1
|
Mozzarelli AM, Simanshu DK, Castel P. Functional and structural insights into RAS effector proteins. Mol Cell 2024; 84:2807-2821. [PMID: 39025071 PMCID: PMC11316660 DOI: 10.1016/j.molcel.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
RAS proteins are conserved guanosine triphosphate (GTP) hydrolases (GTPases) that act as molecular binary switches and play vital roles in numerous cellular processes. Upon GTP binding, RAS GTPases adopt an active conformation and interact with specific proteins termed RAS effectors that contain a conserved ubiquitin-like domain, thereby facilitating downstream signaling. Over 50 effector proteins have been identified in the human proteome, and many have been studied as potential mediators of RAS-dependent signaling pathways. Biochemical and structural analyses have provided mechanistic insights into these effectors, and studies using model organisms have complemented our understanding of their role in physiology and disease. Yet, many critical aspects regarding the dynamics and biological function of RAS-effector complexes remain to be elucidated. In this review, we discuss the mechanisms and functions of known RAS effector proteins, provide structural perspectives on RAS-effector interactions, evaluate their significance in RAS-mediated signaling, and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Alessandro M Mozzarelli
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter NYU Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
2
|
Beyer L, Schäfer AB, Undabarrena A, Mattsby-Baltzer I, Tietze D, Svensson E, Stubelius A, Wenzel M, Cámara B, Tietze AA. Mimicking Nonribosomal Peptides from the Marine Actinomycete Streptomyces sp. H-KF8 Leads to Antimicrobial Peptides. ACS Infect Dis 2024; 10:79-92. [PMID: 38113038 PMCID: PMC10788856 DOI: 10.1021/acsinfecdis.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
Microorganisms within the marine environment have been shown to be very effective sources of naturally produced antimicrobial peptides (AMPs). Several nonribosomal peptides were identified based on genome mining predictions of Streptomyces sp. H-KF8, a marine Actinomycetota isolated from a remote Northern Chilean Patagonian fjord. Based on these predictions, a series of eight peptides, including cyclic peptides, were designed and chemically synthesized. Six of these peptides showed antimicrobial activity. Mode of action studies suggest that two of these peptides potentially act on the cell membrane via a novel mechanism allowing the passage of small ions, resulting in the dissipation of the membrane potential. This study shows that though structurally similar peptides, determined by NMR spectroscopy, the incorporation of small sequence mutations results in a dramatic influence on their bioactivity including mode of action. The qualified hit sequence can serve as a basis for more potent AMPs in future studies.
Collapse
Affiliation(s)
- Luisa
I. Beyer
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, Medicinaregatan
7B, Gothenburg 413 90, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg, University of Gothenburg, Box 100, Göteborg 405 30, Sweden
| | - Ann-Britt Schäfer
- Department
of Life Sciences, Chalmers University of
Technology, Kemigården 4, Göteborg 412 96, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg, University of Gothenburg, Box 100, Göteborg 405 30, Sweden
| | - Agustina Undabarrena
- Departamento
de Química & Centro de Biotecnología Daniel Alkalay
Lowitt, Laboratorio de Microbiología Molecular y Biotecnología
Ambiental, Universidad Técnica Federico
Santa María, Valparaíso 2340000, Chile
| | - Inger Mattsby-Baltzer
- Department
of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska
Academy at University of Gothenburg, University
of Gothenburg, Box 440, Göteborg 405 30, Sweden
| | - Daniel Tietze
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, Medicinaregatan
7B, Gothenburg 413 90, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg, University of Gothenburg, Box 100, Göteborg 405 30, Sweden
| | - Elin Svensson
- Department
of Life Sciences, Chalmers University of
Technology, Kemigården 4, Göteborg 412 96, Sweden
| | - Alexandra Stubelius
- Department
of Life Sciences, Chalmers University of
Technology, Kemigården 4, Göteborg 412 96, Sweden
| | - Michaela Wenzel
- Department
of Life Sciences, Chalmers University of
Technology, Kemigården 4, Göteborg 412 96, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg, University of Gothenburg, Box 100, Göteborg 405 30, Sweden
| | - Beatriz Cámara
- Departamento
de Química & Centro de Biotecnología Daniel Alkalay
Lowitt, Laboratorio de Microbiología Molecular y Biotecnología
Ambiental, Universidad Técnica Federico
Santa María, Valparaíso 2340000, Chile
| | - Alesia A. Tietze
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, Medicinaregatan
7B, Gothenburg 413 90, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg, University of Gothenburg, Box 100, Göteborg 405 30, Sweden
| |
Collapse
|
3
|
Huskova A, Dinesh DC, Srb P, Boura E, Veverka V, Silhan J. Model of abasic site DNA cross-link repair; from the architecture of NEIL3 DNA binding domains to the X-structure model. Nucleic Acids Res 2022; 50:10436-10448. [PMID: 36155818 PMCID: PMC9561275 DOI: 10.1093/nar/gkac793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
Covalent DNA interstrand crosslinks are toxic DNA damage lesions that block the replication machinery that can cause a genomic instability. Ubiquitous abasic DNA sites are particularly susceptible to spontaneous cross-linking with a base from the opposite DNA strand. Detection of a crosslink induces the DNA helicase ubiquitination that recruits NEIL3, a DNA glycosylase responsible for the lesion removal. NEIL3 utilizes several zinc finger domains indispensable for its catalytic NEI domain repairing activity. They recruit NEIL3 to the repair site and bind the single-stranded DNA. However, the molecular mechanism underlying their roles in the repair process is unknown. Here, we report the structure of the tandem zinc-finger GRF domain of NEIL3 and reveal the molecular details of its interaction with DNA. Our biochemical data indicate the preferential binding of the GRF domain to the replication fork. In addition, we obtained a structure for the catalytic NEI domain in complex with the DNA reaction intermediate that allowed us to construct and validate a model for the interplay between the NEI and GRF domains in the recognition of an interstrand cross-link. Our results suggest a mechanism for recognition of the DNA replication X-structure by NEIL3, a key step in the interstrand cross-link repair.
Collapse
Affiliation(s)
- Andrea Huskova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czech Republic
| | - Dhurvas Chandrasekaran Dinesh
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czech Republic
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Silhan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 2, 166 10 Prague, Czech Republic
| |
Collapse
|
4
|
Cermakova K, Demeulemeester J, Lux V, Nedomova M, Goldman SR, Smith EA, Srb P, Hexnerova R, Fabry M, Madlikova M, Horejsi M, De Rijck J, Debyser Z, Adelman K, Hodges HC, Veverka V. A ubiquitous disordered protein interaction module orchestrates transcription elongation. Science 2021; 374:1113-1121. [PMID: 34822292 PMCID: PMC8943916 DOI: 10.1126/science.abe2913] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During eukaryotic transcription elongation, RNA polymerase II (RNAP2) is regulated by a chorus of factors. Here, we identified a common binary interaction module consisting of TFIIS N-terminal domains (TNDs) and natively unstructured TND-interacting motifs (TIMs). This module was conserved among the elongation machinery and linked complexes including transcription factor TFIIS, Mediator, super elongation complex, elongin, IWS1, SPT6, PP1-PNUTS phosphatase, H3K36me3 readers, and other factors. Using nuclear magnetic resonance, live-cell microscopy, and mass spectrometry, we revealed the structural basis for these interactions and found that TND-TIM sequences were necessary and sufficient to induce strong and specific colocalization in the crowded nuclear environment. Disruption of a single TIM in IWS1 induced robust changes in gene expression and RNAP2 elongation dynamics, which underscores the functional importance of TND-TIM surfaces for transcription elongation.
Collapse
Affiliation(s)
- Katerina Cermakova
- Center for Precision Environmental Health, Department of
Molecular & Cellular Biology, and Dan L Duncan Comprehensive Cancer Center,
Baylor College of Medicine, Houston, TX, USA
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | | | - Vanda Lux
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Nedomova
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | - Seth R. Goldman
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eric A. Smith
- Center for Precision Environmental Health, Department of
Molecular & Cellular Biology, and Dan L Duncan Comprehensive Cancer Center,
Baylor College of Medicine, Houston, TX, USA
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | - Rozalie Hexnerova
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Fabry
- Institute of Molecular Genetics of the Czech Academy of
Sciences, Prague, Czech Republic
| | - Marcela Madlikova
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
| | - Magdalena Horejsi
- Institute of Molecular Genetics of the Czech Academy of
Sciences, Prague, Czech Republic
| | - Jan De Rijck
- KU Leuven, Molecular Virology and Gene Therapy, Leuven,
Flanders, Belgium
| | - Zeger Debyser
- KU Leuven, Molecular Virology and Gene Therapy, Leuven,
Flanders, Belgium
| | - Karen Adelman
- Department of Biological Chemistry and Molecular
Pharmacology, Harvard Medical School, Boston, MA, USA
| | - H. Courtney Hodges
- Center for Precision Environmental Health, Department of
Molecular & Cellular Biology, and Dan L Duncan Comprehensive Cancer Center,
Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD
Anderson Cancer Center, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX,
USA
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles
University, Prague, Czech Republic
| |
Collapse
|
5
|
RAS GTPase signalling to alternative effector pathways. Biochem Soc Trans 2021; 48:2241-2252. [PMID: 33125484 DOI: 10.1042/bst20200506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
RAS GTPases are fundamental regulators of development and drivers of an extraordinary number of human cancers. RAS oncoproteins constitutively signal through downstream effector proteins, triggering cancer initiation, progression and metastasis. In the absence of targeted therapeutics to mutant RAS itself, inhibitors of downstream pathways controlled by the effector kinases RAF and PI3K have become tools in the treatment of RAS-driven tumours. Unfortunately, the efficacy of this approach has been greatly minimized by the prevalence of acquired drug resistance. Decades of research have established that RAS signalling is highly complex, and in addition to RAF and PI3K these small GTPase proteins can interact with an array of alternative effectors that feature RAS binding domains. The consequence of RAS binding to these effectors remains relatively unexplored, but these pathways may provide targets for combinatorial therapeutics. We discuss here three candidate alternative effectors: RALGEFs, RASSF5 and AFDN, detailing their interaction with RAS GTPases and their biological significance. The metastatic nature of RAS-driven cancers suggests more attention should be granted to these alternate pathways, as they are highly implicated in the regulation of cell adhesion, polarity, cell size and cytoskeletal architecture.
Collapse
|
6
|
Montoliu-Gaya L, Tietze D, Kaminski D, Mirgorodskaya E, Tietze AA, Sterky FH. CA10 regulates neurexin heparan sulfate addition via a direct binding in the secretory pathway. EMBO Rep 2021; 22:e51349. [PMID: 33586859 PMCID: PMC8024894 DOI: 10.15252/embr.202051349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/21/2020] [Accepted: 01/13/2021] [Indexed: 12/29/2022] Open
Abstract
Neurexins are presynaptic adhesion molecules that shape the molecular composition of synapses. Diversification of neurexins in numerous isoforms is believed to confer synapse-specific properties by engaging with distinct ligands. For example, a subset of neurexin molecules carry a heparan sulfate (HS) glycosaminoglycan that controls ligand binding, but how this post-translational modification is controlled is not known. Here, we observe that CA10, a ligand to neurexin in the secretory pathway, regulates neurexin-HS formation. CA10 is exclusively found on non-HS neurexin and CA10 expressed in neurons is sufficient to suppress HS addition and attenuate ligand binding and synapse formation induced by ligands known to recruit HS. This effect is mediated by a direct interaction in the secretory pathway that blocks the primary step of HS biosynthesis: xylosylation of the serine residue. NMR reveals that CA10 engages residues on either side of the serine that can be HS-modified, suggesting that CA10 sterically blocks xylosyltransferase access in Golgi. These results suggest a mechanism for the regulation of HS on neurexins and exemplify a new mechanism to regulate site-specific glycosylations.
Collapse
Affiliation(s)
- Laia Montoliu-Gaya
- Department of Laboratory Medicine, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Tietze
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | - Debora Kaminski
- Department of Laboratory Medicine, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Alesia A Tietze
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik H Sterky
- Department of Laboratory Medicine, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
7
|
Kiel C, Matallanas D, Kolch W. The Ins and Outs of RAS Effector Complexes. Biomolecules 2021; 11:236. [PMID: 33562401 PMCID: PMC7915224 DOI: 10.3390/biom11020236] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
RAS oncogenes are among the most commonly mutated proteins in human cancers. They regulate a wide range of effector pathways that control cell proliferation, survival, differentiation, migration and metabolic status. Including aberrations in these pathways, RAS-dependent signaling is altered in more than half of human cancers. Targeting mutant RAS proteins and their downstream oncogenic signaling pathways has been elusive. However, recent results comprising detailed molecular studies, large scale omics studies and computational modeling have painted a new and more comprehensive portrait of RAS signaling that helps us to understand the intricacies of RAS, how its physiological and pathophysiological functions are regulated, and how we can target them. Here, we review these efforts particularly trying to relate the detailed mechanistic studies with global functional studies. We highlight the importance of computational modeling and data integration to derive an actionable understanding of RAS signaling that will allow us to design new mechanism-based therapies for RAS mutated cancers.
Collapse
Affiliation(s)
- Christina Kiel
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
8
|
Unlike Its Paralog LEDGF/p75, HRP-2 Is Dispensable for MLL-R Leukemogenesis but Important for Leukemic Cell Survival. Cells 2021; 10:cells10010192. [PMID: 33477970 PMCID: PMC7835958 DOI: 10.3390/cells10010192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
HDGF-related protein 2 (HRP-2) is a member of the Hepatoma-Derived Growth Factor-related protein family that harbors the structured PWWP and Integrase Binding Domain, known to associate with methylated histone tails or cellular and viral proteins, respectively. Interestingly, HRP-2 is a paralog of Lens Epithelium Derived Growth Factor p75 (LEDGF/p75), which is essential for MLL-rearranged (MLL-r) leukemia but dispensable for hematopoiesis. Sequel to these findings, we investigated the role of HRP-2 in hematopoiesis and MLL-r leukemia. Protein interactions were investigated by co-immunoprecipitation and validated using recombinant proteins in NMR. A systemic knockout mouse model was used to study normal hematopoiesis and MLL-ENL transformation upon the different HRP-2 genotypes. The role of HRP-2 in MLL-r and other leukemic, human cell lines was evaluated by lentiviral-mediated miRNA targeting HRP-2. We demonstrate that MLL and HRP-2 interact through a conserved interface, although this interaction proved less dependent on menin than the MLL-LEDGF/p75 interaction. The systemic HRP-2 knockout mice only revealed an increase in neutrophils in the peripheral blood, whereas the depletion of HRP-2 in leukemic cell lines and transformed primary murine cells resulted in reduced colony formation independently of MLL-rearrangements. In contrast, primary murine HRP-2 knockout cells were efficiently transformed by the MLL-ENL fusion, indicating that HRP-2, unlike LEDGF/p75, is dispensable for the transformation of MLL-ENL leukemogenesis but important for leukemic cell survival.
Collapse
|
9
|
Dinesh DC, Chalupska D, Silhan J, Koutna E, Nencka R, Veverka V, Boura E. Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PLoS Pathog 2020; 16:e1009100. [PMID: 33264373 PMCID: PMC7735635 DOI: 10.1371/journal.ppat.1009100] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/14/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 is a single-stranded positive-sense RNA virus. Like other coronaviruses, SARS-CoV-2 has an unusually large genome that encodes four structural proteins and sixteen nonstructural proteins. The structural nucleocapsid phosphoprotein N is essential for linking the viral genome to the viral membrane. Both N-terminal RNA binding (N-NTD) and C-terminal dimerization domains are involved in capturing the RNA genome and, the intrinsically disordered region between these domains anchors the ribonucleoprotein complex to the viral membrane. Here, we characterized the structure of the N-NTD and its interaction with RNA using NMR spectroscopy. We observed a positively charged canyon on the surface of the N-NTD that might serve as a putative RNA binding site similarly to other coronaviruses. The subsequent NMR titrations using single-stranded and double-stranded RNA revealed a much more extensive U-shaped RNA-binding cleft lined with regularly distributed arginines and lysines. The NMR data supported by mutational analysis allowed us to construct hybrid atomic models of the N-NTD/RNA complex that provided detailed insight into RNA recognition.
Collapse
Affiliation(s)
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Silhan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eliska Koutna
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
10
|
Dinesh DC, Chalupska D, Silhan J, Koutna E, Nencka R, Veverka V, Boura E. Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PLoS Pathog 2020. [PMID: 33264373 DOI: 10.1101/2020.04.02.022194] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 is a single-stranded positive-sense RNA virus. Like other coronaviruses, SARS-CoV-2 has an unusually large genome that encodes four structural proteins and sixteen nonstructural proteins. The structural nucleocapsid phosphoprotein N is essential for linking the viral genome to the viral membrane. Both N-terminal RNA binding (N-NTD) and C-terminal dimerization domains are involved in capturing the RNA genome and, the intrinsically disordered region between these domains anchors the ribonucleoprotein complex to the viral membrane. Here, we characterized the structure of the N-NTD and its interaction with RNA using NMR spectroscopy. We observed a positively charged canyon on the surface of the N-NTD that might serve as a putative RNA binding site similarly to other coronaviruses. The subsequent NMR titrations using single-stranded and double-stranded RNA revealed a much more extensive U-shaped RNA-binding cleft lined with regularly distributed arginines and lysines. The NMR data supported by mutational analysis allowed us to construct hybrid atomic models of the N-NTD/RNA complex that provided detailed insight into RNA recognition.
Collapse
Affiliation(s)
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Silhan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eliska Koutna
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Hossain MS, Roy AS, Islam MS. In silico analysis predicting effects of deleterious SNPs of human RASSF5 gene on its structure and functions. Sci Rep 2020; 10:14542. [PMID: 32884013 PMCID: PMC7471297 DOI: 10.1038/s41598-020-71457-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/17/2020] [Indexed: 11/09/2022] Open
Abstract
Ras association domain-containing protein 5 (RASSF5), one of the prospective biomarkers for tumors, generally plays a crucial role as a tumor suppressor. As deleterious effects can result from functional differences through SNPs, we sought to analyze the most deleterious SNPs of RASSF5 as well as predict the structural changes associated with the mutants that hamper the normal protein-protein interactions. We adopted both sequence and structure based approaches to analyze the SNPs of RASSF5 protein. We also analyzed the putative post translational modification sites as well as the altered protein-protein interactions that encompass various cascades of signals. Out of all the SNPs obtained from the NCBI database, only 25 were considered as highly deleterious by six in silico SNP prediction tools. Among them, upon analyzing the effect of these nsSNPs on the stability of the protein, we found 17 SNPs that decrease the stability. Significant deviation in the energy minimization score was observed in P350R, F321L, and R277W. Besides this, docking analysis confirmed that P350R, A319V, F321L, and R277W reduce the binding affinity of the protein with H-Ras, where P350R shows the most remarkable deviation. Protein-protein interaction analysis revealed that RASSF5 acts as a hub connecting two clusters consisting of 18 proteins and alteration in the RASSF5 may lead to disassociation of several signal cascades. Thus, based on these analyses, our study suggests that the reported functional SNPs may serve as potential targets for different proteomic studies, diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Md Shahadat Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Arpita Singha Roy
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Sajedul Islam
- Department of Biochemistry and Biotechnology, University of Barishal, Barishal, Bangladesh.
| |
Collapse
|
12
|
Negative charge of the AC-to-Hly linking segment modulates calcium-dependent membrane activities of Bordetella adenylate cyclase toxin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183310. [PMID: 32333856 DOI: 10.1016/j.bbamem.2020.183310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 02/08/2023]
Abstract
Two distinct conformers of the adenylate cyclase toxin (CyaA) appear to accomplish its two parallel activities within target cell membrane. The translocating conformer would deliver the N-terminal adenylyl cyclase (AC) enzyme domain across plasma membrane into cytosol of cells, while the pore precursor conformer would assemble into oligomeric cation-selective pores and permeabilize cellular membrane. Both toxin activities then involve a membrane-interacting 'AC-to-Hly-linking segment' (residues 400 to 500). Here, we report the NMR structure of the corresponding CyaA411-490 polypeptide in dodecylphosphocholine micelles and show that it consists of two α-helices linked by an unrestrained loop. The N-terminal α-helix (Gly418 to His439) remained solvent accessible, while the C-terminal α-helix (His457 to Phe485) was fully enclosed within detergent micelles. CyaA411-490 weakly bound Ca2+ ions (apparent KD 2.6 mM) and permeabilized negatively charged lipid vesicles. At high concentrations (10 μM) the CyaA411-490 polypeptide formed stable conductance units in artificial lipid bilayers with applied voltage, suggesting its possible transmembrane orientation in the membrane-inserted toxin. Mutagenesis revealed that two clusters of negatively charged residues within the 'AC-to-Hly-linking segment' (Glu419 to Glu432 and Asp445 to Glu448) regulate the balance between the AC domain translocating and pore-forming capacities of CyaA in function of calcium concentration.
Collapse
|
13
|
Began J, Cordier B, Březinová J, Delisle J, Hexnerová R, Srb P, Rampírová P, Kožíšek M, Baudet M, Couté Y, Galinier A, Veverka V, Doan T, Strisovsky K. Rhomboid intramembrane protease YqgP licenses bacterial membrane protein quality control as adaptor of FtsH AAA protease. EMBO J 2020; 39:e102935. [PMID: 31930742 PMCID: PMC7231995 DOI: 10.15252/embj.2019102935] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/18/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022] Open
Abstract
Magnesium homeostasis is essential for life and depends on magnesium transporters, whose activity and ion selectivity need to be tightly controlled. Rhomboid intramembrane proteases pervade the prokaryotic kingdom, but their functions are largely elusive. Using proteomics, we find that Bacillus subtilis rhomboid protease YqgP interacts with the membrane‐bound ATP‐dependent processive metalloprotease FtsH and cleaves MgtE, the major high‐affinity magnesium transporter in B. subtilis. MgtE cleavage by YqgP is potentiated in conditions of low magnesium and high manganese or zinc, thereby protecting B. subtilis from Mn2+/Zn2+ toxicity. The N‐terminal cytosolic domain of YqgP binds Mn2+ and Zn2+ ions and facilitates MgtE cleavage. Independently of its intrinsic protease activity, YqgP acts as a substrate adaptor for FtsH, a function that is necessary for degradation of MgtE. YqgP thus unites protease and pseudoprotease function, hinting at the evolutionary origin of rhomboid pseudoproteases such as Derlins that are intimately involved in eukaryotic ER‐associated degradation (ERAD). Conceptually, the YqgP‐FtsH system we describe here is analogous to a primordial form of “ERAD” in bacteria and exemplifies an ancestral function of rhomboid‐superfamily proteins.
Collapse
Affiliation(s)
- Jakub Began
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Baptiste Cordier
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), CNRS, UMR 7283, Aix Marseille Univ, Marseille Cedex 20, France
| | - Jana Březinová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jordan Delisle
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), CNRS, UMR 7283, Aix Marseille Univ, Marseille Cedex 20, France
| | - Rozálie Hexnerová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Petra Rampírová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Milan Kožíšek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| | - Mathieu Baudet
- CEA, Inserm, IRIG-BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Yohann Couté
- CEA, Inserm, IRIG-BGE, Univ. Grenoble Alpes, Grenoble, France
| | - Anne Galinier
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), CNRS, UMR 7283, Aix Marseille Univ, Marseille Cedex 20, France
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Thierry Doan
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), CNRS, UMR 7283, Aix Marseille Univ, Marseille Cedex 20, France.,Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), CNRS, UMR 7255, Aix Marseille Univ, Marseille Cedex 20, France
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Prague, Czech Republic
| |
Collapse
|
14
|
Psenakova K, Hexnerova R, Srb P, Obsilova V, Veverka V, Obsil T. The redox‐active site of thioredoxin is directly involved in apoptosis signal‐regulating kinase 1 binding that is modulated by oxidative stress. FEBS J 2019; 287:1626-1644. [DOI: 10.1111/febs.15101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/10/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Katarina Psenakova
- Department of Physical and Macromolecular Chemistry Faculty of Science Charles University Prague Czech Republic
- Department of Structural Biology of Signaling Proteins, Division BIOCEV Institute of Physiology of the Czech Academy of Sciences Vestec Czech Republic
| | - Rozalie Hexnerova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
| | - Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV Institute of Physiology of the Czech Academy of Sciences Vestec Czech Republic
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
- Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry Faculty of Science Charles University Prague Czech Republic
- Department of Structural Biology of Signaling Proteins, Division BIOCEV Institute of Physiology of the Czech Academy of Sciences Vestec Czech Republic
| |
Collapse
|
15
|
Tietze D, Kaufmann D, Tietze AA, Voll A, Reher R, König G, Hausch F. Structural and Dynamical Basis of G Protein Inhibition by YM-254890 and FR900359: An Inhibitor in Action. J Chem Inf Model 2019; 59:4361-4373. [PMID: 31539242 DOI: 10.1021/acs.jcim.9b00433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Specific inhibition of G proteins holds a great pharmacological promise to, e.g., target oncogenic Gq/11 proteins and can be achieved by the two natural products FR900359 (FR) and YM-254890 (YM). Unfortunately, recent rational-design-based approaches to address G proteins other than Gq/11/14 subtypes were not successful mainly due to the conformational complexity of these new modalities-like compounds. Here, we report the water-derived NMR structure of YM, which strongly differs from the conformation of Gq-bound YM as found in the crystal structure. Reanalysis of the crystal structure suggests that the water-derived NMR structure of YM also represents a valid solution of the electron density. Extensive molecular dynamic simulations unveiled much higher binding affinities of the water-derived NMR structure compared to the original YM conformation of pdb 3ah8 . Employing a in-silico-designed, fast activating G protein conformation molecular dynamics data ultimately show how the inhibitor impairs the domain motion of the G protein necessary to hinder nucleotide exchange.
Collapse
Affiliation(s)
- Daniel Tietze
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry , Darmstadt University of Technology , Alarich-Weiss-Strasse 8 , 64287 Darmstadt , Germany.,Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine , University of Gothenburg , Kemigården 4 , 412 96 Göteborg , Sweden
| | - Desireé Kaufmann
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry , Darmstadt University of Technology , Alarich-Weiss-Strasse 8 , 64287 Darmstadt , Germany
| | - Alesia A Tietze
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine , University of Gothenburg , Kemigården 4 , 412 96 Göteborg , Sweden
| | - Andreas Voll
- Clemens Schöpf Institute for Organic Chemistry and Biochemistry , Darmstadt University of Technology , Alarich-Weiss-Strasse 4 , 64287 Darmstadt , Germany
| | - Raphael Reher
- Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany
| | - Gabriele König
- Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany
| | - Felix Hausch
- Clemens Schöpf Institute for Organic Chemistry and Biochemistry , Darmstadt University of Technology , Alarich-Weiss-Strasse 4 , 64287 Darmstadt , Germany
| |
Collapse
|
16
|
Forkhead Domains of FOXO Transcription Factors Differ in both Overall Conformation and Dynamics. Cells 2019; 8:cells8090966. [PMID: 31450545 PMCID: PMC6770010 DOI: 10.3390/cells8090966] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
FOXO transcription factors regulate cellular homeostasis, longevity and response to stress. FOXO1 (also known as FKHR) is a key regulator of hepatic glucose production and lipid metabolism, and its specific inhibition may have beneficial effects on diabetic hyperglycemia by reducing hepatic glucose production. Moreover, all FOXO proteins are considered potential drug targets for drug resistance prevention in cancer therapy. However, the development of specific FOXO inhibitors requires a detailed understanding of structural differences between individual FOXO DNA-binding domains. The high-resolution structure of the DNA-binding domain of FOXO1 reported in this study and its comparison with structures of other FOXO proteins revealed differences in both their conformation and flexibility. These differences are encoded by variations in protein sequences and account for the distinct functions of FOXO proteins. In particular, the positions of the helices H1, H2 and H3, whose interface form the hydrophobic core of the Forkhead domain, and the interactions between hydrophobic residues located on the interface between the N-terminal segment, the H2-H3 loop, and the recognition helix H3 differ among apo FOXO1, FOXO3 and FOXO4 proteins. Therefore, the availability of apo structures of DNA-binding domains of all three major FOXO proteins will support the development of FOXO-type-specific inhibitors.
Collapse
|
17
|
Review: Precision medicine and driver mutations: Computational methods, functional assays and conformational principles for interpreting cancer drivers. PLoS Comput Biol 2019; 15:e1006658. [PMID: 30921324 PMCID: PMC6438456 DOI: 10.1371/journal.pcbi.1006658] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
At the root of the so-called precision medicine or precision oncology, which is our focus here, is the hypothesis that cancer treatment would be considerably better if therapies were guided by a tumor’s genomic alterations. This hypothesis has sparked major initiatives focusing on whole-genome and/or exome sequencing, creation of large databases, and developing tools for their statistical analyses—all aspiring to identify actionable alterations, and thus molecular targets, in a patient. At the center of the massive amount of collected sequence data is their interpretations that largely rest on statistical analysis and phenotypic observations. Statistics is vital, because it guides identification of cancer-driving alterations. However, statistics of mutations do not identify a change in protein conformation; therefore, it may not define sufficiently accurate actionable mutations, neglecting those that are rare. Among the many thematic overviews of precision oncology, this review innovates by further comprehensively including precision pharmacology, and within this framework, articulating its protein structural landscape and consequences to cellular signaling pathways. It provides the underlying physicochemical basis, thereby also opening the door to a broader community.
Collapse
|
18
|
Oncogenic KRas mobility in the membrane and signaling response. Semin Cancer Biol 2019; 54:109-113. [DOI: 10.1016/j.semcancer.2018.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
|
19
|
Sharmeen N, Sulea T, Whiteway M, Wu C. The adaptor protein Ste50 directly modulates yeast MAPK signaling specificity through differential connections of its RA domain. Mol Biol Cell 2019; 30:794-807. [PMID: 30650049 PMCID: PMC6589780 DOI: 10.1091/mbc.e18-11-0708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Discriminating among diverse environmental stimuli is critical for organisms to ensure their proper development, homeostasis, and survival. Saccharomyces cerevisiae regulates mating, osmoregulation, and filamentous growth using three different MAPK signaling pathways that share common components and therefore must ensure specificity. The adaptor protein Ste50 activates Ste11p, the MAP3K of all three modules. Its Ras association (RA) domain acts in both hyperosmolar and filamentous growth pathways, but its connection to the mating pathway is unknown. Genetically probing the domain, we found mutants that specifically disrupted mating or HOG-signaling pathways or both. Structurally these residues clustered on the RA domain, forming distinct surfaces with a propensity for protein–protein interactions. GFP fusions of wild-type (WT) and mutant Ste50p show that WT is localized to the shmoo structure and accumulates at the growing shmoo tip. The specifically pheromone response–defective mutants are severely impaired in shmoo formation and fail to localize ste50p, suggesting a failure of association and function of Ste50 mutants in the pheromone-signaling complex. Our results suggest that yeast cells can use differential protein interactions with the Ste50p RA domain to provide specificity of signaling during MAPK pathway activation.
Collapse
Affiliation(s)
- Nusrat Sharmeen
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Traian Sulea
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada.,Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, H9X 3V9 QC, Canada
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Cunle Wu
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.,Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| |
Collapse
|
20
|
Reher R, Kühl T, Annala S, Benkel T, Kaufmann D, Nubbemeyer B, Odhiambo JP, Heimer P, Bäuml CA, Kehraus S, Crüsemann M, Kostenis E, Tietze D, König GM, Imhof D. Deciphering Specificity Determinants for FR900359-Derived Gqα Inhibitors Based on Computational and Structure-Activity Studies. ChemMedChem 2018; 13:1634-1643. [DOI: 10.1002/cmdc.201800304] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Raphael Reher
- Institute of Pharmaceutical Biology; University of Bonn; Nussallee 6 53115 Bonn Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics; Pharmaceutical Institute; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Suvi Annala
- Molecular, Cellular and Pharmacobiology Section; Institute of Pharmaceutical Biology; University of Bonn; Nussallee 6 53115 Bonn Germany
| | - Tobias Benkel
- Molecular, Cellular and Pharmacobiology Section; Institute of Pharmaceutical Biology; University of Bonn; Nussallee 6 53115 Bonn Germany
| | - Desireé Kaufmann
- Eduard Zintl Institute for Inorganic and Physical Chemistry; Technische Universität Darmstadt; Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| | - Britta Nubbemeyer
- Pharmaceutical Biochemistry and Bioanalytics; Pharmaceutical Institute; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Justin Patrick Odhiambo
- Pharmaceutical Biochemistry and Bioanalytics; Pharmaceutical Institute; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Pascal Heimer
- Pharmaceutical Biochemistry and Bioanalytics; Pharmaceutical Institute; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Charlotte Anneke Bäuml
- Pharmaceutical Biochemistry and Bioanalytics; Pharmaceutical Institute; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Stefan Kehraus
- Institute of Pharmaceutical Biology; University of Bonn; Nussallee 6 53115 Bonn Germany
| | - Max Crüsemann
- Institute of Pharmaceutical Biology; University of Bonn; Nussallee 6 53115 Bonn Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section; Institute of Pharmaceutical Biology; University of Bonn; Nussallee 6 53115 Bonn Germany
| | - Daniel Tietze
- Eduard Zintl Institute for Inorganic and Physical Chemistry; Technische Universität Darmstadt; Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| | - Gabriele M. König
- Institute of Pharmaceutical Biology; University of Bonn; Nussallee 6 53115 Bonn Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics; Pharmaceutical Institute; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| |
Collapse
|
21
|
Dorčák V, Novák D, Kabeláč M, Kroutil O, Bednárová L, Veverka V, Vacek J. Structural Stability of Peptidic His-Containing Proton Wire in Solution and in the Adsorbed State. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6997-7005. [PMID: 29763545 DOI: 10.1021/acs.langmuir.7b04139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular wires are functional molecules applicable in the field of transfer processes in technological and biochemical applications. Besides molecular wires with the ability to transfer electrons, research is currently focused on molecular wires with high proton affinity and proton transfer ability. Recently, proposed peptidic proton wires (H wires) are one example. Their ability to mediate the transport of protons from aqueous solutions onto the surface of a Hg electrode in a catalytic hydrogen evolution reaction was investigated by constant-current chronopotentiometric stripping. However, elucidating the structure of H wires and rationalizing their stability are key requirements for their further research and application. In this article, we focus on the His (H) and Ala (A)-containing peptidic H wire A3-(H-A2)6 in solution and after its immobilization onto the electrode surface in the presence of the secondary structure stabilizer 2,2,2-trifluoroethanol (TFE). We found that the solvent containing more than 25% of TFE stabilizes the helical structure of A3-(H-A2)6 not only in solution but also in the adsorbed state. The TFE efficacy to stabilize α-helical structure was confirmed using high-resolution nuclear magnetic resonance, circular dichroism, and molecular dynamics simulation. Experimental and theoretical results indicated A3-(H-A2)6 to be a high proton-affinity peptidic H wire with an α-helical structure stabilized by TFE, which was confirmed in a comparative study with hexahistidine as an example of a peptide with a definitely disordered and random coil structure. The results presented here could be used for further investigation of the peptidic H wires and for the application of electrochemical methods in the research of proton transfer phenomena in general.
Collapse
Affiliation(s)
- Vlastimil Dorčák
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , 612 65 Brno , Czech Republic
| | - David Novák
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry , Palacky University , Hnevotinska 3 , 775 15 Olomouc , Czech Republic
| | - Martin Kabeláč
- Department of Chemistry, Faculty of Science , University of South Bohemia , Branisovska 31 , 370 05 Ceske Budejovice , Czech Republic
| | - Ondřej Kroutil
- Institute of Physics and Biophysics, Faculty of Science , University of South Bohemia , Branisovska 1760 , 370 05 Ceske Budejovice , Czech Republic
| | - Lucie Bednárová
- The Czech Academy of Sciences , Institute of Organic Chemistry and Biochemistry , Flemingovo nam. 2 , 160 00 Prague , Czech Republic
| | - Václav Veverka
- The Czech Academy of Sciences , Institute of Organic Chemistry and Biochemistry , Flemingovo nam. 2 , 160 00 Prague , Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry , Palacky University , Hnevotinska 3 , 775 15 Olomouc , Czech Republic
| |
Collapse
|
22
|
Iwasa H, Hossain S, Hata Y. Tumor suppressor C-RASSF proteins. Cell Mol Life Sci 2018; 75:1773-1787. [PMID: 29353317 PMCID: PMC11105443 DOI: 10.1007/s00018-018-2756-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/05/2018] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
Abstract
Human genome has ten genes that are collectedly called Ras association domain family (RASSF). RASSF is composed of two subclasses, C-RASSF and N-RASSF. Both N-RASSF and C-RASSF encode Ras association domain-containing proteins and are frequently suppressed by DNA hypermethylation in human cancers. However, C-RASSF and N-RASSF are quite different. Six C-RASSF proteins (RASSF1-6) are characterized by a C-terminal coiled-coil motif named Salvador/RASSF/Hippo domain, while four N-RASSF proteins (RASSF7-10) lack it. C-RASSF proteins interact with mammalian Ste20-like kinases-the core kinases of the tumor suppressor Hippo pathway-and cross-talk with this pathway. Some of them share the same interacting molecules such as MDM2 and exert the tumor suppressor role in similar manners. Nevertheless, each C-RASSF protein has distinct characters. In this review, we summarize our current knowledge of how C-RASSF proteins play tumor suppressor roles and discuss the similarities and differences among C-RASSF proteins.
Collapse
Affiliation(s)
- Hiroaki Iwasa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Shakhawoat Hossain
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan.
| |
Collapse
|
23
|
Nussinov R, Tsai CJ, Jang H. Is Nanoclustering essential for all oncogenic KRas pathways? Can it explain why wild-type KRas can inhibit its oncogenic variant? Semin Cancer Biol 2018; 54:114-120. [PMID: 29307569 DOI: 10.1016/j.semcancer.2018.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/19/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
Abstract
Membrane-anchored oncogenic KRas can dimerize, form nanoclusters, and signal through the MAPK (Raf/MEK/ERK) and PI3Kα/Akt/mTOR. Both pathways are needed in KRAS-driven proliferation. Here we ask: Is oncogenic KRas nanoclustering (or dimerization) essential for all KRas signaling pathways? Raf kinase domain dimerization, thus MAPK activation, requires KRas nanoclusters. By contrast, the PI3Kα heterodimer acts as a monomeric unit; thus, does PI3Kα activation and PI3Kα/Akt/mTOR signaling require nanoclustering? Further, calmodulin binds only to oncogenic KRas4B. Here we ask: Does calmodulin downregulate KRas4B cancer development as suggested early on, or promote it? We also ask: Why is oncogenic KRas4B the most abundant isoform? Does wild-type Ras indeed inhibit its oncogenic variants as data appeared to suggest? And related to the last question, why is wild-type KRas a more potent inhibitor of its oncogenic form than wild-type NRas of its oncogenic form? Resolving these cardinal questions, and others, such as how exactly does RASSF5 (NORE1A) act as tumor suppressor, and why Ras isoforms tend to occur in distinct cancer types are crucial for effective pharmacology. In this review, we take a nanoclustering/dimerization-centric outlook and show that many questions can be explained by simply considering Ras nanoclustering.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
24
|
Cameron AJ, Edwards PJB, Harjes E, Sarojini V. Tyrocidine A Analogues Bearing the Planar d-Phe-2-Abz Turn Motif: How Conformation Impacts Bioactivity. J Med Chem 2017; 60:9565-9574. [DOI: 10.1021/acs.jmedchem.7b00953] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alan J. Cameron
- School
of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Patrick J. B. Edwards
- Institute
of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Elena Harjes
- Institute
of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | | |
Collapse
|
25
|
Cameron AJ, Squire CJ, Edwards PJB, Harjes E, Sarojini V. Crystal and NMR Structures of a Peptidomimetic β-Turn That Provides Facile Synthesis of 13-Membered Cyclic Tetrapeptides. Chem Asian J 2017; 12:3195-3202. [PMID: 29098772 DOI: 10.1002/asia.201701422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/30/2017] [Indexed: 12/31/2022]
Abstract
Herein we report the unique conformations adopted by linear and cyclic tetrapeptides (CTPs) containing 2-aminobenzoic acid (2-Abz) in solution and as single crystals. The crystal structure of the linear tetrapeptide H2 N-d-Leu-d-Phe-2-Abz-d-Ala-COOH (1) reveals a novel planar peptidomimetic β-turn stabilized by three hydrogen bonds and is in agreement with its NMR structure in solution. While CTPs are often synthetically inaccessible or cyclize in poor yield, both 1 and its N-Me-d-Phe analogue (2) adopt pseudo-cyclic frameworks enabling near quantitative conversion to the corresponding CTPs 3 and 4. The crystal structure of the N-methylated peptide (4) is the first reported for a CTP containing 2-Abz and reveals a distinctly planar 13-membered ring, which is also evident in solution. The N-methylation of d-Phe results in a peptide bond inversion compared to the conformation of 3 in solution.
Collapse
Affiliation(s)
- Alan J Cameron
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Christopher J Squire
- School of Biological Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Patrick J B Edwards
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Elena Harjes
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | | |
Collapse
|
26
|
Nussinov R, Jang H, Tsai CJ, Liao TJ, Li S, Fushman D, Zhang J. Intrinsic protein disorder in oncogenic KRAS signaling. Cell Mol Life Sci 2017; 74:3245-3261. [PMID: 28597297 PMCID: PMC11107717 DOI: 10.1007/s00018-017-2564-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022]
Abstract
How Ras, and in particular its most abundant oncogenic isoform K-Ras4B, is activated and signals in proliferating cells, poses some of the most challenging questions in cancer cell biology. In this paper, we ask how intrinsically disordered regions in K-Ras4B and its effectors help promote proliferative signaling. Conformational disorder allows spanning long distances, supports hinge motions, promotes anchoring in membranes, permits segments to fulfil multiple roles, and broadly is crucial for activation mechanisms and intensified oncogenic signaling. Here, we provide an overview illustrating some of the key mechanisms through which conformational disorder can promote oncogenesis, with K-Ras4B signaling serving as an example. We discuss (1) GTP-bound KRas4B activation through membrane attachment; (2) how farnesylation and palmitoylation can promote isoform functional specificity; (3) calmodulin binding and PI3K activation; (4) how Ras activates its RASSF5 cofactor, thereby stimulating signaling of the Hippo pathway and repressing proliferation; and (5) how intrinsically disordered segments in Raf help its attachment to the membrane and activation. Collectively, we provide the first inclusive review of the roles of intrinsic protein disorder in oncogenic Ras-driven signaling. We believe that a broad picture helps to grasp and formulate key mechanisms in Ras cancer biology and assists in therapeutic intervention.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Tsung-Jen Liao
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - Shuai Li
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| |
Collapse
|
27
|
Gemperle J, Hexnerová R, Lepšík M, Tesina P, Dibus M, Novotný M, Brábek J, Veverka V, Rosel D. Structural characterization of CAS SH3 domain selectivity and regulation reveals new CAS interaction partners. Sci Rep 2017; 7:8057. [PMID: 28808245 PMCID: PMC5556061 DOI: 10.1038/s41598-017-08303-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
CAS is a docking protein downstream of the proto-oncogene Src with a role in invasion and metastasis of cancer cells. The CAS SH3 domain is indispensable for CAS-mediated signaling, but structural aspects of CAS SH3 ligand binding and regulation are not well understood. Here, we identified the consensus CAS SH3 binding motif and structurally characterized the CAS SH3 domain in complex with ligand. We revealed the requirement for an uncommon centrally localized lysine residue at position +2 of CAS SH3 ligands and two rather dissimilar optional anchoring residues, leucine and arginine, at position +5. We further expanded the knowledge of CAS SH3 ligand binding regulation by manipulating tyrosine 12 phosphorylation and confirmed the negative role of this phosphorylation on CAS SH3 ligand binding. Finally, by exploiting the newly identified binding requirements of the CAS SH3 domain, we predicted and experimentally verified two novel CAS SH3 binding partners, DOK7 and GLIS2.
Collapse
Affiliation(s)
- Jakub Gemperle
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
| | - Rozálie Hexnerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, Czech Republic
| | - Petr Tesina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, Czech Republic
| | - Michal Dibus
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
| | - Marian Novotný
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, Czech Republic.
| | - Daniel Rosel
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic.
| |
Collapse
|
28
|
Koturenkiene A, Makbul C, Herrmann C, Constantinescu-Aruxandei D. Kinetic characterization of apoptotic Ras signaling through Nore1-MST1 complex formation. Biol Chem 2017; 398:701-707. [PMID: 28141542 DOI: 10.1515/hsz-2016-0291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/24/2017] [Indexed: 01/13/2023]
Abstract
Ras-mediated apoptotic signaling is expected to be mediated via Rassf-MST complexes, but the system has been poorly characterized in vitro until now. Here we demonstrate that active H-Ras, Nore1A and MST1 form a stable ternary complex in vitro without other external factors, Nore1A interacting simultaneously with H-Ras and MST1 via its RBD and SARAH domain, respectively. Moreover, our data show for the first time that the SARAH domain of Nore1A plays a role in the Nore1A binding to H-Ras. Finally, we analyze the relation between the electrostatic and hydrophobic forces and kinetic constants of the Nore1A - H-Ras complex.
Collapse
Affiliation(s)
- Agne Koturenkiene
- Department of Physical Chemistry I, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum
| | - Cihan Makbul
- Department of Physical Chemistry I, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum
| | - Christian Herrmann
- Department of Physical Chemistry I, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum
| | | |
Collapse
|
29
|
Nakhaeizadeh H, Amin E, Nakhaei-Rad S, Dvorsky R, Ahmadian MR. The RAS-Effector Interface: Isoform-Specific Differences in the Effector Binding Regions. PLoS One 2016; 11:e0167145. [PMID: 27936046 PMCID: PMC5147862 DOI: 10.1371/journal.pone.0167145] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/09/2016] [Indexed: 12/31/2022] Open
Abstract
RAS effectors specifically interact with the GTP-bound form of RAS in response to extracellular signals and link them to downstream signaling pathways. The molecular nature of effector interaction by RAS is well-studied but yet still incompletely understood in a comprehensive and systematic way. Here, structure-function relationships in the interaction between different RAS proteins and various effectors were investigated in detail by combining our in vitro data with in silico data. Equilibrium dissociation constants were determined for the binding of HRAS, KRAS, NRAS, RRAS1 and RRAS2 to both the RAS binding (RB) domain of CRAF and PI3Kα, and the RAS association (RA) domain of RASSF5, RALGDS and PLCε, respectively, using fluorescence polarization. An interaction matrix, constructed on the basis of available crystal structures, allowed identification of hotspots as critical determinants for RAS-effector interaction. New insights provided by this study are the dissection of the identified hotspots in five distinct regions (R1 to R5) in spite of high sequence variability not only between, but also within, RB/RA domain-containing effectors proteins. Finally, we propose that intermolecular β-sheet interaction in R1 is a central recognition region while R3 may determine specific contacts of RAS versus RRAS isoforms with effectors.
Collapse
Affiliation(s)
- Hossein Nakhaeizadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Ehsan Amin
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
30
|
Trempe JF, Šašková KG, Sivá M, Ratcliffe CDH, Veverka V, Hoegl A, Ménade M, Feng X, Shenker S, Svoboda M, Kožíšek M, Konvalinka J, Gehring K. Structural studies of the yeast DNA damage-inducible protein Ddi1 reveal domain architecture of this eukaryotic protein family. Sci Rep 2016; 6:33671. [PMID: 27646017 PMCID: PMC5028754 DOI: 10.1038/srep33671] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/01/2016] [Indexed: 12/16/2022] Open
Abstract
The eukaryotic Ddi1 family is defined by a conserved retroviral aspartyl protease-like (RVP) domain found in association with a ubiquitin-like (UBL) domain. Ddi1 from Saccharomyces cerevisiae additionally contains a ubiquitin-associated (UBA) domain. The substrate specificity and role of the protease domain in the biological functions of the Ddi family remain unclear. Yeast Ddi1 has been implicated in the regulation of cell cycle progression, DNA-damage repair, and exocytosis. Here, we investigated the multi-domain structure of yeast Ddi1 using X-ray crystallography, nuclear magnetic resonance, and small-angle X-ray scattering. The crystal structure of the RVP domain sheds light on a putative substrate recognition site involving a conserved loop. Isothermal titration calorimetry confirms that both UBL and UBA domains bind ubiquitin, and that Ddi1 binds K48-linked diubiquitin with enhanced affinity. The solution NMR structure of a helical domain that precedes the protease displays tertiary structure similarity to DNA-binding domains from transcription regulators. Our structural studies suggest that the helical domain could serve as a landing platform for substrates in conjunction with attached ubiquitin chains binding to the UBL and UBA domains.
Collapse
Affiliation(s)
- Jean-François Trempe
- Groupe de Recherche Axé sur la Structure des Protéines, Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Klára Grantz Šašková
- Gilead Sciences and IOCB Research Center, Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 120 00 Prague 2, Czech Republic
| | - Monika Sivá
- Gilead Sciences and IOCB Research Center, Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 120 00 Prague 2, Czech Republic.,First Faculty of Medicine, Charles University in Prague, Katerinska 32, 121 08, Prague 2, Czech Republic
| | - Colin D H Ratcliffe
- Groupe de Recherche Axé sur la Structure des Protéines, Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Václav Veverka
- Gilead Sciences and IOCB Research Center, Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Annabelle Hoegl
- Groupe de Recherche Axé sur la Structure des Protéines, Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Marie Ménade
- Groupe de Recherche Axé sur la Structure des Protéines, Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Xin Feng
- Groupe de Recherche Axé sur la Structure des Protéines, Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Solomon Shenker
- Groupe de Recherche Axé sur la Structure des Protéines, Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Michal Svoboda
- Gilead Sciences and IOCB Research Center, Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 120 00 Prague 2, Czech Republic
| | - Milan Kožíšek
- Gilead Sciences and IOCB Research Center, Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jan Konvalinka
- Gilead Sciences and IOCB Research Center, Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 120 00 Prague 2, Czech Republic
| | - Kalle Gehring
- Groupe de Recherche Axé sur la Structure des Protéines, Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| |
Collapse
|
31
|
Tietze D, Leipold E, Heimer P, Böhm M, Winschel W, Imhof D, Heinemann SH, Tietze AA. Molecular interaction of δ-conopeptide EVIA with voltage-gated Na+ channels. Biochim Biophys Acta Gen Subj 2016; 1860:2053-63. [DOI: 10.1016/j.bbagen.2016.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/02/2016] [Accepted: 06/12/2016] [Indexed: 12/19/2022]
|
32
|
Hexnerová R, Křížková K, Fábry M, Sieglová I, Kedrová K, Collinsová M, Ullrichová P, Srb P, Williams C, Crump MP, Tošner Z, Jiráček J, Veverka V, Žáková L. Probing Receptor Specificity by Sampling the Conformational Space of the Insulin-like Growth Factor II C-domain. J Biol Chem 2016; 291:21234-21245. [PMID: 27510031 PMCID: PMC5076530 DOI: 10.1074/jbc.m116.741041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Indexed: 01/22/2023] Open
Abstract
Insulin and insulin-like growth factors I and II are closely related protein hormones. Their distinct evolution has resulted in different yet overlapping biological functions with insulin becoming a key regulator of metabolism, whereas insulin-like growth factors (IGF)-I/II are major growth factors. Insulin and IGFs cross-bind with different affinities to closely related insulin receptor isoforms A and B (IR-A and IR-B) and insulin-like growth factor type I receptor (IGF-1R). Identification of structural determinants in IGFs and insulin that trigger their specific signaling pathways is of increasing importance in designing receptor-specific analogs with potential therapeutic applications. Here, we developed a straightforward protocol for production of recombinant IGF-II and prepared six IGF-II analogs with IGF-I-like mutations. All modified molecules exhibit significantly reduced affinity toward IR-A, particularly the analogs with a Pro-Gln insertion in the C-domain. Moreover, one of the analogs has enhanced binding affinity for IGF-1R due to a synergistic effect of the Pro-Gln insertion and S29N point mutation. Consequently, this analog has almost a 10-fold higher IGF-1R/IR-A binding specificity in comparison with native IGF-II. The established IGF-II purification protocol allowed for cost-effective isotope labeling required for a detailed NMR structural characterization of IGF-II analogs that revealed a link between the altered binding behavior of selected analogs and conformational rearrangement of their C-domains.
Collapse
Affiliation(s)
- Rozálie Hexnerová
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic, Faculty of Science, Charles University in Prague, Albertov 6, Prague 128 43, Czech Republic
| | - Květoslava Křížková
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic, Faculty of Science, Charles University in Prague, Albertov 6, Prague 128 43, Czech Republic
| | - Milan Fábry
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic, and
| | - Irena Sieglová
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Kateřina Kedrová
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic, Faculty of Science, Charles University in Prague, Albertov 6, Prague 128 43, Czech Republic
| | - Michaela Collinsová
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Pavlína Ullrichová
- Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Pavel Srb
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Christopher Williams
- Department of Organic and Biological Chemistry, School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Matthew P Crump
- Department of Organic and Biological Chemistry, School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Zdeněk Tošner
- Faculty of Science, Charles University in Prague, Albertov 6, Prague 128 43, Czech Republic
| | - Jiří Jiráček
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Václav Veverka
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic,
| | - Lenka Žáková
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic,
| |
Collapse
|
33
|
Nešuta O, Hexnerová R, Buděšínský M, Slaninová J, Bednárová L, Hadravová R, Straka J, Veverka V, Čeřovský V. Antimicrobial Peptide from the Wild Bee Hylaeus signatus Venom and Its Analogues: Structure-Activity Study and Synergistic Effect with Antibiotics. JOURNAL OF NATURAL PRODUCTS 2016; 79:1073-1083. [PMID: 26998557 DOI: 10.1021/acs.jnatprod.5b01129] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Venoms of hymenopteran insects have attracted considerable interest as a source of cationic antimicrobial peptides (AMPs). In the venom of the solitary bee Hylaeus signatus (Hymenoptera: Colletidae), we identified a new hexadecapeptide of sequence Gly-Ile-Met-Ser-Ser-Leu-Met-Lys-Lys-Leu-Ala-Ala-His-Ile-Ala-Lys-NH2. Named HYL, it belongs to the category of α-helical amphipathic AMPs. HYL exhibited weak antimicrobial activity against several strains of pathogenic bacteria and moderate activity against Candida albicans, but its hemolytic activity against human red blood cells was low. We prepared a set of HYL analogues to evaluate the effects of structural modifications on its biological activity and to increase its potency against pathogenic bacteria. This produced several analogues exhibiting significantly greater activity compared to HYL against strains of both Staphylococcus aureus and Pseudomonas aeruginosa even as their hemolytic activity remained low. Studying synergism of HYL peptides and conventional antibiotics showed the peptides act synergistically and preferentially in combination with rifampicin. Fluorescent dye propidium iodide uptake showed the tested peptides were able to facilitate entrance of antibiotics into the cytoplasm by permeabilization of the outer and inner bacterial cell membrane of P. aeruginosa. Transmission electron microscopy revealed that treatment of P. aeruginosa with one of the HYL analogues caused total disintegration of bacterial cells. NMR spectroscopy was used to elucidate the structure-activity relationship for the effect of amino acid residue substitution in HYL.
Collapse
Affiliation(s)
- Ondřej Nešuta
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague , Technická 5, 166 28 Prague 6, Czech Republic
| | - Rozálie Hexnerová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Jiřina Slaninová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Romana Hadravová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Jakub Straka
- Department of Zoology, Faculty of Science, Charles University in Prague , Viničná 7, 12843 Prague 2, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Václav Čeřovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
34
|
Lee MG, Jeong SI, Ko KP, Park SK, Ryu BK, Kim IY, Kim JK, Chi SG. RASSF1A Directly Antagonizes RhoA Activity through the Assembly of a Smurf1-Mediated Destruction Complex to Suppress Tumorigenesis. Cancer Res 2016; 76:1847-59. [DOI: 10.1158/0008-5472.can-15-1752] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/16/2016] [Indexed: 11/16/2022]
Abstract
Abstract
RASSF1A is a tumor suppressor implicated in many tumorigenic processes; however, the basis for its tumor suppressor functions are not fully understood. Here we show that RASSF1A is a novel antagonist of protumorigenic RhoA activity. Direct interaction between the C-terminal amino acids (256–277) of RASSF1A and active GTP-RhoA was critical for this antagonism. In addition, interaction between the N-terminal amino acids (69-82) of RASSF1A and the ubiquitin E3 ligase Smad ubiquitination regulatory factor 1 (Smurf1) disrupted GTPase activity by facilitating Smurf1-mediated ubiquitination of GTP-RhoA. We noted that the RhoA-binding domain of RASSF1A displayed high sequence homology with Rho-binding motifs in other RhoA effectors, such as Rhotekin. As predicted on this basis, RASSF1A competed with Rhotekin to bind RhoA and to block its activation. RASSF1A mutants unable to bind RhoA or Smurf1 failed to suppress RhoA-induced tumor cell proliferation, drug resistance, epithelial–mesenchymal transition, migration, invasion, and metastasis. Clinically, expression levels of RASSF1A and RhoA were inversely correlated in many types of primary and metastatic tumors and tumor cell lines. Collectively, our findings showed how RASSF1A may suppress tumorigenesis by intrinsically inhibiting the tumor-promoting activity of RhoA, thereby illuminating the potential mechanistic consequences of RASSF1A inactivation in many cancers. Cancer Res; 76(7); 1847–59. ©2016 AACR.
Collapse
Affiliation(s)
- Min-Goo Lee
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Seong-In Jeong
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Kyung-Phil Ko
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Soon-Ki Park
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Byung-Kyu Ryu
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Ick-Young Kim
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jeong-Kook Kim
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
35
|
Viková J, Collinsová M, Kletvíková E, Buděšínský M, Kaplan V, Žáková L, Veverka V, Hexnerová R, Aviñó RJT, Straková J, Selicharová I, Vaněk V, Wright DW, Watson CJ, Turkenburg JP, Brzozowski AM, Jiráček J. Rational steering of insulin binding specificity by intra-chain chemical crosslinking. Sci Rep 2016; 6:19431. [PMID: 26792393 PMCID: PMC4726324 DOI: 10.1038/srep19431] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/11/2015] [Indexed: 12/14/2022] Open
Abstract
Insulin is a key hormone of human metabolism with major therapeutic importance for both types of diabetes. New insulin analogues with more physiological profiles and better glycemic control are needed, especially analogues that preferentially bind to the metabolic B-isoform of insulin receptor (IR-B). Here, we aimed to stabilize and modulate the receptor-compatible conformation of insulin by covalent intra-chain crosslinking within its B22-B30 segment, using the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction of azides and alkynes. This approach resulted in 14 new, systematically crosslinked insulin analogues whose structures and functions were extensively characterized and correlated. One of the analogues, containing a B26-B29 triazole bridge, was highly active in binding to both IR isoforms, with a significant preference for IR-B. Our results demonstrate the potential of chemistry-driven modulation of insulin function, also shedding new light on the functional importance of hormone's B-chain C-terminus for its IR-B specificity.
Collapse
Affiliation(s)
- Jitka Viková
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Michaela Collinsová
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Emília Kletvíková
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Vojtěch Kaplan
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Rozálie Hexnerová
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Roberto J. Tarazona Aviñó
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Jana Straková
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Václav Vaněk
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Daniel W. Wright
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Christopher J. Watson
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Johan P. Turkenburg
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Andrzej M. Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| |
Collapse
|
36
|
Shi Z, Jiao S, Zhou Z. Structural dissection of Hippo signaling. Acta Biochim Biophys Sin (Shanghai) 2015; 47:29-38. [PMID: 25476203 DOI: 10.1093/abbs/gmu107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Hippo pathway controls cell number and organ size by restricting cell proliferation and promoting apoptosis, and thus is a key regulator in development and homeostasis. Dysfunction of the Hippo pathway correlates with many pathological conditions, especially cancer. Hippo signaling also plays important roles in tissue regeneration and stem cell biology. Therefore, the Hippo pathway is recognized as a crucial target for cancer therapy and regeneration medicine. To date, structures of several key components in Hippo signaling have been determined. In this review, we summarize current available structural studies of the Hippo pathway, which may help to improve our understanding of its regulatory mechanisms, as well as to facilitate further functional studies and potential therapeutic interventions.
Collapse
|
37
|
Křížková K, Veverka V, Maletínská L, Hexnerová R, Brzozowski AM, Jiráček J, Žáková L. Structural and functional study of the GlnB22-insulin mutant responsible for maturity-onset diabetes of the young. PLoS One 2014; 9:e112883. [PMID: 25423173 PMCID: PMC4244080 DOI: 10.1371/journal.pone.0112883] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/21/2014] [Indexed: 12/04/2022] Open
Abstract
The insulin gene mutation c.137G>A (R46Q), which changes an arginine at the B22 position of the mature hormone to glutamine, causes the monogenic diabetes variant maturity-onset diabetes of the young (MODY). In MODY patients, this mutation is heterozygous, and both mutant and wild-type (WT) human insulin are produced simultaneously. However, the patients often depend on administration of exogenous insulin. In this study, we chemically synthesized the MODY mutant [GlnB22]-insulin and characterized its biological and structural properties. The chemical synthesis of this insulin analogue revealed that its folding ability is severely impaired. In vitro and in vivo tests showed that its binding affinity and biological activity are reduced (both approximately 20% that of human insulin). Comparison of the solution structure of [GlnB22]-insulin with the solution structure of native human insulin revealed that the most significant structural effect of the mutation is distortion of the B20-B23 β-turn, leading to liberation of the B chain C-terminus from the protein core. The distortion of the B20-B23 β-turn is caused by the extended conformational freedom of the GlnB22 side chain, which is no longer anchored in a hydrogen bonding network like the native ArgB22. The partially disordered [GlnB22]-insulin structure appears to be one reason for the reduced binding potency of this mutant and may also be responsible for its low folding efficiency in vivo. The altered orientation and flexibility of the B20-B23 β-turn may interfere with the formation of disulfide bonds in proinsulin bearing the R46Q (GlnB22) mutation. This may also have a negative effect on the WT proinsulin simultaneously biosynthesized in β-cells and therefore play a major role in the development of MODY in patients producing [GlnB22]-insulin.
Collapse
Affiliation(s)
- Květoslava Křížková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Rozálie Hexnerová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Andrzej M. Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
- * E-mail:
| |
Collapse
|
38
|
Gordon M, Baksh S. RASSF1A: Not a prototypical Ras effector. Small GTPases 2014; 2:148-157. [PMID: 21776416 DOI: 10.4161/sgtp.2.3.16286] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 01/25/2023] Open
Abstract
The Ras association domain family (RASSF) of genes are commonly silenced by promoter specific methylation in human cancers. After the cloning of the first two family members in early 2000 (RASSF1 and RASSF5), eight other related genes have been identified (RASSF2, 3, 4 and 6-10). The unifying motif amongst all RASSF family members is the presence of the Ras association (RA) domain that could potentially associate with the Ras family of GTPases. Detailed analyses have determined that RASSF family members are tumor suppressor proteins, activators of cell death, cell cycle modulators, microtubule stabilizers and possibly inflammatory mediators linked to NFκB. As such, exploring the biological function of this gene family is needed and if indeed RASSF proteins could be the missing link between Ras signaling and apoptosis. Several RASSF family members have been demonstrated to associate with Ras. However, there is still controversy regarding the ability of RASSF1A to utilize Ras to promote cell death and of the importance of the RASSF1A RA domain. The focus of this review is to highlight the importance of Ras binding to the RASSF family of proteins and discuss what we currently know about the biology of RASSF1A.
Collapse
Affiliation(s)
- Marilyn Gordon
- Department of Pediatrics; Faculty of Medicine and Dentistry; University of Alberta; Edmonton, AB Canada
| | | |
Collapse
|
39
|
Cermáková K, Tesina P, Demeulemeester J, El Ashkar S, Méreau H, Schwaller J, Rezáčová P, Veverka V, De Rijck J. Validation and structural characterization of the LEDGF/p75-MLL interface as a new target for the treatment of MLL-dependent leukemia. Cancer Res 2014; 74:5139-51. [PMID: 25082813 DOI: 10.1158/0008-5472.can-13-3602] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mixed lineage leukemia (MLL) fusion-driven acute leukemias represent a genetically distinct subset of leukemias with poor prognosis. MLL forms a ternary complex with the lens epithelium-derived growth factor (LEDGF/p75) and MENIN. LEDGF/p75, a chromatin reader recognizing H3K36me3 marks, contributes to the association of the MLL multiprotein complex to chromatin. Formation of this complex is critical for the development of MLL leukemia. Available X-ray data represent only a partial structure of the LEDGF/p75-MLL-MENIN complex. Using nuclear magnetic resonance spectroscopy, we identified an additional LEDGF/p75-MLL interface, which overlaps with the binding site of known LEDGF/p75 interactors-HIV-1 integrase, PogZ, and JPO2. Binding of these proteins or MLL to LEDGF/p75 is mutually exclusive. The resolved structure, as well as mutational analysis, shows that the interaction is primarily sustained via two aromatic residues of MLL (F148 and F151). Colony-forming assays in MLL-AF9(+) leukemic cells expressing MLL interaction-defective LEDGF/p75 mutants revealed that this interaction is essential for transformation. Finally, we show that the clonogenic growth of primary murine MLL-AF9-expressing leukemic blasts is selectively impaired upon overexpression of a LEDGF/p75-binding cyclic peptide CP65, originally developed to inhibit the LEDGF/p75-HIV-1 integrase interaction. The newly defined protein-protein interface therefore represents a new target for the development of therapeutics against LEDGF/p75-dependent MLL fusion-driven leukemic disorders. Cancer Res; 74(18); 5139-51. ©2014 AACR.
Collapse
Affiliation(s)
- Kateřina Cermáková
- KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Petr Tesina
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Structural Biology, Prague, Czech Republic. Charles University in Prague, Department of Genetics and Microbiology, Faculty of Science, Prague, Czech Republic
| | - Jonas Demeulemeester
- KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Sara El Ashkar
- KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Hélène Méreau
- Department of Biomedicine, University Hospital and Children's Hospital Basel (UKBB) ZLF, Basel, Switzerland
| | - Juerg Schwaller
- Department of Biomedicine, University Hospital and Children's Hospital Basel (UKBB) ZLF, Basel, Switzerland
| | - Pavlína Rezáčová
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Structural Biology, Prague, Czech Republic. Institute of Molecular Genetics of the ASCR, v.v.i., Structural Biology, Prague, Czech Republic
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry of the ASCR, v.v.i., Structural Biology, Prague, Czech Republic.
| | - Jan De Rijck
- KU Leuven, Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium.
| |
Collapse
|
40
|
Kosinová L, Veverka V, Novotná P, Collinsová M, Urbanová M, Moody NR, Turkenburg JP, Jiráček J, Brzozowski AM, Žáková L. Insight into the structural and biological relevance of the T/R transition of the N-terminus of the B-chain in human insulin. Biochemistry 2014; 53:3392-402. [PMID: 24819248 PMCID: PMC4047818 DOI: 10.1021/bi500073z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
The N-terminus of the B-chain of
insulin may adopt two alternative
conformations designated as the T- and R-states. Despite the recent
structural insight into insulin–insulin receptor (IR) complexes,
the physiological relevance of the T/R transition is still unclear.
Hence, this study focused on the rational design, synthesis, and characterization
of human insulin analogues structurally locked in expected R- or T-states.
Sites B3, B5, and B8, capable of affecting the conformation of the
N-terminus of the B-chain, were subjects of rational substitutions
with amino acids with specific allowed and disallowed dihedral φ
and ψ main-chain angles. α-Aminoisobutyric acid was systematically
incorporated into positions B3, B5, and B8 for stabilization of the
R-state, and N-methylalanine and d-proline
amino acids were introduced at position B8 for stabilization of the
T-state. IR affinities of the analogues were compared and correlated
with their T/R transition ability and analyzed against their crystal
and nuclear magnetic resonance structures. Our data revealed that
(i) the T-like state is indeed important for the folding efficiency
of (pro)insulin, (ii) the R-state is most probably incompatible with
an active form of insulin, (iii) the R-state cannot be induced or
stabilized by a single substitution at a specific site, and (iv) the
B1–B8 segment is capable of folding into a variety of low-affinity
T-like states. Therefore, we conclude that the active conformation
of the N-terminus of the B-chain must be different from the “classical”
T-state and that a substantial flexibility of the B1–B8 segment,
where GlyB8 plays a key role, is a crucial prerequisite for an efficient
insulin–IR interaction.
Collapse
Affiliation(s)
- Lucie Kosinová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pu Y, Kang JH, Sigano DM, Peach M, Lewin NE, Marquez VE, Blumberg PM. Diacylglycerol lactones targeting the structural features that distinguish the atypical C1 domains of protein kinase C ζ and ι from typical C1 domains. J Med Chem 2014; 57:3835-44. [PMID: 24684293 PMCID: PMC4310642 DOI: 10.1021/jm500165n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Indexed: 01/25/2023]
Abstract
To explore the feasibility of developing ligands targeted to the atypical C1 domains of protein kinase C ζ and ι, we have prepared diacylglycerol lactones substituted with hydrophilic groups on their side chains, which potentially could interact with the arginine residues that distinguish the atypical C1 domains of PKCζ and PKCι from typical C1 domains, and we have measured their binding to mutated versions of the C1b domain of PKCδ that incorporate one or more of these arginine residues. The most selective of the diacylglycerol lactones showed only a 10-fold reduction in binding affinity with the triple arginine mutant (N7R/S10R/L20R) compared to the wild-type, whereas phorbol 12,13-dibutyrate showed a 6000-fold loss of affinity. Molecular modeling confirms that these ligands are indeed able to interact with the arginine residues. Our results show that dramatic changes in selectivity can be obtained through appropriate substitution of diacylglycerol lactones.
Collapse
Affiliation(s)
- Yongmei Pu
- Laboratory
of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of
Health, Bethesda, Maryland 20892, United
States
| | - Ji-Hye Kang
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Dina M. Sigano
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Megan
L. Peach
- Chemical
Biology Laboratory, Basic Science Program, Frederick National Laboratory
for Cancer Research, Leidos Biomedical,
Inc., Frederick, Maryland 21702, United
States
| | - Nancy E. Lewin
- Laboratory
of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of
Health, Bethesda, Maryland 20892, United
States
| | - Victor E. Marquez
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Peter M. Blumberg
- Laboratory
of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of
Health, Bethesda, Maryland 20892, United
States
| |
Collapse
|
42
|
Kim HJ, Hwang E, Han YH, Choi S, Lee WC, Kim HY, Jeon YH, Cheong C, Cheong HK. Expression, purification, crystallization and preliminary X-ray analysis of the human NORE1 SARAH domain. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:813-5. [PMID: 22750872 DOI: 10.1107/s1744309112021744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/14/2012] [Indexed: 11/10/2022]
Abstract
NORE1 is an important tumour suppressor in human cancers that interacts with the pro-apoptotic protein kinase MST1/2 through SARAH domains. The SARAH domain (residues 366-413) of human NORE1 was expressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystal diffracted to 2.7 Å resolution and belonged to space group P6(1)22, with unit-cell parameters a = b = 73.041, c = 66.092 Å, α = β = 90, γ = 120°.
Collapse
Affiliation(s)
- Hye Jin Kim
- Division of Magnetic Resonance, Korea Basic Science Institute, 162 Yeongudanji-Ro, Ochang, Chungbuk 363-883, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gordon M, El-Kalla M, Baksh S. RASSF1 Polymorphisms in Cancer. Mol Biol Int 2012; 2012:365213. [PMID: 22701175 PMCID: PMC3371342 DOI: 10.1155/2012/365213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/01/2012] [Indexed: 12/29/2022] Open
Abstract
Ras association domain family 1A (RASSF1A) is one of the most epigenetically silenced elements in human cancers. Localized on chromosome 3, it has been demonstrated to be a bone fide tumor suppressor influencing cell cycle events, microtubule stability, apoptosis, and autophagy. Although it is epigenetically silenced by promoter-specific methylation in cancers, several somatic nucleotide changes (polymorphisms) have been identified in RASSF1A in tissues from cancer patients. We speculate that both nucleotide changes and epigenetic silencing result in loss of the RASSF1A tumor suppressor function and the appearance of enhanced growth. This paper will summarize what is known about the origin of these polymorphisms and how they have helped us understand the biological role of RASSF1A.
Collapse
Affiliation(s)
- Marilyn Gordon
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 3-055 Katz Group Centre for Pharmacy and Health Research, 113 Street 87 Avenue, Edmonton, AB, Canada T6G 2E1
- Women and Children's Health Research Institute, University of Alberta, 4-081 Edmonton Clinic Health Academy, 11405-87 Avenue, Edmonton, AB, Canada T6G 1C9
| | - Mohamed El-Kalla
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 3-055 Katz Group Centre for Pharmacy and Health Research, 113 Street 87 Avenue, Edmonton, AB, Canada T6G 2E1
- Women and Children's Health Research Institute, University of Alberta, 4-081 Edmonton Clinic Health Academy, 11405-87 Avenue, Edmonton, AB, Canada T6G 1C9
| | - Shairaz Baksh
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 3-055 Katz Group Centre for Pharmacy and Health Research, 113 Street 87 Avenue, Edmonton, AB, Canada T6G 2E1
- Women and Children's Health Research Institute, University of Alberta, 4-081 Edmonton Clinic Health Academy, 11405-87 Avenue, Edmonton, AB, Canada T6G 1C9
| |
Collapse
|
44
|
RASSF Signalling and DNA Damage: Monitoring the Integrity of the Genome? Mol Biol Int 2012; 2012:141732. [PMID: 22577550 PMCID: PMC3337673 DOI: 10.1155/2012/141732] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/27/2012] [Indexed: 12/14/2022] Open
Abstract
The RASSF family of proteins has been extensively studied in terms of their genetics, structure and function. One of the functions that has been increasingly studied is the role of the RASSF proteins in the DNA damage response. Surprisingly, this research, which encompasses both the classical and N-terminal RASSF proteins, has revealed an involvement of the RASSFs in oncogenic pathways as well as the more familiar tumour suppressor pathways usually associated with the RASSF family members. The most studied protein with respect to DNA damage is RASSF1A, which has been shown, not only to be activated by ATM, a major regulator of the DNA damage response, but also to bind to and activate a number of different pathways which all lead to and feedback from the guardian of the genome, p53. In this review we discuss the latest research linking the RASSF proteins to DNA damage signalling and maintenance of genomic integrity and look at how this knowledge is being utilised in the clinic to enhance the effectiveness of traditional cancer therapies such as radiotherapy.
Collapse
|
45
|
Stewart MD, Morgan B, Massi F, Igumenova TI. Probing the determinants of diacylglycerol binding affinity in the C1B domain of protein kinase Cα. J Mol Biol 2011; 408:949-70. [PMID: 21419781 DOI: 10.1016/j.jmb.2011.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 01/20/2023]
Abstract
C1 domains are independently folded modules that are responsible for targeting their parent proteins to lipid membranes containing diacylglycerol (DAG), a ubiquitous second messenger. The DAG binding affinities of C1 domains determine the threshold concentration of DAG required for the propagation of signaling response and the selectivity of this response among DAG receptors in the cell. The structural information currently available for C1 domains offers little insight into the molecular basis of their differential DAG binding affinities. In this work, we characterized the C1B domain of protein kinase Cα (C1Bα) and its diagnostic mutant, Y123W, using solution NMR methods and molecular dynamics simulations. The mutation did not perturb the C1Bα structure or the sub-nanosecond dynamics of the protein backbone, but resulted in a >100-fold increase in DAG binding affinity and a substantial change in microsecond timescale conformational dynamics, as quantified by NMR rotating-frame relaxation-dispersion methods. The differences in the conformational exchange behavior between wild type and Y123W C1Bα were localized to the hinge regions of ligand-binding loops. Molecular dynamics simulations provided insight into the identity of the exchanging conformers and revealed the significance of a particular residue (Gln128) in modulating the geometry of the ligand-binding site. Taken together with the results of binding studies, our findings suggest that the conformational dynamics and preferential partitioning of the tryptophan side chain into the water-lipid interface are important factors that modulate the DAG binding properties of the C1 domains.
Collapse
Affiliation(s)
- Mikaela D Stewart
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
46
|
Karassek S, Berghaus C, Schwarten M, Goemans CG, Ohse N, Kock G, Jockers K, Neumann S, Gottfried S, Herrmann C, Heumann R, Stoll R. Ras homolog enriched in brain (Rheb) enhances apoptotic signaling. J Biol Chem 2010; 285:33979-91. [PMID: 20685651 PMCID: PMC2962498 DOI: 10.1074/jbc.m109.095968] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 07/19/2010] [Indexed: 12/18/2022] Open
Abstract
Rheb is a homolog of Ras GTPase that regulates cell growth, proliferation, and regeneration via mammalian target of rapamycin (mTOR). Because of the well established potential of activated Ras to promote survival, we sought to investigate the ability of Rheb signaling to phenocopy Ras. We found that overexpression of lipid-anchored Rheb enhanced the apoptotic effects induced by UV light, TNFα, or tunicamycin in an mTOR complex 1 (mTORC1)-dependent manner. Knocking down endogenous Rheb or applying rapamycin led to partial protection, identifying Rheb as a mediator of cell death. Ras and c-Raf kinase opposed the apoptotic effects induced by UV light or TNFα but did not prevent Rheb-mediated apoptosis. To gain structural insight into the signaling mechanisms, we determined the structure of Rheb-GDP by NMR. The complex adopts the typical canonical fold of RasGTPases and displays the characteristic GDP-dependent picosecond to nanosecond backbone dynamics of the switch I and switch II regions. NMR revealed Ras effector-like binding of activated Rheb to the c-Raf-Ras-binding domain (RBD), but the affinity was 1000-fold lower than the Ras/RBD interaction, suggesting a lack of functional interaction. shRNA-mediated knockdown of apoptosis signal-regulating kinase 1 (ASK-1) strongly reduced UV or TNFα-induced apoptosis and suppressed enhancement by Rheb overexpression. In conclusion, Rheb-mTOR activation not only promotes normal cell growth but also enhances apoptosis in response to diverse toxic stimuli via an ASK-1-mediated mechanism. Pharmacological regulation of the Rheb/mTORC1 pathway using rapamycin should take the presence of cellular stress into consideration, as this may have clinical implications.
Collapse
Affiliation(s)
| | | | | | | | - Nadine Ohse
- Physical Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, 44780 Bochum, Germany
| | | | | | | | | | - Christian Herrmann
- Physical Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, 44780 Bochum, Germany
| | - Rolf Heumann
- From the Departments of Molecular Neurobiochemistry
| | | |
Collapse
|
47
|
Raab M, Wang H, Lu Y, Smith X, Wu Z, Strebhardt K, Ladbury JE, Rudd CE. T cell receptor "inside-out" pathway via signaling module SKAP1-RapL regulates T cell motility and interactions in lymph nodes. Immunity 2010; 32:541-56. [PMID: 20346707 DOI: 10.1016/j.immuni.2010.03.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 11/05/2009] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
Although essential for T cell function, the identity of the T cell receptor "inside-out" pathway for lymphocyte function-associated antigen 1 (LFA-1) adhesion has proved elusive. Here, we define the "inside-out" pathway mediated by N-terminal SKAP1 (SKAP-55) domain binding to the C-terminal SARAH domain of RapL. TcR induced Rap1-RapL complex formation and LFA-1 binding failed to occur in Skap1(-/-) primary T cells. SKAP1 generated a SKAP1-RapL-Rap1 complex that bound to LFA-1, whereas a RapL mutation (L224A) that abrogated SKAP1 binding without affecting MST1 disrupted component colocalization in vesicles as well as T cell-dendritic cell (DC) conjugation. RapL expression also "slowed" T cell motility in D011.10 transgenic T cells in lymph nodes (LNs), an effect reversed by the L224A mutation with reduced dwell times between T cells and DCs. Overall, our findings define a TCR "inside-out" pathway via N-SKAP1-C-RapL that regulates T cell adhesion, motility, and arrest times with DCs in LNs.
Collapse
Affiliation(s)
- Monika Raab
- Cell Signaling Section, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge UK, CB2 1Q
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ekiel I, Sulea T, Jansen G, Kowalik M, Minailiuc O, Cheng J, Harcus D, Cygler M, Whiteway M, Wu C. Binding the atypical RA domain of Ste50p to the unfolded Opy2p cytoplasmic tail is essential for the high-osmolarity glycerol pathway. Mol Biol Cell 2010; 20:5117-26. [PMID: 19846660 DOI: 10.1091/mbc.e09-07-0645] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Activation of the high-osmolarity glycerol (HOG) pathway for osmoregulation in the yeast Saccharomyces cerevisiae involves interaction of the adaptor Ste50p with the cytoplasmic tail of single-transmembrane protein Opy2p. We have determined the solution structure of the Ste50p-RA (Ras association) domain, and it shows an atypical RA fold lacking the beta1 and beta2 strands of the canonical motif. Although the core of the RA domain is fully functional in the pheromone response, an additional region is required for the HOG pathway activation. Two peptide motifs within the intrinsically disordered cytoplasmic tail of Opy2p defined by NMR spectroscopy physically interact with the Step50p-RA domain. These Opy2p-derived peptides bind overlapping regions of the Step50p-RA domain with similarly weak affinities, suggesting a multivalent interaction of these proteins as a crucial point of control of the HOG pathway. As well, overall selection of signaling pathways depends on functionally distinct regions of the Ste50p-RA domain, implicating this element in the control of global regulatory decisions.
Collapse
Affiliation(s)
- Irena Ekiel
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
The N-terminal RASSF family: a new group of Ras-association-domain-containing proteins, with emerging links to cancer formation. Biochem J 2009; 425:303-11. [PMID: 20025613 DOI: 10.1042/bj20091318] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The RASSF (Ras-association domain family) has recently gained several new members and now contains ten proteins (RASSF1-10), several of which are potential tumour suppressors. The family can be split into two groups, the classical RASSF proteins (RASSF1-6) and the four recently added N-terminal RASSF proteins (RASSF7-10). The N-terminal RASSF proteins have a number of differences from the classical RASSF members and represent a newly defined set of potential Ras effectors. They have been linked to key biological processes, including cell death, proliferation, microtubule stability, promoter methylation, vesicle trafficking and response to hypoxia. Two members of the N-terminal RASSF family have also been highlighted as potential tumour suppressors. The present review will summarize what is known about the N-terminal RASSF proteins, addressing their function and possible links to cancer formation. It will also compare the N-terminal RASSF proteins with the classical RASSF proteins and ask whether the N-terminal RASSF proteins should be considered as genuine members or imposters in the RASSF family.
Collapse
|
50
|
Avruch J, Xavier R, Bardeesy N, Zhang XF, Praskova M, Zhou D, Xia F. Rassf family of tumor suppressor polypeptides. J Biol Chem 2009; 284:11001-5. [PMID: 19091744 PMCID: PMC2670104 DOI: 10.1074/jbc.r800073200] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rassf1-6 polypeptides each contain a Ras/Rap association domain, which enables binding to several GTP-charged Ras-like GTPases, at least in vitro or when overexpressed. The Ras/Rap association domains are followed by SARAH domains, which mediate Rassf heterodimerization with the Mst1/2 protein kinases. Rassf1A is unequivocally a tumor suppressor, and all Rassf proteins behave like tumor suppressors, exhibiting epigenetic silencing of expression in many human cancers and pro-apoptotic and/or anti-proliferative effects when re-expressed in tumor cell lines. Herein, we review the binding of the Rassf polypeptides to Ras-like GTPases and the Mst1/2 kinases and their role in Rassf function.
Collapse
Affiliation(s)
- Joseph Avruch
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|