1
|
Das J, Kumar R, Shah V, Sharma AK. Functional characterization of chitin synthesis pathway genes, HaAGM and HaUAP, reveal their crucial roles in ecdysis and survival of Helicoverpa armigera (Hübner). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105273. [PMID: 36464378 DOI: 10.1016/j.pestbp.2022.105273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 06/17/2023]
Abstract
The chitin metabolic pathway is one of the most lucrative targets for designing pest management regimes. Inhibition of the chitin synthesis pathway causes detrimental effects on the normal growth and development of insects. Phospho-N-acetylglucosamine mutase (AGM) and UDP-N-acetylglucosamine pyrophosphorylase (UAP) are two key chitin biosynthesis enzymes in insects including Helicoverpa armigera, a pest of global significance. In the present study, we have identified, cloned and recombinantly expressed AGM and UAP from H. armigera (HaAGM and HaUAP). Biochemical characterization of recombinant HaAGM and HaUAP exhibited high affinities for their natural substrates N-acetyl glucosamine-6-phosphate (Km 38.72 ± 2.41) and N-acetyl glucosamine-1-phosphate (Km 3.66 ± 0.13), respectively. In the coupled enzyme-catalytic assay, HaAGM and HaUAP yielded the end-products, inorganic pyrophosphate and UDP-GlcNAc, confirming their active participation in the chitin synthesis pathway of H. armigera. Gene expression profiling revealed that HaAGM and HaUAP genes were expressed in all developmental stages and key tissues. These genes also showed substantial responses towards the moulting hormone 20-hydroxyecdysone and chitin biosynthesis inhibitor, novaluron. Remarkably, the RNAi-mediated knockdown of either HaAGM or HaUAP led to severe developmental deformities and significant mortality ranging from 65.61 to 72.54%. Overall findings suggest that HaAGM and HaUAP play crucial roles in the ecdysis and survival of H. armigera. Further, these genes could serve as potential targets for designing pest management strategies for H. armigera.
Collapse
Affiliation(s)
- Joy Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India
| | - Vivek Shah
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
2
|
Czapinska H, Bochtler M. The Nϵ-Rule for Serine, but Not Cysteine Catalytic Triads. Angew Chem Int Ed Engl 2022; 61:e202206945. [PMID: 35983934 PMCID: PMC9825947 DOI: 10.1002/anie.202206945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 01/11/2023]
Abstract
Catalytic triads, composed of a serine or cysteine nucleophile, a histidine, and a third triad residue (typically Asp/Glu/Asn), are common in enzyme active sites and catalyze a wide variety of chemical reactions. Two types of triads can be distinguished: We refer to them as Nδ- or Nϵ-configured, depending on whether the histidine imidazole Nδ or Nϵ atom is close to the nucleophile Oγ/Sγ. In this study, we have analyzed triad configuration. In structural triads, the more stable Nδ-configuration predominates. For catalytic triads, the configuration depends on the nucleophile. When it is a cysteine residue, both configuration types occur, depending on the family. However, when the nucleophile is a serine residue, the less stable Nϵ-configuration is almost exclusively found. We posit that the energetically less favored conformation is selected for in serine triads to facilitate the otherwise difficult proton transfer from the nucleophile to the histidine residue.
Collapse
Affiliation(s)
- Honorata Czapinska
- International Institute of Molecular and Cell BiologyTrojdena 402-109WarsawPoland
| | - Matthias Bochtler
- International Institute of Molecular and Cell BiologyTrojdena 402-109WarsawPoland,Institute of Biochemistry and Biophysics of the Polish Academy of SciencesPawinskiego 5a02-106WarsawPoland
| |
Collapse
|
3
|
The Nε‐Rule for Serine, but Not Cysteine Catalytic Triads. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Glucose-1,6-Bisphosphate, a Key Metabolic Regulator, Is Synthesized by a Distinct Family of α-Phosphohexomutases Widely Distributed in Prokaryotes. mBio 2022; 13:e0146922. [PMID: 35856562 PMCID: PMC9426568 DOI: 10.1128/mbio.01469-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The reactions of α-d-phosphohexomutases (αPHM) are ubiquitous, key to primary metabolism, and essential for several processes in all domains of life. The functionality of these enzymes relies on an initial phosphorylation step which requires the presence of α-d-glucose-1,6-bisphosphate (Glc-1,6-BP). While well investigated in vertebrates, the origin of this activator compound in bacteria is unknown. Here we show that the Slr1334 protein from the unicellular cyanobacterium Synechocysitis sp. PCC 6803 is a Glc-1,6-BP-synthase. Biochemical analysis revealed that Slr1334 efficiently converts fructose-1,6-bisphosphate (Frc-1,6-BP) and α-d-glucose-1-phosphate/α-d-glucose-6-phosphate into Glc-1,6-BP and also catalyzes the reverse reaction. As inferred from phylogenetic analysis, the slr1334 product belongs to a primordial subfamily of αPHMs that is present especially in deeply branching bacteria and also includes human commensals and pathogens. Remarkably, the homologue of Slr1334 in the human gut bacterium Bacteroides salyersiae catalyzes the same reaction, suggesting a conserved and essential role for the members of this αPHM subfamily.
Collapse
|
5
|
Yan K, Stanley M, Kowalski B, Raimi OG, Ferenbach AT, Wei P, Fang W, van Aalten DMF. Genetic validation of Aspergillus fumigatus phosphoglucomutase as a viable therapeutic target in invasive aspergillosis. J Biol Chem 2022; 298:102003. [PMID: 35504355 PMCID: PMC9168620 DOI: 10.1016/j.jbc.2022.102003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/09/2023] Open
Abstract
Aspergillus fumigatus is the causative agent of invasive aspergillosis, an infection with mortality rates of up to 50%. The glucan-rich cell wall of A. fumigatus is a protective structure that is absent from human cells and is a potential target for antifungal treatments. Glucan is synthesized from the donor uridine diphosphate glucose, with the conversion of glucose-6-phosphate to glucose-1-phosphate by the enzyme phosphoglucomutase (PGM) representing a key step in its biosynthesis. Here, we explore the possibility of selectively targeting A. fumigatus PGM (AfPGM) as an antifungal treatment strategy. Using a promoter replacement strategy, we constructed a conditional pgm mutant and revealed that pgm is required for A. fumigatus growth and cell wall integrity. In addition, using a fragment screen, we identified the thiol-reactive compound isothiazolone fragment of PGM as targeting a cysteine residue not conserved in the human ortholog. Furthermore, through scaffold exploration, we synthesized a para-aryl derivative (ISFP10) and demonstrated that it inhibits AfPGM with an IC50 of 2 μM and exhibits 50-fold selectivity over the human enzyme. Taken together, our data provide genetic validation of PGM as a therapeutic target and suggest new avenues for inhibiting AfPGM using covalent inhibitors that could serve as tools for chemical validation.
Collapse
Affiliation(s)
- Kaizhou Yan
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mathew Stanley
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Bartosz Kowalski
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Olawale G Raimi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Andrew T Ferenbach
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Pingzhen Wei
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Wenxia Fang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
6
|
Doello S, Neumann N, Forchhammer K. Regulatory phosphorylation event of phosphoglucomutase 1 tunes its activity to regulate glycogen metabolism. FEBS J 2022; 289:6005-6020. [PMID: 35509259 DOI: 10.1111/febs.16471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/25/2022] [Accepted: 05/03/2022] [Indexed: 12/24/2022]
Abstract
Regulation of glycogen metabolism is of vital importance in organisms of all three kingdoms of life. Although the pathways involved in glycogen synthesis and degradation are well known, many regulatory aspects around the metabolism of this polysaccharide remain undeciphered. Here, we used the unicellular cyanobacterium Synechocystis as a model to investigate how glycogen metabolism is regulated in nitrogen-starved dormant cells, which entirely rely on glycogen catabolism to resume growth upon nitrogen repletion. We identified phosphoglucomutase 1 (PGM1) as a key regulatory point in glycogen metabolism, and post-translational modification as an essential mechanism for controlling its activity. We could show that PGM1 is phosphorylated ata residue in the regulatory latch domain (Ser 47) during nitrogen starvation, which inhibits its activity. Inactivation of PGM1 by phosphorylation at Ser 47 prevents premature degradation of the glycogen stores and appears to be essential for survival of Synechocystis in the dormant state. Remarkably, this regulatory mechanism seems to be evolutionary conserved in PGM1 enzymes, from bacteria to humans.
Collapse
Affiliation(s)
- Sofía Doello
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Germany
| | - Niels Neumann
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Germany
| |
Collapse
|
7
|
Pasomboon P, Chumnanpuen P, E-Kobon T. Comparison of Hyaluronic Acid Biosynthetic Genes From Different Strains of Pasteurella multocida. Bioinform Biol Insights 2021; 15:11779322211027406. [PMID: 34220200 PMCID: PMC8221702 DOI: 10.1177/11779322211027406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022] Open
Abstract
Pasteurella multocida produces a capsule composed of different polysaccharides according to the capsular serotype (A, B, D, E, and F). Hyaluronic acid (HA) is a component of certain capsular types of this bacterium, especially capsular type A. Previously, 2 HA biosynthetic genes from a capsular type A strain were studied for the industrial-scale improvement of HA production. Molecular comparison of these genes across different capsular serotypes of P multocida has not been reported. This study aimed to compare 8 HA biosynthetic genes (pgi, pgm, galU, hyaC, glmS, glmM, glmU, and hyaD) of 22 P multocida strains (A:B:D:F = 6:6:6:4) with those of other organisms using sequence and structural bioinformatics analyses. These 8 genes showed a high level of within-species similarity (98%-99%) compared with other organisms. Only the last gene of 4 strains with capsular type F (HN07, PM70, HNF01, and HNF02) significantly differed from those of other strains (82%). Analysis of amino acid patterns together with phylogenetic results showed that the HA biosynthetic genes of the type A were closely related within the group. The genes in the capsular type F strain were notably similar to those of the capsular type A strain. Protein structural analysis supported structural similarities of the encoded enzymes between the strains of capsular types A, B, D, and F, except for the Pgm, GlmS, GlmU, and HyaD proteins. Our bioinformatics analytic workflow proposed that variations observed within these genes could be useful for genetic engineering–based improvement of hyaluronic acid–producing enzymes.
Collapse
Affiliation(s)
- Pailin Pasomboon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Pramote Chumnanpuen
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand.,Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Teerasak E-Kobon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| |
Collapse
|
8
|
Gustafsson R, Eckhard U, Ye W, Enbody ED, Pettersson M, Jemth P, Andersson L, Selmer M. Structure and Characterization of Phosphoglucomutase 5 from Atlantic and Baltic Herring-An Inactive Enzyme with Intact Substrate Binding. Biomolecules 2020; 10:E1631. [PMID: 33287293 PMCID: PMC7761743 DOI: 10.3390/biom10121631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022] Open
Abstract
Phosphoglucomutase 5 (PGM5) in humans is known as a structural muscle protein without enzymatic activity, but detailed understanding of its function is lacking. PGM5 belongs to the alpha-D-phosphohexomutase family and is closely related to the enzymatically active metabolic enzyme PGM1. In the Atlantic herring, Clupea harengus, PGM5 is one of the genes strongly associated with ecological adaptation to the brackish Baltic Sea. We here present the first crystal structures of PGM5, from the Atlantic and Baltic herring, differing by a single substitution Ala330Val. The structure of PGM5 is overall highly similar to structures of PGM1. The structure of the Baltic herring PGM5 in complex with the substrate glucose-1-phosphate shows conserved substrate binding and active site compared to human PGM1, but both PGM5 variants lack phosphoglucomutase activity under the tested conditions. Structure comparison and sequence analysis of PGM5 and PGM1 from fish and mammals suggest that the lacking enzymatic activity of PGM5 is related to differences in active-site loops that are important for flipping of the reaction intermediate. The Ala330Val substitution does not alter structure or biophysical properties of PGM5 but, due to its surface-exposed location, could affect interactions with protein-binding partners.
Collapse
Affiliation(s)
- Robert Gustafsson
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden; (R.G.); (U.E.)
| | - Ulrich Eckhard
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden; (R.G.); (U.E.)
| | - Weihua Ye
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23 Uppsala, Sweden; (W.Y.); (E.D.E.); (M.P.); (P.J.); (L.A.)
| | - Erik D. Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23 Uppsala, Sweden; (W.Y.); (E.D.E.); (M.P.); (P.J.); (L.A.)
| | - Mats Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23 Uppsala, Sweden; (W.Y.); (E.D.E.); (M.P.); (P.J.); (L.A.)
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23 Uppsala, Sweden; (W.Y.); (E.D.E.); (M.P.); (P.J.); (L.A.)
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23 Uppsala, Sweden; (W.Y.); (E.D.E.); (M.P.); (P.J.); (L.A.)
- Department of Veterinary Integrative Biosciences, Texas A & M University, College Station, TX 77843, USA
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Maria Selmer
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden; (R.G.); (U.E.)
| |
Collapse
|
9
|
Structural basis for substrate and product recognition in human phosphoglucomutase-1 (PGM1) isoform 2, a member of the α-D-phosphohexomutase superfamily. Sci Rep 2020; 10:5656. [PMID: 32221390 PMCID: PMC7101342 DOI: 10.1038/s41598-020-62548-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/13/2020] [Indexed: 01/01/2023] Open
Abstract
Human phosphoglucomutase 1 (PGM1) is an evolutionary conserved enzyme that belongs to the ubiquitous and ancient α-d-phosphohexomutases, a large enzyme superfamily with members in all three domains of life. PGM1 catalyzes the bi-directional interconversion between α-d-glucose 1-phosphate (G1P) and α-d-glucose 6-phosphate (G6P), a reaction that is essential for normal carbohydrate metabolism and also important in the cytoplasmic biosynthesis of nucleotide sugars needed for glycan biosynthesis. Clinical studies have shown that mutations in the PGM1 gene may cause PGM1 deficiency, an inborn error of metabolism previously classified as a glycogen storage disease, and PGM1 deficiency was recently also shown to be a congenital disorder of glycosylation. Here we present three crystal structures of the isoform 2 variant of PGM1, both as a free enzyme and in complex with its substrate and product. The structures show the longer N-terminal of this PGM1 variant, and the ligand complex structures reveal for the first time the detailed structural basis for both G1P substrate and G6P product recognition by human PGM1. We also show that PGM1 and the paralogous gene PGM5 are the results of a gene duplication event in a common ancestor of jawed vertebrates, and, importantly, that both PGM1 isoforms are conserved and of functional significance in all vertebrates. Our finding that PGM1 encodes two equally conserved and functionally important isoforms in the human organism should be taken into account in the evaluation of disease-related missense mutations in patients in the future.
Collapse
|
10
|
Patel V, Black KA, Rhee KY, Helmann JD. Bacillus subtilis PgcA moonlights as a phosphoglucosamine mutase in support of peptidoglycan synthesis. PLoS Genet 2019; 15:e1008434. [PMID: 31589605 PMCID: PMC6797236 DOI: 10.1371/journal.pgen.1008434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/17/2019] [Accepted: 09/18/2019] [Indexed: 01/25/2023] Open
Abstract
Phosphohexomutase superfamily enzymes catalyze the reversible intramolecular transfer of a phosphoryl moiety on hexose sugars. Bacillus subtilis phosphoglucomutase PgcA catalyzes the reversible interconversion of glucose 6-phosphate (Glc-6-P) and glucose 1-phosphate (Glc-1-P), a precursor of UDP-glucose (UDP-Glc). B. subtilis phosphoglucosamine mutase (GlmM) is a member of the same enzyme superfamily that converts glucosamine 6-phosphate (GlcN-6-P) to glucosamine 1-phosphate (GlcN-1-P), a precursor of the amino sugar moiety of peptidoglycan. Here, we present evidence that B. subtilis PgcA possesses activity as a phosphoglucosamine mutase that contributes to peptidoglycan biosynthesis. This activity was made genetically apparent by the synthetic lethality of pgcA with glmR, a positive regulator of amino sugar biosynthesis, which can be specifically suppressed by overproduction of GlmM. A gain-of-function mutation in a substrate binding loop (PgcA G47S) increases this secondary activity and suppresses a glmR mutant. Our results demonstrate that bacterial phosphoglucomutases may possess secondary phosphoglucosamine mutase activity, and that this dual activity may provide some level of functional redundancy for the essential peptidoglycan biosynthesis pathway.
Collapse
Affiliation(s)
- Vaidehi Patel
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
| | - Katherine A. Black
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States of America
| | - Kyu Y. Rhee
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States of America
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
11
|
Tang Y, Cheng F, Feng Z, Jia G, Li C. Stereostructural Elucidation of Glucose Phosphorylation by Raman Optical Activity. J Phys Chem B 2019; 123:7794-7800. [PMID: 31335146 DOI: 10.1021/acs.jpcb.9b05968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phosphorylation of glucose is the prime step in sugar metabolism and energy storage. Two key glucose phosphates are involved, that is, glucose 6-phosphate (G6P) and α-glucose 1-phosphate (αG1P). The chiral conformation of glucose, G6P, and αG1P plays an essential role in enzyme-mediated conversions. However, few techniques were able to give a direct view of the conformational changes from glucose to G6P and αG1P. Here, Raman optical activity (ROA) was used to elucidate the stereochemical evolution of glucose upon phosphorylation. ROA was found to be extremely sensitive to different phosphorylation sites. A characteristic ROA marker of (+)980 cm-1, originated from the phosphate group symmetric stretching vibration, is observed for αG1P with phosphorylation at chiral C1, while no corresponding ROA signal for G6P with phosphorylation at achiral C6 is observed. Phosphorylation-induced gauch-gauch (gg)/gauch-trans (gt) rotamer distribution changes can be sensitively probed by the sign of the ROA band around 1460 cm-1. A positive ROA band at 1465 cm-1 of glucose corresponds to a higher gt ratio, while a negative band at 1455 cm-1 of G6P suggests a dominant gg population, and the disappearance of this ROA band for αG1P indicates a nearly balanced gg/gt distribution. Meanwhile, the phosphorylation at C6 and C1 could cause dramatic reduction of the conformational flexibility of the adjacent C4-OH and C2-OH, respectively. These stereochemical changes revealed by ROA spectra offer a structural basis on the understanding of sugar phosphorylation from the perspective of chirality.
Collapse
Affiliation(s)
- Yuxuan Tang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China.,University of Chinese Academy of Sciences , No. 19A Yuquan Road , Beijing 100049 , China
| | - Feng Cheng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
| | - Zhaochi Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
| | - Guoqing Jia
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
| |
Collapse
|
12
|
Zhu JS, Stiers KM, Soleimani E, Groves BR, Beamer LJ, Jakeman DL. Inhibitory Evaluation of αPMM/PGM from Pseudomonas aeruginosa: Chemical Synthesis, Enzyme Kinetics, and Protein Crystallographic Study. J Org Chem 2019; 84:9627-9636. [DOI: 10.1021/acs.joc.9b01305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jian-She Zhu
- College of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyle M. Stiers
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| | - Ebrahim Soleimani
- College of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Chemistry, Razi University, Kermanshah 67149-67346, Iran
| | - Brandon R. Groves
- College of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Lesa J. Beamer
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| | - David L. Jakeman
- College of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
13
|
Li H, Li J, Jiao X, Li K, Sun Y, Zhou W, Shen Y, Qian J, Chang A, Wang J, Zhu H. Characterization of the biosynthetic pathway of nucleotide sugar precursor UDP-glucose during sphingan WL gum production in Sphingomonas sp. WG. J Biotechnol 2019; 302:1-9. [PMID: 31199955 DOI: 10.1016/j.jbiotec.2019.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/24/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
To elucidate the possible biosynthetic pathway of a precursor UDP-glucose of the sphingan WL gum produced by Sphingomonas sp. WG, two enzymes phosphoglucomutase (PGM) and UDP-glucose pyrophosphorylase (UGPase) were bioinformatically analysed, expressed in Escherichia coli BL21 (DE3) and characterized. PGM was in the phosphoglucomutase/phosphomannomutase subclass and UGPase was predicted to be a UDP-glucose pyrophosphatase in a tetrameric structure. Both enzymes were expressed in soluble form, purified to near homogeneity with high activity at 1159 and 796 U/mg, exhibited folding with reasonable secondary structures, and existed as monomer and tetramer, respectively. The optimal pH and temperature of PGM were 9.0 and 50 °C, respectively, and this protein was stable at pH 8.0 and at temperatures ranging from 40 to 50 °C. The optimal pH and temperature of UGPase were 9.0 and 45 °C, respectively, and the protein was stable at pH 8.0 and at temperatures ranging from 30 to 55 °C. A small-scale one-pot biosynthesis of UDP-glucose by combining PGM and UGPase using glucose-6-phosphate and UTP as substrates was also performed, and formation of UDP-glucose was observed by HPLC detection, which confirmed the biosynthetic pathway of UDP-glucose in vitro. PGM and UGPase will be ideal targets for the metabolic engineering to improve WL gum yields in industrial production.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China
| | - Jing Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China
| | - Xue Jiao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China
| | - Kehui Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China
| | - Yajie Sun
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China
| | - Wanlong Zhou
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jin Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Aiping Chang
- College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China.
| | - Hu Zhu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China; College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China.
| |
Collapse
|
14
|
Qian G, Fei S, Galperin MY. Two forms of phosphomannomutase in gammaproteobacteria: The overlooked membrane-bound form of AlgC is required for twitching motility of Lysobacter enzymogenes. Environ Microbiol 2019; 21:3969-3978. [PMID: 30938049 DOI: 10.1111/1462-2920.14615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lysobacter enzymogenes, a member of Xanthomonadaceae, is a promising tool to control crop-destroying fungal pathogens. One of its key antifungal virulence factors is the type IV pili that are required for twitching motility. Transposon mutagenesis of L. enzymogenes revealed that the production of type IV pili required the presence of the Le2152 gene, which encodes an AlgC-type phosphomannomutase/phosphoglucomutase (PMM). However, in addition to the cytoplasmic PMM domain, the Le2152 gene product contains a ~200-aa N-terminal periplasmic domain that is anchored in the membrane by two transmembrane segments and belongs to the dCache superfamily of periplasmic sensor domains. Sequence analysis identified similar membrane-anchored PMMs, encoded in conserved coaBC-dut-algC gene clusters, in a variety of gammaproteobacteria, either as the sole PMM gene in the entire genome or in addition to the gene encoding the stand-alone enzymatic domain. Previously overlooked N-terminal periplasmic sensor domains were detected in the well-characterized PMMs of Pseudomonas aeruginosa and Xanthomonas campestris, albeit not in the enzymes from Pseudomonas fluorescens, Pseudomonas putida or Azotobacter vinelandii. It appears that after the initial cloning of the enzymatically active soluble part of P. aeruginosa AlgC in 1991, all subsequent studies utilized N-terminally truncated open reading frames. The N-terminal dCache sensor domain of AlgC is predicted to modulate the PMM activity of the cytoplasmic domain in response to as yet unidentified environmental signal(s). AlgC-like membrane-bound PMMs appear to comprise yet another environmental signalling system that regulates the production of type IV pili and potentially other systems in certain gammaproteobacteria.
Collapse
Affiliation(s)
- Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, Nanjing, 210014, China
| | - Shifang Fei
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Ministry of Education, Nanjing, 210014, China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| |
Collapse
|
15
|
Radenkovic S, Bird MJ, Emmerzaal TL, Wong SY, Felgueira C, Stiers KM, Sabbagh L, Himmelreich N, Poschet G, Windmolders P, Verheijen J, Witters P, Altassan R, Honzik T, Eminoglu TF, James PM, Edmondson AC, Hertecant J, Kozicz T, Thiel C, Vermeersch P, Cassiman D, Beamer L, Morava E, Ghesquière B. The Metabolic Map into the Pathomechanism and Treatment of PGM1-CDG. Am J Hum Genet 2019; 104:835-846. [PMID: 30982613 DOI: 10.1016/j.ajhg.2019.03.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/04/2019] [Indexed: 12/26/2022] Open
Abstract
Phosphoglucomutase 1 (PGM1) encodes the metabolic enzyme that interconverts glucose-6-P and glucose-1-P. Mutations in PGM1 cause impairment in glycogen metabolism and glycosylation, the latter manifesting as a congenital disorder of glycosylation (CDG). This unique metabolic defect leads to abnormal N-glycan synthesis in the endoplasmic reticulum (ER) and the Golgi apparatus (GA). On the basis of the decreased galactosylation in glycan chains, galactose was administered to individuals with PGM1-CDG and was shown to markedly reverse most disease-related laboratory abnormalities. The disease and treatment mechanisms, however, have remained largely elusive. Here, we confirm the clinical benefit of galactose supplementation in PGM1-CDG-affected individuals and obtain significant insights into the functional and biochemical regulation of glycosylation. We report here that, by using tracer-based metabolomics, we found that galactose treatment of PGM1-CDG fibroblasts metabolically re-wires their sugar metabolism, and as such replenishes the depleted levels of galactose-1-P, as well as the levels of UDP-glucose and UDP-galactose, the nucleotide sugars that are required for ER- and GA-linked glycosylation, respectively. To this end, we further show that the galactose in UDP-galactose is incorporated into mature, de novo glycans. Our results also allude to the potential of monosaccharide therapy for several other CDG.
Collapse
Affiliation(s)
- Silvia Radenkovic
- Metabolomics Expertise Center, Center for Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Aging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Metabolomics Expertise Center, Department of Oncology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Matthew J Bird
- Metabolomics Expertise Center, Center for Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Aging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Metabolomics Expertise Center, Department of Oncology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Clinical Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Tim L Emmerzaal
- Department of Anatomy, Radboud University Medical Centre, Donders Institute for Brain Cognition and Behaviour, 6535 HR Nijmegen, the Netherlands
| | - Sunnie Y Wong
- Hayward Genetics Center, Tulane University School of Medicine, New Orleans, LA 70112, LA, USA
| | - Catarina Felgueira
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Aging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Kyle M Stiers
- Biochemistry Department, University of Missouri, Columbia, MO 65211, USA
| | - Leila Sabbagh
- Hayward Genetics Center, Tulane University School of Medicine, New Orleans, LA 70112, LA, USA
| | - Nastassja Himmelreich
- Center for Child and Adolescent Medicine, Department I, University of Heidelberg, 69120 Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Petra Windmolders
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Aging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Jan Verheijen
- Center of Individualized Medicine, Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter Witters
- Metabolic Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ruqaiah Altassan
- Metabolic Center, University Hospitals Leuven, 3000 Leuven, Belgium; Medical Genetics Department, Montréal Children's Hospital, McGill University, Montreal, QC H4A3J1, Canada
| | - Tomas Honzik
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12108 Prague, Czech Republic
| | - Tuba F Eminoglu
- Department of Pediatric Metabolism and Nutrition, Ankara University School of Medicine, 06560 Ankara, Turkey
| | - Phillip M James
- Phoenix Children's Medical Group, Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
| | - Andrew C Edmondson
- Division of Human Genetics, Department of Pediatrics, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jozef Hertecant
- Department of Pediatrics, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Tamas Kozicz
- Department of Anatomy, Radboud University Medical Centre, Donders Institute for Brain Cognition and Behaviour, 6535 HR Nijmegen, the Netherlands; Hayward Genetics Center, Tulane University School of Medicine, New Orleans, LA 70112, LA, USA; Center of Individualized Medicine, Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Christian Thiel
- Center for Child and Adolescent Medicine, Department I, University of Heidelberg, 69120 Heidelberg, Germany
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium; Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - David Cassiman
- Laboratory of Hepatology, Department of Chronic Diseases, Metabolism and Aging, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Metabolic Center, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Lesa Beamer
- Biochemistry Department, University of Missouri, Columbia, MO 65211, USA
| | - Eva Morava
- Center of Individualized Medicine, Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Metabolic Center, University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Bart Ghesquière
- Metabolomics Expertise Center, Center for Cancer Biology, VIB Center for Cancer Biology, 3000 Leuven, Belgium; Metabolomics Expertise Center, Department of Oncology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
16
|
Zhu JS, Stiers KM, Winter SM, Garcia AD, Versini AF, Beamer LJ, Jakeman DL. Synthesis, Derivatization, and Structural Analysis of Phosphorylated Mono-, Di-, and Trifluorinated d-Gluco-heptuloses by Glucokinase: Tunable Phosphoglucomutase Inhibition. ACS OMEGA 2019; 4:7029-7037. [PMID: 31179410 PMCID: PMC6547622 DOI: 10.1021/acsomega.9b00008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/08/2019] [Indexed: 05/16/2023]
Abstract
Glucokinase phosphorylated a series of C-1 fluorinated α-d-gluco-heptuloses. These phosphorylated products were discovered to be inhibitors of α-phosphomannomutase/phosphoglucomutase (αPMM/PGM) and β-phosphoglucomutase (βPGM). Inhibition potency with both mutases inversely correlated to the degree of fluorination. Structural analysis with αPMM demonstrated the inhibitor binding to the active site, with the phosphate in the phosphate binding site and the anomeric hydroxyl directed to the catalytic site.
Collapse
Affiliation(s)
- Jian-She Zhu
- College
of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyle M. Stiers
- Biochemistry
Department, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| | - Sherany M. Winter
- College
of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Chemistry, Hogeschool Leiden (UAS Leiden), Zernikedreef 11, CK Leiden 2333, The Netherlands
| | - Anthony D. Garcia
- College
of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
- École
Nationale Supérieure de Chimie de Rennes, 11 Allée de Beaulieu, CS 50837, Rennes Cedex 7 35708, France
| | - Antoine F. Versini
- College
of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
- École
Supérieure de Physique et de Chimie Industrielles de la Ville
de Paris, 10 rue Vauquelin, Paris 75005, France
| | - Lesa J. Beamer
- College
of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
- E-mail: (L.J.B.)
| | - David L. Jakeman
- College
of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- E-mail: (D.L.J.)
| |
Collapse
|
17
|
Stiers KM, Graham AC, Zhu JS, Jakeman DL, Nix JC, Beamer LJ. Structural and dynamical description of the enzymatic reaction of a phosphohexomutase. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:024703. [PMID: 31041362 PMCID: PMC6443537 DOI: 10.1063/1.5092803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Enzymes are known to adopt various conformations at different points along their catalytic cycles. Here, we present a comprehensive analysis of 15 isomorphous, high resolution crystal structures of the enzyme phosphoglucomutase from the bacterium Xanthomonas citri. The protein was captured in distinct states critical to function, including enzyme-substrate, enzyme-product, and enzyme-intermediate complexes. Key residues in ligand recognition and regions undergoing conformational change are identified and correlated with the various steps of the catalytic reaction. In addition, we use principal component analysis to examine various subsets of these structures with two goals: (1) identifying sites of conformational heterogeneity through a comparison of room temperature and cryogenic structures of the apo-enzyme and (2) a priori clustering of the enzyme-ligand complexes into functionally related groups, showing sensitivity of this method to structural features difficult to detect by traditional methods. This study captures, in a single system, the structural basis of diverse substrate recognition, the subtle impact of covalent modification, and the role of ligand-induced conformational change in this representative enzyme of the α-D-phosphohexomutase superfamily.
Collapse
Affiliation(s)
- Kyle M. Stiers
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, USA
| | - Abigail C. Graham
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, USA
| | - Jian-She Zhu
- College of Pharmacy, Dalhousie University, 5968 College Street, Halifax, Nova Scotia B3H 3J5, Canada
| | | | - Jay C. Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Lesa J. Beamer
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, USA
| |
Collapse
|
18
|
Evidence for substrate-assisted catalysis in N-acetylphosphoglucosamine mutase. Biochem J 2018; 475:2547-2557. [PMID: 29967067 PMCID: PMC6096347 DOI: 10.1042/bcj20180172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 11/17/2022]
Abstract
N-acetylphosphoglucosamine mutase (AGM1) is a key component of the hexosamine biosynthetic pathway that produces UDP-GlcNAc, an essential precursor for a wide range of glycans in eukaryotes. AGM belongs to the α-d-phosphohexomutase metalloenzyme superfamily and catalyzes the interconversion of N-acetylglucosamine-6-phosphate (GlcNAc-6P) to N-acetylglucosamine-1-phosphate (GlcNAc-1P) through N-acetylglucosamine-1,6-bisphosphate (GlcNAc-1,6-bisP) as the catalytic intermediate. Although there is an understanding of the phosphoserine-dependent catalytic mechanism at enzymatic and structural level, the identity of the requisite catalytic base in AGM1/phosphoglucomutases is as yet unknown. Here, we present crystal structures of a Michaelis complex of AGM1 with GlcNAc-6P and Mg2+, and a complex of the inactive Ser69Ala mutant together with glucose-1,6-bisphosphate (Glc-1,6-bisP) that represents key snapshots along the reaction co-ordinate. Together with mutagenesis, these structures reveal that the phosphate group of the hexose-1,6-bisP intermediate may act as the catalytic base.
Collapse
|
19
|
Stiers KM, Beamer LJ. A Hotspot for Disease-Associated Variants of Human PGM1 Is Associated with Impaired Ligand Binding and Loop Dynamics. Structure 2018; 26:1337-1345.e3. [PMID: 30122451 DOI: 10.1016/j.str.2018.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/18/2018] [Accepted: 07/21/2018] [Indexed: 12/20/2022]
Abstract
Human phosphoglucomutase 1 (PGM1) plays a central role in cellular glucose homeostasis, catalyzing the conversion of glucose 1-phosphate and glucose 6-phosphate. Recently, missense variants of this enzyme were identified as causing an inborn error of metabolism, PGM1 deficiency, with features of a glycogen storage disease and a congenital disorder of glycosylation. Previous studies of selected PGM1 variants have revealed various mechanisms for enzyme dysfunction, including regions of structural disorder and side-chain rearrangements within the active site. Here, we examine variants within a substrate-binding loop in domain 4 (D4) of PGM1 that cause extreme impairment of activity. Biochemical, structural, and computational studies demonstrate multiple detrimental impacts resulting from these variants, including loss of conserved ligand-binding interactions and reduced mobility of the D4 loop, due to perturbation of its conformational ensemble. These potentially synergistic effects make this conserved ligand-binding loop a hotspot for disease-related variants in PGM1 and related enzymes.
Collapse
Affiliation(s)
- Kyle M Stiers
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Lesa J Beamer
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA.
| |
Collapse
|
20
|
Lotfy WA, Atalla RG, Sabra WA, El-Helow ER. Expression of extracellular polysaccharides and proteins by clinical isolates of Pseudomonas aeruginosa in response to environmental conditions. Int Microbiol 2018; 21:129-142. [PMID: 30810953 DOI: 10.1007/s10123-018-0010-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/13/2018] [Accepted: 05/14/2018] [Indexed: 11/25/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa causes chronic respiratory infections in patients with cystic fibrosis (CF). Persistence of this bacterium is attributed to its ability to form biofilms which rely on an extracellular polymeric substance matrix. Extracellular polysaccharides (EPS) and secreted proteins are key matrix components of P. aeruginosa biofilms. Recently, nebulized magnesium sulfate has been reported as a significant bronchodilator for asthmatic patients including CF. However, the impact of magnesium sulfate on the virulence effect of P. aeruginosa is lacking. In this report, we investigated the influence of magnesium sulfate and other environmental factors on the synthesis of alginate and secretion of proteins by a mucoid and a non-mucoid strain of P. aeruginosa, respectively. By applying the Plackett-Burman and Box-Behnken experimental designs, we found that phosphates (6.0 g/l), ammonium sulfate (4.0 g/l), and trace elements (0.6 mg/l) markedly supported alginate production by the mucoid strain. However, ferrous sulfate (0.3 mg/l), magnesium sulfate (0.02 g/l), and phosphates (6.0 g/l) reinforced the secretion of proteins by the non-mucoid strain.
Collapse
Affiliation(s)
- Walid A Lotfy
- Microbiology Department, Faculty of Dentistry, Pharos University in Alexandria, Alexandria, Egypt.
| | - Ramy G Atalla
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Wael A Sabra
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ehab R El-Helow
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
21
|
Stiers KM, Beamer LJ. Assessment and Impacts of Phosphorylation on Protein Flexibility of the α-d-Phosphohexomutases. Methods Enzymol 2018; 607:241-267. [DOI: 10.1016/bs.mie.2018.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Muenks AG, Stiers KM, Beamer LJ. Sequence-structure relationships, expression profiles, and disease-associated mutations in the paralogs of phosphoglucomutase 1. PLoS One 2017; 12:e0183563. [PMID: 28837627 PMCID: PMC5570346 DOI: 10.1371/journal.pone.0183563] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022] Open
Abstract
The key metabolic enzyme phosphoglucomutase 1 (PGM1) controls glucose homeostasis in most human cells. Four proteins related to PGM1, known as PGM2, PGM2L1, PGM3 and PGM5, and referred to herein as paralogs, are encoded in the human genome. Although all members of the same enzyme superfamily, these proteins have distinct substrate preferences and different functional roles. The recent association of PGM1 and PGM3 with inherited enzyme deficiencies prompts us to revisit sequence-structure and other relationships among the PGM1 paralogs, which are understudied despite their importance in human biology. Using currently available sequence, structure, and expression data, we investigated evolutionary relationships, tissue-specific expression profiles, and the amino acid preferences of key active site motifs. Phylogenetic analyses indicate both ancient and more recent divergence between the different enzyme sub-groups comprising the human paralogs. Tissue-specific protein and RNA expression profiles show widely varying patterns for each paralog, providing insight into function and disease pathology. Multiple sequence alignments confirm high conservation of key active site regions, but also reveal differences related to substrate specificity. In addition, we find that sequence variants of PGM2, PGM2L1, and PGM5 verified in the human population affect residues associated with disease-related mutants in PGM1 or PGM3. This suggests that inherited diseases related to dysfunction of these paralogs will likely occur in humans.
Collapse
Affiliation(s)
- Andrew G Muenks
- Biochemistry Department, University of Missouri, Columbia, Missouri, United States of America
| | - Kyle M Stiers
- Biochemistry Department, University of Missouri, Columbia, Missouri, United States of America
| | - Lesa J Beamer
- Biochemistry Department, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
23
|
Multiple Ligand-Bound States of a Phosphohexomutase Revealed by Principal Component Analysis of NMR Peak Shifts. Sci Rep 2017; 7:5343. [PMID: 28706231 PMCID: PMC5509744 DOI: 10.1038/s41598-017-05557-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/31/2017] [Indexed: 11/08/2022] Open
Abstract
Enzymes sample multiple conformations during their catalytic cycles. Chemical shifts from Nuclear Magnetic Resonance (NMR) are hypersensitive to conformational changes and ensembles in solution. Phosphomannomutase/phosphoglucomutase (PMM/PGM) is a ubiquitous four-domain enzyme that catalyzes phosphoryl transfer across phosphohexose substrates. We compared states the enzyme visits during its catalytic cycle. Collective responses of Pseudomonas PMM/PGM to phosphosugar substrates and inhibitor were assessed using NMR-detected titrations. Affinities were estimated from binding isotherms obtained by principal component analysis (PCA). Relationships among phosphosugar-enzyme associations emerge from PCA comparisons of the titrations. COordiNated Chemical Shifts bEhavior (CONCISE) analysis provides novel discrimination of three ligand-bound states of PMM/PGM harboring a mutation that suppresses activity. Enzyme phosphorylation and phosphosugar binding appear to drive the open dephosphorylated enzyme to the free phosphorylated state, and on toward ligand-closed states. Domain 4 appears central to collective responses to substrate and inhibitor binding. Hydrogen exchange reveals that binding of a substrate analogue enhances folding stability of the domains to a uniform level, establishing a globally unified structure. CONCISE and PCA of NMR spectra have discovered novel states of a well-studied enzyme and appear ready to discriminate other enzyme and ligand binding states.
Collapse
|
24
|
Stiers KM, Muenks AG, Beamer LJ. Biology, Mechanism, and Structure of Enzymes in the α-d-Phosphohexomutase Superfamily. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 109:265-304. [PMID: 28683921 PMCID: PMC5802415 DOI: 10.1016/bs.apcsb.2017.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Enzymes in the α-d-phosphohexomutases superfamily catalyze the reversible conversion of phosphosugars, such as glucose 1-phosphate and glucose 6-phosphate. These reactions are fundamental to primary metabolism across the kingdoms of life and are required for a myriad of cellular processes, ranging from exopolysaccharide production to protein glycosylation. The subject of extensive mechanistic characterization during the latter half of the 20th century, these enzymes have recently benefitted from biophysical characterization, including X-ray crystallography, NMR, and hydrogen-deuterium exchange studies. This work has provided new insights into the unique catalytic mechanism of the superfamily, shed light on the molecular determinants of ligand recognition, and revealed the evolutionary conservation of conformational flexibility. Novel associations with inherited metabolic disease and the pathogenesis of bacterial infections have emerged, spurring renewed interest in the long-appreciated functional roles of these enzymes.
Collapse
Affiliation(s)
| | | | - Lesa J Beamer
- University of Missouri, Columbia, MO, United States.
| |
Collapse
|
25
|
Stiers KM, Graham AC, Kain BN, Beamer LJ. Asp263 missense variants perturb the active site of human phosphoglucomutase 1. FEBS J 2017; 284:937-947. [PMID: 28117557 DOI: 10.1111/febs.14025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/31/2016] [Accepted: 01/19/2017] [Indexed: 11/26/2022]
Abstract
The enzyme phosphoglucomutase 1 (PGM1) plays a central role in glucose homeostasis. Clinical studies have identified mutations in human PGM1 as the cause of PGM1 deficiency, an inherited metabolic disease. One residue, Asp263, has two known variants associated with disease: D263G and D263Y. Biochemical studies have shown that these mutants are soluble and well folded, but have significant catalytic impairment. To better understand this catalytic defect, we determined crystal structures of these two missense variants, both of which reveal a similar and indirect structural change due to the loss of a conserved salt bridge between Asp263 and Arg293. The arginine reorients into the active site, making interactions with residues responsible for substrate binding. Biochemical studies also show that the catalytic phosphoserine of the missense variants is more stable to hydrolysis relative to wild-type enzyme. The structural perturbation resulting from mutation of this single amino acid reveals the molecular mechanism underlying PGM1 deficiency in these missense variants. DATABASE Structural data are available in the PDB under the accession numbers 5JN5 and 5TR2.
Collapse
Affiliation(s)
- Kyle M Stiers
- Biochemistry Department, University of Missouri, Columbia, MO, USA
| | - Abigail C Graham
- Biochemistry Department, University of Missouri, Columbia, MO, USA
| | - Bailee N Kain
- Biochemistry Department, University of Missouri, Columbia, MO, USA
| | - Lesa J Beamer
- Biochemistry Department, University of Missouri, Columbia, MO, USA
| |
Collapse
|
26
|
Lee Y, Furdui C, Beamer LJ. Data on the phosphorylation state of the catalytic serine of enzymes in the α-D-phosphohexomutase superfamily. Data Brief 2016; 10:398-405. [PMID: 28050582 PMCID: PMC5192239 DOI: 10.1016/j.dib.2016.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 01/28/2023] Open
Abstract
Most enzymes in the α-D-phosphohexomutase superfamily catalyze the reversible conversion of 1- to 6-phosphosugars. They play important roles in carbohydrate and sugar nucleotide metabolism, and participate in the biosynthesis of polysaccharides, glycolipids, and other exoproducts. Mutations in genes encoding these enzymes are associated with inherited metabolic diseases in humans, including glycogen storage disease and congenital disorders of glycosylation. Enzymes in the superfamily share a highly conserved active site serine that participates in the multi-step phosphoryl transfer reaction. Here we provide data on the effects of various phosphosugar ligands on the phosphorylation of this serine, as monitored by electrospray ionization mass spectrometry (ESI-MS) data on the intact proteins. We also show data on the longevity of the phospho-enzyme under various solution conditions in one member of the superfamily from Pseudomonas aeruginosa, and present inhibition data for several ligands. These data should be useful for the production of homogeneous samples of phosphorylated or unphosphorylated proteins, which are essential for biophysical characterization of these enzymes.
Collapse
Affiliation(s)
- Yingying Lee
- Departments of Biochemistry and Chemistry, University of Missouri-Columbia, Columbia, MO 65211, United States
| | - Cristina Furdui
- Department of Internal Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Lesa J. Beamer
- Departments of Biochemistry and Chemistry, University of Missouri-Columbia, Columbia, MO 65211, United States
- Corresponding author.
| |
Collapse
|
27
|
Goto LS, Vessoni Alexandrino A, Malvessi Pereira C, Silva Martins C, D'Muniz Pereira H, Brandão-Neto J, Marques Novo-Mansur MT. Structural and functional characterization of the phosphoglucomutase from Xanthomonas citri subsp. citri. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1658-1666. [PMID: 27567706 DOI: 10.1016/j.bbapap.2016.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 01/22/2023]
Abstract
Citrus canker, caused by bacteria Xanthomonas citri subsp. citri, can affect all economically important varieties of citrus. Studying Xanthomonas genes related to the invasive capacity may improve the knowledge on how this works and ultimately use the information to avoid the disease. Some annotated genes from Xanthomonas citri subsp. citri published genome are addressed to an interesting class of genes named "pathogenicity, virulence and adaptation". One of them is xanA, which encodes a predicted phosphoglucomutase. Phosphoglucomutases are ubiquitous enzymes among the living kingdoms that play roles in carbohydrate metabolism, catalyzing the reversible conversion of 1- to 6-phosphoglucose. In Xanthomonas, phosphoglucomutase activity is required to synthesize precursors of the pathogenesis-related polysaccharide xanthan. In this work, a characterization of this gene product is presented by structural and functional studies. Molecular cloning was used for heterologous expression and deletion of xanA. A Michaelis-Menten kinetics model was obtained using the recombinant protein. The protein structure was also determined by X-ray diffraction on the recombinant enzyme substrate-free, bound to glucose-1,6-biphosphate and to glucose-1-phosphate. Deletion of xanA was done with a suicide plasmid construct and the obtained mutant was tested for pathogenic capacity. This study is the first describing the properties of the Xanthomonas citri subsp. citri phosphoglucomutase.
Collapse
Affiliation(s)
- Leandro Seiji Goto
- Laboratório de Bioquímica e Biologia Molecular Aplicada - LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| | - André Vessoni Alexandrino
- Laboratório de Bioquímica e Biologia Molecular Aplicada - LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Camila Malvessi Pereira
- Laboratório de Bioquímica e Biologia Molecular Aplicada - LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Carla Silva Martins
- Laboratório de Bioquímica e Biologia Molecular Aplicada - LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Humberto D'Muniz Pereira
- Laboratório de Biologia Estrutural, Grupo de Cristalografia, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - José Brandão-Neto
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Maria Teresa Marques Novo-Mansur
- Laboratório de Bioquímica e Biologia Molecular Aplicada - LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
28
|
Stiers KM, Kain BN, Graham AC, Beamer LJ. Induced Structural Disorder as a Molecular Mechanism for Enzyme Dysfunction in Phosphoglucomutase 1 Deficiency. J Mol Biol 2016; 428:1493-505. [PMID: 26972339 PMCID: PMC5802404 DOI: 10.1016/j.jmb.2016.02.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 12/11/2022]
Abstract
Human phosphoglucomutase 1 (PGM1) plays a central role in cellular glucose homeostasis, mediating the switch between glycolysis and gluconeogenesis through the conversion of glucose 1-phosphate and glucose 6-phosphate. Recent clinical studies have identified mutations in this enzyme as the cause of PGM1 deficiency, an inborn error of metabolism classified as both a glycogen storage disease and a congenital disorder of glycosylation. Reported here are the first crystal structures of two disease-related missense variants of PGM1, along with the structure of the wild-type enzyme. Two independent glycine-to-arginine substitutions (G121R and G291R), both affecting key active site loops of PGM1, are found to induce regions of structural disorder, as evidenced by a nearly complete loss of electron density for as many as 23 aa. The disordered regions are not contiguous in sequence to the site of mutation, and even cross domain boundaries. Other structural rearrangements include changes in the conformations of loops and side chains, some of which occur nearly 20 Å away from the site of mutation. The induced structural disorder is correlated with increased sensitivity to proteolysis and lower-resolution diffraction, particularly for the G291R variant. Examination of the multi-domain effects of these G➔R mutations establishes a correlation between interdomain interfaces of the enzyme and missense variants of PGM1 associated with disease. These crystal structures provide the first insights into the structural basis of enzyme dysfunction in PGM1 deficiency and highlight a growing role for biophysical characterization of proteins in the field of precision medicine.
Collapse
Affiliation(s)
- Kyle M Stiers
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Bailee N Kain
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Abigail C Graham
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA
| | - Lesa J Beamer
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA.
| |
Collapse
|
29
|
Waugh B, Sen U, Banerjee R. Crystal structure of phosphoglucomutase from Leishmania major at 3.5 Å resolution. Biochimie 2015; 121:102-11. [PMID: 26607241 DOI: 10.1016/j.biochi.2015.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
Abstract
The crystal structure of phosphoglucomutase (LmPGM) from the parasite Leishmania major has been solved at 3.5 Å resolution. Although the active form of the enzyme is monomeric in solution, four molecules (A, B, C, D) were found in the asymmetric unit, of which the pairs (A,D) and (B,C) were of identical inter-subunit geometry. The parasitic enzyme constituted of four domains exhibited the canonical 'heart' shape of the protein, with domains I to III having a conserved α|β core, while the fourth (IV) domain being structurally distinct from the rest. Conformational variability of the IVth domain, postulated to be responsible for the catalytic function of the enzyme has been studied by normal mode analysis (NMA) and the conformational features responsible for domain movement in the 'hinge region' analyzed in detail. Although the active site of phosphoglucomutase is highly conserved from parasite to human, initial calculations show that a ligand binding pocket could exist near the hinge region, which is unique to the parasite. The enzymatic parameters of LmPGM have been determined and compared with other PGMs from orthologous species in addition to elucidating its mechanism of action by docking the substrate, intermediate onto the active site.
Collapse
Affiliation(s)
- Barnali Waugh
- Saha Institute of Nuclear Physics, Crystallography and Molecular Biology Division, Sector 1, Block AF, Bidhannagar, Kolkata, West Bengal, India.
| | - Udayaditya Sen
- Saha Institute of Nuclear Physics, Crystallography and Molecular Biology Division, Sector 1, Block AF, Bidhannagar, Kolkata, West Bengal, India.
| | - Rahul Banerjee
- Saha Institute of Nuclear Physics, Crystallography and Molecular Biology Division, Sector 1, Block AF, Bidhannagar, Kolkata, West Bengal, India.
| |
Collapse
|
30
|
Xu J, Lee Y, Beamer LJ, Van Doren SR. Phosphorylation in the catalytic cleft stabilizes and attracts domains of a phosphohexomutase. Biophys J 2015; 108:325-37. [PMID: 25606681 DOI: 10.1016/j.bpj.2014.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 11/22/2014] [Accepted: 12/03/2014] [Indexed: 11/18/2022] Open
Abstract
Phosphorylation can modulate the activities of enzymes. The phosphoryl donor in the catalytic cleft of α-D-phosphohexomutases is transiently dephosphorylated while the reaction intermediate completes a 180° reorientation within the cleft. The phosphorylated form of 52 kDa bacterial phosphomannomutase/phosphoglucomutase is less accessible to dye or protease, more stable to chemical denaturation, and widely stabilized against NMR-detected hydrogen exchange across the core of domain 3 to juxtaposed domain 4 (each by ≥ 1.3 kcal/mol) and parts of domains 1 and 2. However, phosphorylation accelerates hydrogen exchange in specific regions of domains 1 and 2, including a metal-binding residue in the active site. Electrostatic field lines reveal attraction across the catalytic cleft between phosphorylated Ser-108 and domain 4, but repulsion when Ser-108 is dephosphorylated. Molecular dynamics (MD) simulated the dephosphorylated form to be expanded due to enhanced rotational freedom of domain 4. The contacts and fluctuations of the MD trajectories enabled correct simulation of more than 80% of sites that undergo either protection or deprotection from hydrogen exchange due to phosphorylation. Electrostatic attraction in the phosphorylated enzyme accounts for 1) domain 4 drawing closer to domains 1 and 3; 2) decreased accessibility; and 3) increased stability within these domains. The electrostriction due to phosphorylation may help capture substrate, whereas the opening of the cleft upon transient dephosphorylation allows rotation of the intermediate. The long-range effects of phosphorylation on hydrogen exchange parallel reports on protein kinases, suggesting a conceptual link among these multidomain, phosphoryl transfer enzymes.
Collapse
Affiliation(s)
- Jia Xu
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Yingying Lee
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Lesa J Beamer
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | | |
Collapse
|
31
|
Bacik JP, Klesmith JR, Whitehead TA, Jarboe LR, Unkefer CJ, Mark BL, Michalczyk R. Producing glucose 6-phosphate from cellulosic biomass: structural insights into levoglucosan bioconversion. J Biol Chem 2015; 290:26638-48. [PMID: 26354439 DOI: 10.1074/jbc.m115.674614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 11/06/2022] Open
Abstract
The most abundant carbohydrate product of cellulosic biomass pyrolysis is the anhydrosugar levoglucosan (1,6-anhydro-β-d-glucopyranose), which can be converted to glucose 6-phosphate by levoglucosan kinase (LGK). In addition to the canonical kinase phosphotransfer reaction, the conversion requires cleavage of the 1,6-anhydro ring to allow ATP-dependent phosphorylation of the sugar O6 atom. Using x-ray crystallography, we show that LGK binds two magnesium ions in the active site that are additionally coordinated with the nucleotide and water molecules to result in ideal octahedral coordination. To further verify the metal binding sites, we co-crystallized LGK in the presence of manganese instead of magnesium and solved the structure de novo using the anomalous signal from four manganese atoms in the dimeric structure. The first metal is required for catalysis, whereas our work suggests that the second is either required or significantly promotes the catalytic rate. Although the enzyme binds its sugar substrate in a similar orientation to the structurally related 1,6-anhydro-N-acetylmuramic acid kinase (AnmK), it forms markedly fewer bonding interactions with the substrate. In this orientation, the sugar is in an optimal position to couple phosphorylation with ring cleavage. We also observed a second alternate binding orientation for levoglucosan, and in these structures, ADP was found to bind with lower affinity. These combined observations provide an explanation for the high Km of LGK for levoglucosan. Greater knowledge of the factors that contribute to the catalytic efficiency of LGK can be used to improve applications of this enzyme for levoglucosan-derived biofuel production.
Collapse
Affiliation(s)
- John-Paul Bacik
- From the Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545,
| | | | - Timothy A Whitehead
- Chemical Engineering and Materials Science, and Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan 48824
| | - Laura R Jarboe
- the Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, and
| | - Clifford J Unkefer
- From the Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Brian L Mark
- the Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ryszard Michalczyk
- From the Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| |
Collapse
|
32
|
Beamer LJ. Mutations in hereditary phosphoglucomutase 1 deficiency map to key regions of enzyme structure and function. J Inherit Metab Dis 2015; 38:243-56. [PMID: 25168163 DOI: 10.1007/s10545-014-9757-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/08/2014] [Accepted: 07/25/2014] [Indexed: 01/11/2023]
Abstract
Recent studies have identified phosphoglucomutase 1 (PGM1) deficiency as an inherited metabolic disorder in humans. PGM1 deficiency is classified as both a muscle glycogenosis (type XIV) and a congenital disorder of glycosylation of types I and II. Affected patients show multiple disease phenotypes, reflecting the central role of the enzyme in glucose homeostasis, where it catalyzes the interconversion of glucose 1-phosphate and glucose 6-phosphate. The influence of PGM1 deficiency on protein glycosylation patterns is also widespread, affecting both biosynthesis and processing of glycans and their precursors. To date, 21 different mutations involved in PGM1 deficiency have been identified, including 13 missense mutations resulting in single amino acid changes. Growing clinical interest in PGM1 deficiency prompts a review of the molecular context of these mutations in the three-dimensional structure of the protein. Here the known crystal structure of PGM from rabbit (97 % sequence identity to human) is used to analyze the mutations associated with disease and find that many map to regions with clear significance to enzyme function. In particular, amino acids in and around the active site cleft are frequently involved, including regions responsible for catalysis, binding of the metal ion required for activity, and interactions with the phosphosugar substrate. Several of the known mutations, however, are distant from the active site and appear to manifest their effects indirectly. An understanding of how the different mutations that cause PGM1 deficiency affect enzyme structure and function is foundational to providing clinical prognosis and the development of effective treatment strategies.
Collapse
Affiliation(s)
- Lesa J Beamer
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA,
| |
Collapse
|
33
|
Characterization of the algC gene expression pattern in the multidrug resistant Acinetobacter baumannii AIIMS 7 and correlation with biofilm development on abiotic surface. ScientificWorldJournal 2014; 2014:593546. [PMID: 25544957 PMCID: PMC4269089 DOI: 10.1155/2014/593546] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 01/06/2023] Open
Abstract
Relative quantification of algC gene expression was evaluated in the multidrug resistant strain Acinetobacter baumannii AIIMS 7 biofilm (3 to 96 h, on polystyrene surface) compared to the planktonic counterparts. Comparison revealed differential algC expression pattern with maximum 81.59-fold increase in biofilm cells versus 3.24-fold in planktonic cells (P < 0.05). Expression levels strongly correlated with specific biofilm stages (scale of 3 to 96 h), coinciding maximum at initial surface attachment stage (9 h) and biofilm maturation stage (48 h). Cloning, heterologous expression, and bioinformatics analyses indicated algC gene product as the bifunctional enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) of ∼ 53 kDa size, which augmented biofilms significantly in algC clones compared to controls (lacking algC gene), further localized by scanning electron microscopy. Moreover, molecular dynamics analysis on the three-dimensional structure of PMM/PGM (simulated up to 10 ns) revealed enzyme structure as stable and similar to that in P. aeruginosa (synthesis of alginate and lipopolysaccharide core) and involved in constitution of biofilm EPS (extracellular polymeric substances). Our observation on differential expression pattern of algC having strong correlation with important biofilm stages, scanning electron-microscopic evidence of biofilm augmentation taken together with predictive enzyme functions via molecular dynamic (MD) simulation, proposes a new basis of A. baumannii AIIMS 7 biofilm development on inanimate surfaces.
Collapse
|
34
|
Wei Y, Marcink TC, Xu J, Sirianni AG, Sarma AVS, Prior SH, Beamer LJ, Van Doren SR. Chemical shift assignments of domain 4 from the phosphohexomutase from Pseudomonas aeruginosa suggest that freeing perturbs its coevolved domain interface. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:329-333. [PMID: 23893395 PMCID: PMC3905050 DOI: 10.1007/s12104-013-9511-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/18/2013] [Indexed: 06/02/2023]
Abstract
A domain needed for the catalytic efficiency of an enzyme model of simple processivity and domain-domain interactions has been characterized by NMR. This domain 4 from phosphomannomutase/phosphoglucomutase (PMM/PGM) closes upon glucose phosphate and mannose phosphate ligands in the active site, and can modestly reconstitute activity of enzyme truncated to domains 1-3. This enzyme supports biosynthesis of the saccharide-derived virulence factors (rhamnolipids, lipopolysaccharides, and alginate) of the opportunistic bacterial pathogen Pseudomonas aeruginosa. (1)H, (13)C, and (15)N NMR chemical shift assignments of domain 4 of PMM/PGM suggest preservation and independence of its structure when separated from domains 1-3. The face of domain 4 that packs with domain 3 is perturbed in NMR spectra without disrupting this fold. The perturbed residues overlap both the most highly coevolved positions in the interface and residues lining a cavity at the domain interface.
Collapse
|
35
|
Jin Y, Bhattasali D, Pellegrini E, Forget SM, Baxter NJ, Cliff MJ, Bowler MW, Jakeman DL, Blackburn GM, Waltho JP. α-Fluorophosphonates reveal how a phosphomutase conserves transition state conformation over hexose recognition in its two-step reaction. Proc Natl Acad Sci U S A 2014; 111:12384-9. [PMID: 25104750 PMCID: PMC4151737 DOI: 10.1073/pnas.1402850111] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
β-Phosphoglucomutase (βPGM) catalyzes isomerization of β-D-glucose 1-phosphate (βG1P) into D-glucose 6-phosphate (G6P) via sequential phosphoryl transfer steps using a β-D-glucose 1,6-bisphosphate (βG16BP) intermediate. Synthetic fluoromethylenephosphonate and methylenephosphonate analogs of βG1P deliver novel step 1 transition state analog (TSA) complexes for βPGM, incorporating trifluoromagnesate and tetrafluoroaluminate surrogates of the phosphoryl group. Within an invariant protein conformation, the β-D-glucopyranose ring in the βG1P TSA complexes (step 1) is flipped over and shifted relative to the G6P TSA complexes (step 2). Its equatorial hydroxyl groups are hydrogen-bonded directly to the enzyme rather than indirectly via water molecules as in step 2. The (C)O-P bond orientation for binding the phosphate in the inert phosphate site differs by ∼ 30° between steps 1 and 2. By contrast, the orientations for the axial O-Mg-O alignment for the TSA of the phosphoryl group in the catalytic site differ by only ∼ 5°, and the atoms representing the five phosphorus-bonded oxygens in the two transition states (TSs) are virtually superimposable. The conformation of βG16BP in step 1 does not fit into the same invariant active site for step 2 by simple positional interchange of the phosphates: the TS alignment is achieved by conformational change of the hexose rather than the protein.
Collapse
Affiliation(s)
- Yi Jin
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Debabrata Bhattasali
- Department of Chemistry, College of Pharmacy, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Erika Pellegrini
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom; Structural Biology Group, European Synchrotron Radiation Facility, 38042 Grenoble, Cedex 9, France; European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, Cedex 9, France
| | - Stephanie M Forget
- Department of Chemistry, College of Pharmacy, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Nicola J Baxter
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Matthew J Cliff
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom; Manchester Institute of Biotechnology, Manchester M1 7DN, United Kingdom; and
| | - Matthew W Bowler
- Structural Biology Group, European Synchrotron Radiation Facility, 38042 Grenoble, Cedex 9, France; European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, Cedex 9, France; Unit of Virus Host Cell Interactions, University of Grenoble Alpes-European Molecular Biology Laboratory-Centre National de la Recherche Scientifique, 38042 Grenoble, Cedex 9, France
| | - David L Jakeman
- Department of Chemistry, College of Pharmacy, Dalhousie University, Halifax, NS, Canada B3H 4R2;
| | - G Michael Blackburn
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom;
| | - Jonathan P Waltho
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom; Manchester Institute of Biotechnology, Manchester M1 7DN, United Kingdom; and
| |
Collapse
|
36
|
Laverty G, Gorman SP, Gilmore BF. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation. Pathogens 2014; 3:596-632. [PMID: 25438014 PMCID: PMC4243431 DOI: 10.3390/pathogens3030596] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.
Collapse
Affiliation(s)
- Garry Laverty
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Sean P Gorman
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Brendan F Gilmore
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
37
|
Lee Y, Villar MT, Artigues A, Beamer LJ. Promotion of enzyme flexibility by dephosphorylation and coupling to the catalytic mechanism of a phosphohexomutase. J Biol Chem 2014; 289:4674-82. [PMID: 24403075 DOI: 10.1074/jbc.m113.532226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) from Pseudomonas aeruginosa catalyzes an intramolecular phosphoryl transfer across its phosphosugar substrates, which are precursors in the synthesis of exoproducts involved in bacterial virulence. Previous structural studies of PMM/PGM have established a key role for conformational change in its multistep reaction, which requires a dramatic 180° reorientation of the intermediate within the active site. Here hydrogen-deuterium exchange by mass spectrometry and small angle x-ray scattering were used to probe the conformational flexibility of different forms of PMM/PGM in solution, including its active, phosphorylated state and the unphosphorylated state that occurs transiently during the catalytic cycle. In addition, the effects of ligand binding were assessed through use of a substrate analog. We found that both phosphorylation and binding of ligand produce significant effects on deuterium incorporation. Phosphorylation of the conserved catalytic serine has broad effects on residues in multiple domains and is supported by small angle x-ray scattering data showing that the unphosphorylated enzyme is less compact in solution. The effects of ligand binding are generally manifested near the active site cleft and at a domain interface that is a site of conformational change. These results suggest that dephosphorylation of the enzyme may play two critical functional roles: a direct role in the chemical step of phosphoryl transfer and secondly through propagation of structural flexibility. We propose a model whereby increased enzyme flexibility facilitates the reorientation of the reaction intermediate, coupling changes in structural dynamics with the unique catalytic mechanism of this enzyme.
Collapse
|
38
|
Hu D, Liu B, Dijkshoorn L, Wang L, Reeves PR. Diversity in the major polysaccharide antigen of Acinetobacter baumannii assessed by DNA sequencing, and development of a molecular serotyping scheme. PLoS One 2013; 8:e70329. [PMID: 23922982 PMCID: PMC3726653 DOI: 10.1371/journal.pone.0070329] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/17/2013] [Indexed: 11/18/2022] Open
Abstract
We have sequenced the gene clusters for type strains of the Acinetobacter baumannii serotyping scheme developed in the 1990s, and used the sequences to better understand diversity in surface polysaccharides of the genus. We obtained genome sequences for 27 available serovar type strains, and identified 25 polysaccharide gene cluster sequences. There are structures for 12 of these polysaccharides, and in general the genes present are appropriate to the structure where known. This greatly facilitates interpretation. We also find 53 different glycosyltransferase genes, and for 7 strains can provisionally allocate specific genes to all linkages. We identified primers that will distinguish the 25 sequence forms by PCR or microarray, or alternatively the genes can be used to determine serotype by “molecular serology”. We applied the latter to 190 Acinetobacter genome-derived gene-clusters, and found 76 that have one of the 25 gene-cluster forms. We also found novel gene clusters and added 52 new gene-cluster sequence forms with different wzy genes and different gene contents. Altogether, the strains that have one of the original 25 sequence forms include 98 A. baumannii (24 from our strains) and 5 A. nosocomialis (3 from our strains), whereas 32 genomes from 12 species other than A. baumannii or A. nosocomialis, all have new sequence forms. One of the 25 serovar type sequences is found to be in European clone I (EC I), 2 are in EC II but none in EC III. The public genome strains add an additional 52 new sequence forms, and also bring the number found in EC I to 5, in EC II to 9 and in EC III to 2.
Collapse
Affiliation(s)
- Dalong Hu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Bin Liu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
| | - Lenie Dijkshoorn
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
- Tianjin Research Center for Functional Genomics and Biochip, Tianjin, China
| | - Peter R. Reeves
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
39
|
Lee Y, Mehra-Chaudhary R, Furdui C, Beamer LJ. Identification of an essential active-site residue in the α-D-phosphohexomutase enzyme superfamily. FEBS J 2013; 280:2622-32. [PMID: 23517223 DOI: 10.1111/febs.12249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 12/01/2022]
Abstract
UNLABELLED Enzymes in the α-d-phosphohexomutase superfamily catalyze the conversion of 1-phosphosugars to their 6-phospho counterparts. Their phosphoryl transfer reaction has long been proposed to require general acid-base catalysts, but candidate residues for these key roles have not been identified. In this study, we show through mutagenesis and kinetic studies that a histidine (His329) in the active site is critical for enzyme activity in a well-studied member of the superfamily, phosphomannomutase/phosphoglucomutase from Pseudomonas aeruginosa. Crystallographic characterization of an H329A mutant protein showed no significant changes from the wild-type enzyme, excluding structural disruption as the source of its compromised activity. Mutation of the structurally analogous lysine residue in a related protein, phosphoglucomutase from Salmonella typhimurium, also results in significant catalytic impairment. Analyses of protein-ligand complexes of the P. aeruginosa enzyme show that His329 is appropriately positioned to abstract a proton from the O1/O6 hydroxyl of the phosphosugar substrates, and thus may serve as the general base in the reaction. Histidine is strongly conserved at this position in many proteins in the superfamily, and lysine is also often conserved at a structurally corresponding position, particularly in the phosphoglucomutase enzyme sub-group. These studies shed light on the mechanism of this important enzyme superfamily, and may facilitate the design of mechanism-based inhibitors. DATABASE Structural data have been deposited in the Protein Data Bank with accession number 4IL8.
Collapse
Affiliation(s)
- Yingying Lee
- Chemistry Department, University of Missouri, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
40
|
Flores-Ramirez G, Janecek S, Miernyk JA, Skultety L. In silico biosynthesis of virenose, a methylated deoxy-sugar unique to Coxiella burnetii lipopolysaccharide. Proteome Sci 2012; 10:67. [PMID: 23150954 PMCID: PMC3539893 DOI: 10.1186/1477-5956-10-67] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 11/05/2012] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED BACKGROUND Coxiella burnetii is Gram-negative bacterium responsible for the zoonosis Q-fever. While it has an obligate intracellular growth habit, it is able to persist for extended periods outside of a host cell and can resist environmental conditions that would be lethal to most prokaryotes. It is these extracellular bacteria that are the infectious stage encountered by eukaryotic hosts. The intracellular form has evolved to grow and replicate within acidified parasitophorous vacuoles. The outer coat of C. burnetii comprises a complex lipopolysaccharide (LPS) component that includes the unique methylated-6-deoxyhexose, virenose. Although potentially important as a biomarker for C. burnetii, the pathway for its biosynthesis remains obscure. RESULTS The 6-deoxyhexoses constitute a large family integral to the LPS of many eubacteria. It is believed that precursors of the methylated-deoxyhexoses traverse common early biosynthetic steps as nucleotide-monosaccharides. As a prelude to a full biosynthetic characterization, we present herein the results from bioinformatics-based, proteomics-supported predictions of the pathway for virenose synthesis. Alternative possibilities are considered which include both GDP-mannose and TDP-glucose as precursors. CONCLUSION We propose that biosynthesis of the unique C. burnetii biomarker, virenose, involves an early pathway similar to that of other C-3'-methylated deoxysugars which then diverges depending upon the nucleotide-carrier involved. The alternatives yield either the D- or L-enantiomers of virenose. Both pathways require five enzymatic steps, beginning with either glucose-6-phosphate or mannose-6-phosphate. Our in silico results comprise a model for virenose biosynthesis that can be directly tested. Definition of this pathway should facilitate the development of therapeutic agents useful for treatment of Q fever, as well as allowing improvements in the methods for diagnosing this highly infectious disease.
Collapse
Affiliation(s)
- Gabriela Flores-Ramirez
- Department of Rickettsiology, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta, 9, Bratislava, 845 05, Slovakia
| | - Stefan Janecek
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, 845 51, Slovakia
| | - Ján A Miernyk
- USDA, Agricultural Research Service, Plant Genetics Research Unit, Columbia, MO, 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Ludovit Skultety
- Department of Rickettsiology, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta, 9, Bratislava, 845 05, Slovakia
- Centre for Molecular Medicine, Slovak Academy of Sciences, Bratislava, 831 01, Slovakia
| |
Collapse
|
41
|
Conservation of functionally important global motions in an enzyme superfamily across varying quaternary structures. J Mol Biol 2012; 423:831-46. [PMID: 22935436 DOI: 10.1016/j.jmb.2012.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 11/21/2022]
Abstract
The α-d-phosphohexomutase superfamily comprises enzymes involved in carbohydrate metabolism that are found in all kingdoms of life. Recent biophysical studies have shown for the first time that several of these enzymes exist as dimers in solution, prompting an examination of the oligomeric state of all proteins of known structure in the superfamily (11 different proteins; 31 crystal structures) via computational and experimental analyses. We find that these proteins range in quaternary structure from monomers to tetramers, with 6 of the 11 known structures being likely oligomers. The oligomeric state of these proteins not only is associated in some cases with enzyme subgroup (i.e., substrate specificity) but also appears to depend on domain of life, with the two archaeal proteins existing as higher-order oligomers. Within the oligomers, three distinct interfaces are observed, one of which is found in both archaeal and bacterial proteins. Normal mode analysis shows that the topological arrangement of the oligomers permits domain 4 of each protomer to move independently as required for catalysis. Our analysis suggests that the advantages associated with protein flexibility in this enzyme family are of sufficient importance to be maintained during the evolution of multiple independent oligomers. This study is one of the first showing that global motions may be conserved not only within protein families but also across members of a superfamily with varying oligomeric structures.
Collapse
|
42
|
Lee Y, Mick J, Furdui C, Beamer LJ. A coevolutionary residue network at the site of a functionally important conformational change in a phosphohexomutase enzyme family. PLoS One 2012; 7:e38114. [PMID: 22685552 PMCID: PMC3369874 DOI: 10.1371/journal.pone.0038114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/01/2012] [Indexed: 11/26/2022] Open
Abstract
Coevolution analyses identify residues that co-vary with each other during evolution, revealing sequence relationships unobservable from traditional multiple sequence alignments. Here we describe a coevolutionary analysis of phosphomannomutase/phosphoglucomutase (PMM/PGM), a widespread and diverse enzyme family involved in carbohydrate biosynthesis. Mutual information and graph theory were utilized to identify a network of highly connected residues with high significance. An examination of the most tightly connected regions of the coevolutionary network reveals that most of the involved residues are localized near an interdomain interface of this enzyme, known to be the site of a functionally important conformational change. The roles of four interface residues found in this network were examined via site-directed mutagenesis and kinetic characterization. For three of these residues, mutation to alanine reduces enzyme specificity to ∼10% or less of wild-type, while the other has ∼45% activity of wild-type enzyme. An additional mutant of an interface residue that is not densely connected in the coevolutionary network was also characterized, and shows no change in activity relative to wild-type enzyme. The results of these studies are interpreted in the context of structural and functional data on PMM/PGM. Together, they demonstrate that a network of coevolving residues links the highly conserved active site with the interdomain conformational change necessary for the multi-step catalytic reaction. This work adds to our understanding of the functional roles of coevolving residue networks, and has implications for the definition of catalytically important residues.
Collapse
Affiliation(s)
- Yingying Lee
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Jacob Mick
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Cristina Furdui
- Department of Internal Medicine, Wake Forest University Health Sciences Winston-Salem, North Carolina, United States of America
| | - Lesa J. Beamer
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
43
|
Ma L, Wang J, Wang S, Anderson EM, Lam JS, Parsek MR, Wozniak DJ. Synthesis of multiple Pseudomonas aeruginosa biofilm matrix exopolysaccharides is post-transcriptionally regulated. Environ Microbiol 2012; 14:1995-2005. [PMID: 22513190 DOI: 10.1111/j.1462-2920.2012.02753.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Exopolysaccharide is a critical biofilm matrix component, yet little is known about how the synthesis of multiple exopolysaccharides is regulated. Pseudomonas aeruginosa can produce several biofilm matrix exopolysaccharides that include alginate, Psl and Pel. Here we demonstrated that AlgC, a key enzyme that provides sugar precursors for the synthesis of alginate and lipopolysaccharides (LPS) is also required for both Psl and Pel production. We showed that forced-synthesis of Psl in alginate-producing mucoid bacteria reduced alginate production but this was not due to transcription of the alginate biosynthesis-operon. Likewise, when either alginate or Psl were overproduced, levels of B-band LPS decreased. Induction of Pel resulted in a reduction of Psl levels. Because the effects of reduced exopolysaccharide synthesis when another is overproduced didn't appear to be regulated at the transcriptional level, this suggests that the biosynthesis pathways of Psl, Pel, alginate, and LPS compete for common sugar precursors. As AlgC is the only enzyme that provides precursors for each of these exopolysaccharides, we propose that AlgC is a key checkpoint enzyme that coordinates the total amount of exopolysaccharide biosynthesis by controlling sugar precursor pool. Our data also provide a plausible strategy that P.aeruginosa utilizes to modulate its biofilm matrix exopolysaccharides.
Collapse
Affiliation(s)
- Luyan Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | | | |
Collapse
|
44
|
Sarma AVS, Anbanandam A, Kelm A, Mehra-Chaudhary R, Wei Y, Qin P, Lee Y, Berjanskii MV, Mick JA, Beamer LJ, Van Doren SR. Solution NMR of a 463-residue phosphohexomutase: domain 4 mobility, substates, and phosphoryl transfer defect. Biochemistry 2012; 51:807-19. [PMID: 22242625 DOI: 10.1021/bi201609n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphomannomutase/phosphoglucomutase contributes to the infectivity of Pseudomonas aeruginosa, retains and reorients its intermediate by 180°, and rotates domain 4 to close the deep catalytic cleft. Nuclear magnetic resonance (NMR) spectra of the backbone of wild-type and S108C-inactivated enzymes were assigned to at least 90%. (13)C secondary chemical shifts report excellent agreement of solution and crystallographic structure over the 14 α-helices, C-capping motifs, and 20 of the 22 β-strands. Major and minor NMR peaks implicate substates affecting 28% of assigned residues. These can be attributed to the phosphorylation state and possibly to conformational interconversions. The S108C substitution of the phosphoryl donor and acceptor slowed transformation of the glucose 1-phosphate substrate by impairing k(cat). Addition of the glucose 1,6-bisphosphate intermediate accelerated this reaction by 2-3 orders of magnitude, somewhat bypassing the defect and apparently relieving substrate inhibition. The S108C mutation perturbs the NMR spectra and electron density map around the catalytic cleft while preserving the secondary structure in solution. Diminished peak heights and faster (15)N relaxation suggest line broadening and millisecond fluctuations within four loops that can contact phosphosugars. (15)N NMR relaxation and peak heights suggest that domain 4 reorients slightly faster in solution than domains 1-3, and with a different principal axis of diffusion. This adds to the crystallographic evidence of domain 4 rotations in the enzyme, which were previously suggested to couple to reorientation of the intermediate, substrate binding, and product release.
Collapse
Affiliation(s)
- Akella V S Sarma
- Biochemistry Department, University of Missouri, Columbia, Missouri 65211, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Milner-White EJ, Russell MJ. Functional capabilities of the earliest peptides and the emergence of life. Genes (Basel) 2011; 2:671-88. [PMID: 24710286 PMCID: PMC3927598 DOI: 10.3390/genes2040671] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/14/2011] [Accepted: 09/14/2011] [Indexed: 02/01/2023] Open
Abstract
Considering how biological macromolecules first evolved, probably within a marine environment, it seems likely the very earliest peptides were not encoded by nucleic acids, or at least not via the genetic code as we know it. An objective of the present work is to demonstrate that sequence-independent peptides, or peptides with variable and unreliable lengths and sequences, have the potential to perform a variety of chemically useful functions such as anion and cation binding and membrane and channel formation as well as simple types of catalysis. These functions tend to be performed with the assistance of the main chain CONH atoms rather than the more variable or limited side chain atoms of the peptides presumed to exist then.
Collapse
Affiliation(s)
- E James Milner-White
- College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow G128QQ, UK.
| | - Michael J Russell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.
| |
Collapse
|
46
|
Mehra-Chaudhary R, Mick J, Tanner JJ, Beamer LJ. Quaternary structure, conformational variability and global motions of phosphoglucosamine mutase. FEBS J 2011; 278:3298-307. [PMID: 21767345 DOI: 10.1111/j.1742-4658.2011.08246.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphoglucosamine mutase (PNGM) is a bacterial enzyme that participates in the peptidoglycan biosynthetic pathway. Recent crystal structures of PNGM from two bacterial pathogens, Bacillus anthracis and Francisella tularensis, have revealed key structural features of this enzyme for the first time. Here, we follow up on several novel findings from the crystallographic studies, including the observation of a structurally conserved interface between polypeptide chains and conformational variability of the C-terminal domain. Small-angle X-ray scattering of B. anthracis PNGM shows that this protein is a dimer in solution. Comparisons of the four independent polypeptide chains from the two structures reveals conserved residues and structural changes involved in the conformational variability, as well as a significant rotation of the C-terminal domain, of nearly 60°, between the most divergent conformers. Furthermore, the fluctuation dynamics of PNGM are examined via normal mode analyses. The most mobile region of the protein is its C-terminal domain, consistent with observations from the crystal structures. Large regions of correlated, collective motions are identified exclusively for the dimeric state of the protein, comprising both contiguous and noncontiguous structural domains. The motions observed in the lowest frequency normal mode of the dimer result in dynamically coupled opening and closing of the two active sites. The global motions identified in this study support the importance of the conformational change of PNGM in function, and suggest that the dimeric state of this protein may confer advantages consistent with its evolutionary conservation.
Collapse
|
47
|
Crystal structure of Bacillus anthracis phosphoglucosamine mutase, an enzyme in the peptidoglycan biosynthetic pathway. J Bacteriol 2011; 193:4081-7. [PMID: 21685296 DOI: 10.1128/jb.00418-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphoglucosamine mutase (PNGM) is an evolutionarily conserved bacterial enzyme that participates in the cytoplasmic steps of peptidoglycan biosynthesis. As peptidoglycan is essential for bacterial survival and is absent in humans, enzymes in this pathway have been the focus of intensive inhibitor design efforts. Many aspects of the structural biology of the peptidoglycan pathway have been elucidated, with the exception of the PNGM structure. We present here the crystal structure of PNGM from the human pathogen and bioterrorism agent Bacillus anthracis. The structure reveals key residues in the large active site cleft of the enzyme which likely have roles in catalysis and specificity. A large conformational change of the C-terminal domain of PNGM is observed when comparing two independent molecules in the crystal, shedding light on both the apo- and ligand-bound conformers of the enzyme. Crystal packing analyses and dynamic light scattering studies suggest that the enzyme is a dimer in solution. Multiple sequence alignments show that residues in the dimer interface are conserved, suggesting that many PNGM enzymes adopt this oligomeric state. This work lays the foundation for the development of inhibitors for PNGM enzymes from human pathogens.
Collapse
|
48
|
Mehra-Chaudhary R, Mick J, Tanner JJ, Henzl MT, Beamer LJ. Crystal structure of a bacterial phosphoglucomutase, an enzyme involved in the virulence of multiple human pathogens. Proteins 2011; 79:1215-29. [PMID: 21246636 PMCID: PMC3066478 DOI: 10.1002/prot.22957] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/12/2010] [Accepted: 11/24/2010] [Indexed: 11/11/2022]
Abstract
The crystal structure of the enzyme phosphoglucomutase from Salmonella typhimurium (StPGM) is reported at 1.7 A resolution. This is the first high-resolution structural characterization of a bacterial protein from this large enzyme family, which has a central role in metabolism and is also important to bacterial virulence and infectivity. A comparison of the active site of StPGM with that of other phosphoglucomutases reveals conserved residues that are likely involved in catalysis and ligand binding for the entire enzyme family. An alternate crystal form of StPGM and normal mode analysis give insights into conformational changes of the C-terminal domain that occur upon ligand binding. A novel observation from the StPGM structure is an apparent dimer in the asymmetric unit of the crystal, mediated largely through contacts in an N-terminal helix. Analytical ultracentrifugation and small-angle X-ray scattering confirm that StPGM forms a dimer in solution. Multiple sequence alignments and phylogenetic studies show that a distinct subset of bacterial PGMs share the signature dimerization helix, while other bacterial and eukaryotic PGMs are likely monomers. These structural, biochemical, and bioinformatic studies of StPGM provide insights into the large α-D-phosphohexomutase enzyme superfamily to which it belongs, and are also relevant to the design of inhibitors specific to the bacterial PGMs.
Collapse
Affiliation(s)
- Ritcha Mehra-Chaudhary
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211
| | - Jacob Mick
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211
| | - John J. Tanner
- Department of Chemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211
| | - Michael T. Henzl
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211
| | - Lesa J. Beamer
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211
| |
Collapse
|
49
|
Chuang GY, Mehra-Chaudhary R, Ngan CH, Zerbe BS, Kozakov D, Vajda S, Beamer LJ. Domain motion and interdomain hot spots in a multidomain enzyme. Protein Sci 2010; 19:1662-72. [PMID: 20589904 PMCID: PMC2975130 DOI: 10.1002/pro.446] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/08/2010] [Accepted: 06/10/2010] [Indexed: 11/07/2022]
Abstract
The aim of this article is to analyze conformational changes by comparing 10 different structures of Pseudomonas aeruginosa phosphomannomutase/phosphoglucomutase (PMM/PGM), a four-domain enzyme in which both substrate binding and catalysis require substantial movement of the C-terminal domain. We focus on changes in interdomain and active site crevices using a method called computational solvent mapping rather than superimposing the structures. The method places molecular probes (i.e., small organic molecules containing various functional groups) around the protein to find hot spots. One of the most important hot spots is in the active site, consistent with the ability of the enzyme to bind both glucose and mannose phosphosugar substrates. The protein has eight additional hot spots at domain-domain interfaces and hinge regions. The locations and nature of six of these hot spots vary between the open, half-open, and closed conformers of the enzyme, in good agreement with the ligand-induced conformational changes. In the closed structures the number of probe clusters at the hinge region significantly depends on the position of the phosphorylated oxygen in the substrate (e.g., glucose 1-phosphate versus glucose 6-phosphate), but the protein remains almost unchanged in terms of the overall RMSD, indicating that computational solvent mapping is a more sensitive approach to detect changes in binding sites and interdomain crevices. Focusing on multidomain proteins we show that the subresolution conformational differences revealed by the mapping are in fact significant, and present a general statistical method of analysis to determine the significance of rigid body domain movements in X-ray structures.
Collapse
Affiliation(s)
- Gwo-Yu Chuang
- Department of Biomedical Engineering, Boston UniversityBoston, Massachusetts 02215
| | | | - Chi-Ho Ngan
- Department of Biomedical Engineering, Boston UniversityBoston, Massachusetts 02215
| | - Brandon S Zerbe
- Department of Biomedical Engineering, Boston UniversityBoston, Massachusetts 02215
| | - Dima Kozakov
- Department of Biomedical Engineering, Boston UniversityBoston, Massachusetts 02215
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston UniversityBoston, Massachusetts 02215
- Department of Chemistry, Boston UniversityBoston, Massachusetts 02215
| | - Lesa J Beamer
- Department of Biochemistry, University of MissouriColumbia, Missouri, Missouri 65211
| |
Collapse
|
50
|
Schramm AM, Karr D, Mehra-Chaudhary R, Van Doren SR, Furdui CM, Beamer LJ. Breaking the covalent connection: Chain connectivity and the catalytic reaction of PMM/PGM. Protein Sci 2010; 19:1235-42. [PMID: 20512975 PMCID: PMC2895247 DOI: 10.1002/pro.402] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/08/2010] [Accepted: 04/11/2010] [Indexed: 11/06/2022]
Abstract
Fragment complementation has been used to investigate the role of chain connectivity in the catalytic reaction of phosphomannomutase/phosphoglucomutase (PMM/PGM) from Pseudomonas aeruginosa, a human pathogen. A heterodimer of PMM/PGM, created from fragments corresponding to its first three and fourth domains, was constructed and enzyme activity reconstituted. NMR spectra demonstrate that the fragment corresponding to the fourth (C-terminal) domain exists as a highly structured, independent folding domain, consistent with its varied conformation observed in enzyme-substrate complexes. Steady-state kinetics and thermodynamics studies reported here show that complete conformational freedom of Domain 4, because of the break in the polypeptide chain, is deleterious to catalytic efficiency primarily as a consequence of increased entropy. This extends observations from studies of the intact enzyme, which showed that the degree of flexibility of a hinge region is controlled by the precise sequence of amino acids optimized through evolutionary constraints. This work also sheds light on the functional advantage gained by combining separate folding domains into a single polypeptide chain.
Collapse
Affiliation(s)
- Andrew M Schramm
- Department of Biochemistry, University of MissouriColumbia, Missouri 65211
| | - Dale Karr
- Structural Biology Core, University of MissouriColumbia, Missouri 65211
| | | | - Steven R Van Doren
- Department of Biochemistry, University of MissouriColumbia, Missouri 65211
| | - Cristina M Furdui
- Department of Internal Medicine, Wake Forest University Health SciencesWinston Salem, North Carolina
| | - Lesa J Beamer
- Department of Biochemistry, University of MissouriColumbia, Missouri 65211
| |
Collapse
|