1
|
Wang S, Wang P, Zhang M, Song X, Wei L, Ma X, Yao X, Zhang S, Chen Z, Zheng Y, Yu R, Zhang C. Blocking GP130 binding in interleukin-11 through site-specific PEGylation attenuates bleomycin-induced pulmonary fibrosis in mice. Int J Pharm 2024; 667:124916. [PMID: 39528144 DOI: 10.1016/j.ijpharm.2024.124916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Recent insights have identified interleukin-11 (IL-11) as a pivotal profibrotic cytokine, with its signaling through IL-11Rα and GP130 receptors emerging as a promising therapeutic target for fibrotic diseases. Herein, we developed receptor-biased IL-11 via site-specific PEGylation at the GP130 binding interface, aiming to explore its therapeutic potential for bleomycin-induced pulmonary fibrosis in mice. By conducting single site-directed cysteine mutagenesis at site II or site III of IL-11, we refined the conjugation site, demonstrating that mutation at site III exhibits heightened sensitivity to GP130 binding and signaling. Cysteine-based PEGylation substantially attenuated the ability of GP130 to bind to IL-11 W147C, while almost entirely preserving its IL-11Rα binding ability. These PEGylated IL-11 W147C analogs showed potent inhibition of TF-1 cell proliferation and significant antagonism to TGF-β1-induced human lung fibroblasts (HLFs) differentiation into myofibroblasts. Moreover, PEGylation significantly prolonged the half-life of IL-11 W147C in healthy rats. Subcutaneous administration of PEGylated analogs, particularly PEG20/40 k-IL-11 W147C, effectively mitigated extracellular matrix deposition, preserved alveolar architecture, and attenuated the progression of pulmonary fibrosis in mice. The finding of this study not only underscores the therapeutic potential of IL-11 modulation, but also provides a general strategy for the design of cytokine-based biased antagonists and agonists targeting these multifaceted signaling pathways.
Collapse
Affiliation(s)
- Sa Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Pengyu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Minhui Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaotong Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Long Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xinyuan Ma
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xin Yao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shuwen Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zijie Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yongxiang Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rong Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Liang P, Ness J, Rapp J, Boneva S, Schwämmle M, Jung M, Schlunck G, Agostini H, Bucher F. Characterization of the angiomodulatory effects of Interleukin 11 cis- and trans-signaling in the retina. J Neuroinflammation 2024; 21:230. [PMID: 39294742 PMCID: PMC11412048 DOI: 10.1186/s12974-024-03223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND The IL-6 cytokine family, with its crucial and pleiotropic intracellular signaling pathway STAT3, is a promising target for treating vasoproliferative retinal diseases. Previous research has shown that IL-6 cis-signaling (via membrane-bound receptors) and trans-signaling (via soluble receptors) can have distinct effects on target cells, leading to their application in various disease treatments. While IL-6 has been extensively studied, less is known about the angiogenic effects of IL-11, another member of the IL-6 family, in the retina. Therefore, the aim of this study was to characterize the effects of IL-11 on retinal angiogenesis. MAIN TEXT In vitreous samples from proliferative diabetic retinopathy (PDR) patients, elevated levels of IL-11Rα, but not IL-11, were detected. In vitro studies using vascular endothelial cells revealed distinct effects of cis- and trans-signaling: cis-signaling (IL-11 alone) had antiangiogenic effects, while trans-signaling (IL-11 + sIL-11Rα) had proangiogenic and pro-migratory effects. These differences can be attributed to their individual signaling responses and associated transcriptomic changes. Notably, no differences in cis- and trans-signaling were detected in primary mouse Müller cell cultures. STAT3 and STAT1 siRNA knockdown experiments revealed opposing effects on IL-11 signaling, with STAT3 functioning as an antiproliferative and proapoptotic player while STAT1 acts in opposition to STAT3. In vivo, both IL-11 and IL-11 + sIL-11Rα led to a reduction in retinal neovascularization. Immunohistochemical staining revealed Müller cell activation in response to treatment, suggesting that IL-11 affects multiple retinal cell types in vivo beyond vascular endothelial cells. CONCLUSIONS Cis- and trans-signaling by IL-11 have contrasting angiomodulatory effects on endothelial cells in vitro. In vivo, cis- and trans-signaling also influence Müller cells, ultimately determining the overall angiomodulatory impact on the retina, highlighting the intricate interplay between vascular and glial cells in the retina.
Collapse
Affiliation(s)
- Paula Liang
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
| | - Jan Ness
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
- Institute of Pharmaceutical Sciences, Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Julian Rapp
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
- Department of Medicine I, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefaniya Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
| | - Melanie Schwämmle
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Malte Jung
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany
| | - Felicitas Bucher
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Klinik für Augenheilkunde, Kilianstrasse 5, 79106, Freiburg im Breisgau, Germany.
| |
Collapse
|
3
|
Tang M, Xu M, Wang J, Liu Y, Liang K, Jin Y, Duan W, Xia S, Li G, Chu H, Liu W, Wang Q. Brain Metastasis from EGFR-Mutated Non-Small Cell Lung Cancer: Secretion of IL11 from Astrocytes Up-Regulates PDL1 and Promotes Immune Escape. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306348. [PMID: 38696655 PMCID: PMC11234401 DOI: 10.1002/advs.202306348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/24/2024] [Indexed: 05/04/2024]
Abstract
Patients who have non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations are more prone to brain metastasis (BM) and poor prognosis. Previous studies showed that the tumor microenvironment of BM in these patients is immunosuppressed, as indicated by reduced T-cell abundance and activity, although the mechanism of this immunosuppression requires further study. This study shows that reactive astrocytes play a critical role in promoting the immune escape of BM from EGFR-mutated NSCLC by increasing the apoptosis of CD8+ T lymphocytes. The increased secretion of interleukin 11(IL11) by astrocytes promotes the expression of PDL1 in BM, and this is responsible for the increased apoptosis of T lymphocytes. IL11 functions as a ligand of EGFR, and this binding activates EGFR and downstream signaling to increase the expression of PDL1, culminating in the immune escape of tumor cells. IL11 also promotes immune escape by binding to its intrinsic receptor (IL11Rα/glycoprotein 130 [gp130]). Additional in vivo studies show that the targeted inhibition of gp130 and EGFR suppresses the growth of BM and prolongs the survival time of mice. These results suggest a novel therapeutic strategy for treatment of NSCLC patients with EGFR mutations.
Collapse
Affiliation(s)
- Mengyi Tang
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Mingxin Xu
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Jian Wang
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Ye Liu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Kun Liang
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Yinuo Jin
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Wenzhe Duan
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Shengkai Xia
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Wenwen Liu
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
- Cancer Translational Medicine Research Center, The Second Hospital, Dalian, Medical University, 467 Zhongshan Road, Dalian, 116027, China
| | - Qi Wang
- the Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, China
| |
Collapse
|
4
|
Metcalfe RD, Hanssen E, Fung KY, Aizel K, Kosasih CC, Zlatic CO, Doughty L, Morton CJ, Leis AP, Parker MW, Gooley PR, Putoczki TL, Griffin MDW. Structures of the interleukin 11 signalling complex reveal gp130 dynamics and the inhibitory mechanism of a cytokine variant. Nat Commun 2023; 14:7543. [PMID: 37985757 PMCID: PMC10662374 DOI: 10.1038/s41467-023-42754-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
Interleukin (IL-)11, an IL-6 family cytokine, has pivotal roles in autoimmune diseases, fibrotic complications, and solid cancers. Despite intense therapeutic targeting efforts, structural understanding of IL-11 signalling and mechanistic insights into current inhibitors are lacking. Here we present cryo-EM and crystal structures of the human IL-11 signalling complex, including the complex containing the complete extracellular domains of the shared IL-6 family β-receptor, gp130. We show that complex formation requires conformational reorganisation of IL-11 and that the membrane-proximal domains of gp130 are dynamic. We demonstrate that the cytokine mutant, IL-11 Mutein, competitively inhibits signalling in human cell lines. Structural shifts in IL-11 Mutein underlie inhibition by altering cytokine binding interactions at all three receptor-engaging sites and abrogating the final gp130 binding step. Our results reveal the structural basis of IL-11 signalling, define the molecular mechanisms of an inhibitor, and advance understanding of gp130-containing receptor complexes, with potential applications in therapeutic development.
Collapse
Affiliation(s)
- Riley D Metcalfe
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA
| | - Eric Hanssen
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- Ian Holmes Imaging Centre, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ka Yee Fung
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Kaheina Aizel
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Clara C Kosasih
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Courtney O Zlatic
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Larissa Doughty
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Craig J Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- CSIRO Biomedical Manufacturing Program, Clayton, Victoria, 3168, Australia
| | - Andrew P Leis
- Ian Holmes Imaging Centre, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Tracy L Putoczki
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
5
|
Mori C, Nagatoishi S, Matsunaga R, Kuroda D, Nakakido M, Tsumoto K. Biophysical insight into protein-protein interactions in the Interleukin-11/Interleukin-11Rα/glycoprotein 130 signaling complex. Biochem Biophys Res Commun 2023; 682:174-179. [PMID: 37820452 DOI: 10.1016/j.bbrc.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
Interleukin-11 (IL-11) is a member of the interleukin-6 (IL-6) family of cytokines. IL-11 is a regulator of multiple events in hematopoiesis, and IL-11-mediated signaling is implicated in inflammatory disease, cancer, and fibrosis. All IL-6 family cytokines signal through the signal-transducing receptor, glycoprotein 130 (gp130), but these cytokines have distinct as well as overlapping biological functions. To understand IL-11 signaling at the molecular level, we performed a comprehensive interaction analysis of the IL-11 signaling complex, comparing it with the IL-6 complex, one of the best-characterized cytokine complexes. Our thermodynamic analysis revealed a clear difference between IL-11 and IL-6. Surface plasmon resonance analysis showed that the interaction between IL-11 and IL-11 receptor α (IL-11Rα) is entropy driven, whereas that between IL-6 and IL-6 receptor α (IL-6Rα) is enthalpy driven. Our analysis using isothermal titration calorimetry revealed that the binding of gp130 to the IL-11/IL-11Rα complex results in entropy loss, but that the interaction of gp130 with the IL-6/IL-6Rα complex results in entropy gain. Our hydrogen-deuterium exchange mass spectrometry experiments suggested that the D2 domain of gp130 was not involved in IL-6-like interactions in the IL-11/IL-11Rα complex. It has been reported that IL-6 interaction with gp130 in the signaling complex was characterized through the hydrophobic interface located in its D2 domain of gp130. Our findings suggest that unique interactions of the IL-11 signaling complex with gp130 are responsible for the distinct biological activities of IL-11 compared to IL-6.
Collapse
Affiliation(s)
- Chinatsu Mori
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Satoru Nagatoishi
- Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Ryo Matsunaga
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Daisuke Kuroda
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Makoto Nakakido
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
6
|
Ye W, Wang Q, Zhao L, Wang C, Zhang D, Zhou M, Chen F, Wang W, Zhu Z, Guo W, Liu Y, Zou H, Xue Y. Blockade of IL-11 Trans-Signaling or JAK2/STAT3 Signaling Ameliorates the Profibrotic Effect of IL-11. Immunol Invest 2023; 52:703-716. [PMID: 37401665 DOI: 10.1080/08820139.2023.2222746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is a rare rheumatic disease characterized by vascular damage, dysregulated immune response, and fibrosis. Interleukin-11 (IL-11) is upregulated in SSc. This study aimed to investigate the pathological and therapeutic role of the IL-11 trans-signaling pathway in SSc. METHODS Plasma IL-11 level was evaluated in 32 patients with SSc and 15 healthy controls, while the expression levels of ADAM10, ADAM17, IL-11, IL-11 Rα, or IL-11 co-stained with CD3 or CD163 in the skin of SSc patients and healthy controls were analyzed. Fibroblasts were treated with IL-11 and ionomycin to evaluate the profibrotic effect of IL-11 trans-signaling pathway. TJ301 (sgp130Fc) and WP1066 (a JAK2/STAT3 inhibitor) intervention groups were set up to investigate the antifibrotic effect of targeting IL-11. RESULTS Levels of plasma IL-11 were extremely low in most SSc patients and healthy controls. In contrast, levels of IL-11, IL-11 Rα, and ADAM10, but not ADAM17, were significantly elevated in the skin of SSc patients. Moreover, the numbers of IL-11+ CD3+ cells and IL-11+ CD163+ cells were increased in the skin of SSc patients. Besides, IL-11 and ADAM10 were also elevated in the skin and pulmonary of bleomycin-induced SSc mouse. Fibroblasts co-stimulated with IL-11 and ionomycin showed increased expression of COL3 and phosphorylation of STAT3, which could be inhibited by TJ301 or WP1066. TJ301 also ameliorated skin and lung fibrosis in BLM-induced SSc mouse. CONCLUSIONS IL-11 induces fibrosis in SSc by regulating the trans-signaling pathway. Blockage of sgp130Fc or inhibition of the JAK2/STAT3 pathway could ameliorate the profibrotic effect of IL-11.
Collapse
Affiliation(s)
- Wenjing Ye
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Wang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zhao
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Changcheng Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dandan Zhang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengyu Zhou
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fangfang Chen
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiguo Wang
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zaihua Zhu
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenyu Guo
- Clinical Development, I-Mab Biopharma, Hangzhou, China
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Xue
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Wu H, Sun P, Lv C, Zhao X, Liu M, Zhou Q, Tang J, Yang L, Liang A. Effects of IL-11/IL-11 Receptor Alpha on Proliferation and Steroidogenesis in Ovarian Granulosa Cells of Dairy Cows. Cells 2023; 12:cells12040673. [PMID: 36831340 PMCID: PMC9954560 DOI: 10.3390/cells12040673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Granulosa cells (GCs) are essential for follicular growth, oocyte maturation, and steroidogenesis in the ovaries. Interleukin (IL)-11 is known to play a crucial role in the decidualization of the uterus, however, the expression of the IL-11 system (IL-11, IL-11Rα, and gp130) in the bovine ovary and its exact role in GCs have not been extensively studied. In this study, we identified the IL-11 signaling receptor complex in the bovine ovary and investigated the regulatory effects and underlying mechanism of IL-11Rα on the proliferation and steroidogenesis of GCs. We observed that the IL-11 complex was highly expressed in the GCs of large follicles. IL-11Rα knockdown significantly inhibited GC proliferation by inducing cell cycle arrest at the G1 phase, along with a significant downregulation of proliferating cell nuclear antigen (PCNA) and Cyclin D1 (CCND1) protein, and induced GC apoptosis by significantly upregulating the ratio of BCL-2-associated X protein (BAX) and B-cell lymphoma-2 (BCL-2). In addition, IL-11Rα knockdown attenuated the Janus kinase (JAK) 1-signal transducer and activator of transcription 3 (STAT3) signaling, which is related to cell proliferation and apoptosis. Furthermore, the enzyme-linked immunosorbent assay (ELISA) indicated that IL-11Rα silencing decreased the basal and forskolin (FSK)-stimulated secretions of estradiol and progesterone in GC culture medium concomitantly with a remarkable decrease in cytochrome P450 family 19 subfamily A member 1 (CYP19A1) and steroidogenic acute regulatory protein (StAR). We subsequently determined that this reduction in steroidogenesis was in parallel with the decrease in phosphorylations of protein kinase A (PKA) substrates, cAMP-response element binding protein (CREB), extracellular regulated protein kinase (ERK) 1/2, and p38 mitogen-activated protein kinase (MAPK). Taken together, these data indicate that the effects of IL-11/IL-11Rα on the proliferation and steroidogenesis in bovine GCs is mediated by the JAK1-STAT3, PKA-CREB, p38MAPK, and ERK1/2 signaling pathways. Our findings provide important insights into the local action of the IL-11 system in regulating ovarian function.
Collapse
Affiliation(s)
- Hanxiao Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peihao Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ce Lv
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinzhe Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingxiao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qunli Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Jiaomei Tang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China
| | - Aixin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
8
|
Deckers J, Anbergen T, Hokke AM, de Dreu A, Schrijver DP, de Bruin K, Toner YC, Beldman TJ, Spangler JB, de Greef TFA, Grisoni F, van der Meel R, Joosten LAB, Merkx M, Netea MG, Mulder WJM. Engineering cytokine therapeutics. NATURE REVIEWS BIOENGINEERING 2023; 1:286-303. [PMID: 37064653 PMCID: PMC9933837 DOI: 10.1038/s44222-023-00030-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Cytokines have pivotal roles in immunity, making them attractive as therapeutics for a variety of immune-related disorders. However, the widespread clinical use of cytokines has been limited by their short blood half-lives and severe side effects caused by low specificity and unfavourable biodistribution. Innovations in bioengineering have aided in advancing our knowledge of cytokine biology and yielded new technologies for cytokine engineering. In this Review, we discuss how the development of bioanalytical methods, such as sequencing and high-resolution imaging combined with genetic techniques, have facilitated a better understanding of cytokine biology. We then present an overview of therapeutics arising from cytokine re-engineering, targeting and delivery, mRNA therapeutics and cell therapy. We also highlight the application of these strategies to adjust the immunological imbalance in different immune-mediated disorders, including cancer, infection and autoimmune diseases. Finally, we look ahead to the hurdles that must be overcome before cytokine therapeutics can live up to their full potential.
Collapse
Affiliation(s)
- Jeroen Deckers
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
| | - Tom Anbergen
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
| | - Ayla M. Hokke
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Anne de Dreu
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - David P. Schrijver
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Koen de Bruin
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Yohana C. Toner
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
| | - Thijs J. Beldman
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
| | - Jamie B. Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Tom F. A. de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
- Centre for Living Technologies, Alliance Eindhoven University of Technology, Wageningen University & Research, Utrecht University and University Medical Center Utrecht (EWUU), Utrecht, Netherlands
| | - Francesca Grisoni
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- Centre for Living Technologies, Alliance Eindhoven University of Technology, Wageningen University & Research, Utrecht University and University Medical Center Utrecht (EWUU), Utrecht, Netherlands
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Present Address: Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maarten Merkx
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Present Address: Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, Nijmegen, Netherlands
- Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Willem J. M. Mulder
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Present Address: Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
9
|
Interleukin-11 (IL11) inhibits myogenic differentiation of C2C12 cells through activation of extracellular signal-regulated kinase (ERK). Cell Signal 2023; 101:110509. [PMID: 36328118 DOI: 10.1016/j.cellsig.2022.110509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Cancer-associated cachexia (CAC) is a multifactorial wasting syndrome characterized by loss of skeletal muscle. Interleukin-11 (IL11), one of the IL6 family cytokines, is highly expressed in various types of cancer including cancers frequently associated with cachexia. However, the impact of IL11 on muscle metabolism remains to be determined. Since one of the mechanisms of muscle wasting in cachexia is defective muscle regeneration due to impaired myogenic differentiation, we examined the effect of IL11 on the differentiation of C2C12 mouse myoblasts. Treatment of C2C12 cells with recombinant mouse IL11 resulted in decreased myotube formation. In addition, IL11 treatment reduced the protein and mRNA levels of myosin heavy chain (MHC), a marker of myogenic differentiation. Moreover, the levels of myogenic regulatory factors including myogenin and Mrf4 were significantly reduced by IL11 treatment. IL11 treatment increased the number of BrdU-positive cells and the level of phosphorylated retinoblastoma (Rb) protein, while the levels of p21Waf1 and p27Kip1 were reduced by IL11 treatment in differentiating C2C12 cells, suggesting that IL11 interferes with cell cycle exit during the early stages of myogenic differentiation. Consistent with this, IL11 treatment at the late stage of differentiation did not affect myotube formation and MHC expression. IL11 treatment resulted in an activation of ERK, STAT3, and AKT in differentiating C2C12 cells. However, only ERK inhibitors including PD98059 and U0126 were able to ameliorate the suppressive effect of IL11 on the expression of MHC and myogenin. Additionally, pretreatment with PD98059 and U0126 resulted in improved myotube formation and reduced BrdU staining in IL11-treated cells. Together, our results suggest that IL11 inhibits myogenic differentiation through delayed cell cycle exit in an ERK-dependent manner. To our knowledge, this study is the first to demonstrate an inhibitory role of IL11 in myogenic differentiation and identifies the previously unrecognized role of IL11 as a possible mediator of CAC.
Collapse
|
10
|
Milara J, Roger I, Montero P, Artigues E, Escrivá J, Cortijo J. IL-11 system participates in pulmonary artery remodeling and hypertension in pulmonary fibrosis. Respir Res 2022; 23:313. [PMCID: PMC9664718 DOI: 10.1186/s12931-022-02241-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
Pulmonary hypertension (PH) associated to idiopathic pulmonary fibrosis (IPF) portends a poor prognosis. IL-11 has been implicated in fibrotic diseases, but their role on pulmonary vessels is unknown. Here we analyzed the contribution of IL-11 to PH in patients with IPF and the potential mechanism implicated.
Methods
Pulmonary arteries, lung tissue and serum of control subjects (n = 20), IPF (n = 20) and PH associated to IPF (n = 20) were used to study the expression and localization of IL-11 and IL-11Rα. Two models of IL-11 and bleomycin-induced lung fibrosis associated to PH were used in Tie2-GFP transgenic mice to evaluate the contribution of IL-11 and endothelial cells to pulmonary artery remodeling. The effect of IL-11 and soluble IL-11Rα on human pulmonary artery endothelial cells and smooth muscle cell transformations and proliferation were analyzed.
Results
IL-11 and IL-11Rα were over-expressed in pulmonary arteries and serum of patients with PH associated to IPF vs IPF patients without PH. Recombinant mice (rm)IL-11 induced lung fibrosis and PH in Tie2-GFP mice, activating in vivo EnMT as a contributor of pulmonary artery remodeling and lung fibrosis. Transient transfection of siRNA-IL-11 reduced lung fibrosis and PH in Tie2-GFP bleomycin model. Human (h)rIL-11 and soluble hrIL-11Rα induced endothelial to mesenchymal transition (EnMT) and pulmonary artery smooth muscle cell to myofibroblast-like transformation, cell proliferation and senescence in vitro.
Conclusions
IL-11 and IL-11Rα are overexpressed in pulmonary arteries of PH associated to IPF patients, and contributes to pulmonary artery remodeling and PH.
Collapse
|
11
|
Suzuki S, Sasaki K, Fukazawa T, Kubo T. Xenopus laevis il11ra.L is an experimentally proven interleukin-11 receptor component that is required for tadpole tail regeneration. Sci Rep 2022; 12:1903. [PMID: 35115663 PMCID: PMC8814168 DOI: 10.1038/s41598-022-05954-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/20/2022] [Indexed: 11/22/2022] Open
Abstract
Xenopus laevis tadpoles possess high regenerative ability and can regenerate functional tails after amputation. An early event in regeneration is the induction of undifferentiated cells that form the regenerated tail. We previously reported that interleukin-11 (il11) is upregulated immediately after tail amputation to induce undifferentiated cells of different cell lineages, indicating a key role of il11 in initiating tail regeneration. As Il11 is a secretory factor, Il11 receptor-expressing cells are thought to mediate its function. X. laevis has a gene annotated as interleukin 11 receptor subunit alpha on chromosome 1L (il11ra.L), a putative subunit of the Il11 receptor complex, but its function has not been investigated. Here, we show that nuclear localization of phosphorylated Stat3 induced by Il11 is abolished in il11ra.L knocked-out culture cells, strongly suggesting that il11ra.L encodes an Il11 receptor component. Moreover, knockdown of il11ra.L impaired tadpole tail regeneration, suggesting its indispensable role in tail regeneration. We also provide a model showing that Il11 functions via il11ra.L-expressing cells in a non-cell autonomous manner. These results highlight the importance of il11ra.L-expressing cells in tail regeneration.
Collapse
Affiliation(s)
- Shunya Suzuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kayo Sasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Taro Fukazawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Fung KY, Louis C, Metcalfe RD, Kosasih CC, Wicks IP, Griffin MDW, Putoczki TL. Emerging roles for IL-11 in inflammatory diseases. Cytokine 2021; 149:155750. [PMID: 34689057 DOI: 10.1016/j.cyto.2021.155750] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022]
Abstract
Interleukin-11 (IL-11) is a cytokine that has been strongly implicated in the pathogenesis of fibrotic diseases and solid malignancies. Elevated IL-11 expression is also associated with several non-malignant inflammatory diseases where its function remains less well-characterized. Here, we summarize current literature surrounding the contribution of IL-11 to the pathogenesis of autoimmune inflammatory diseases, including rheumatoid arthritis, multiple sclerosis, diabetes and systemic sclerosis, as well as other chronic inflammatory conditions such as periodontitis, asthma, chronic obstructive pulmonary disease, psoriasis and colitis.
Collapse
Affiliation(s)
- Ka Yee Fung
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Victoria 3053, Australia.
| | - Cynthia Louis
- Department of Medical Biology, University of Melbourne, Victoria 3053, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia
| | - Riley D Metcalfe
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Technology Institute, University of Melbourne, Victoria 3010, Australia
| | - Clara C Kosasih
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Technology Institute, University of Melbourne, Victoria 3010, Australia
| | - Ian P Wicks
- Department of Medical Biology, University of Melbourne, Victoria 3053, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Rheumatology Unit, The Royal Melbourne Hospital, Victoria 3050, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Technology Institute, University of Melbourne, Victoria 3010, Australia
| | - Tracy L Putoczki
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Victoria 3053, Australia.
| |
Collapse
|
13
|
Kortekaas RK, Burgess JK, van Orsoy R, Lamb D, Webster M, Gosens R. Therapeutic Targeting of IL-11 for Chronic Lung Disease. Trends Pharmacol Sci 2021; 42:354-366. [PMID: 33612289 DOI: 10.1016/j.tips.2021.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/11/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Interleukin (IL)-11 was originally recognized as an immunomodulatory and hematopoiesis-inducing cytokine. However, although IL-11 is typically not found in healthy individuals, it is now becoming evident that IL-11 may play a role in diverse pulmonary conditions, including IPF, asthma, and lung cancer. Additionally, experimental strategies targeting IL-11, such as humanized antibodies, have recently been developed, revealing the therapeutic potential of IL-11. Thus, further insight into the underlying mechanisms of IL-11 in lung disease may lead to the ability to interfere with pathological conditions that have a clear need for disease-modifying treatments, such as IPF. In this review, we outline the effects, expression, signaling, and crosstalk of IL-11 and focus on its role in lung disease and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rosa K Kortekaas
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Janette K Burgess
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Medical Biology and Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Roël van Orsoy
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - David Lamb
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Megan Webster
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
14
|
Emerging roles for the IL-6 family of cytokines in pancreatic cancer. Clin Sci (Lond) 2020; 134:2091-2115. [PMID: 32808663 PMCID: PMC7434989 DOI: 10.1042/cs20191211] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer has one of the poorest prognoses of all malignancies, with little improvement in clinical outcome over the past 40 years. Pancreatic ductal adenocarcinoma is responsible for the vast majority of pancreatic cancer cases, and is characterised by the presence of a dense stroma that impacts therapeutic efficacy and drives pro-tumorigenic programs. More specifically, the inflammatory nature of the tumour microenvironment is thought to underlie the loss of anti-tumour immunity and development of resistance to current treatments. Inflammatory pathways are largely mediated by the expression of, and signalling through, cytokines, chemokines, and other cellular messengers. In recent years, there has been much attention focused on dual targeting of cancer cells and the tumour microenvironment. Here we review our current understanding of the role of IL-6, and the broader IL-6 cytokine family, in pancreatic cancer, including their contribution to pancreatic inflammation and various roles in pancreatic cancer pathogenesis. We also summarise potential opportunities for therapeutic targeting of these pathways as an avenue towards combating poor patient outcomes.
Collapse
|
15
|
Metcalfe RD, Putoczki TL, Griffin MDW. Structural Understanding of Interleukin 6 Family Cytokine Signaling and Targeted Therapies: Focus on Interleukin 11. Front Immunol 2020; 11:1424. [PMID: 32765502 PMCID: PMC7378365 DOI: 10.3389/fimmu.2020.01424] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cytokines are small signaling proteins that have central roles in inflammation and cell survival. In the half-century since the discovery of the first cytokines, the interferons, over fifty cytokines have been identified. Amongst these is interleukin (IL)-6, the first and prototypical member of the IL-6 family of cytokines, nearly all of which utilize the common signaling receptor, gp130. In the last decade, there have been numerous advances in our understanding of the structural mechanisms of IL-6 family signaling, particularly for IL-6 itself. However, our understanding of the detailed structural mechanisms underlying signaling by most IL-6 family members remains limited. With the emergence of new roles for IL-6 family cytokines in disease and, in particular, roles of IL-11 in cardiovascular disease, lung disease, and cancer, there is an emerging need to develop therapeutics that can progress to clinical use. Here we outline our current knowledge of the structural mechanism of signaling by the IL-6 family of cytokines. We discuss how this knowledge allows us to understand the mechanism of action of currently available inhibitors targeting IL-6 family cytokine signaling, and most importantly how it allows for improved opportunities to pharmacologically disrupt cytokine signaling. We focus specifically on the need to develop and understand inhibitors that disrupt IL-11 signaling.
Collapse
Affiliation(s)
- Riley D Metcalfe
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Tracy L Putoczki
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Technology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
16
|
Schwerd T, Krause F, Twigg SRF, Aschenbrenner D, Chen YH, Borgmeyer U, Müller M, Manrique S, Schumacher N, Wall SA, Jung J, Damm T, Glüer CC, Scheller J, Rose-John S, Jones EY, Laurence A, Wilkie AOM, Schmidt-Arras D, Uhlig HH. A variant in IL6ST with a selective IL-11 signaling defect in human and mouse. Bone Res 2020; 8:24. [PMID: 32566365 PMCID: PMC7289831 DOI: 10.1038/s41413-020-0098-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/11/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
The GP130 cytokine receptor subunit encoded by IL6ST is the shared receptor for ten cytokines of the IL-6 family. We describe a homozygous non-synonymous variant in IL6ST (p.R281Q) in a patient with craniosynostosis and retained deciduous teeth. We characterize the impact of the variant on cytokine signaling in vitro using transfected cell lines as well as primary patient-derived cells and support these findings using a mouse model with the corresponding genome-edited variant Il6st p.R279Q. We show that human GP130 p.R281Q is associated with selective loss of IL-11 signaling without affecting IL-6, IL-27, OSM, LIF, CT1, CLC, and CNTF signaling. In mice Il6st p.R279Q lowers litter size and causes facial synostosis and teeth abnormalities. The effect on IL-11 signaling caused by the GP130 variant shows incomplete penetrance but phenocopies aspects of IL11RA deficiency in humans and mice. Our data show that a genetic variant in a pleiotropic cytokine receptor can have remarkably selective defects.
Collapse
Affiliation(s)
- Tobias Schwerd
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Pediatrics, Dr von Hauner Children’s Hospital, LMU Munich, Munich, Germany
| | - Freia Krause
- Christian-Albrechts-University Kiel, Institute of Biochemistry, Kiel, Germany
| | - Stephen R. F. Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Dominik Aschenbrenner
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Yin-Huai Chen
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Uwe Borgmeyer
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miryam Müller
- Christian-Albrechts-University Kiel, Institute of Biochemistry, Kiel, Germany
- Present Address: The Beatson Institute for Cancer Research, Glasgow, UK
| | - Santiago Manrique
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Neele Schumacher
- Christian-Albrechts-University Kiel, Institute of Biochemistry, Kiel, Germany
| | - Steven A. Wall
- Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Jonathan Jung
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Present Address: School of Medicine, University of Glasgow, Glasgow, UK
| | - Timo Damm
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Claus-Christian Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefan Rose-John
- Christian-Albrechts-University Kiel, Institute of Biochemistry, Kiel, Germany
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Arian Laurence
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Andrew O. M. Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Dirk Schmidt-Arras
- Christian-Albrechts-University Kiel, Institute of Biochemistry, Kiel, Germany
| | - Holm H. Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
17
|
Metcalfe RD, Aizel K, Zlatic CO, Nguyen PM, Morton CJ, Lio DSS, Cheng HC, Dobson RCJ, Parker MW, Gooley PR, Putoczki TL, Griffin MDW. The structure of the extracellular domains of human interleukin 11α receptor reveals mechanisms of cytokine engagement. J Biol Chem 2020; 295:8285-8301. [PMID: 32332100 DOI: 10.1074/jbc.ra119.012351] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
Interleukin (IL) 11 activates multiple intracellular signaling pathways by forming a complex with its cell surface α-receptor, IL-11Rα, and the β-subunit receptor, gp130. Dysregulated IL-11 signaling has been implicated in several diseases, including some cancers and fibrosis. Mutations in IL-11Rα that reduce signaling are also associated with hereditary cranial malformations. Here we present the first crystal structure of the extracellular domains of human IL-11Rα and a structure of human IL-11 that reveals previously unresolved detail. Disease-associated mutations in IL-11Rα are generally distal to putative ligand-binding sites. Molecular dynamics simulations showed that specific mutations destabilize IL-11Rα and may have indirect effects on the cytokine-binding region. We show that IL-11 and IL-11Rα form a 1:1 complex with nanomolar affinity and present a model of the complex. Our results suggest that the thermodynamic and structural mechanisms of complex formation between IL-11 and IL-11Rα differ substantially from those previously reported for similar cytokines. This work reveals key determinants of the engagement of IL-11 by IL-11Rα that may be exploited in the development of strategies to modulate formation of the IL-11-IL-11Rα complex.
Collapse
Affiliation(s)
- Riley D Metcalfe
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| | - Kaheina Aizel
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute.,Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Courtney O Zlatic
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| | - Paul M Nguyen
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Craig J Morton
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| | - Daisy Sio-Seng Lio
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute.,Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| | - Renwick C J Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute.,Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute.,Australian Cancer Research Foundation Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| | - Tracy L Putoczki
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology and Department of Surgery, University of Melbourne, Parkville, Victoria, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| |
Collapse
|
18
|
Thilakasiri P, Huynh J, Poh AR, Tan CW, Nero TL, Tran K, Parslow AC, Afshar-Sterle S, Baloyan D, Hannan NJ, Buchert M, Scott AM, Griffin MD, Hollande F, Parker MW, Putoczki TL, Ernst M, Chand AL. Repurposing the selective estrogen receptor modulator bazedoxifene to suppress gastrointestinal cancer growth. EMBO Mol Med 2020; 11:emmm.201809539. [PMID: 30885958 PMCID: PMC6460354 DOI: 10.15252/emmm.201809539] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Excessive signaling through gp130, the shared receptor for the interleukin (IL)6 family of cytokines, is a common hallmark in solid malignancies and promotes their progression. Here, we established the in vivo utility of bazedoxifene, a steroid analog clinically approved for the treatment of osteoporosis, to suppress gp130‐dependent tumor growth of the gastrointestinal epithelium. Bazedoxifene administration reduced gastric tumor burden in gp130Y757F mice, where tumors arise exclusively through excessive gp130/STAT3 signaling in response to the IL6 family cytokine IL11. Likewise, in mouse models of sporadic colon and intestinal cancers, which arise from oncogenic mutations in the tumor suppressor gene Apc and the associated β‐catenin/canonical WNT pathway, bazedoxifene treatment reduces tumor burden. Consistent with the proposed orthogonal tumor‐promoting activity of IL11‐dependent gp130/STAT3 signaling, tumors of bazedoxifene‐treated Apc‐mutant mice retain excessive nuclear accumulation of β‐catenin and aberrant WNT pathway activation. Likewise, bazedoxifene treatment of human colon cancer cells harboring mutant APC did not reduce aberrant canonical WNT signaling, but suppressed IL11‐dependent STAT3 signaling. Our findings provide compelling proof of concept to support the repurposing of bazedoxifene for the treatment of gastrointestinal cancers in which IL11 plays a tumor‐promoting role.
Collapse
Affiliation(s)
- Pathum Thilakasiri
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Jennifer Huynh
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Chin Wee Tan
- The Walter and Eliza Hall Institute, Melbourne, Vic., Australia
| | - Tracy L Nero
- ACRF Rational Drug Discovery Centre, St Vincent's Institute, Melbourne, Vic., Australia.,Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Vic., Australia
| | - Kelly Tran
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Adam C Parslow
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia.,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Vic., Australia
| | - Shoukat Afshar-Sterle
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - David Baloyan
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Natalie J Hannan
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Vic., Australia
| | - Michael Buchert
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Andrew Mark Scott
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia.,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Vic., Australia.,Department of Medicine, University of Melbourne, Melbourne, Vic., Australia
| | - Michael Dw Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Vic., Australia
| | - Frederic Hollande
- Department of Clinical Pathology, University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, University of Melbourne, Melbourne, Vic., Australia
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St Vincent's Institute, Melbourne, Vic., Australia.,Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Vic., Australia
| | | | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Ashwini L Chand
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| |
Collapse
|
19
|
Alarifi S, Alkahtani S, Al-Qahtani AA, Stournaras C, Sourvinos G. Induction of interleukin-11 mediated by RhoA GTPase during human cytomegalovirus lytic infection. Cell Signal 2020; 70:109599. [PMID: 32165237 DOI: 10.1016/j.cellsig.2020.109599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/18/2022]
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen which periodically reactivates, causing severe clinical consequences in immunosuppressed patients, organ and stem cell transplant recipients or newborn babies with congenital infections. HCMV infection stimulates the expression of several proinflammatory cytokines, which may contribute to the pathogenesis of the infection. Rho GTPases mediate cytokine expression while increasing evidence implicates them in important aspects of HCMV life cycle. Here, we studied the role of RhoA on the interleukin 11 (IL-11) release in HCMV-infected fibroblasts. Human fibroblasts, either endogenously expressing or silenced for RhoA, were infected by HCMV or UV-inactivated virus and IL-11 transcription and secretion were evaluated. We found that HCMV lytic infection increased the IL-11 levels, both in terms of transcription and translation. Both infectious and non-infectious HCMV particles were able to induce the IL-11 production. The depletion of RhoA resulted in an even higher release of IL-11, revealing the implication of this specific Rho isoform in this biological event. Finally, infection of cells in the presence of the HCMV DNA replication inhibitor, ganciclovir, significantly reduced the secretion of IL-11, strongly associating its induction with active viral DNA replication. Collectively, these data demonstrate, for the first time, a novel role of RhoA GTPase during HCMV lytic infection, regulating the activation of an immune response through IL-11.
Collapse
Affiliation(s)
- Saud Alarifi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Al-Qahtani
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; Department of Microbiology and Immunology, Alfaisal University, School of Medicine, Riyadh, Saudi Arabia
| | - Christos Stournaras
- Department of Biochemistry, Medical School, University of Crete, Heraklion, Crete, Greece
| | - George Sourvinos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
20
|
Residual Participation and Thermodynamic Stability Due to Molecular Interactions in IL11, IL11Rα and Gp130 from Homo sapiens: An In Silico Outlook for IL11 as a Therapeutic Remedy. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Li Y, Wu Q, Jin Y, Yang Q. Antiviral activity of interleukin-11 as a response to porcine epidemic diarrhea virus infection. Vet Res 2019; 50:111. [PMID: 31864417 PMCID: PMC6925494 DOI: 10.1186/s13567-019-0729-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/04/2019] [Indexed: 11/11/2022] Open
Abstract
Interleukin-11 (IL-11), a well-known anti-inflammatory factor, provides protection from intestinal epithelium damage caused by physical or chemical factors. However, little is known of the role of IL-11 during viral infections. In this study, IL-11 expression at mRNA and protein levels were found to be high in Vero cells and the jejunum of piglets during porcine epidemic diarrhea virus (PEDV) infection, while IL-11 expression was found to be positively correlated with the level of viral infection. Pretreatment with recombinant porcine IL-11 (pIL-11) was found to suppress PEDV replication in Vero E6 cells, while IL-11 knockdown promoted viral infection. Furthermore, pIL-11 was found to inhibit viral infection by preventing PEDV-mediated apoptosis of cells by activating the IL-11/STAT3 signaling pathway. Conversely, application of a STAT3 phosphorylation inhibitor significantly antagonized the anti-apoptosis function of pIL-11 and counteracted its inhibition of PEDV. Our data suggest that IL-11 is a newfound PEDV-inducible cytokine, and its production enhances the anti-apoptosis ability of epithelial cells against PEDV infection. The potential of IL-11 to be used as a novel therapeutic against devastating viral diarrhea in piglets deserves more attention and study.
Collapse
Affiliation(s)
- Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qingxin Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuxin Jin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
22
|
Thilakasiri PS, Dmello RS, Nero TL, Parker MW, Ernst M, Chand AL. Repurposing of drugs as STAT3 inhibitors for cancer therapy. Semin Cancer Biol 2019; 68:31-46. [PMID: 31711994 DOI: 10.1016/j.semcancer.2019.09.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Drug repurposing is a valuable approach in delivering new cancer therapeutics rapidly into the clinic. Existing safety and patient tolerability data for drugs already in clinical use represent an untapped resource in terms of identifying therapeutic agents for off-label protein targets. The multicellular effects of STAT3 mediated by a range of various upstream signaling pathways make it an attractive therapeutic target with utility in a range of diseases including cancer, and has led to the development of a variety of STAT3 inhibitors. Moreover, heightened STAT3 transcriptional activation in tumor cells and within the cells of the tumor microenvironment contribute to disease progression. Consequently, there are many STAT3 inhibitors in preclinical development or under evaluation in clinical trials for their therapeutic efficacy predominantly in inflammatory diseases and cancer. Despite these advances, many challenges remain in ultimately providing STAT3 inhibitors to patients as cancer treatments, highlighting the need not only for a better understanding of the mechanisms associated with STAT3 activation, but also how various pharmaceutical agents suppress STAT3 activity in various cancers. In this review we discuss the importance of STAT3-dependent functions in cancer, review the status of compounds designed as direct-acting STAT3 inhibitors, and describe some of the strategies for repurposing of drugs as STAT3 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Pathum S Thilakasiri
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Rhynelle S Dmello
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Tracy L Nero
- ACRF Rational Drug Discovery Centre, St Vincent's Institute, Melbourne, Vic., Australia; Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Vic., Australia
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St Vincent's Institute, Melbourne, Vic., Australia; Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Vic., Australia
| | - Matthias Ernst
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Ashwini L Chand
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia.
| |
Collapse
|
23
|
Jak-Stat Signaling Induced by Interleukin-6 Family Cytokines in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11111704. [PMID: 31683891 PMCID: PMC6896168 DOI: 10.3390/cancers11111704] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. It can be caused by chronic liver cell injury with resulting sustained inflammation, e.g., triggered by infections with hepatitis viruses B (HBV) and C (HCV). Death of hepatocytes leads to the activation of compensatory mechanisms, which can ultimately result in liver fibrosis and cirrhosis. Another common feature is the infiltration of the liver with inflammatory cells, which secrete cytokines and chemokines that act directly on the hepatocytes. Among several secreted proteins, members of the interleukin-6 (IL-6) family of cytokines have emerged as important regulatory proteins that might constitute an attractive target for therapeutic intervention. The IL-6-type cytokines activate multiple intracellular signaling pathways, and especially the Jak/STAT cascade has been shown to be crucial for HCC development. In this review, we give an overview about HCC pathogenesis with respect to IL-6-type cytokines and the Jak/STAT pathway. We highlight the role of mutations in genes encoding several proteins involved in the cytokine/Jak/STAT axis and summarize current knowledge about IL-6 family cytokines in this context. We further discuss possible anti-cytokine therapies for HCC patients in comparison to already established therapies.
Collapse
|
24
|
Aryappalli P, Shabbiri K, Masad RJ, Al-Marri RH, Haneefa SM, Mohamed YA, Arafat K, Attoub S, Cabral-Marques O, Ramadi KB, Fernandez-Cabezudo MJ, Al-Ramadi BK. Inhibition of Tyrosine-Phosphorylated STAT3 in Human Breast and Lung Cancer Cells by Manuka Honey is Mediated by Selective Antagonism of the IL-6 Receptor. Int J Mol Sci 2019; 20:E4340. [PMID: 31491838 PMCID: PMC6769459 DOI: 10.3390/ijms20184340] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/26/2019] [Accepted: 09/01/2019] [Indexed: 12/30/2022] Open
Abstract
Aberrantly high levels of tyrosine-phosphorylated signal transducer and activator of transcription 3 (p-STAT3) are found constitutively in ~50% of human lung and breast cancers, acting as an oncogenic transcription factor. We previously demonstrated that Manuka honey (MH) inhibits p-STAT3 in breast cancer cells, but the exact mechanism remained unknown. Herein, we show that MH-mediated inhibition of p-STAT3 in breast (MDA-MB-231) and lung (A549) cancer cell lines is accompanied by decreased levels of gp130 and p-JAK2, two upstream components of the IL-6 receptor (IL-6R) signaling pathway. Using an ELISA-based assay, we demonstrate that MH binds directly to IL-6Rα, significantly inhibiting (~60%) its binding to the IL-6 ligand. Importantly, no evidence of MH binding to two other cytokine receptors, IL-11Rα and IL-8R, was found. Moreover, MH did not alter the levels of tyrosine-phosphorylated or total Src family kinases, which are also constitutively activated in cancer cells, suggesting that signaling via other growth factor receptors is unaffected by MH. Binding of five major MH flavonoids (luteolin, quercetin, galangin, pinocembrin, and chrysin) was also tested, and all but pinocembrin could demonstrably bind IL-6Rα, partially (30-35%) blocking IL-6 binding at the highest concentration (50 μM) used. In agreement, each flavonoid inhibited p-STAT3 in a dose-dependent manner, with estimated IC50 values in the 3.5-70 μM range. Finally, docking analysis confirmed the capacity of each flavonoid to bind in an energetically favorable configuration to IL-6Rα at a site predicted to interfere with ligand binding. Taken together, our findings identify IL-6Rα as a direct target of MH and its flavonoids, highlighting IL-6R blockade as a mechanism for the anti-tumor activity of MH, as well as a viable therapeutic target in IL-6-dependent cancers.
Collapse
Affiliation(s)
- Priyanka Aryappalli
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khadija Shabbiri
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Razan J Masad
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Roadha H Al-Marri
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shoja M Haneefa
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yassir A Mohamed
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kholoud Arafat
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Khalil B Ramadi
- Harvard-MIT Health Sciences and Technology Division, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maria J Fernandez-Cabezudo
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Basel K Al-Ramadi
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
25
|
Morris R, Kershaw NJ, Babon JJ. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci 2019; 27:1984-2009. [PMID: 30267440 DOI: 10.1002/pro.3519] [Citation(s) in RCA: 575] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
More than 50 cytokines signal via the JAK/STAT pathway to orchestrate hematopoiesis, induce inflammation and control the immune response. Cytokines are secreted glycoproteins that act as intercellular messengers, inducing proliferation, differentiation, growth, or apoptosis of their target cells. They act by binding to specific receptors on the surface of target cells and switching on a phosphotyrosine-based intracellular signaling cascade initiated by kinases then propagated and effected by SH2 domain-containing transcription factors. As cytokine signaling is proliferative and often inflammatory, it is tightly regulated in terms of both amplitude and duration. Here we review molecular details of the cytokine-induced signaling cascade and describe the architectures of the proteins involved, including the receptors, kinases, and transcription factors that initiate and propagate signaling and the regulatory proteins that control it.
Collapse
Affiliation(s)
- Rhiannon Morris
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3050, Victoria, Australia
| | - Nadia J Kershaw
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3050, Victoria, Australia
| | - Jeffrey J Babon
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3050, Victoria, Australia
| |
Collapse
|
26
|
Hammarén HM, Virtanen AT, Raivola J, Silvennoinen O. The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine 2019; 118:48-63. [DOI: 10.1016/j.cyto.2018.03.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/12/2023]
|
27
|
West NR. Coordination of Immune-Stroma Crosstalk by IL-6 Family Cytokines. Front Immunol 2019; 10:1093. [PMID: 31156640 PMCID: PMC6529849 DOI: 10.3389/fimmu.2019.01093] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022] Open
Abstract
Stromal cells are a subject of rapidly growing immunological interest based on their ability to influence virtually all aspects of innate and adaptive immunity. Present in every bodily tissue, stromal cells complement the functions of classical immune cells by sensing pathogens and tissue damage, coordinating leukocyte recruitment and function, and promoting immune response resolution and tissue repair. These diverse roles come with a price: like classical immune cells, inappropriate stromal cell behavior can lead to various forms of pathology, including inflammatory disease, tissue fibrosis, and cancer. An important immunological function of stromal cells is to act as information relays, responding to leukocyte-derived signals and instructing leukocyte behavior in kind. In this regard, several members of the interleukin-6 (IL-6) cytokine family, including IL-6, IL-11, oncostatin M (OSM), and leukemia inhibitory factor (LIF), have gained recognition as factors that mediate crosstalk between stromal and immune cells, with diverse roles in numerous inflammatory and homeostatic processes. This review summarizes our current understanding of how IL-6 family cytokines control stromal-immune crosstalk in health and disease, and how these interactions can be leveraged for clinical benefit.
Collapse
Affiliation(s)
- Nathaniel R West
- Department of Cancer Immunology, Genentech, South San Francisco, CA, United States
| |
Collapse
|
28
|
Liang M, Ma Q, Ding N, Luo F, Bai Y, Kang F, Gong X, Dong R, Dai J, Dai Q, Dou C, Dong S. IL-11 is essential in promoting osteolysis in breast cancer bone metastasis via RANKL-independent activation of osteoclastogenesis. Cell Death Dis 2019; 10:353. [PMID: 31040267 PMCID: PMC6491651 DOI: 10.1038/s41419-019-1594-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 01/05/2023]
Abstract
A variety of osteolytic factors have been identified from breast cancer cells leading to osteolysis, but less is known about which factor plays an essential role in the initiation process prior to the overt vicious osteolytic cycle. Here, we present in vitro and in vivo evidences to clarify the role of interleukin-11 (IL-11) as an essential contributor to breast cancer bone metastasis mediated osteolysis. Animal studies showed that bone specific metastatic BoM-1833 cells induce earlier onset of osteolysis and faster tumor growth compared with MCF7 and parental MDA-MB-231 cells in BALB/c-nu/nu nude mice. IL-11 was further screened and identified as the indispensable factor secreted by BoM-1833 cells inducing osteoclastogenesis independently of receptor activator of nuclear factor κB ligand (RANKL). Mechanistic investigation revealed that the JAK1/STAT3 signaling pathway as a downstream effector of IL-11, STAT3 activation further induces the expression of c-Myc, a necessary factor required for osteoclastogenesis. By inhibiting STAT3 phosphorylation, AG-490 was shown effective in reducing osteolysis and tumor growth in the metastatic niche. Overall, our results revealed the essential role and the underlying molecular mechanism of IL-11 in breast cancer bone metastasis mediated osteolysis. STAT3 targeting through AG-490 is a potential therapeutic strategy for mitigating osteolysis and tumor growth of bone metastatic breast cancer.
Collapse
Affiliation(s)
- Mengmeng Liang
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China
| | - Qinyu Ma
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ning Ding
- Department of promoting osteolysisBlood Purification, General Hospital of Shenyang Military Area Command, Shenyang, 110000, China
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yun Bai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Fei Kang
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China
| | - Xiaoshan Gong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China
| | - Rui Dong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China
| | - Jingjin Dai
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China
| | - Qijie Dai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ce Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China. .,Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China. .,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
29
|
Abstract
Interleukin (IL)-11 belongs to the IL-6 family of cytokines, discovered over 30 years ago. While early studies focused on the ability of IL-11 to stimulate megakaryocytopoiesis, the importance of this cytokine to inflammatory disease and cancers is only just beginning to be uncovered. This review outlines recent advances in our understanding of IL-11 biology, and highlights the development of novel therapeutics with the potential for clinical targeting of signaling by this cytokine in multiple diseases.
Collapse
Affiliation(s)
- Paul M Nguyen
- a The Walter and Eliza Hall Institute of Medical Research , Victoria , Australia
- b The Department of Medical Biology, The University of Melbourne , Victoria , Australia
| | - Suad M Abdirahman
- a The Walter and Eliza Hall Institute of Medical Research , Victoria , Australia
- b The Department of Medical Biology, The University of Melbourne , Victoria , Australia
| | - Tracy L Putoczki
- a The Walter and Eliza Hall Institute of Medical Research , Victoria , Australia
- b The Department of Medical Biology, The University of Melbourne , Victoria , Australia
| |
Collapse
|
30
|
Lokau J, Garbers C. Activating mutations of the gp130/JAK/STAT pathway in human diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 116:283-309. [PMID: 31036294 DOI: 10.1016/bs.apcsb.2018.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytokines of the interleukin-6 (IL-6) family are involved in numerous physiological and pathophysiological processes. Dysregulated and increased activities of its members can be found in practically all human inflammatory diseases including cancer. All cytokines activate several intracellular signaling cascades, including the Jak/STAT, MAPK, PI3K, and Src/YAP signaling pathways. Additionally, several mutations in proteins involved in these signaling cascades have been identified in human patients, which render these proteins constitutively active and result in a hyperactivation of the signaling pathway. Interestingly, some of these mutations are associated with or even causative for distinct human diseases, making them interesting targets for therapy. This chapter describes the basic biology of the gp130/Jak/STAT pathway, summarizes what is known about the molecular mechanisms of the activating mutations, and gives an outlook how this knowledge can be exploited for targeted therapy in human diseases.
Collapse
Affiliation(s)
- Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
31
|
Lokau J, Garbers C. The length of the interleukin-11 receptor stalk determines its capacity for classic signaling. J Biol Chem 2018; 293:6398-6409. [PMID: 29523682 PMCID: PMC5925790 DOI: 10.1074/jbc.ra118.001879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/14/2018] [Indexed: 12/30/2022] Open
Abstract
Interleukin (IL)-11 is a multifunctional cytokine that was traditionally recognized for its hematopoietic and anti-inflammatory functions, but has recently been shown also to be involved in tumorigenesis. IL-11 signaling is initiated by binding of the cytokine to the IL-11 receptor (IL-11R), which is not directly involved in signaling but required for IL-11 binding to the signal-transducing receptor glycoprotein (gp) 130. In classic signaling, IL-11 binds to the membrane-bound IL-11R to initiate signal transduction. Additionally, IL-11 signaling can be initiated via soluble IL-11R, known as trans-signaling, and this pathway only requires the three extracellular domains of the IL-11R, but not stalk, transmembrane, or intracellular region. Here, we analyzed the role of the IL-11R stalk region, a 55 amino acid stretch connecting the extracellular domains with the transmembrane helix, in classic IL-11 signaling with the help of cytokine-dependent cell lines. We showed that the stalk region is crucial for IL-11 signaling via the membrane-bound IL-11R. Using different deletion variants, we found that a minimal length of 23 amino acid residues is required for efficient signal transduction. We further found that classic IL-11 signaling depended solely on the length, but not the sequence, of the IL-11R stalk region, suggesting that the stalk functions as a spacer in the signaling complex. We previously described the IL-11R stalk region as determinant of proteolysis and regulator of IL-11 trans-signaling. The results presented here reveal an additional function in classic IL-11 signaling, highlighting the importance of the IL-11R stalk in IL-11 signaling.
Collapse
Affiliation(s)
- Juliane Lokau
- From the Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| | - Christoph Garbers
- From the Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
32
|
|
33
|
Winship A, Dimitriadis E. Interleukin 11 is upregulated in preeclampsia and leads to inflammation and preeclampsia features in mice. J Reprod Immunol 2017; 125:32-38. [PMID: 29195119 DOI: 10.1016/j.jri.2017.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/31/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022]
Abstract
Preeclampsia is a dangerous pregnancy complication, which is often associated with fetal growth restriction and can have serious life-long effects for both mother and baby. While the establishment of the placenta in the first trimester is the sentinel event in the development of preeclampsia little is known of the critical mechanisms of placentation that lead to the syndrome. Locally produced inflammatory cytokines are thought to play a role in the development of preeclampsia. This review summarizes the evidence that interleukin 11 is dysregulated in preeclampsia and contributes to the initiation of preeclampsia via effects on placentation. It discusses the benefits and drawbacks of targeting IL11 as a novel treatment option for preeclampsia.
Collapse
Affiliation(s)
- Amy Winship
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, 3168, VIC, Australia; Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, VIC, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, 3800, VIC, Australia
| | - Eva Dimitriadis
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, 3168, VIC, Australia; Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, VIC, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, 3800, VIC, Australia.
| |
Collapse
|
34
|
Lokau J, Agthe M, Flynn CM, Garbers C. Proteolytic control of Interleukin-11 and Interleukin-6 biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [DOI: 10.1016/j.bbamcr.2017.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
interleukin-11 induces and maintains progenitors of different cell lineages during Xenopus tadpole tail regeneration. Nat Commun 2017; 8:495. [PMID: 28887447 PMCID: PMC5591189 DOI: 10.1038/s41467-017-00594-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 07/10/2017] [Indexed: 02/05/2023] Open
Abstract
Unlike mammals, Xenopus laevis tadpoles possess high ability to regenerate their lost organs. In amphibians, the main source of regenerated tissues is lineage-restricted tissue stem cells, but the mechanisms underlying induction, maintenance and differentiation of these stem/progenitor cells in the regenerating organs are poorly understood. We previously reported that interleukin-11 (il-11) is highly expressed in the proliferating cells of regenerating Xenopus tadpole tails. Here, we show that il-11 knockdown (KD) shortens the regenerated tail length, and the phenotype is rescued by forced-il-11-expression in the KD tadpoles. Moreover, marker genes for undifferentiated notochord, muscle, and sensory neurons are downregulated in the KD tadpoles, and the forced-il-11-expression in intact tadpole tails induces expression of these marker genes. Our findings demonstrate that il-11 is necessary for organ regeneration, and suggest that IL-11 plays a key role in the induction and maintenance of undifferentiated progenitors across cell lineages during Xenopus tail regeneration. Xenopus laevis tadpoles have maintained their ability to regenerate various organs. Here, the authors show that interleukin-11 is necessary for organ regeneration, by inducing and maintaining undifferentiated progenitors across cell lineages during Xenopus tail regeneration.
Collapse
|
36
|
Winship A, Menkhorst E, Van Sinderen M, Dimitriadis E. Interleukin 11: similar or opposite roles in female reproduction and reproductive cancer? Reprod Fertil Dev 2017; 28:395-405. [PMID: 25151993 DOI: 10.1071/rd14128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/03/2014] [Indexed: 12/12/2022] Open
Abstract
During placental development and carcinogenesis, cell invasion and migration are critical events in establishing a self-supporting vascular supply. Interleukin (IL)-11 is a pleiotropic cytokine that affects the invasive and migratory capabilities of trophoblast cells that form the placenta during pregnancy, as well as various malignant cell types. The endometrium is the site of embryo implantation during pregnancy; conversely, endometrial carcinoma is the most common gynaecological malignancy. Here, we review what is known about the role of IL-11 in trophoblast function and in gynaecological malignancies, focusing primarily on the context of the uterine environment.
Collapse
Affiliation(s)
- Amy Winship
- Embryo Implantation Laboratory, MIMR-PHI Institute, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| | - Ellen Menkhorst
- Embryo Implantation Laboratory, MIMR-PHI Institute, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| | - Michelle Van Sinderen
- Embryo Implantation Laboratory, MIMR-PHI Institute, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| | - Evdokia Dimitriadis
- Embryo Implantation Laboratory, MIMR-PHI Institute, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| |
Collapse
|
37
|
Production and characterization of genetically modified human IL-11 variants. Biochim Biophys Acta Gen Subj 2016; 1861:205-217. [PMID: 27884519 DOI: 10.1016/j.bbagen.2016.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/02/2016] [Accepted: 11/16/2016] [Indexed: 11/23/2022]
Abstract
Interleukin-11 (IL-11) has been expected as a drug on severe thrombocytopenia caused by myelo-suppressive chemotherapy. Whereas, development of IL-11 inhibitor is also expected for a treatment against IL-11 related cancer progression. Here, we will demonstrate the creation of various kinds of genetically modified hIL-11s. Modified vectors were constructed by introducing N- or O-glycosylation site on the region of hIL-11 that does not belong to the core α-helical motif based on the predicted secondary structure. N-terminal (N: between 22 to 23 aa), the first loop (M1:70 to 71 aa), the second loop (M2:114-115 aa), the third loop (M3:160-161 aa) and C-terminal (C: 200- aa) were selected for modification. A large scale production system was established and the characteristics of modified hIL-11s were evaluated. The structure was analyzed by amino acid sequence and composition analysis and CD-spectra. Glycan was assessed by monosaccharide composition analysis. Growth promoting activity and biological stability were analyzed by proliferation of T1165 cells. N-terminal modified proteins were well glycosylated and produced. Growth activity of 3NN with NASNASNAS sequence on N-terminal was about tenfold higher than wild type (WT). Structural and biological stabilities of 3NN were also better than WT and residence time in mouse blood was longer than WT. M1 variants lacked growth activity though they are well glycosylated and secondary structure is very stable. Both of 3NN and OM1 with AAATPAPG on M1 associated with hIL-11R strongly. These results indicate N-terminal and M1 variants will be expected for practical use as potent agonists or antagonists of hIL-11.
Collapse
|
38
|
Permyakov EA, Uversky VN, Permyakov SE. Interleukin-11: A Multifunctional Cytokine with Intrinsically Disordered Regions. Cell Biochem Biophys 2016; 74:285-96. [DOI: 10.1007/s12013-016-0752-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022]
|
39
|
The role of IL-11 in immunity and cancer. Cancer Lett 2016; 373:156-63. [DOI: 10.1016/j.canlet.2016.01.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/25/2015] [Accepted: 01/06/2016] [Indexed: 02/06/2023]
|
40
|
Abstract
IL-11 is a member of the IL-6 family of cytokines. While it was discovered over 20 years ago, we have very little understanding of the role of IL-11 during normal homeostasis and disease. Recently, IL-11 has gained interest for its newly recognized role in the pathogenesis of diseases that are attributed to deregulated mucosal homeostasis, including gastrointestinal cancers. IL-11 can increase the tumorigenic capacity of cells, including survival of the cell or origin, proliferation of cancerous cells and survival of metastatic cells at distant organs. Here we outline our current understanding of IL-11 biology and recent advances in our understanding of its role in cancer. We advocate that inhibition of IL-11 signaling may represent an emerging therapeutic opportunity for numerous cancers.
Collapse
Affiliation(s)
- Tracy L Putoczki
- The Walter & Eliza Hall Institute of Medical Research & Department of Medical Biology, University of Melbourne, Parkville Victoria 3052, Australia
| | | |
Collapse
|
41
|
Abstract
Leukemia inhibitory factor (LIF) is the most pleiotropic member of the interleukin-6 family of cytokines. It utilises a receptor that consists of the LIF receptor β and gp130 and this receptor complex is also used by ciliary neurotrophic growth factor (CNTF), oncostatin M, cardiotrophin1 (CT1) and cardiotrophin-like cytokine (CLC). Despite common signal transduction mechanisms (JAK/STAT, MAPK and PI3K) LIF can have paradoxically opposite effects in different cell types including stimulating or inhibiting each of cell proliferation, differentiation and survival. While LIF can act on a wide range of cell types, LIF knockout mice have revealed that many of these actions are not apparent during ordinary development and that they may be the result of induced LIF expression during tissue damage or injury. Nevertheless LIF does appear to have non-redundant actions in maternal receptivity to blastocyst implantation, placental formation and in the development of the nervous system. LIF has also found practical use in the maintenance of self-renewal and totipotency of embryonic stem cells and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Nicos A Nicola
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Royal Pde, Melbourne 3050, VIC, Australia.
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, Melbourne 3052, VIC, Australia; Department of Medical Biology, University of Melbourne, Royal Pde, Melbourne 3050, VIC, Australia
| |
Collapse
|
42
|
Johnstone CN, Chand A, Putoczki TL, Ernst M. Emerging roles for IL-11 signaling in cancer development and progression: Focus on breast cancer. Cytokine Growth Factor Rev 2015. [PMID: 26209885 DOI: 10.1016/j.cytogfr.2015.07.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interleukin (IL)-11 is a member of the IL-6 family of cytokines that is defined by the shared use of the GP130 signal transducing receptor subunit. In addition of its long recognized activities as a hemopoietic growth factor, IL-11 has an emerging role in epithelial cancer biology. Through the activation of the GP130-Janus kinase signaling cascade and associated transcription factor STAT3, IL-11 can confer many of the tumor intrinsic 'hallmark' capabilities to neoplastic cells, if they express the ligand-specific IL-11Rα receptor subunit. Accordingly, IL-11 signaling has recently been identified as a rate-limiting step for the growth tumors arising from the mucosa of the gastrointestinal tract. However, there is less appreciation for a potential role of IL-11 to support breast cancer progression, apart from its well documented capacity to facilitate bone metastasis. Here we review evidence that IL-11 expression in breast cancer correlates with poor disease outcome and discuss some of the molecular mechanisms that are likely to underpin these observations. These include the capacity of IL-11 to stimulate survival and proliferation of cancer cells alongside angiogenesis of the primary tumor and of metastatic progenies at distant organs. We review current strategies to interfere with IL-11 signaling and advocate that inhibition of IL-11 signaling may represent an emerging therapeutic opportunity for numerous cancers.
Collapse
Affiliation(s)
- Cameron N Johnstone
- Cancer & Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Level 5, Olivia Newton-John Cancer & Wellness Centre, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, LaTrobe University, Heidelberg, VIC 3084, Australia; Cancer Metastasis Laboratory, Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - Ashwini Chand
- Cancer & Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Level 5, Olivia Newton-John Cancer & Wellness Centre, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, LaTrobe University, Heidelberg, VIC 3084, Australia
| | - Tracy L Putoczki
- Inflammation Division, Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, Melbourne University, Parkville, VIC 3052, Australia
| | - Matthias Ernst
- Cancer & Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Level 5, Olivia Newton-John Cancer & Wellness Centre, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, LaTrobe University, Heidelberg, VIC 3084, Australia.
| |
Collapse
|
43
|
Spangler JB, Moraga I, Mendoza JL, Garcia KC. Insights into cytokine-receptor interactions from cytokine engineering. Annu Rev Immunol 2014; 33:139-67. [PMID: 25493332 DOI: 10.1146/annurev-immunol-032713-120211] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytokines exert a vast array of immunoregulatory actions critical to human biology and disease. However, the desired immunotherapeutic effects of native cytokines are often mitigated by toxicity or lack of efficacy, either of which results from cytokine receptor pleiotropy and/or undesired activation of off-target cells. As our understanding of the structural principles of cytokine-receptor interactions has advanced, mechanism-based manipulation of cytokine signaling through protein engineering has become an increasingly feasible and powerful approach. Modified cytokines, both agonists and antagonists, have been engineered with narrowed target cell specificities, and they have also yielded important mechanistic insights into cytokine biology and signaling. Here we review the theory and practice of cytokine engineering and rationalize the mechanisms of several engineered cytokines in the context of structure. We discuss specific examples of how structure-based cytokine engineering has opened new opportunities for cytokines as drugs, with a focus on the immunotherapeutic cytokines interferon, interleukin-2, and interleukin-4.
Collapse
Affiliation(s)
- Jamie B Spangler
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305; , , ,
| | | | | | | |
Collapse
|
44
|
Ostermeir K, Zacharias M. Hamiltonian replica exchange combined with elastic network analysis to enhance global domain motions in atomistic molecular dynamics simulations. Proteins 2014; 82:3410-9. [DOI: 10.1002/prot.24695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Katja Ostermeir
- Physik-Department T38; Technische Universität München; 85748 Garching Germany
| | - Martin Zacharias
- Physik-Department T38; Technische Universität München; 85748 Garching Germany
| |
Collapse
|
45
|
Putoczki TL, Dobson RCJ, Griffin MDW. The structure of human interleukin-11 reveals receptor-binding site features and structural differences from interleukin-6. ACTA ACUST UNITED AC 2014; 70:2277-85. [DOI: 10.1107/s1399004714012267] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/27/2014] [Indexed: 01/30/2023]
Abstract
Interleukin (IL)-11 is a multifunctional member of the IL-6 family of cytokines. Recombinant human IL-11 is administered as a standard clinical treatment for chemotherapy-induced thrombocytopaenia. Recently, a new role for IL-11 signalling as a potent driver of gastrointestinal cancers has been identified, and it has been demonstrated to be a novel therapeutic target for these diseases. Here, the crystal structure of human IL-11 is reported and the structural resolution of residues previously identified as important for IL-11 activity is presented. While IL-11 is thought to signalviaa complex analogous to that of IL-6, comparisons show important differences between the two cytokines and it is suggested that IL-11 engages GP130 differently to IL-6. In addition to providing a structural platform for further study of IL-11, these data offer insight into the binding interactions of IL-11 with each of its receptors and the structural mechanisms underlying agonist and antagonist variants of the protein.
Collapse
|
46
|
Ernst M, Putoczki TL. Molecular Pathways: IL11 as a Tumor-Promoting Cytokine—Translational Implications for Cancers. Clin Cancer Res 2014; 20:5579-88. [DOI: 10.1158/1078-0432.ccr-13-2492] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
|
48
|
Abstract
Activation of the IL-6 (interleukin 6) receptor subunit gp130 (glycoprotein 130) has been linked to the formation of complexes with IL-6 and the IL-6 receptor, as well as to gp130 dimerization. However, it has been shown that gp130 is present as a pre-formed dimer, indicating that its activation is not solely dependent on dimerization. Therefore the detailed mechanism of gp130 activation still remains to be deciphered. Recently, deletion mutations of gp130 have been found in inflammatory hepatocellular adenoma. The mutations clustered around one IL-6-binding epitope of gp130 and resulted in a ligand-independent constitutively active gp130. We therefore hypothesized that conformational changes of this particular IL-6-binding epitope precedes gp130 activation. Using a rational structure-based approach we identified for the first time amino acids critical for gp130 activation. We can show that gp130 D2–D3 interdomain connectivity by hydrophobic residues stabilizes inactive gp130 conformation. Conformational destabilization of the EF loop present in domain D2 and disruption of D2–D3 hydrophobic interactions resulted in ligand-independent gp130 activation. Furthermore we show that the N-terminal amino acid residues of domain D1 participate in the activation of the gp130 deletion mutants. Taken together we present novel insights into the molecular basis of the activation of a cytokine receptor signalling subunit.
Collapse
|
49
|
Li TM, Wu CM, Huang HC, Chou PC, Fong YC, Tang CH. Interleukin-11 increases cell motility and up-regulates intercellular adhesion molecule-1 expression in human chondrosarcoma cells. J Cell Biochem 2013; 113:3353-62. [PMID: 22644863 DOI: 10.1002/jcb.24211] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Interleukin-11 (IL-11) was originally identified as the cytokine that could induce the proliferation of human cells. Recent studies have shown that IL-11 plays a critical role in tumor growth, angiogenesis, and metastasis. Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. However, the effects of IL-11 on human chondrosarcoma cells are largely unknown. Here, we found that IL-11 increased the migration and expression of intercellular adhesion molecule-1 (ICAM)-1 in human chondrosarcoma cells. We also found that human chondrosarcoma tissues had significant expression of the IL-11 which was higher than that in primary chondrocytes. The phosphatidylinositol 3-kinase (PI3K), Akt, and NF-κB pathways were activated by IL-11 treatment, and the IL-11-induced expression of ICAM-1 and migration activity were inhibited by the specific inhibitors and mutant forms of PI3K, Akt, and NF-κB cascades. Taken together, our results indicate that IL-11 enhanced the migration of the chondrosarcoma cells by increasing ICAM-1 expression through the IL-11Rα receptor, PI3K, Akt, and NF-κB signal transduction pathway.
Collapse
Affiliation(s)
- Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
50
|
Veverka V, Baker T, Redpath NT, Carrington B, Muskett FW, Taylor RJ, Lawson ADG, Henry AJ, Carr MD. Conservation of functional sites on interleukin-6 and implications for evolution of signaling complex assembly and therapeutic intervention. J Biol Chem 2012; 287:40043-50. [PMID: 23027872 DOI: 10.1074/jbc.m112.405597] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of secreted cytokines, such as interleukin-6 (IL-6), are attractive targets for the treatment of inflammatory diseases. We have determined the solution structure of mouse IL-6 to assess the functional significance of apparent differences in the receptor interaction sites (IL-6Rα and gp130) suggested by the fairly low degree of sequence similarity with human IL-6. Structure-based sequence alignment of mouse IL-6 and human IL-6 revealed surprising differences in the conservation of the two distinct gp130 binding sites (IIa and IIIa), which suggests a primacy for site III-mediated interactions in driving initial assembly of the IL-6/IL-6Rα/gp130 ternary complex. This is further supported by a series of direct binding experiments, which clearly demonstrate a high affinity IL-6/IL-6Rα-gp130 interaction via site III but only weak binding via site II. Collectively, our findings suggest a pathway for the evolution of the hexameric, IL-6/IL-6Rα/gp130 signaling complex and strategies for therapeutic targeting. We propose that the signaling complex originally involved specific interactions between IL-6 and IL-6Rα (site I) and between the D1 domain of gp130 and IL-6/IL-6Rα (site III), with the later inclusion of interactions between the D2 and D3 domains of gp130 and IL-6/IL-6Rα (site II) through serendipity. It seems likely that IL-6 signaling benefited from the evolution of a multipurpose, nonspecific protein interaction surface on gp130, now known as the cytokine binding homology region (site II contact surface), which fortuitously contributes to stabilization of the IL-6/IL-6Rα/gp130 signaling complex.
Collapse
Affiliation(s)
- Vaclav Veverka
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|