1
|
Kumar D, Salahuddin, Mazumder A, Kumar R, Ahsan MJ, Yar MS, Abbussalam, Tyagi PK, Chaitanya MVNL. Pharmacological Evaluation of Bioisosterically Replaced and Triazole- Tethered Derivatives for Anticancer Therapy. Med Chem 2025; 21:264-293. [PMID: 40351067 DOI: 10.2174/0115734064320533240903062533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 05/14/2025]
Abstract
Cancer has been the cause of the highest number of deaths in the human population despite the development and advancement in treatment therapies. The toxicity, drug resistance, and side effects of the current medicaments and therapies have left the void for more research and development. One of the possibilities to fill this void is by incorporating Triazole moieties within existing anticancer pharmacophores to develop new hybrid drugs with less toxicity and more potency. The placement of nitrogen in the triazole ring has endowed its characterization of being integrated with anticancer pharmacophores via bioisosteric replacement, click chemistry and organocatalyzed approaches. This review paper emphasizes the discussions from articles published from the early 2000s to the current 2020s about the triazole-based derivatives used in anticancer therapy, elaborating more on their chemical structures, target receptors or enzymes, mechanism of action, structure-activity relationships, different triazole-derived hybrid drugs under clinical and nonclinical trials, and recent advancements toward developing more potent and less toxic anticancer agents.
Collapse
Affiliation(s)
- Dipesh Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no. 19, Knowledge Park-2, Greater Noida, 201306, Uttar Pradesh, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no. 19, Knowledge Park-2, Greater Noida, 201306, Uttar Pradesh, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no. 19, Knowledge Park-2, Greater Noida, 201306, Uttar Pradesh, India
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Plot no. 19, Knowledge Park-2, Greater Noida, 201306, Uttar Pradesh, India
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jahangirabad Institute of Technology, Jahangirabad Fort, Jahangirabad, Barabanki Uttar Pradesh, 225203, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - Abbussalam
- Department of Physiology, Era's Lucknow Medical College and Hospital, Lucknow, 226003, India
| | - Pankaj Kumar Tyagi
- Department of Biotechnology, Noida Institute of Engineering and Technology, Plot No.19, Knowledge Park-2, Greater Noida, 201306, Uttar Pradesh, India
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
2
|
Wang Y, Yu D, Zhu S, Du X, Wang X. The genus Dioscorea L. (Dioscoreaceae), a review of traditional uses, phytochemistry, pharmacology, and toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118069. [PMID: 38552992 DOI: 10.1016/j.jep.2024.118069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 03/16/2024] [Indexed: 04/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Dioscorea, a member of the Dioscoreaceae family, comprises approximately 600 species and is widely distributed across temperate and tropical regions such as Asia, South Africa, and North America. The traditional medicinal uses of Dioscorea have been documented in Asian and African pharmacological systems. In Asia, this genus is traditionally used to treat respiratory illnesses, rheumatism, diabetes, diarrhea, dysentery, and other conditions. In Africa, this genus has been used to treat human immunodeficiency virus and ring worms. However, the traditional medicinal practices in North America rarely mention the use of this genus. AIM OF THE STUDY The aim of this review is to comprehensively review the genus Dioscorea, focusing on its traditional uses, phytochemical constituents, pharmacological activities, and potential toxicities. The research also aims to highlight the valuable bioactive compounds within Dioscorea and emphasize the need for further investigations into acute and chronic toxicity, activity mechanisms, molecular markers, and other relevant factors to contribute to the discovery of novel pharmaceuticals. MATERIALS AND METHODS A search for available information on Dioscorea was conducted using scientific databases, including PubMed, ISI-WOS, Scopus, and Google Scholar, as well as recent academic publications from reputable publishers and other literature sources. The search was not limited by language and spanned the literature published between 1950 and 2022. RESULTS This article provides a comprehensive review of the Dioscorea genus, focusing on its traditional uses, phytochemical constituents, pharmacological activities, and potential toxicities. Extensive research has been conducted on this genus, resulting in the isolation and examination of over 1000 compounds, including steroids, terpenoids, and flavonoids, to determine their biological activities. These activities include anti-tumor, anti-inflammatory, immunomodulatory, neuroprotective, hypoglycemic, and hypolipidemic effects. However, some studies have indicated the potential toxicity of high doses of Dioscorea, highlighting the need for further investigations to assess the safety of this genus. Additionally, this review explores potential avenues for future research and discusses the challenges associated with a comprehensive understanding of the Dioscorea genus. CONCLUSIONS Based on the existing literature, it can be concluded that Dioscorea is a valuable source of bioactive compounds that have the potential to treat various disorders. Future research should prioritize the investigation of acute and chronic toxicity, activity mechanisms, molecular markers, and other relevant factors. This review provides a comprehensive analysis of the Dioscorea genus, emphasizing its potential to enable a deeper exploration of the biological activity mechanisms of these plants and contribute to the discovery of novel pharmaceuticals.
Collapse
Affiliation(s)
- Yufei Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Dan Yu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Shaojie Zhu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Xiaowei Du
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| | - Xijun Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
3
|
Naseem N, Khaliq T, Jan S, Nabi S, Sultan P, Hassan QP, Mir FA. An overview on pharmacological significance, phytochemical potential, traditional importance and conservation strategies of Dioscorea deltoidea: A high valued endangered medicinal plant. Heliyon 2024; 10:e31245. [PMID: 38826718 PMCID: PMC11141387 DOI: 10.1016/j.heliyon.2024.e31245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
Dioscorea deltoidea Wall. ex Griseb. is an endangered species of the Dioscoreaceae family. It is the most commonly consumed wild species as a vegetable due to its high protein, vital amino acid, vitamin, and mineral content. There are approximately 613 species in the genus Dioscorea Plum. ex L., which is found in temperate and tropical climates. Dioscorea deltoidea, a plant species widespread across tropical and sub-tropical regions, called by different names in different languages. In English, it is commonly referred to as "Wild yam" or "Elephant foot". The Sanskrit name for this plant is "Varahikand," while in Hindi, it is known as "Gun" or "Singly-mingly." The Urdu language refers to it as "Qanis," and in Nepali, it is called "Tarul," "Bhyakur," or "Ghunar." Dioscorea deltoidea has been used to cure a wide range of human ailments for centuries. This plant has nutritional and therapeutic uses and also contains high amounts of steroidal saponins, allantoin, polyphenols, and most notably, polysaccharides and diosgenin. These bioactive chemicals have shown potential in providing protection against a wide spectrum of inflammatory conditions, including enteritis (inflammation of the intestines), arthritis (joint inflammation), dermatitis (skin inflammation), acute pancreatitis (inflammation of the pancreas), and neuro inflammation (inflammation in the nervous system). Furthermore, the valuable bioactive chemicals found in D. deltoidea have been associated with a range of beneficial biological activities, such as antibacterial, antioxidant, anti-inflammatory, immunomodulatory, hepatoprotective, and cytotoxic properties. Sapogenin steroidal chemicals are highly valued in the fields of medicine, manufacturing, and commerce. It has both expectorant and sedative properties. It is employed in the treatment of cardiovascular diseases, encompassing various ailments related to the heart and blood vessels, skin disease, cancer, immune deficiencies, and autoimmune diseases. Additionally, it finds application in managing disorders of the central nervous system and dysfunctional changes in the female reproductive system. Furthermore, it is valued for its role in treating bone and joint diseases. Metabolic disorders are also among the ailments for which D. deltoidea is employed. It has traditionally been used as a vermifuge, fish poison, and to kill lice. Diosgenin, a steroidal compound found in D. deltoidea, plays a crucial role as a precursor in the chemical synthesis of various hormones. Due to the presence of valuable bioactive molecule, like corticosterone and sigmasterol, D. deltoidea is cultivated specifically for the extraction of these beneficial phytochemicals. The current study aims to assess D. deltoidea's medicinal properties, ethnobotanical usage, phytochemicals, pharmacological properties, threats, and conservation techniques.
Collapse
Affiliation(s)
- Nuzhat Naseem
- Plant Molecular Biology and Biotechnology, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, 190005, India
| | - Tahirah Khaliq
- Plant Molecular Biology and Biotechnology, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, 190005, India
| | - Sami Jan
- Plant Molecular Biology and Biotechnology, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, 190005, India
| | - Shakir Nabi
- Plant Molecular Biology and Biotechnology, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, 190005, India
| | - Phalisteen Sultan
- Plant Molecular Biology and Biotechnology, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, 190005, India
- Academy of Scientific & Innovative Research (AcSIR), New Delhi, 110001, India
| | - Qazi Parvaiz Hassan
- Plant Molecular Biology and Biotechnology, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, 190005, India
- Academy of Scientific & Innovative Research (AcSIR), New Delhi, 110001, India
| | - Firdous Ahmad Mir
- Academy of Scientific & Innovative Research (AcSIR), New Delhi, 110001, India
- Plant science, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, 190005, India
| |
Collapse
|
4
|
Mlakić M, Barić D, Ratković A, Šagud I, Čipor I, Piantanida I, Odak I, Škorić I. New Charged Cholinesterase Inhibitors: Design, Synthesis, and Characterization. Molecules 2024; 29:1622. [PMID: 38611900 PMCID: PMC11013433 DOI: 10.3390/molecules29071622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Triazoles and triazolium salts are very common subunits in the structures of various drugs. Medicaments with a characteristic 1,2,3-triazole core are also being developed to treat neurodegenerative disorders associated with cholinesterase enzyme activity. Several naphtho- and thienobenzo-triazoles from our previous research emerged as being particularly promising in that sense. For this reason, in this research, new naphtho- and thienobenzo-triazoles 23-34, as well as 1,2,3-triazolium salts 44-51, were synthesized and tested. Triazolium salts 44-46 showed excellent activity while salts 47 and 49 showed very good inhibition toward both butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) enzymes. In contrast, neutral photoproducts were shown to be selective towards BChE but with very good inhibition potential as molecules 24-27. The representative of newly prepared compounds, 45 and 50, were stable in aqueous solution and revealed intriguing fluorimetric properties, characterized by a strong Stokes shift of >160 nm. Despite their condensed polycyclic structure shaped similarly to well-known DNA-intercalator ethidium bromide, the studied compounds did not show any interaction with ds-DNA, likely due to the unfavorable steric hindrance of substituents. However, the studied dyes bind proteins, particularly showing very diverse inhibition properties toward AChE and BChE. In contrast, neutral photoproducts were shown to be selective towards a certain enzyme but with moderate inhibition potential. The molecular docking of the best-performing candidates to cholinesterases' active sites identified cation-π interactions as the most responsible for the stability of the enzyme-ligand complexes. As genotoxicity studies are crucial when developing new active substances and finished drug forms, in silico studies for all the compounds synthesized have been performed.
Collapse
Affiliation(s)
- Milena Mlakić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10 000 Zagreb, Croatia;
| | - Danijela Barić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10 000 Zagreb, Croatia;
| | - Ana Ratković
- Chemistry, Selvita Ltd., Prilaz Baruna Filipovića 29, HR-10 000 Zagreb, Croatia;
| | - Ivana Šagud
- Croatian Agency for Medicinal Products and Medical Devices, Ksaverska Cesta 4, HR-10 000 Zagreb, Croatia;
| | - Ivona Čipor
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10 000 Zagreb, Croatia; (I.Č.); (I.P.)
| | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10 000 Zagreb, Croatia; (I.Č.); (I.P.)
| | - Ilijana Odak
- Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10 000 Zagreb, Croatia;
| |
Collapse
|
5
|
Le TD, Nguyen TC, Hoang TKD, Huynh MK, Phan QT, Van Meervelt L. Synthesis, crystal structure and Hirshfeld surface analysis of 2-({5-[(naphthalen-1-yl)meth-yl]-4-phenyl-4 H-1,2,4-triazol-3-yl}sulfan-yl)-1-(4-nitro-phen-yl)ethanone. Acta Crystallogr E Crystallogr Commun 2024; 80:218-222. [PMID: 38333127 PMCID: PMC10848969 DOI: 10.1107/s2056989024000859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
The title compound, C27H20N4O3S, crystallizes in the monoclinic system, space group P21/n, with Z = 4. The global shape of the mol-ecule is determined by the orientation of the substituents on the central 4H-1,2,4-triazole ring. The nitro-phenyl ring, phenyl ring, and naphthalene ring system are oriented at dihedral angles of 82.95 (17), 77.14 (18) and 89.46 (15)°, respectively, with respect to the triazole ring. The crystal packing features chain formation in the b-axis direction by S⋯O inter-actions. A Hirshfeld surface analysis indicates that the highest contributions to surface contacts arise from contacts in which H atoms are involved.
Collapse
Affiliation(s)
- Trong Duc Le
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A Thanh Loc 29 Street, District 12, Ho Chi Minh City, Vietnam
| | - Tien Cong Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District No. 5, Ho Chi Minh City, Vietnam
| | - Thi Kim Dung Hoang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A Thanh Loc 29 Street, District 12, Ho Chi Minh City, Vietnam
| | - Minh Khoi Huynh
- Hau Nghia High School, 825 Street Section A, Duc Hoa District, Long An Province, Vietnam
| | - Quang Thang Phan
- Hau Nghia High School, 825 Street Section A, Duc Hoa District, Long An Province, Vietnam
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
| |
Collapse
|
6
|
Mesa D, Augusto YE, Hernández G, Figueroa-Macías JP, Coll F, Olea AF, Núñez M, Campo HA, Coll Y, Espinoza L. The Synthesis of Novel aza-Steroids and α, β-Unsaturated-Cyanoketone from Diosgenin. Molecules 2023; 28:7283. [PMID: 37959702 PMCID: PMC10649921 DOI: 10.3390/molecules28217283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Recent studies have demonstrated the antiproliferative and cytotoxic effects of aza-steroids and steroidal sapogenins on human cancer cell lines. The scientific community has shown a growing interest in these compounds as drug candidates for cancer treatment. In the current work, we report the synthesis of new diosgenin oxime derivatives as potential antiproliferative agents. From (25 R)-5α-spirost-3,5,6-triol (1), a diosgenin derivative, ketones 2, 3, 4, and 9 were obtained and used as precursors of the new oximes. A condensation reaction was carried out between the steroidal ketones (2, 3, 4, and 9) with hydroxylamine hydrochloride in 2,4,6-trimethylpyridine to produce five spirostanic oximes (four of them are not reported before) with a 42-96% yield. Also, a new spirostanic α, β-unsaturated cyanoketone was synthesized via Beckmann fragmentation using thionyl chloride with a 62% yield. Furthermore, we proposed a reaction mechanism with the aim of explaining such transformation.
Collapse
Affiliation(s)
- Dayana Mesa
- Center for Natural Product Researches, Faculty of Chemistry, University of Havana, Zapata and G, Vedado, Havana 10400, Cuba; (D.M.); (Y.E.A.); (G.H.); (J.P.F.-M.); (F.C.)
| | - Yarelys E. Augusto
- Center for Natural Product Researches, Faculty of Chemistry, University of Havana, Zapata and G, Vedado, Havana 10400, Cuba; (D.M.); (Y.E.A.); (G.H.); (J.P.F.-M.); (F.C.)
| | - Giselle Hernández
- Center for Natural Product Researches, Faculty of Chemistry, University of Havana, Zapata and G, Vedado, Havana 10400, Cuba; (D.M.); (Y.E.A.); (G.H.); (J.P.F.-M.); (F.C.)
| | - Juan P. Figueroa-Macías
- Center for Natural Product Researches, Faculty of Chemistry, University of Havana, Zapata and G, Vedado, Havana 10400, Cuba; (D.M.); (Y.E.A.); (G.H.); (J.P.F.-M.); (F.C.)
| | - Francisco Coll
- Center for Natural Product Researches, Faculty of Chemistry, University of Havana, Zapata and G, Vedado, Havana 10400, Cuba; (D.M.); (Y.E.A.); (G.H.); (J.P.F.-M.); (F.C.)
| | - Andrés F. Olea
- Grupo QBAB, Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Llano Subercaseaux 2801, Santiago 7500912, Chile;
| | - María Núñez
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2390123, Chile;
| | - Hernán Astudillo Campo
- Grupo de Investigación en Procesos Electroquímicos, Departamento de Química, Universidad del Cauca, Calle 5 No. 4-70, Popayán 190003, Colombia
| | - Yamilet Coll
- Center for Natural Product Researches, Faculty of Chemistry, University of Havana, Zapata and G, Vedado, Havana 10400, Cuba; (D.M.); (Y.E.A.); (G.H.); (J.P.F.-M.); (F.C.)
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España No. 1680, Valparaíso 2390123, Chile;
| |
Collapse
|
7
|
Agarwal DS, Sakhuja R, Beteck RM, Legoabe LJ. Steroid-triazole conjugates: A brief overview of synthesis and their application as anticancer agents. Steroids 2023:109258. [PMID: 37330161 DOI: 10.1016/j.steroids.2023.109258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Steroids are biomolecules that play pivotal roles in various physiological and drug discovery processes. Abundant research has been fuelled towards steroid-heterocycles conjugates over the last few decades as potential therapeutic agents against various diseases especially as anticancer agents. In this context various steroid-triazole conjugates have been synthesized and studied for their anticancer potential against various cancer cell lines. A thorough search of the literatures revealed that a concise review pertaining the present topic is not compiled. Therefore, in thus review we summarize the synthesis, anticancer activity against various cancer cell lines and structure activity relationship (SAR) of various steroid-triazole conjugates. This review can lay down the path towards the development of various steroid-heterocycles conjugates with lesser side effects and profound efficacy.
Collapse
Affiliation(s)
- Devesh S Agarwal
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, India
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
8
|
Le TD, Nguyen TC, Bui TMN, Hoang TKD, Vu QT, Pham CT, Dinh CP, Alhaji JA, Van Meervelt L. SYNTHESIS, STRUCTURE AND α-GLUCOSIDASE INHIBITOR ACTIVITY EVALUATION OF SOME ACETAMIDE DERIVATIVES STARTING FROM 2-(NAPHTHALEN-1-YL) ACETIC ACID, CONTAINING A 1,2,4-TRIAZOLE. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
9
|
Saroha B, Kumar G, Kumar R, Kumari M, Kumar S. A minireview of 1,2,3-triazole hybrids with O-heterocycles as leads in medicinal chemistry. Chem Biol Drug Des 2022; 100:843-869. [PMID: 34592059 DOI: 10.1111/cbdd.13966] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/02/2021] [Accepted: 09/26/2021] [Indexed: 01/25/2023]
Abstract
Over the past few decades, the dynamic progress in the synthesis and screening of heterocyclic compounds against various targets has made a significant contribution in the field of medicinal chemistry. Among the wide array of heterocyclic compounds, triazole moiety has attracted the attention of researchers owing to its vast therapeutic potential and easy preparation via copper and ruthenium-catalyzed azide-alkyne cycloaddition reactions. Triazole skeletons are found as major structural components in a different class of drugs possessing diverse pharmacological profiles including anti-cancer, anti-bacterial, anti-fungal, anti-viral, anti-oxidant, anti-inflammatory, anti-diabetic, anti-tubercular, and anti-depressant among various others. Furthermore, in the past few years, a significantly large number of triazole hybrids were synthesized with various heterocyclic moieties in order to gain the added advantage of the improved pharmacological profile, overcoming the multiple drug resistance and reduced toxicity from molecular hybridization. Among these synthesized triazole hybrids, many compounds are available commercially and used for treating different infections/disorders like tazobactam and cefatrizine as potent anti-bacterial agents while isavuconazole and ravuconazole as anti-fungal activities to name a few. In this review, we will summarize the biological activities of various 1,2,3-triazole hybrids with copious oxygen-containing heterocycles as lead compounds in medicinal chemistry. This review will be very helpful for researchers working in the field of molecular modeling, drug design and development, and medicinal chemistry.
Collapse
Affiliation(s)
- Bhavna Saroha
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Gourav Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ramesh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Meena Kumari
- Department of Chemistry, Govt. College for Women Badhra, Charkhi Dadri, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
10
|
Ali G, Ara T. Synthesis, Characterization, and Biological Activity of Linalool-Based α-Aminophosphonates. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022090160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Chang CW, Lee CR, Lee GH, Lu KL. The straightforward synthesis of N-coordinated ruthenium 4-aryl-1,2,3-triazolato complexes by [3 + 2] cycloaddition reactions of a ruthenium azido complex with terminal phenylacetylenes and non-covalent aromatic interactions in structures. RSC Adv 2022; 12:24830-24838. [PMID: 36128372 PMCID: PMC9430631 DOI: 10.1039/d2ra04835c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
The straightforward preparation of N-coordinated ruthenium triazolato complexes by [3 + 2] cycloaddition reactions of a ruthenium azido complex [Ru]-N3 (1, [Ru] = (η5-C5H5)(dppe)Ru, dppe = Ph2PCH2CH2PPh2) with a series of terminal phenylacetylenes is reported. The reaction products, N(2)-bound ruthenium 4-aryl-1,2,3-triazolato complexes such as [Ru]N3C2H(4-C6H4CN) (2), [Ru]N3C2H(4-C6H4CHO) (3), [Ru]N3C2H(4-C6H4F) (4), [Ru]N3C2H(Ph) (5) and [Ru]N3C2H(4-C6H4CH3) (6) were produced from 4-ethynylbenzonitrile, 4-ethynylbenzaldehyde, 1-ethynyl-4-fluorobenzene, phenylacetylene and 4-ethynyltoluene, respectively, at 80 °C or above under an atmosphere of air. To the best of our knowledge, this is the first example of the preparation of N-coordinated ruthenium aryl-substituted 1,2,3-triazolato complexes by the [3 + 2] cycloaddition of a metal-coordinated azido ligand and a terminal aryl acetylene, less electron-deficient terminal aryl alkynes. All of the compounds have been fully characterized and the structures of complexes 2, 3, 5 and 6 were confirmed by single-crystal X-ray diffraction analysis. Each compound participates in non-covalent aromatic interactions in the solid-state structure which can be favorable in the binding of DNA/biomolecular targets and has shown great potential in the development of biologically active anticancer drugs.
Collapse
Affiliation(s)
- Chao-Wan Chang
- Division of Preparatory Programs for Overseas Chinese Students, National Taiwan Normal University Linkou New Taipei City 24449 Taiwan
| | - Chi-Rung Lee
- Department of Applied Materials Science and Technology, Minghsin University of Science and Technology Hsinchu 30401 Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University Taipei 10617 Taiwan
| | - Kuang-Lieh Lu
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242 Taiwan
| |
Collapse
|
12
|
Xinyi W, Shiqi X, Shishuo C, Yumin S, Jun W. 1,2,3-Triazole derivatives with anti-breast cancer potential. Curr Top Med Chem 2022; 22:1406-1425. [DOI: 10.2174/1568026622666220415225334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Breast cancer is one of the most prevalent malignant diseases and one of the main mortality causes among women across the world. Despite advances in chemotherapy, drug resistance remains major clinical concerns, creating an urgent need to explore novel anti-breast cancer drugs. 1,2,3-Triazole is a privileged moiety, and its derivatives could inhibit cancer cell proliferation, and induce the cell cycle arrest and apoptosis. Accordingly, 1,2,3-triazole derivatives possess profound activity against various cancers including breast cancer. This review summarizes the latest progresses related to the anti-breast cancer potential of 1,2,3-triazole derivatives, covering articles published from January 2017 to December 2021. The mechanisms of action and structure-activity relationships (SARs) are also discussed for further rational design of more effective candidates.
Collapse
Affiliation(s)
- Wu Xinyi
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Xia Shiqi
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Cheng Shishuo
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Shi Yumin
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Wang Jun
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| |
Collapse
|
13
|
An R, Zhang W, Huang X. Developments in the Antitumor Activity, Mechanisms of Action, Structural Modifications, and Structure-Activity Relationships of Steroidal Saponins. Mini Rev Med Chem 2022; 22:2188-2212. [PMID: 35176980 DOI: 10.2174/1389557522666220217113719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022]
Abstract
Steroidal saponins, a class of natural products formed by the combination of spirosteranes with sugars, are widely distributed in plants and have various biological activities, such as anti-tumor, anti-inflammatory, anti-bacterial, anti-Alzheimer's, anti-oxidation, etc. Particularly, extensive researches on the antitumor property of steroidal saponins have been received. Steroidal sapogenins, the aglycones of steroidal saponins, also have attracted much attention due to a vast range of pharmacological activities similar to steroidal saponins. In the past few years, structural modifications on the aglycones and sugar chains of steroidal saponins have been carried out and some achievements have been made. In this mini-review, the antitumor activity, action mechanisms, and structural modifications along with the structure-activity relationships of steroidal saponins and their derivatives are summarized.
Collapse
Affiliation(s)
- Renfeng An
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, P.R. China
| | - Wenjin Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, P.R. China
| | - Xuefeng Huang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, P.R. China
| |
Collapse
|
14
|
Ganaie BA, Banday JA, Bhat BA, Ara T. Synthesis and In Vitro Anticancer Activity of Triazolyl Analogs of Podophyllotoxin, a Naturally Occurring Lignin. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428021120216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Mironov ME, Borisov SA, Rybalova TV, Baev DS, Tolstikova TG, Shults EE. Synthesis of Anti-Inflammatory Spirostene-Pyrazole Conjugates by a Consecutive Multicomponent Reaction of Diosgenin with Oxalyl Chloride, Arylalkynes and Hydrazines or Hydrazones. Molecules 2021; 27:molecules27010162. [PMID: 35011399 PMCID: PMC8746855 DOI: 10.3390/molecules27010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Steroid sapogenin diosgenin is of significant interest due to its biological activity and synthetic application. A consecutive one-pot reaction of diosgenin, oxalyl chloride, arylacetylenes, and phenylhydrazine give rise to steroidal 1,3,5-trisubstituted pyrazoles (isolated yield 46–60%) when the Stephens–Castro reaction and heterocyclization steps were carried out by heating in benzene. When the cyclization step of alkyndione with phenylhydrazine was performed in 2-methoxyethanol at room temperature, steroidal α,β-alkynyl (E)- and (Z)-hydrazones were isolated along with 1,3,5-trisubstituted pyrazole and the isomeric 2,3,5-trisubstituted pyrazole. The consecutive reaction of diosgenin, oxalyl chloride, phenylacetylene and benzoic acid hydrazides efficiently forms steroidal 1-benzoyl-5-hydroxy-3-phenylpyrazolines. The structure of new compounds was unambiguously corroborated by comprehensive NMR spectroscopy, mass-spectrometry, and X-ray structure analyses. Performing the heterocyclization step of ynedione with hydrazine monohydrate in 2-methoxyethanol allowed the synthesis of 5-phenyl substituted steroidal pyrazole, which was found to exhibit high anti-inflammatory activity, comparable to that of diclofenac sodium, a commercial pain reliever. It was shown by molecular docking that the new derivatives are incorporated into the binding site of the protein Keap1 Kelch-domain by their alkynylhydrazone or pyrazole substituent with the formation of more non-covalent bonds and have higher affinity than the initial spirostene core.
Collapse
Affiliation(s)
- Maksim E. Mironov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
- Department of Natural Sciences, Novosibirsk State University, Piragova Str., 1, 630090 Novosibirsk, Russia
| | - Sergey A. Borisov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
| | - Tatyana V. Rybalova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
| | - Dmitry S. Baev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
| | - Tatyana G. Tolstikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
- Department of Natural Sciences, Novosibirsk State University, Piragova Str., 1, 630090 Novosibirsk, Russia
| | - Elvira E. Shults
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentyev Ave., 9, 630090 Novosibirsk, Russia; (M.E.M.); (S.A.B.); (T.V.R.); (D.S.B.); (T.G.T.)
- Correspondence: ; Tel.: +7-(383)-3308-533
| |
Collapse
|
16
|
Feng Y, Wang W, Zhang Y, Fu X, Ping K, Zhao J, Lei Y, Mou Y, Wang S. Synthesis and biological evaluation of celastrol derivatives as potential anti-glioma agents by activating RIP1/RIP3/MLKL pathway to induce necroptosis. Eur J Med Chem 2021; 229:114070. [PMID: 34968902 DOI: 10.1016/j.ejmech.2021.114070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 11/15/2022]
Abstract
Celastrol, a quinone methide triterpenoid, possesses potential anti-glioma activity. However, its relatively low activity limit its application as an effective agent for glioma treatment. In search for effective anti-glioma agents, this work designed and synthesized two series of celastrol C-3 OH and C-20 COOH derivatives 4a-4o and 6a-6o containing 1, 2, 3-triazole moiety. Their anti-glioma activities against four human glioma cell lines (A172, LN229, U87, and U251) were then evaluated using MTT assay in vitro. Results showed that compound 6i (IC50 = 0.94 μM) exhibited substantial antiproliferative activity against U251 cell line, that was 4.7-fold more potent than that of celastrol (IC50 = 4.43 μM). In addition, compound 6i remarkably inhibited the colony formation and migration of U251 cells. Further transmission electron microscopy and mitochondrial depolarization assays in U251 cells indicated that the potent anti-glioma activity of 6i was attributed to necroptosis. Mechanism investigation revealed that compound 6i induced necroptosis mainly by activating the RIP1/RIP3/MLKL pathway. Additionally, compound 6i exerted acceptable BBB permeability in mice and inhibited U251 cell proliferation in an in vivo zebrafish xenograft model, obviously. In summary, compound 6i might be a promising lead compound for potent celastrol derivatives as anti-glioma agents.
Collapse
Affiliation(s)
- Yao Feng
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Wenbao Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Yan Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Xuefeng Fu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Kunqi Ping
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Jiaxing Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Yu Lei
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China
| | - Yanhua Mou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China.
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang, 110016, China.
| |
Collapse
|
17
|
Guo HY, Chen ZA, Shen QK, Quan ZS. Application of triazoles in the structural modification of natural products. J Enzyme Inhib Med Chem 2021; 36:1115-1144. [PMID: 34167422 PMCID: PMC8231395 DOI: 10.1080/14756366.2021.1890066] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Nature products have been extensively used in the discovery and development of new drugs, as the most important source of drugs. The triazole ring is one of main pharmacophore of the nitrogen-containing heterocycles. Thus, a new class of triazole-containing natural product conjugates has been synthesised. These compounds reportedly exert anticancer, anti-inflammatory, antimicrobial, antiparasitic, antiviral, antioxidant, anti-Alzheimer, and enzyme inhibitory effects. This review summarises the research progress of triazole-containing natural product derivatives involved in medicinal chemistry in the past six years. This review provides insights and perspectives that will help scientists in the fields of organic synthesis, medicinal chemistry, phytochemistry, and pharmacology.
Collapse
Affiliation(s)
- Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zheng-Ai Chen
- Department of Pharmacology, Medical School of Yanbian University, Yanji, Jilin, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zhe-Shan Quan
- Department of Pharmacology, Medical School of Yanbian University, Yanji, Jilin, China
| |
Collapse
|
18
|
Zhang X, Zhang S, Zhao S, Wang X, Liu B, Xu H. Click Chemistry in Natural Product Modification. Front Chem 2021; 9:774977. [PMID: 34869223 PMCID: PMC8635925 DOI: 10.3389/fchem.2021.774977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
Click chemistry is perhaps the most powerful synthetic toolbox that can efficiently access the molecular diversity and unique functions of complex natural products up to now. It enables the ready synthesis of diverse sets of natural product derivatives either for the optimization of their drawbacks or for the construction of natural product-like drug screening libraries. This paper showcases the state-of-the-art development of click chemistry in natural product modification and summarizes the pharmacological activities of the active derivatives as well as the mechanism of action. The aim of this paper is to gain a deep understanding of the fruitful achievements and to provide perspectives, trends, and directions regarding further research in natural product medicinal chemistry.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Songfeng Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xuan Wang
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Liu
- The Second Clinical Medical College, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
19
|
Ratković A, Mlakić M, Dehaen W, Opsomer T, Barić D, Škorić I. Synthesis and photochemistry of novel 1,2,3-triazole di-heterostilbenes. An experimental and computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120056. [PMID: 34146829 DOI: 10.1016/j.saa.2021.120056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/21/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
The synthesis, photoreactivity, and spectroscopic characterization of novel 1,2,3-triazole di-heterostilbenes bearing various aliphatic and aromatic substituents on the triazole rings were thoroughly explored. By introducing triazole rings into the o-divinylbenzene moiety, compared with the 2-furyl and 2-thienyl heteroanalogues, these compounds did not show any photochemical reactivity toward intramolecular cycloaddition reactions or electrocyclization processes. The research is further extended to the more in-depth examination of photochemical and photophysical characteristics of the investigated triazolo-stilbenes to explain the lack of reactivity in intramolecular photochemical cyclizations by configuration and substituent effects. Conformations of synthetically obtained novel triazoles are examined by Density Functional Theory (DFT). The time dependent-DFT approach was employed to obtain additional insight into the properties observed with UV/Vis spectroscopy. The frontier orbital energy was computationally investigated to determine the influence of cis-trans isomerism and the nature of substituents on the spectroscopic properties of the triazoles. Along with our previous studies of similar compounds containing furan and thiophene, respectively, this study shows that introducing various heteroaromatic rings induces diverse photochemistry and photophysics due to the conformational changes and change in electronic distribution within the molecular system.
Collapse
Affiliation(s)
- Ana Ratković
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10 000 Zagreb, Croatia
| | - Milena Mlakić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10 000 Zagreb, Croatia
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium
| | - Tomas Opsomer
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium
| | - Danijela Barić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10 000 Zagreb, Croatia.
| |
Collapse
|
20
|
Mazzio E, Almalki A, Darling-Reed SF, Soliman KFA. Effects of Wild Yam Root ( Dioscorea villosa) Extract on the Gene Expression Profile of Triple-negative Breast Cancer Cells. Cancer Genomics Proteomics 2021; 18:735-755. [PMID: 34697066 DOI: 10.21873/cgp.20294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/29/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND/AIM Wild yam extract [Dioscorea villosa, (WYE)] is consistently lethal at low IC50s across diverse cancer-lines in vitro. Unlike traditional anti-cancer botanicals, WYE contains detergent saponins which reduce oil-water interfacial tensions causing disintegration of lipid membranes and causing cell lysis, creating an interfering variable. Here, we evaluate WYE at sub-lethal concentrations in MDA-MB-231 triple-negative breast cancer (TNBC) cells. MATERIALS AND METHODS Quantification of saponins, membrane potential, lytic death and sub-lethal WYE changes in whole transcriptomic (WT) mRNA, miRNAs and biological parameters were evaluated. RESULTS WYE caused 346 differentially expressed genes (DEGs) out of 48,226 transcripts tested; where up-regulated DEGS reflect immune stimulation, TNF signaling, COX2, cytokine release and cholesterol/steroid biosynthesis. Down-regulated DEGs reflect losses in cell division cycle (CDC), cyclins (CCN), cyclin-dependent kinases (CDKs), centromere proteins (CENP), kinesin family members (KIFs) and polo-like kinases (PLKs), which were in alignment with biological studies. CONCLUSION Sub-lethal concentrations of WYE appear to evoke pro-inflammatory, steroid biosynthetic and cytostatic effects in TNBC cells.
Collapse
Affiliation(s)
- Elizabeth Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Abdulaziz Almalki
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Selina F Darling-Reed
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A.
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
21
|
Hou Y, Shang C, Meng T, Lou W. Anticancer potential of cardiac glycosides and steroid-azole hybrids. Steroids 2021; 171:108852. [PMID: 33887267 DOI: 10.1016/j.steroids.2021.108852] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 01/03/2023]
Abstract
Steriods are well-known scaffolds that have a widespread occurrence in different compounds characterized by extensive biological properties including anticancer activity. Structural modifications on steroids always generate potential lead compounds with superior bioactivity, and creation of steroid hybrids by combining steroid with other anticancer pharmacophores in one molecule, which can exert the anticancer activity through different mechanisms, is one of the most promising strategies to enhance efficiency, overcome drug resistance and reduce side effects. Sugars and azoles, can act on diverse receptors, proteins and enzymes in cancer cells, are pharmacologically significant scaffolds in the development of novel anticancer agents. Therefore, steroid-sugar hybrids cardiac glycosides and steroid-azole hybrids are privileged scaffolds for the discovery of novel anticancer candidates. This review emphasized on the development, the structure-activity relationship and the mechanism of action of cardiac glycosides and steroid-azole hybrids with potential application for fighting against various cancers including drug-resistant forms to facilitate further rational design of novel drug candidates covering articles published between 2015 and 2020.
Collapse
Affiliation(s)
- Yani Hou
- School of Medicine, Xi'an Peihua University, Xi'an 710125, Shannxi, China
| | - Congshan Shang
- School of Medicine, Xi'an Peihua University, Xi'an 710125, Shannxi, China
| | - Tingting Meng
- School of Medicine, Xi'an Peihua University, Xi'an 710125, Shannxi, China
| | - Wei Lou
- Department of Respiratory, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China.
| |
Collapse
|
22
|
Liang T, Sun X, Li W, Hou G, Gao F. 1,2,3-Triazole-Containing Compounds as Anti-Lung Cancer Agents: Current Developments, Mechanisms of Action, and Structure-Activity Relationship. Front Pharmacol 2021; 12:661173. [PMID: 34177578 PMCID: PMC8226129 DOI: 10.3389/fphar.2021.661173] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the most common malignancy and leads to around one-quarter of all cancer deaths. Great advances have been achieved in the treatment of lung cancer with novel anticancer agents and improved technology. However, morbidity and mortality rates remain extremely high, calling for an urgent need to develop novel anti-lung cancer agents. 1,2,3-Triazole could be readily interact with diverse enzymes and receptors in organisms through weak interaction. 1,2,3-Triazole can not only be acted as a linker to tether different pharmacophores but also serve as a pharmacophore. This review aims to summarize the recent advances in 1,2,3-triazole-containing compounds with anti-lung cancer potential, and their structure-activity relationship (SAR) together with mechanisms of action is also discussed to pave the way for the further rational development of novel anti-lung cancer candidates.
Collapse
Affiliation(s)
- Ting Liang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiangyang Sun
- Department of Interventional Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenhong Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guihua Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
23
|
Semwal P, Painuli S, Cruz-Martins N. Dioscorea deltoidea wall. Ex Griseb: A review of traditional uses, bioactive compounds and biological activities. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Morais PAB, Francisco CS, de Paula H, Ribeiro R, Eloy MA, Javarini CL, Neto ÁC, Júnior VL. Semisynthetic Triazoles as an Approach in the Discovery of Novel Lead Compounds. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210126100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Historically, medicinal chemistry has been concerned with the approach of organic
chemistry for new drug synthesis. Considering the fruitful collections of new molecular entities,
the dedicated efforts for medicinal chemistry are rewarding. Planning and search for new
and applicable pharmacologic therapies involve the altruistic nature of the scientists. Since
the 19th century, notoriously applying isolated and characterized plant-derived compounds in
modern drug discovery and various stages of clinical development highlight its viability and
significance. Natural products influence a broad range of biological processes, covering transcription,
translation, and post-translational modification, being effective modulators of most
basic cellular processes. The research of new chemical entities through “click chemistry”
continuously opens up a map for the remarkable exploration of chemical space towards leading
natural products optimization by structure-activity relationship. Finally, in this review, we expect to gather a
broad knowledge involving triazolic natural product derivatives, synthetic routes, structures, and their biological activities.
Collapse
Affiliation(s)
- Pedro Alves Bezerra Morais
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Carla Santana Francisco
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Heberth de Paula
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Rayssa Ribeiro
- Programa de Pos- Graduacao em Agroquimica, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Mariana Alves Eloy
- Programa de Pos- Graduacao em Agroquimica, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Clara Lirian Javarini
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Álvaro Cunha Neto
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Valdemar Lacerda Júnior
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| |
Collapse
|
25
|
Xia X, Chen Y, Wang L, Yang ZG, Ma XD, Zhao ZG, Yang HJ. Synthesis of diosgenyl quaternary ammonium derivatives and their antitumor activity. Steroids 2021; 166:108774. [PMID: 33285175 DOI: 10.1016/j.steroids.2020.108774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 01/13/2023]
Abstract
Giosgenin is a naturally steroidal saponin exhibiting a variety of biological activities including antitumor ones. A series of novel diosgenyl quaternary ammonium derivatives were designed and synthesized to develop potential anti-tumor agents in our research. All novel derivatives were characterized by 1H NMR, 13C NMR and HR-MS, and evaluated for their in vitro anti-proliferative activities using MTT assay. The human cancer cell lines were A549 (Human lung cancer cell), H1975 (Human lung adenocarcinoma cell), A431 (Human skin squamous cell carcinoma), HCT-116 (Human colorectal adenocarcinoma cell), Aspc-1 (Human metastatic pancreatic cancer cell), Ramos (Human B lymphoma cell), HBE (Human bronchial epithelioid cell) and LO2 (Human normal hepatocyte).
Collapse
Affiliation(s)
- Xi Xia
- Key Laboratory of Basic Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Yu Chen
- Key Laboratory of Basic Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Lin Wang
- Key Laboratory of Basic Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Zhi-Gang Yang
- Key Laboratory of Basic Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Xiao-Dong Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, PR China
| | - Zhi-Gang Zhao
- Key Laboratory of Basic Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Hong-Jun Yang
- Key Laboratory of Basic Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| |
Collapse
|
26
|
Boraei AT, Soliman SM, Haukka M, Barakat A. X-Ray structure, Hirshfeld analysis and DFT studies of two new hits of triazolyl-indole bearing alkylsulfanyl moieties. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Parama D, Boruah M, Yachna K, Rana V, Banik K, Harsha C, Thakur KK, Dutta U, Arya A, Mao X, Ahn KS, Kunnumakkara AB. Diosgenin, a steroidal saponin, and its analogs: Effective therapies against different chronic diseases. Life Sci 2020; 260:118182. [PMID: 32781063 DOI: 10.1016/j.lfs.2020.118182] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic diseases are a major cause of mortality worldwide, and despite the recent development in treatment modalities, synthetic drugs have continued to show toxic side effects and development of chemoresistance, thereby limiting their application. The use of phytochemicals has gained attention as they show minimal side effects. Diosgenin is one such phytochemical which has gained importance for its efficacy against the life-threatening diseases, such as cardiovascular diseases, cancer, nervous system disorders, asthma, arthritis, diabetes, and many more. AIM To evaluate the literature available on the potential of diosgenin and its analogs in modulating different molecular targets leading to the prevention and treatment of chronic diseases. METHOD A detailed literature search has been carried out on PubMed for gathering information related to the sources, biosynthesis, physicochemical properties, biological activities, pharmacokinetics, bioavailability and toxicity of diosgenin and its analogs. KEY FINDINGS The literature search resulted in many in vitro, in vivo and clinical trials that reported the efficacy of diosgenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK, etc., which play a crucial role in the development of most of the diseases. Reports have also revealed the safety of the compound and the adaptation of nanotechnological approaches for enhancing its bioavailability and pharmacokinetic properties. SIGNIFICANCE Thus, the review summarizes the efficacy of diosgenin and its analogs for developing as a potent drug against several chronic diseases.
Collapse
Affiliation(s)
- Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Monikongkona Boruah
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | - Kumari Yachna
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | - Aditya Arya
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Xinliang Mao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
28
|
Diosgenin Exerts Antitumor Activity via Downregulation of Skp2 in Breast Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8072639. [PMID: 32626765 PMCID: PMC7317312 DOI: 10.1155/2020/8072639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/05/2020] [Accepted: 05/30/2020] [Indexed: 12/11/2022]
Abstract
Background Breast cancer is the common malignancy with high morbidity and mortality in women. S-phase kinase-associated protein 2 (Skp2) has been characterized to play an oncogenic role in the breast carcinogenesis and progression. Therefore, inactivation of Skp2 in breast cancer might be a novel approach for fighting breast malignancy. A natural compound diosgenin has been reported to exert anticancer activity in a variety of human cancers. However, the underlying mechanism has not been fully determined. Methods In this study, we aim to explore whether diosgenin performed antitumor activity via inhibition of Skp2 in breast cancer cells using several methods including MTT, Transwell invasion assay, RT-PCR, western blotting, and transfection. Results We found that diosgenin inhibited cell viability and stimulated apoptosis. Moreover, we found that diosgenin reduced cell invasion in breast cancer cells. Furthermore, diosgenin inhibited the expression of Skp2 in breast cancer cells. Notably, diosgenin reduced cell viability and motility and induced apoptosis via suppression of Skp2 in breast cancer cells. Conclusion Our findings revealed that diosgenin could be a potential inhibitor of Skp2 for treating breast cancer.
Collapse
|
29
|
Synthesis of novel dimeric compounds containing triazole using click method and their selective antiproliferative and proapoptotic potential via mitochondrial apoptosis signaling. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02510-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Michalak O, Krzeczyński P, Cieślak M, Cmoch P, Cybulski M, Królewska-Golińska K, Kaźmierczak-Barańska J, Trzaskowski B, Ostrowska K. Synthesis and anti-tumour, immunomodulating activity of diosgenin and tigogenin conjugates. J Steroid Biochem Mol Biol 2020; 198:105573. [PMID: 32017993 DOI: 10.1016/j.jsbmb.2019.105573] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
A series of novel diosgenin (DSG) and tigogenin (TGG) derivatives with diosgenin or tigogenin steroid aglycons linked to levulinic and 3,4-dihydroxycinnamic acids, dipeptides and various amino acids by an ester bond at the C3-oxygen atom of the steroid skeleton has been synthesized. Diosgenyl esters have been prepared by an esterification reaction (DCC/DMAP) of diosgenin with the corresponding acids. All analogues have been evaluated in vitro for their antiproliferative profile against cancer cell lines (MCF-7, MDA-MB-231, PC-3) and human umbilical vein endothelial cells (HUVEC). Analogue2c (l-serine derivative of TGG), the best representative of the series showed IC50 of 1.5 μM (MCF-7), and induced apoptosis in MCF-7 by activating caspase-3/7. The immunomodulatory properties of six synthesized analogues have been determined by examining their effects on the expression of cytokine genes essential for the functioning of the human immune system (IL-1, IL-4, IL-10, IL-12 and TNF-α). Biological evaluation has revealed that new compounds 4c and 16a do not induce the expression of pro-inflammatory cytokines in THP-1 cells after the lipopolysaccharide (LPS) stimulation. They also stimulate the expression of anti-inflammatory IL-10 that acts stronger than diosgenin itself. An in silico ADME properties(absorption, distribution, metabolism, excretion) study was also performed to predict the pharmacokinetic profile of the synthesized compounds. To shed light on the molecular interactions between the synthesized compounds and the glucocorticoid receptor and the estrogen receptor, 2c, 4c and 16a compounds were docked into the active binding sites of these receptors. The in silico and in vitro data suggested that this new group of compounds might be considered as a promising scaffold for further modification of more potent and selective anticancer and immunomodulatory agents.
Collapse
Affiliation(s)
- O Michalak
- Łukasiewicz Research Network-Pharmaceutical Research Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland.
| | - P Krzeczyński
- Łukasiewicz Research Network-Pharmaceutical Research Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - M Cieślak
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Str., 90-363 Łódź, Poland
| | - P Cmoch
- Institute of Organic Chemistry, Polish Academy of Sciences, 44/52 Kasprzaka Str., 01-224 Warsaw, Poland
| | - M Cybulski
- Łukasiewicz Research Network-Pharmaceutical Research Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - K Królewska-Golińska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Str., 90-363 Łódź, Poland
| | - J Kaźmierczak-Barańska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Str., 90-363 Łódź, Poland
| | - B Trzaskowski
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, 2C Banacha Str., 02-097 Warsaw, Poland
| | - K Ostrowska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| |
Collapse
|
31
|
Rani A, Singh G, Singh A, Maqbool U, Kaur G, Singh J. CuAAC-ensembled 1,2,3-triazole-linked isosteres as pharmacophores in drug discovery: review. RSC Adv 2020; 10:5610-5635. [PMID: 35497465 PMCID: PMC9049420 DOI: 10.1039/c9ra09510a] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
The review lays emphasis on the significance of 1,2,3-triazoles synthesized via CuAAC reaction having potential to act as anti-microbial, anti-cancer, anti-viral, anti-inflammatory, anti-tuberculosis, anti-diabetic, and anti-Alzheimer drugs. The importance of click chemistry is due to its 'quicker' methodology that has the capability to create complex and efficient drugs with high yield and purity from simple and cheap starting materials. The activity of different triazolyl compounds was compiled considering MIC, IC50, and EC50 values against different species of microbes. In addition to this, the anti-oxidant property of triazolyl compounds have also been reviewed and discussed.
Collapse
Affiliation(s)
- Alisha Rani
- Department of Chemistry, Lovely Professional University Phagwara-144411 Punjab India +91 9815967272
| | - Gurjaspreet Singh
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Akshpreet Singh
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160014 India
| | - Ubair Maqbool
- Department of Chemistry, Lovely Professional University Phagwara-144411 Punjab India +91 9815967272
| | - Gurpreet Kaur
- Department of Chemistry, Gujranwala Guru Nanak Khalsa College Civil Lines Ludhiana-141001 India
| | - Jandeep Singh
- Department of Chemistry, Lovely Professional University Phagwara-144411 Punjab India +91 9815967272
| |
Collapse
|
32
|
Synthesis of a New Series of Nitrogen/Sulfur Heterocycles by Linking Four Rings: Indole; 1,2,4-Triazole; Pyridazine; and Quinoxaline. Molecules 2020; 25:molecules25030450. [PMID: 31973234 PMCID: PMC7037119 DOI: 10.3390/molecules25030450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
A new series of nitrogen and sulfur heterocyclic systems were efficiently synthesized by linking the following four rings: indole; 1,2,4-triazole; pyridazine; and quinoxaline hybrids. The strength of the acid that catalyzes the condensation of 4-amino-5-(1H-indol-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione 1 with aromatic aldehydes controlled the final product. Reflux in glacial acetic acid yielded Schiff bases 2–6, whereas concentrated HCl in ethanol resulted in a cyclization product at C-3 of the indole ring to create indolo-triazolo-pyridazinethiones 7–16. This fascinating cyclization approach was applicable with a wide range of aromatic aldehydes to create the target cyclized compounds in excellent yield. Additionally, the coupling of the new indolo-triazolo-pyridazinethiones 7–13 with 2,3-bis(bromomethyl)quinoxaline, as a linker in acetone and K2CO3, yielded 2,3-bis((5,6-dihydro-14H-indolo[2,3-d]-6-aryl-[1,2,4-triazolo][4,3-b]pyridazin-3 ylsulfanyl)methyl)quinoxalines 19–25 in a high yield. The formation of this new class of heterocyclic compounds in high yields warrants their use for further research. The new compounds were characterized using nuclear magnetic resonance (NMR) and mass spectral analysis. Compound 6 was further confirmed by the single crystal X-ray diffraction technique.
Collapse
|
33
|
Mironov ME, Oleshko OS, Pokrovskii MA, Rybalova TV, Pechurov VK, Pokrovskii AG, Cheresis SV, Mishinov SV, Stupak VV, Shults EE. 6-(4'-Aryl-1',2',3'-triazolyl)-spirostan-3,5-diols and 6-(4'-Aryl-1',2',3'-triazolyl)-7-hydroxyspirosta-1,4-dien-3-ones: Synthesis and analysis of their cytotoxicity. Steroids 2019; 151:108460. [PMID: 31344410 DOI: 10.1016/j.steroids.2019.108460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 12/30/2022]
Abstract
In an endeavour to develop potent anti-tumor agents from diosgenin, a series of C-6 derived 1,2,3-triazolyl derivatives were designed and synthesized by employing Cu(I) catalyzed Huisgen 1,3-dipolar cycloaddition reaction of novel azides - (22R,25R)-6β-azidospirostan-3β,5α-diol and 6β-azido-7α-hydroxyspirosta-1,4-dien-3-one with aryl(hetaryl)alkynes. All the derivatives were evaluated for cytotoxic activity by MTT assay against eight different human cancer cell lines: T-cellular leucosis (CEM-13), human monocytes (U-937), breast (MDA-MB-231, BT-474), prostate (DU-145) and glioblastoma (U-87MG, SNB-19, T98G). The results of this study suggested that 6-(4'-aryl-1',2',3'-triazolyl)spirostan-3,5-diols 2, 3, 4, 5 and 6 possessed a promising cytotoxic potential. The corresponding 6-substituted 7-hydroxy-1,4-spirostadien-3-ones shown less cytotoxity on the human cancer cells. Compounds 2, 3, 4, and 5 which demonstrated high grown inhibition against glioma cancer cells U-87 and T98G, and also on the human-derived N118669 primary glioblastoma cell line (with GI50 values in the range of 5-9 μM), were not affected the growth of SNB-19 cells. The data revealed that phenyl, 4-methoxyphenyl, 4-fluorophenyl, 3,4,5-trimethoxyphenyl or 2-pyridinyl substituent in the triazole moiety at the C-6 position significantly improved the anti-tumor activity. The mentioned position at the spirostan core may be favourable for the synthesis of potent anticancer leads from diosgenin.
Collapse
Affiliation(s)
- Maxim E Mironov
- Laboratory of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russian Federation; Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russian Federation
| | - Olga S Oleshko
- Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russian Federation
| | - Mikhail A Pokrovskii
- Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russian Federation
| | - Tatyana V Rybalova
- Laboratory of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russian Federation; Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russian Federation
| | - Vladislav K Pechurov
- Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russian Federation
| | - Andrey G Pokrovskii
- Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russian Federation
| | - Sergey V Cheresis
- Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russian Federation
| | - Sergey V Mishinov
- First Department of Neurosurgery, Ya. L. Tsivian Novosibirsk Research Institute of Traumatology and Orthopaedics, Frunze Str. 17, 630091 Novosibirsk, Russian Federation
| | - Vyacheslav V Stupak
- First Department of Neurosurgery, Ya. L. Tsivian Novosibirsk Research Institute of Traumatology and Orthopaedics, Frunze Str. 17, 630091 Novosibirsk, Russian Federation
| | - Elvira E Shults
- Laboratory of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave, 9, 630090 Novosibirsk, Russian Federation; Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russian Federation.
| |
Collapse
|
34
|
Xu Z, Zhao SJ, Liu Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur J Med Chem 2019; 183:111700. [PMID: 31546197 DOI: 10.1016/j.ejmech.2019.111700] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Anticancer agents are critical for the cancer treatment, but side effects and the drug resistance associated with the currently used anticancer agents create an urgent need to explore novel drugs with low side effects and high efficacy. 1,2,3-Triazole is privileged building block in the discovery of new anticancer agents, and some of its derivatives have already been applied in clinics or under clinical trials for fighting against cancers. Hybrid molecules occupy an important position in cancer control, and hybridization of 1,2,3-triazole framework with other anticancer pharmacophores may provide valuable therapeutic intervention for the treatment of cancer, especially drug-resistant cancer. This review emphasizes the recent advances in 1,2,3-triazole-containing hybrids with anticancer potential, covering articles published between 2015 and 2019, and the structure-activity relationships, together with mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Zhi Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China.
| | - Shi-Jia Zhao
- Wuhan University of Science and Technology, Wuhan, PR China
| | - Yi Liu
- Wuhan University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
35
|
Chen SR, Wu H, Zhao HY, Zhang YM, Li PQ, Zhao LM. Synthesis and antiproliferative activity of novel 4-azasteroidal-17-hydrazone derivatives. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819851706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A new series of 4-azasteroidal-17-hydrazone derivatives have been synthesized from androstenedione. Their structures were characterized by analysis and spectroscopic data. The antiproliferative activity of synthesized compounds against three cancer cells (human lung adenocarcinoma, human oesophageal cervical cancer, human gastric adenocarcinoma) and a normal cell line (human gastric mucosal) was investigated. The studies show that the compound bearing a naphthyl group displayed the same antiproliferative activity in vitro against tested cells as cis-platin did (a positive control). Most of the compounds show very weak toxicity towards normal human gastric mucosal cell line.
Collapse
Affiliation(s)
- Shao-Rui Chen
- College of Science, Hebei University of Science and Technology, Shijiazhuang, P.R. China
| | - Hao Wu
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Hai-Yan Zhao
- College of Science, Hebei University of Science and Technology, Shijiazhuang, P.R. China
| | - Yu-Mei Zhang
- College of Science, Hebei University of Science and Technology, Shijiazhuang, P.R. China
| | - Peng-Qi Li
- College of Science, Hebei University of Science and Technology, Shijiazhuang, P.R. China
| | - Lian-Mei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| |
Collapse
|
36
|
Xu L, Xu D, Li Z, Gao Y, Chen H. Synthesis and potent cytotoxic activity of a novel diosgenin derivative and its phytosomes against lung cancer cells. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1933-1942. [PMID: 31598460 PMCID: PMC6774070 DOI: 10.3762/bjnano.10.189] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/28/2019] [Indexed: 05/16/2023]
Abstract
Diosgenin (Di), a steroidal sapogenin derived from plants, has been shown to exert anticancer effects in preclinical studies. Using Di as a starting material, various Di derivatives were designed and synthesized, aiming to discover new steroid-based antitumor agents. In this work, we synthesized several Di derivatives and screened FZU-0021-194-P2 (P2), which showed more potent cytotoxic activities against human non-small-cell lung cancer A549 and PC9 cells. Considering that Di has a unique sterol structure similarly to cholesterol, P2 phytosomes (P2Ps) were prepared to further improve the water solubility of P2. The P2Ps exhibited a particle size of 53.6 ± 0.3 nm with oval shape and a zeta potential of -4.0 ± 0.7 mV. P2Ps could inhibit the proliferation of lung cancer cells more efficiently than Di phytosomes after 72 h of incubation time by inducing cell cycle arrest and apoptosis. The results indicated that P2Ps could be a promising anticancer formulation for non-small-cell lung cancer.
Collapse
Affiliation(s)
- Liang Xu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Dekang Xu
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Haijun Chen
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
37
|
Chen S, Wu H, Li AJ, Pei J, Zhao L. Synthesis and biological evaluation of hydrazone and pyrazoline derivatives derived from androstenedione. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3539-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Sethi G, Shanmugam MK, Warrier S, Merarchi M, Arfuso F, Kumar AP, Bishayee A. Pro-Apoptotic and Anti-Cancer Properties of Diosgenin: A Comprehensive and Critical Review. Nutrients 2018; 10:nu10050645. [PMID: 29783752 PMCID: PMC5986524 DOI: 10.3390/nu10050645] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022] Open
Abstract
Novel and alternative options are being adopted to combat the initiation and progression of human cancers. One of the approaches is the use of molecules isolated from traditional medicinal herbs, edible dietary plants and seeds that play a pivotal role in the prevention/treatment of cancer, either alone or in combination with existing chemotherapeutic agents. Compounds that modulate these oncogenic processes are potential candidates for cancer therapy and may eventually make it to clinical applications. Diosgenin is a naturally occurring steroidal sapogenin and is one of the major bioactive compounds found in dietary fenugreek (Trigonella foenum-graecum) seeds. In addition to being a lactation aid, diosgenin has been shown to be hypocholesterolemic, gastro- and hepato-protective, anti-oxidant, anti-inflammatory, anti-diabetic, and anti-cancer. Diosgenin has a unique structural similarity to estrogen. Several preclinical studies have reported on the pro-apoptotic and anti-cancer properties of diosgenin against a variety of cancers, both in in vitro and in vivo. Diosgenin has also been reported to reverse multi-drug resistance in cancer cells and sensitize cancer cells to standard chemotherapy. Remarkably, diosgenin has also been reported to be used by pharmaceutical companies to synthesize steroidal drugs. Several novel diosgenin analogs and nano-formulations have been synthesized with improved anti-cancer efficacy and pharmacokinetic profile. In this review we discuss in detail the multifaceted anti-cancer properties of diosgenin that have found application in pharmaceutical, functional food, and cosmetic industries; and the various intracellular molecular targets modulated by diosgenin that abrogate the oncogenic process.
Collapse
Affiliation(s)
- Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal University, Bangalore 560065, India.
| | - Myriam Merarchi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N. Miami Avenue, Miami, FL 33169, USA.
| |
Collapse
|
39
|
Kim JK, Park SU. An update on the biological and pharmacological activities of diosgenin. EXCLI JOURNAL 2018; 17:24-28. [PMID: 29383016 PMCID: PMC5780621 DOI: 10.17179/excli2017-894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/13/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| |
Collapse
|
40
|
Ayoob I, Lone SH, Masood-ur-Rahman, Zargar OA, Bashir R, Shakeel-u-Rehman, Khuroo MA, Bhat KA. New Semi-Synthetic Rosmarinic Acid-Based Amide Derivatives as Effective Antioxidants. ChemistrySelect 2017. [DOI: 10.1002/slct.201701812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Iram Ayoob
- Department of Chemistry; University of Kashmir, Hazratbal; Srinagar, Kashmir India 190006
| | - Shabir H. Lone
- Centre for Scientific Research; Department of Chemistry; GDC boys Anantnag, Kashmir; India 192102
| | - Masood-ur-Rahman
- Indian Institute of Integrative Medicine, Sanatnagar; Srinagar, Kashmir India 190005
- National Institute of Technology, Hazratbal, Kashmir; India 190006
| | - Ovais A. Zargar
- Department of Biochemistry; University of Kashmir, Hazratbal; Srinagar Kashmir India 190006
| | - Rohina Bashir
- Department of Biochemistry; University of Kashmir, Hazratbal; Srinagar Kashmir India 190006
| | - Shakeel-u-Rehman
- National Institute of Technology, Hazratbal, Kashmir; India 190006
| | - Mohd A. Khuroo
- Department of Chemistry; University of Kashmir, Hazratbal; Srinagar, Kashmir India 190006
| | - Khursheed A. Bhat
- Indian Institute of Integrative Medicine, Sanatnagar; Srinagar, Kashmir India 190005
| |
Collapse
|
41
|
El Bairi K, Ouzir M, Agnieszka N, Khalki L. Anticancer potential of Trigonella foenum graecum: Cellular and molecular targets. Biomed Pharmacother 2017; 90:479-491. [PMID: 28391170 DOI: 10.1016/j.biopha.2017.03.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 02/08/2023] Open
Abstract
A growing body of evidence supported by numerous studies on tumorigenesis confirms that it is possible to target various hallmarks of cancer. Recent studies have shown that plant-derived molecules may be used in targeting different signaling pathways for cancer drug discovery. The present paper gives an insight into the anticancer potential of fenugreek and lists the existing studies that have been carried out to demonstrate the advantages of the use of fenugreek in cancer treatment and prevention. It also aims at opening up new perspectives in the development of new drugs of natural origins in the future clinical trials. This review article will discuss; (1) the chemical constituents and bioactive compounds of fenugreek; (2) effects on oxidative stress and inflammation; (3) effects on proliferation, apoptosis, and invasion; (4) toxicity of fenugreek; and 5) future directions in cancer drug development. All of the experimental studies discussed in this paper suggest that multiple signaling pathways (hallmarks) are involved in the anticancer activities of fenugreek, but their efficacy is still unclear, which requires further investigation.
Collapse
Affiliation(s)
- Khalid El Bairi
- Independent Research Team in Cancer Biology and Bioactive Compounds, Mohamed 1st University, Oujda, Morocco.
| | - Mounir Ouzir
- Laboratory of Biochemistry and Immunology, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Najda Agnieszka
- Quality Laboratory of Vegetable and Medicinal Materials, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin,Leszczyńskiego Street 58, 20-068 Lublin, Poland
| | - Loubna Khalki
- Neuroscience Laboratory, UM6SS-Research Center, Mohammed VI University of Health Sciences, Casablanca, Morocco
| |
Collapse
|