steroid target cells.
Collapse
Affiliation(s)
- J D Caldwell
- Department of Pharmacology, Edward Via College of Osteopathic Medicine and Gibbs Research Center, 350 Howard Street, Spartanburg, SC, USA.
| | - K Londe
- Department of Pharmacology, Edward Via College of Osteopathic Medicine and Gibbs Research Center, 350 Howard Street, Spartanburg, SC, USA
| | - S D Ochs
- Department of Pharmacology, Edward Via College of Osteopathic Medicine and Gibbs Research Center, 350 Howard Street, Spartanburg, SC, USA
| | - Z Hajdu
- Department of Pharmacology, Edward Via College of Osteopathic Medicine and Gibbs Research Center, 350 Howard Street, Spartanburg, SC, USA
| | - A Rodewald
- Institute of Anatomy, Anatomy II, Jena University Hospital, Jena, Germany
| | - V M Gebhart
- Institute of Anatomy, Anatomy II, Jena University Hospital, Jena, Germany
| | - G F Jirikowski
- Institute of Anatomy, Anatomy II, Jena University Hospital, Jena, Germany
| |
Collapse
|
13
|
Diversity of central oxytocinergic projections. Cell Tissue Res 2018; 375:41-48. [PMID: 30498946 DOI: 10.1007/s00441-018-2960-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022]
Abstract
Localization and distribution of hypothalamic neurons expressing the nonapeptide oxytocin has been extensively studied. Their projections to the neurohypophyseal system release oxytocin into the systemic circulation thus controlling endocrine events associated with reproduction in males and females. Oxytocinergic neurons seem to be confined to the ventral hypothalamus in all mammals. Groups of such cells located outside the supraoptic and the paraventricular nuclei are summarized as "accessory neurons." Although evolutionary probably associated with the classical magocellular nuclei, accessory oxytocin neurons seem to consist of rather heterogenous groups: Periventricular oxytocin neurons may gain contact to the third ventricle to secrete the peptide into the cerebrospinal fluid. Perivascular neurons may be involved in control of cerebral blood flow. They may also gain access to the portal circulation of the anterior pituitary lobe. Central projections of oxytocinergic neurons extend to portions of the limbic system, to the mesencephalon and to the brain stem. Such projections have been associated with control of behaviors, central stress response as well as motor and vegetative functions. Activity of the different oxytocinergic systems seems to be malleable to functional status, strongly influenced by systemic levels of steroid hormones.
Collapse
|
14
|
Tchoukaev A, Taytard J, Rousselet N, Rebeyrol C, Debray D, Blouquit-Laye S, Moisan MP, Foury A, Guillot L, Corvol H, Tabary O, Le Rouzic P. Opposite Expression of Hepatic and Pulmonary Corticosteroid-Binding Globulin in Cystic Fibrosis Patients. Front Pharmacol 2018; 9:545. [PMID: 29922157 PMCID: PMC5996105 DOI: 10.3389/fphar.2018.00545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/08/2018] [Indexed: 01/02/2023] Open
Abstract
Cystic fibrosis (CF) is characterized by a chronic pulmonary inflammation. In CF, glucocorticoids (GC) are widely used, but their efficacy and benefit/risk ratio are still debated. In plasma, corticosteroid-binding globulin (CBG) binds 90% of GC and delivers them to the inflammatory site. The main goal of this work was to study CBG expression in CF patients in order to determine whether CBG could be used to optimize GC treatment. The expression of CBG was measured in liver samples from CF cirrhotic and non-CF cirrhotic patients by qPCR and Western blot and in lung samples from non-CF and CF patients by qPCR. CBG binding assays with 3H-cortisol and the measurement of the elastase/α1-antitrypsin complex were performed using the plasmas. CBG expression increased in the liver at the transcript and protein level but not in the plasma of CF patients. This is possibly due to an increase of plasmatic elastase. We demonstrated that pulmonary CBG was expressed in the bronchi and bronchioles and its expression decreased in the CF lungs, at both levels studied. Despite the opposite expression of hepatic and pulmonary CBG in CF patients, the concentration of CBG in the plasma was normal. Thus, CBG might be useful to deliver an optimized synthetic GC displaying high affinity for CBG to the main inflammatory site in the context of CF, e.g., the lung.
Collapse
Affiliation(s)
- Anastasia Tchoukaev
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Jessica Taytard
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France.,Pediatric Respiratory Department, Trousseau Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Nathalie Rousselet
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Carine Rebeyrol
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Dominique Debray
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France.,Pediatric Hepatology Unit, Necker Enfants Malades Hospital, Paris, France
| | - Sabine Blouquit-Laye
- INSERM U1173, UFR des Sciences de la Santé Simone Veil, Université de Versailles Saint-Quentin-en-Yvelines, Versailles, France
| | - Marie-Pierre Moisan
- INRA, Laboratoire NutriNeurO, UMR 1286, Université de Bordeaux, Bordeaux, France
| | - Aline Foury
- INRA, Laboratoire NutriNeurO, UMR 1286, Université de Bordeaux, Bordeaux, France
| | - Loic Guillot
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Harriet Corvol
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France.,Pediatric Respiratory Department, Trousseau Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Olivier Tabary
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Philippe Le Rouzic
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| |
Collapse
|
15
|
Abstract
Biosynthesis and secretion of the hypothalamic nonapeptide oxytocin largely depends on steroid hormones. Estradiol, corticosterone, and vitamin D seem to be the most prominent actors. Due to their lipophilic nature, systemic steroids are thought to be capable of crossing the blood-brain barrier, thus mediating central functions including neuroendocrine and behavioral control. The actual mode of action of steroids in hypothalamic circuitry is still unknown: Most of the oxytocinergic perikarya lack nuclear steroid receptors but express proteins suspected to be membrane receptors for steroids. Oxytocin expressing neurons contain enzymes important for intrinsic steroid metabolism. Furthermore, they produce and probably liberate specific steroid-binding globulins. Rapid responses to steroid hormones may involve these binding proteins and membrane-associated receptors, rather than classic nuclear receptors and genomic pathways. Neuroendocrine regulation, reproductive behaviors, and stress response seem to depend on these mechanisms.
Collapse
Affiliation(s)
| | - Scott D Ochs
- Dept. of Pharmacology, Via College of Osteopathic Medicine, Spartanburg, SC, USA
| | - Jack D Caldwell
- Dept. of Pharmacology, Via College of Osteopathic Medicine, Spartanburg, SC, USA
| |
Collapse
|
16
|
Lékó AH, Cservenák M, Szabó ÉR, Hanics J, Alpár A, Dobolyi Á. Insulin-like growth factor I and its binding protein-3 are regulators of lactation and maternal responsiveness. Sci Rep 2017; 7:3396. [PMID: 28611445 PMCID: PMC5469809 DOI: 10.1038/s41598-017-03645-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/02/2017] [Indexed: 12/29/2022] Open
Abstract
Adaptation to motherhood includes maternal behaviour and lactation during the postpartum period. The major organizing centres of maternal behaviour and lactation are located in the hypothalamic medial preoptic area (MPOA) and the arcuate nucleus, respectively. Insulin-like growth factor I (IGF-I) is an effector of the growth hormone axis; however, its function in the brain is largely unexplored. We identified increased maternal IGF binding protein-3 (IGFBP-3) expression in preoptic rat microarray data and confirmed it by RT-PCR. In situ hybridization histochemistry showed markedly elevated IGFBP-3 expression in the MPOA and the arcuate nucleus in rat dams. Prolonged intracerebroventricular injection of IGF-I or antagonism of brain IGFBP-3 with an inhibitor (NBI-31772) using osmotic minipumps increased pup retrieval time, suggesting reduced maternal motivation. Suckling-induced prolactin release and pup weight gain were also suppressed by IGF-I, suggesting reduced lactation. In addition, IGF-I-induced tyrosine hydroxylase expression and its specific phosphorylation in tuberoinfundibular dopaminergic neurons suppress prolactin secretion. Thus, IGF-I may inhibit both behavioural and lactational alterations in mothers. Neurons in the MPOA and arcuate nuclei express IGFBP-3 during the postpartum period to neutralize IGF-I effects. IGFBP-3 can prevent the blockade of maternal behaviour and lactation exerted by IGF-I, suggesting a novel modulatory mechanism underlying the behavioural and hormonal effects during central maternal adaptations.
Collapse
Affiliation(s)
- András H Lékó
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary.,MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, 1117, Hungary
| | - Melinda Cservenák
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary.,MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, 1117, Hungary
| | - Éva Rebeka Szabó
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - János Hanics
- MTA-SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, Budapest, Hungary
| | - Alán Alpár
- MTA-SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Árpád Dobolyi
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary. .,MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, 1117, Hungary. .,MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, 1117, Hungary.
| |
Collapse
|
17
|
Corticosteroid and progesterone transactivation of mineralocorticoid receptors from Amur sturgeon and tropical gar. Biochem J 2016; 473:3655-3665. [DOI: 10.1042/bcj20160579] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/12/2016] [Indexed: 01/23/2023]
Abstract
The response to a panel of steroids by the mineralocorticoid receptor (MR) from Amur sturgeon and tropical gar, two basal ray-finned fish, expressed in HEK293 cells was investigated. Half-maximal responses (EC50s) for transcriptional activation of sturgeon MR by 11-deoxycorticosterone, corticosterone, 11-deoxycortisol, cortisol and aldosterone, and progesterone (Prog) were between 13 and 150 pM. For gar MR, EC50s were between 8 and 55 pM. Such low EC50s support physiological regulation by these steroids of the MR in sturgeon and gar. Companion studies with human and zebrafish MRs found higher EC50s compared with EC50s for sturgeon and gar MRs, with EC50s for zebrafish MR closer to gar and sturgeon MRs than was human MR. For zebrafish MR, EC50s were between 75 and 740 pM; for human MR, EC50s were between 65 pM and 2 nM. In addition to Prog, spironolactone (spiron) and 19nor-progesterone (19norP) were agonists for all three fish MRs, in contrast with their antagonist activity for human MR, which is hypothesized to involve serine-810 in human MR because all three steroids are agonists for a mutant human Ser810Leu-MR. Paradoxically, sturgeon, gar, and zebrafish MRs contain a serine corresponding to serine-810 in human MR. Our data suggest alternative mechanism(s) for Prog, spiron, and 19norP as MR agonists in these three ray-finned fishes and the need for caution in applying data for Prog signaling in zebrafish to human physiology.
Collapse
|
18
|
Sivukhina EV, Jirikowski GF. Magnocellular hypothalamic system and its interaction with the hypothalamo-pituitary-adrenal axis. Steroids 2016; 111:21-28. [PMID: 26827626 DOI: 10.1016/j.steroids.2016.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/18/2016] [Indexed: 01/07/2023]
Abstract
The hypothalamo-neurohypophyseal system plays a key role in maintaining homeostasis and in regulation of numerous adaptive reactions, e.g., endocrine stress response. Nonapeptides vasopressin and oxytocin are the major hormones of this system. They are synthesized by magnocellular neurons of the paraventricular and supraoptic hypothalamic nuclei. Magnocellular vasopressin is known to be one of the main physiological regulators of water-electrolyte balance. Its importance for control of the hypothalamo-pituitary-adrenal axis has been widely described. Magnocellular oxytocin is secreted predominantly during lactation and parturition. The complex actions of oxytocin within the brain include control of reproductive behavior and its involvement in central stress response to different stimuli. It's neuroendocrine basis is activation of the hypothalamo-pituitary-adrenal axis: corticotropin-releasing hormone is synthesized in parvocellular neurons of the paraventricular hypothalamic nuclei. The transitory coexpression of vasopressin in these cells upon stress has been described. Glucocorticoids, the end products of the hypothalamo-pituitary-adrenal axis have both central and peripheral actions. Their availability to target tissues is mainly dependent on systemic levels of corticosteroid-binding globulin. Intrinsic expression of this protein in different brain regions in neurons and glial cells has been recently demonstrated. Regulation of the hypothalamo-pituitary-adrenal axis and hypothalamo-neurohypophyseal system is highly complex. The role of both systems in the pathogenesis of various chronic ailments in humans has extensively been studied. Their disturbed functioning seems to be linked to various psychiatric, autoimmune and cardiovascular pathologies.
Collapse
|
19
|
Bray B, Scholl JL, Tu W, Watt MJ, Renner KJ, Forster GL. Amphetamine withdrawal differentially affects hippocampal and peripheral corticosterone levels in response to stress. Brain Res 2016; 1644:278-87. [PMID: 27208490 DOI: 10.1016/j.brainres.2016.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/20/2016] [Accepted: 05/16/2016] [Indexed: 12/29/2022]
Abstract
Amphetamine withdrawal is associated with heightened anxiety-like behavior, which is directly driven by blunted stress-induced glucocorticoid receptor-dependent serotonin release in the ventral hippocampus. This suggests that glucocorticoid availability in the ventral hippocampus during stress may be reduced during amphetamine withdrawal. Therefore, we tested whether amphetamine withdrawal alters either peripheral or hippocampal corticosterone stress responses. Adult male rats received amphetamine (2.5mg/kg, ip) or saline for 14 days followed by 2 weeks of withdrawal. Contrary to our prediction, microdialysis samples from freely-moving rats revealed that restraint stress-induced corticosterone levels in the ventral hippocampus are enhanced by amphetamine withdrawal relative to controls. In separate groups of rats, plasma corticosterone levels increased immediately after 20min of restraint and decreased to below stress-naïve levels after 1h, indicating negative feedback regulation of corticosterone following stress. However, plasma corticosterone responses were similar in amphetamine-withdrawn and control rats. Neither amphetamine nor stress exposure significantly altered protein expression or enzyme activity of the steroidogenic enzymes 11β-hydroxysteroid dehydrogenase (11β-HSD1) or hexose-6-phosphate dehydrogenase (H6PD) in the ventral hippocampus. Our findings demonstrate for the first time that amphetamine withdrawal potentiates stress-induced corticosterone in the ventral hippocampus, which may contribute to increased behavioral stress sensitivity previously observed during amphetamine withdrawal. However, this is not mediated by either changes in plasma corticosterone or hippocampal steroidogenic enzymes. Establishing enhanced ventral hippocampal corticosterone as a direct cause of greater stress sensitivity may identify the glucocorticoid system as a novel target for treating behavioral symptoms of amphetamine withdrawal.
Collapse
Affiliation(s)
- Brenna Bray
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, University of South Dakota, 414 East Clark St, Vermillion, SD, United States.
| | - Jamie L Scholl
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, University of South Dakota, 414 East Clark St, Vermillion, SD, United States.
| | - Wenyu Tu
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, University of South Dakota, 414 East Clark St, Vermillion, SD, United States.
| | - Michael J Watt
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, University of South Dakota, 414 East Clark St, Vermillion, SD, United States.
| | - Kenneth J Renner
- Department of Biology, Center for Brain and Behavior Research, University of South Dakota, 414 East Clark St, Vermillion, SD, United States.
| | - Gina L Forster
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, University of South Dakota, 414 East Clark St, Vermillion, SD, United States.
| |
Collapse
|
20
|
Hodges TE, McCormick CM. Adolescent and adult male rats habituate to repeated isolation, but only adolescents sensitize to partner unfamiliarity. Horm Behav 2015; 69:16-30. [PMID: 25510393 DOI: 10.1016/j.yhbeh.2014.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/24/2014] [Accepted: 12/08/2014] [Indexed: 12/29/2022]
Abstract
We investigated whether adolescent male rats show less habituation of corticosterone release than adult male rats to acute vs repeated (16) daily one hour episodes of isolation stress, as well as the role of partner familiarity during recovery on social behavior, plasma corticosterone, and Zif268 expression in brain regions. Adolescents spent more time in social contact than did adults during the initial days of the repeated stress procedures, but both adolescents and adults that returned to an unfamiliar peer after isolation had higher social activity than rats returned to a familiar peer (p=0.002) or undisturbed control rats (p<0.001). Both ages showed evidence of habituation, with reduced corticosterone response to repeated than acute isolation (p=0.01). Adolescents, however, showed sensitized corticosterone release to repeated compared with an acute pairing with an unfamiliar peer during recovery (p=0.03), a difference not found in adults. Consistent with habituation of corticosterone release, the repeated isolation groups had lower Zif268 immunoreactive cell counts in the paraventricular nucleus (p<0.001) and in the arcuate nucleus (p=0.002) than did the acute groups, and adolescents had higher Zif268 immunoreactive cell counts in the paraventricular nucleus than did adults during the recovery period (p<0.001), irrespective of stress history and partner familiarity. Partner familiarity had only modest effects on Zif268 immunoreactivity, and experimental effects on plasma testosterone concentrations were only in adults. The results highlight social and endocrine factors that may underlie the greater vulnerability of the adolescent period of development.
Collapse
Affiliation(s)
| | - Cheryl M McCormick
- Department of Psychology, Brock University, Canada; Department of Centre for Neuroscience, Brock University, Canada.
| |
Collapse
|