1
|
Li J, Sun H, Wang H, Zhou F, Wu W, Chen D, Zhou Z, Yan H. Structure and function analysis of microcystin transport protein MlrD. Biochimie 2025; 231:155-162. [PMID: 39842765 DOI: 10.1016/j.biochi.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Microorganisms play a crucial role in the degradation of microcystins (MCs), with most MC-degrading bacteria utilizing the mlr gene cluster (mlrABCD) mechanism. While previous studies have advanced our understanding of the structure, function, and degradation mechanisms of MlrA, MlrB, and MlrC, research on MlrD remains limited. Consequently, the molecular structure and specific catalytic processes of MlrD are still unclear. This study investigates MlrD from Sphingopyxis sp. USTB-05, utilizing bioinformatics tools for analysis and prediction, conducting homology analysis, and constructing the molecular structure of MlrD. Bioinformatics analysis suggests that MlrD is an alkaline, hydrophobic protein with good thermal stability and is likely located in the cell membrane as a membrane protein without a signal peptide. Homology analysis indicates that MlrD belongs to the PTR2 protein family and contains a PTR2 domain. Phylogenetic analysis reveals that MlrD follows both vertical and horizontal genetic transfer patterns during evolution. Homology modeling demonstrates that the three-dimensional structure of MlrD is primarily composed of 12 α-helices, with conserved residues between the N-terminal and C-terminal domains forming a large reaction cavity. This research broadens current knowledge of MC biodegradation and offers a promising foundation for future studies.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Civil and Surveying&Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China; Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Huanhuan Sun
- School of Civil Engineering, City University of Hefei, Hefei, 238076, Anhui, China
| | - Huasheng Wang
- School of Civil and Surveying&Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China; Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China.
| | - Fengqiu Zhou
- School of Civil and Surveying&Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China; Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Wenyu Wu
- School of Civil and Surveying&Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China; Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Dan Chen
- School of Civil and Surveying&Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China; Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Zhenning Zhou
- School of Civil and Surveying&Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China; Jiangxi Province Key Laboratory of Water Ecological Conservation in Headwater Regions, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
2
|
Majumder S, Deganutti G, Pipitò L, Chaudhuri D, Datta J, Giri K. Computational Insights into the Conformational Dynamics of HIV-1 Vpr in a Lipid Bilayer for Ion Channel Modeling. J Chem Inf Model 2024; 64:3360-3374. [PMID: 38597744 DOI: 10.1021/acs.jcim.3c01859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
HIV-1 Vpr is a multifunctional accessory protein consisting of 96 amino acids that play a critical role in viral pathogenesis. Among its diverse range of activities, Vpr can create a cation-selective ion channel within the plasma membrane. However, the oligomeric state of this channel has not yet been elucidated. In this study, we investigated the conformational dynamics of Vpr helices to model the ion channel topology. First, we employed a series of multiscale simulations to investigate the specific structure of monomeric Vpr in a membrane model. During the lipid bilayer self-assembly coarse grain simulation, the C-terminal helix (residues 56-77) effectively formed the transmembrane region, while the N-terminal helix exhibited an amphipathic nature by associating horizontally with a single leaflet. All-atom molecular dynamics (MD) simulations of full-length Vpr inside a phospholipid bilayer show that the C-terminal helix remains very stable inside the bilayer core in a vertical orientation. Subsequently, using the predicted C-terminal helix orientation and conformation, various oligomeric states (ranging from tetramer to heptamer) possibly forming the Vpr ion channel were built and further evaluated. Among these models, the pentameric form exhibited consistent stability in MD simulations and displayed a compatible conformation for a water-assisted ion transport mechanism. This study provides structural insights into the ion channel activity of the Vpr protein and the foundation for developing therapeutics against HIV-1 Vpr-related conditions.
Collapse
Affiliation(s)
- Satyabrata Majumder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Giuseppe Deganutti
- Centre for Health and Life Sciences, Coventry University, Coventry CV1 5FB, U.K
| | - Ludovico Pipitò
- Centre for Health and Life Sciences, Coventry University, Coventry CV1 5FB, U.K
| | - Dwaipayan Chaudhuri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Joyeeta Datta
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| |
Collapse
|
3
|
AlRawashdeh S, Barakat KH. Applications of Molecular Dynamics Simulations in Drug Discovery. Methods Mol Biol 2024; 2714:127-141. [PMID: 37676596 DOI: 10.1007/978-1-0716-3441-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
In the current drug development process, molecular dynamics (MD) simulations have proven to be very useful. This chapter provides an overview of the current applications of MD simulations in drug discovery, from detecting protein druggable sites and validating drug docking outcomes to exploring protein conformations and investigating the influence of mutations on its structure and functions. In addition, this chapter emphasizes various strategies to improve the conformational sampling efficiency in molecular dynamics simulations. With a growing computer power and developments in the production of force fields and MD techniques, the importance of MD simulations in helping the drug development process is projected to rise significantly in the future.
Collapse
Affiliation(s)
- Sara AlRawashdeh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Khaled H Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Li L, Xu C, Guo Y, Wang H. Screening potential treatments for mpox from Traditional Chinese Medicine by using a data-driven approach. Medicine (Baltimore) 2023; 102:e35116. [PMID: 37713907 PMCID: PMC10508546 DOI: 10.1097/md.0000000000035116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023] Open
Abstract
Mpox (MPX) has escalated into a public health emergency of international concern, necessitating urgent prophylactic and therapeutic measures. The primary goal of this investigation was to systematically extract Wan Quan's expertise in treating smallpox, as documented in Exclusive Methods for Treating Pox (Dou Zhen Xin Fa in Chinese), with the aim of identifying potential prescriptions, herbs, and components for alternative MPX therapies or drugs. This research utilized data mining to identify high-frequency Chinese Medicines (CMs), high-frequency CM-pairs, and CM compatibility rules. Network pharmacology, molecular docking, and molecular dynamic simulation were employed to reveal the potential molecular mechanisms of the core CM-pair. 119 prescriptions were extracted from Exclusive Methods for Treating Pox. We identified 25 high-frequency CMs and 23 high-frequency CM pairs among these prescriptions. Combined association rule mining analysis, Gancao (Glycyrrhiza uralensis Fisch.), Renshen (Panax ginseng C. A. Mey.), Danggui (Angelica sinensis (Oliv.) Diels), Shengma (Cimicifuga foetida L.), and Zicao (Lithospermum erythrorhizon Siebold & Zucc.) were selected as the core CM-pair for further investigation. Network pharmacology analysis yielded 131 active components and 348 candidate targets for the core CM-pair. Quercetin and celabenzine were chosen as ligands for molecular docking. GO and KEGG enrichment analyses revealed that the core CM-pair could interact with targets involved in immune, inflammatory, and infectious diseases. Moreover, key mpox virus targets, F8-A22-E4 DNA polymerase holoenzyme and profilin-like protein A42R, were docked well with the selected core components. And molecular dynamic simulation indicated that the component (quercetin) could stably bind to the target (profilin-like protein A42R). Our findings identified potential prescriptions, herbs, and components that can offer potential therapies or drugs for addressing the MPX epidemic.
Collapse
Affiliation(s)
- Linyang Li
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chengchen Xu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinling Guo
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haozhong Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Su J, Sun T, Wang Y, Shen Y. Conformational Dynamics of Glucagon-like Peptide-2 with Different Electric Field. Polymers (Basel) 2022; 14:2722. [PMID: 35808767 PMCID: PMC9269336 DOI: 10.3390/polym14132722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022] Open
Abstract
Molecular dynamics (MD) simulation was used to study the influence of electric field on Glucagon-like Peptide-2 (GLP-2). Different electric field strengths (0 V/nm ≤ E ≤ 1 V/nm) were mainly carried out on GLP-2. The structural changes in GLP-2 were analyzed by the Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of Gyration (Rg), Solvent Accessible Surface Area (SASA), Secondary Structure and the number of hydrogen bonds. The stable α—helix structure of GLP-2 was unwound and transformed into an unstable Turn and Coil structure since the stability of the GLP-2 protein structure was reduced under the electric field. Our results show that the degree of unwinding of the GLP-2 structure was not linearly related to the electric field intensity. E = 0.5 V/nm was a special point where the degree of unwinding of the GLP-2 structure reached the maximum at this electric field strength. Under a weak electric field, E < 0.5 V/nm, the secondary structure of GLP-2 becomes loose, and the entropy of the chain increases. When E reaches a certain value (E > 0.5 V/nm), the electric force of the charged residues reaches equilibrium, along the z-direction. Considering the confinement of moving along another direction, the residue is less free. Thus, entropy decreases and enthalpy increases, which enhance the interaction of adjacent residues. It is of benefit to recover hydrogen bonds in the middle region of the protein. These investigations, about the effect of an electric field on the structure of GLP-2, can provide some theoretical basis for the biological function of GLP-2 in vivo.
Collapse
Affiliation(s)
| | - Tingting Sun
- Department of Applied Physics, Zhejiang University of Science and Technology, No. 318 Liuhe Road, Hangzhou 310018, China; (J.S.); (Y.S.)
| | - Yan Wang
- Department of Applied Physics, Zhejiang University of Science and Technology, No. 318 Liuhe Road, Hangzhou 310018, China; (J.S.); (Y.S.)
| | | |
Collapse
|
6
|
Zhao Z, Liu J, Kuang P, Luo J, Surineni G, Cen X, Wu T, Cao Y, Zhou P, Pang J, Zhang Q, Chen J. Discovery of novel verinurad analogs as dual inhibitors of URAT1 and GLUT9 with improved Druggability for the treatment of hyperuricemia. Eur J Med Chem 2022; 229:114092. [PMID: 34998055 DOI: 10.1016/j.ejmech.2021.114092] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/28/2022]
Abstract
Verinurad (RDEA3170) is a selective URAT1 inhibitor under investigation for the treatment of gout and hyperuricemia. In an effort to further improve the pharmacodynamics/pharmacokinetics of verinurad and to increase the structural diversity, we designed novel verinurad analogs by introducing a linker (e.g. aminomethyl, amino or oxygen) between the naphthalene and the pyridine ring to increase the flexibility. These compounds were synthesized and tested for their in vitro URAT1-inhibitory activity. Most compounds exhibited potent inhibitory activities against URAT1 with IC50 values ranging from 0.24 μM to 16.35 μM. Among them, compound KPH2f exhibited the highest URAT1-inhibitory activity with IC50 of 0.24 μM, comparable to that of verinurad (IC50 = 0.17 μM). KPH2f also inhibited GLUT9 with an IC50 value of 9.37 ± 7.10 μM, indicating the dual URAT1/GLUT9 targeting capability. In addition, KPH2f showed little effects on OAT1 and ABCG2, and thus was unlikely to cause OAT1/ABCG2-mediated drug-drug interactions and/or to neutralize the uricosuric effects of URAT1/GLUT9 inhibitors. Importantly, KPH2f (10 mg/kg) was equally effective in reducing serum uric acid levels and exhibited higher uricosuric effects in a mice hyperuricemia model, as compared to verinurad (10 mg/kg). Furthermore, KPH2f demonstrated favorable pharmacokinetic properties with an oral bioavailability of 30.13%, clearly better than that of verinurad (21.47%). Moreover, KPH2f presented benign safety profiles without causing hERG toxicity, cytotoxicity in vitro (lower than verinurad), and renal damage in vivo. Collectively, these results suggest that KPH2f represents a novel, safe and effective dual URAT1/GLUT9 inhibitor with improved druggabilities and is worthy of further investigation as an anti-hyperuricemic drug candidate.
Collapse
Affiliation(s)
- Zean Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jin Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Peihua Kuang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Luo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Goverdhan Surineni
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaolin Cen
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Qun Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Extracellular mutation induces an allosteric effect across the membrane and hampers the activity of MRP1 (ABCC1). Sci Rep 2021; 11:12024. [PMID: 34103599 PMCID: PMC8187718 DOI: 10.1038/s41598-021-91461-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/24/2021] [Indexed: 01/10/2023] Open
Abstract
Dynamic conformational changes play a major role in the function of proteins, including the ATP-Binding Cassette (ABC) transporters. Multidrug Resistance Protein 1 (MRP1) is an ABC exporter that protects cells from toxic molecules. Overexpression of MRP1 has been shown to confer Multidrug Resistance (MDR), a phenomenon in which cancer cells are capable to defend themselves against a broad variety of drugs. In this study, we used varied computational techniques to explore the unique F583A mutation that is known to essentially lock the transporter in a low-affinity solute binding state. We demonstrate how macro-scale conformational changes affect MRP1’s stability and dynamics, and how these changes correspond to micro-scale structural perturbations in helices 10–11 and the nucleotide-binding domains (NBDs) of the protein in regions known to be crucial for its ATPase activity. We demonstrate how a single substitution of an outward-facing aromatic amino acid causes a long-range allosteric effect that propagates across the membrane, ranging from the extracellular ECL5 loop to the cytoplasmic NBD2 over a distance of nearly 75 Å, leaving the protein in a non-functional state, and provide the putative allosteric pathway. The identified allosteric structural pathway is not only in agreement with experimental data but enhances our mechanical understanding of MRP1, thereby facilitating the rational design of chemosensitizers toward the success of chemotherapy treatments.
Collapse
|
8
|
Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM. Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. J Biol Chem 2021; 296:100557. [PMID: 33744283 PMCID: PMC8102919 DOI: 10.1016/j.jbc.2021.100557] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Biological membranes define the boundaries of cells and compartmentalize the chemical and physical processes required for life. Many biological processes are carried out by proteins embedded in or associated with such membranes. Determination of membrane protein (MP) structures at atomic or near-atomic resolution plays a vital role in elucidating their structural and functional impact in biology. This endeavor has determined 1198 unique MP structures as of early 2021. The value of these structures is expanded greatly by deposition of their three-dimensional (3D) coordinates into the Protein Data Bank (PDB) after the first atomic MP structure was elucidated in 1985. Since then, free access to MP structures facilitates broader and deeper understanding of MPs, which provides crucial new insights into their biological functions. Here we highlight the structural and functional biology of representative MPs and landmarks in the evolution of new technologies, with insights into key developments influenced by the PDB in magnifying their impact.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA; Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Pascal F Egea
- Department of Biological Chemistry, School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Joana Paulino
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Ruchika Bajaj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Miles Sasha Dickinson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Brian C Monk
- Sir John Walsh Research Institute and Department of Oral Sciences, University of Otago, North Dunedin, Dunedin, New Zealand
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
9
|
Zhao Z, Jiang Y, Li L, Chen Y, Li Y, Lan Q, Wu T, Lin C, Cao Y, Nandakumar KS, Zhou P, Tian Y, Pang J. Structural Insights into the Atomistic Mechanisms of Uric Acid Recognition and Translocation of Human Urate Anion Transporter 1. ACS OMEGA 2020; 5:33421-33432. [PMID: 33403304 PMCID: PMC7774290 DOI: 10.1021/acsomega.0c05360] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Background: Human urate transporter 1 (hURAT1) is the most pivotal therapeutic target for treating hyperuricemia. However, the molecular interactions between uric acid and URAT1 are still unknown due to lack of structural details. Methods: In the present study, several methods (homology modeling, sequence alignment, docking, and mutagenesis) were used to explain the atomistic mechanisms of uric acid transport of hURAT1. Results: Residues W357-F365 in the TMD7 and P484-R487 in the TMD11 present in the hURAT1 have unique roles in both binding to the uric acid and causing subsequent structural changes. These residues, located in the transport tunnel, were found to be related to the structural changes, as demonstrated by the reduced V max values and an unaltered expression of protein level. In addition, W357, G361, T363, F365, and R487 residues may confer high affinity for binding to uric acid. An outward-open homology model of hURAT1 revealed a crucial role for these two domains in the conformational changes of hURAT1. F241 and H245 in TMD5, and R477 and R487 in TMD11 may confer high affinity for uric acid, and as the docking analysis suggests, they may also enhance the affinity for the inhibitors. R477 relation to the structural changes was demonstrated by the V max values of the mutants and the contribution of positive charge to the uric acid selectivity. Conclusions: W357-F365 in TMD7, P484-R487 in TMD11, and residues F241, H245, and R477 were found to be critical for the translocation and recognition of uric acid.
Collapse
|
10
|
Vitrac H, Mallampalli VKPS, Azinas S, Dowhan W. Structural and Functional Adaptability of Sucrose and Lactose Permeases from Escherichia coli to the Membrane Lipid Composition. Biochemistry 2020; 59:1854-1868. [PMID: 32363862 DOI: 10.1021/acs.biochem.0c00174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The lipid environment in which membrane proteins are embedded can influence their structure and function. Lipid-protein interactions and lipid-induced conformational changes necessary for protein function remain intractable in vivo using high-resolution techniques. Using Escherichia coli strains in which the normal phospholipid composition can be altered or foreign lipids can be introduced, we established the importance of membrane lipid composition for the proper folding, assembly, and function of E. coli lactose (LacY) and sucrose (CscB) permeases. However, the molecular mechanism underlying the lipid dependence for active transport remains unknown. Herein, we demonstrate that the structure and function of CscB and LacY can be modulated by the composition of the lipid environment. Using a combination of assays (transport activity of the substrate, protein topology, folding, and assembly into the membrane), we found that alterations in the membrane lipid composition lead to lipid-dependent structural changes in CscB and LacY. These changes affect the orientation of residues involved in LacY proton translocation and impact the rates of protonation and deprotonation of E325 by affecting the arrangement of transmembrane domains in the vicinity of the R302-E325 charge pair. Furthermore, the structural changes caused by changes in membrane lipid composition can be altered by a single-point mutation, highlighting the adaptability of these transporters to their environment. Altogether, our results demonstrate that direct interactions between a protein and its lipid environment uniquely contribute to membrane protein organization and function. Because members of the major facilitator superfamily present with well-conserved functional architecture, we anticipate that our findings can be extrapolated to other membrane protein transporters.
Collapse
Affiliation(s)
- Heidi Vitrac
- Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, Texas 77030, United States
| | - Venkata K P S Mallampalli
- Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, Texas 77030, United States
| | - Stavros Azinas
- Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, Texas 77030, United States
| | - William Dowhan
- Department of Biochemistry and Molecular Biology and Center for Membrane Biology, University of Texas McGovern Medical School at Houston, Houston, Texas 77030, United States
| |
Collapse
|
11
|
Abstract
The organic cation transporters (OCTs) OCT1, OCT2, OCT3, novel OCT (OCTN)1, OCTN2, multidrug and toxin exclusion (MATE)1, and MATE kidney-specific 2 are polyspecific transporters exhibiting broadly overlapping substrate selectivities. They transport organic cations, zwitterions, and some uncharged compounds and operate as facilitated diffusion systems and/or antiporters. OCTs are critically involved in intestinal absorption, hepatic uptake, and renal excretion of hydrophilic drugs. They modulate the distribution of endogenous compounds such as thiamine, L-carnitine, and neurotransmitters. Sites of expression and functions of OCTs have important impact on energy metabolism, pharmacokinetics, and toxicity of drugs, and on drug-drug interactions. In this work, an overview about the human OCTs is presented. Functional properties of human OCTs, including identified substrates and inhibitors of the individual transporters, are described. Sites of expression are compiled, and data on regulation of OCTs are presented. In addition, genetic variations of OCTs are listed, and data on their impact on transport, drug treatment, and diseases are reported. Moreover, recent data are summarized that indicate complex drug-drug interaction at OCTs, such as allosteric high-affinity inhibition of transport and substrate dependence of inhibitor efficacies. A hypothesis about the molecular mechanism of polyspecific substrate recognition by OCTs is presented that is based on functional studies and mutagenesis experiments in OCT1 and OCT2. This hypothesis provides a framework to imagine how observed complex drug-drug interactions at OCTs arise. Finally, preclinical in vitro tests that are performed by pharmaceutical companies to identify interaction of novel drugs with OCTs are discussed. Optimized experimental procedures are proposed that allow a gapless detection of inhibitory and transported drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute of Anatomy and Cell Biology and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Batista MRB, Watts A, José Costa-Filho A. Exploring Conformational Transitions and Free-Energy Profiles of Proton-Coupled Oligopeptide Transporters. J Chem Theory Comput 2019; 15:6433-6443. [PMID: 31639304 DOI: 10.1021/acs.jctc.9b00524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins involved in peptide uptake and transport belong to the proton-coupled oligopeptide transporter (POT) family. Crystal structures of POT family members reveal a common fold consisting of two domains of six transmembrane α helices that come together to form a "V" shaped transporter with a central substrate binding site. Proton-coupled oligopeptide transporters operate through an alternate access mechanism, where the membrane transporter undergoes global conformational changes, alternating between inward-facing (IF), outward-facing (OF), and occluded (OC) states. Conformational transitions are promoted by proton and ligand binding; however, due to the absence of crystallographic models of the outward-open state, the role of H+ and ligands is still not fully understood. To provide a comprehensive picture of the POT conformational equilibrium, conventional and enhanced sampling molecular dynamics simulations of PepTst in the presence or absence of ligand and protonation were performed. Free-energy profiles of the conformational variability of PepTst were obtained from microseconds of adaptive biasing force (ABF) simulations. Our results reveal that both proton and ligand significantly change the conformational free-energy landscape. In the absence of ligand and protonation, only transitions involving IF and OC states are allowed. After protonation of the residue Glu300, the wider free-energy well for Glu300 protonated PepTst indicates a greater conformational variability relative to the apo system, and OF conformations became accessible. For the Glu300 protonated Holo-PepTst, the presence of a second free-energy minimum suggests that OF conformations are not only accessible, but also stable. The differences in the free-energy profiles demonstrate that transitions toward outward-facing conformation occur only after protonation, which is likely the first step in the mechanism of peptide transport. Our extensive ABF simulations provide a fully atomic description of all states of the transport process, offering a model for the alternating access mechanism and how protonation and ligand control the conformational changes.
Collapse
Affiliation(s)
- Mariana R B Batista
- Ribeirão Preto School of Philosophy, Sciences and Letters , University of São Paulo , Ribeirao Preto , São Paulo 14040901 , Brazil
| | - Anthony Watts
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 2JD , United Kingdom
| | - Antonio José Costa-Filho
- Ribeirão Preto School of Philosophy, Sciences and Letters , University of São Paulo , Ribeirao Preto , São Paulo 14040901 , Brazil
| |
Collapse
|
13
|
Türková A, Zdrazil B. Current Advances in Studying Clinically Relevant Transporters of the Solute Carrier (SLC) Family by Connecting Computational Modeling and Data Science. Comput Struct Biotechnol J 2019; 17:390-405. [PMID: 30976382 PMCID: PMC6438991 DOI: 10.1016/j.csbj.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/18/2023] Open
Abstract
Organic anion and cation transporting proteins (OATs, OATPs, and OCTs), as well as the Multidrug and Toxin Extrusion (MATE) transporters of the Solute Carrier (SLC) family are playing a pivotal role in the discovery and development of new drugs due to their involvement in drug disposition, drug-drug interactions, adverse drug effects and related toxicity. Computational methods to understand and predict clinically relevant transporter interactions can provide useful guidance at early stages in drug discovery and design, especially if they include contemporary data science approaches. In this review, we summarize the current state-of-the-art of computational approaches for exploring ligand interactions and selectivity for these drug (uptake) transporters. The computational methods discussed here by highlighting interesting examples from the current literature are ranging from semiautomatic data mining and integration, to ligand-based methods (such as quantitative structure-activity relationships, and combinatorial pharmacophore modeling), and finally structure-based methods (such as comparative modeling, molecular docking, and molecular dynamics simulations). We are focusing on promising computational techniques such as fold-recognition methods, proteochemometric modeling or techniques for enhanced sampling of protein conformations used in the context of these ADMET-relevant SLC transporters with a special focus on methods useful for studying ligand selectivity.
Collapse
Affiliation(s)
- Alžběta Türková
- Department of Pharmaceutical Chemistry, Divison of Drug Design and Medicinal Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Barbara Zdrazil
- Department of Pharmaceutical Chemistry, Divison of Drug Design and Medicinal Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
14
|
Keller T, Gorboulev V, Mueller TD, Dötsch V, Bernhard F, Koepsell H. Rat Organic Cation Transporter 1 Contains Three Binding Sites for Substrate 1-Methyl-4-phenylpyridinium per Monomer. Mol Pharmacol 2019; 95:169-182. [PMID: 30409791 DOI: 10.1124/mol.118.113498] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/05/2018] [Indexed: 02/14/2025] Open
Abstract
Organic cation transporters OCT1 (SLC22A1) and OCT2 (SLC22A2) are critically involved in absorption and excretion of diverse cationic drugs. Because drug-drug interactions at these transporters may induce adverse drug effects in patients, in vitro testing during drug development for interaction with the human transporters is mandatory. Recent data performed with rat OCT1 (rOCT1) suggest that currently performed in vitro tests assuming one polyspecific binding site are insufficient. Here we measured the binding and transport of model substrate 1-methyl-4-phenylpyridinium+ (MPP+) by cell-free-expressed fusion proteins of rOCT1 and rOCT1 mutants with green fluorescent protein that had been reconstituted into nanodiscs or proteoliposomes. The nanodiscs were formed with major scaffold protein (MSP) and different phospholipids, whereas the proteoliposomes were formed with a mixture of cholesterol, phosphatidylserine, and phosphatidylcholine. In nanodiscs formed with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine or cholesterol, phosphatidylserine, and phosphatidylcholine, two low-affinity MPP+ binding sites and one high-affinity MPP+ binding site per transporter monomer were determined. Mutagenesis revealed that tryptophan 218 and aspartate 475 in neighboring positions in the modeled outward-open cleft contribute to one low-affinity binding site, whereas arginine 440 located distantly in the cleft is critical for MPP+ binding to another low-affinity site. Comparing MPP+ binding with MPP+ transport suggests that the low-affinity sites are involved in MPP+ transport, whereas high-affinity MPP+ binding influences transport allosterically. The data will be helpful in the interpretation of future crystal structures and provides a rationale for future in vitro testing that is more sophisticated and reliable, leading to the generation of pharmacophore models with high predictive power.
Collapse
Affiliation(s)
- Thorsten Keller
- Institute of Anatomy and Cell Biology (T.K., V.G., H.K.) and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., H.K.), University of Würzburg, Würzburg, Germany; and Department of Biophysical Chemistry, University of Frankfurt, Frankfurt am Main, Germany (V.D., F.B.)
| | - Valentin Gorboulev
- Institute of Anatomy and Cell Biology (T.K., V.G., H.K.) and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., H.K.), University of Würzburg, Würzburg, Germany; and Department of Biophysical Chemistry, University of Frankfurt, Frankfurt am Main, Germany (V.D., F.B.)
| | - Thomas D Mueller
- Institute of Anatomy and Cell Biology (T.K., V.G., H.K.) and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., H.K.), University of Würzburg, Würzburg, Germany; and Department of Biophysical Chemistry, University of Frankfurt, Frankfurt am Main, Germany (V.D., F.B.)
| | - Volker Dötsch
- Institute of Anatomy and Cell Biology (T.K., V.G., H.K.) and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., H.K.), University of Würzburg, Würzburg, Germany; and Department of Biophysical Chemistry, University of Frankfurt, Frankfurt am Main, Germany (V.D., F.B.)
| | - Frank Bernhard
- Institute of Anatomy and Cell Biology (T.K., V.G., H.K.) and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., H.K.), University of Würzburg, Würzburg, Germany; and Department of Biophysical Chemistry, University of Frankfurt, Frankfurt am Main, Germany (V.D., F.B.)
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology (T.K., V.G., H.K.) and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., H.K.), University of Würzburg, Würzburg, Germany; and Department of Biophysical Chemistry, University of Frankfurt, Frankfurt am Main, Germany (V.D., F.B.)
| |
Collapse
|
15
|
Uptake dynamics in the Lactose permease (LacY) membrane protein transporter. Sci Rep 2018; 8:14324. [PMID: 30254312 PMCID: PMC6156506 DOI: 10.1038/s41598-018-32624-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 09/12/2018] [Indexed: 11/08/2022] Open
Abstract
The sugar transporter Lactose permease (LacY) of Escherichia coli has become a prototype to understand the underlying molecular details of membrane transport. Crystal structures have trapped the protein in sugar-bound states facing the periplasm, but with narrow openings unable to accommodate sugar. Therefore, the molecular details of sugar uptake remain elusive. In this work, we have used extended simulations and metadynamics sampling to explore a putative sugar-uptake pathway and associated free energy landscape. We found an entrance at helix-pair 2 and 11, which involved lipid head groups and residues Gln 241 and Gln 359. Furthermore, the protein displayed high flexibility on the periplasmic side of Phe 27, which is located at the narrowest section of the pathway. Interactions to Phe 27 enabled passage into the binding site, which was associated with a 24 ± 4 kJ/mol binding free energy in excellent agreement with an independent binding free energy calculation and experimental data. Two free energy minima corresponding to the two possible binding poses of the lactose analog β-D-galactopyranosyl-1-thio-β-D-galactopyranoside (TDG) were aligned with the crystal structure-binding pocket. This work outlines the chemical environment of a putative periplasmic sugar pathway and paves way for understanding substrate affinity and specificity in LacY.
Collapse
|
16
|
Gorboulev V, Rehman S, Albert CM, Roth U, Meyer MJ, Tzvetkov MV, Mueller TD, Koepsell H. Assay Conditions Influence Affinities of Rat Organic Cation Transporter 1: Analysis of Mutagenesis in the Modeled Outward-Facing Cleft by Measuring Effects of Substrates and Inhibitors on Initial Uptake. Mol Pharmacol 2018; 93:402-415. [PMID: 29339398 DOI: 10.1124/mol.117.110767] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/12/2018] [Indexed: 02/14/2025] Open
Abstract
The effects of mutations in the modeled outward-open cleft of rat organic cation transporter 1 (rOCT1) on affinities of substrates and inhibitors were investigated. Human embryonic kidney 293 cells were stably transfected with rOCT1 or rOCT1 mutants, and uptake of the substrates 1-methyl-4-phenylpyridinium+ (MPP+) and tetraethylammonium+ (TEA+) or inhibition of MPP+ uptake by the nontransported inhibitors tetrabutylammonium+ (TBuA+), tetrapentylammonium+ (TPeA+), and corticosterone was measured. Uptake measurements were performed on confluent cell layers using a 2-minute incubation or in dissociated cells using incubation times of 1, 5, or 10 seconds. With both methods, different apparent Michaelis-Menten constant (Km) values, different IC50 values, and varying effects of mutations were determined. In addition, varying IC50 values for the inhibition of MPP+ uptake and varying effects of mutations were obtained when different MPP+ concentrations far below the apparent Km value were used for uptake measurements. Eleven mutations were investigated by measuring initial uptake in dissociated cells and employing 0.1 µM MPP+ for uptake during inhibition experiments. Altered affinities for substrates and/or inhibitors were observed when Phe160, Trp218, Arg440, Leu447, and Asp475 were mutated. The mutations resulted in changes of apparent Km values for TEA+ and/or MPP+ Mutation of Trp218 and Asp475 led to altered IC50 values for TBuA+, TPeA+, and corticosterone, whereas the mutation of Phe160 and Leu447 changed the IC50 values for two inhibitors. Thereby amino acids in the outward-facing conformation of rOCT1 could be identified that interact with structurally different inhibitors and probably also with different substrates.
Collapse
Affiliation(s)
- Valentin Gorboulev
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany (V.G.,S.R. C.M.A., U.R. H.K.); Institute of Clinical Pharmacology, University Medical Center, Georg-August University, Göttingen, Germany (M.J.M., M.V.T.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medical Center Greifswald, Greifswald, Germany (M.V.T.); and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany (T.D.M., H.K.)
| | - Saba Rehman
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany (V.G.,S.R. C.M.A., U.R. H.K.); Institute of Clinical Pharmacology, University Medical Center, Georg-August University, Göttingen, Germany (M.J.M., M.V.T.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medical Center Greifswald, Greifswald, Germany (M.V.T.); and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany (T.D.M., H.K.)
| | - Christoph M Albert
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany (V.G.,S.R. C.M.A., U.R. H.K.); Institute of Clinical Pharmacology, University Medical Center, Georg-August University, Göttingen, Germany (M.J.M., M.V.T.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medical Center Greifswald, Greifswald, Germany (M.V.T.); and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany (T.D.M., H.K.)
| | - Ursula Roth
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany (V.G.,S.R. C.M.A., U.R. H.K.); Institute of Clinical Pharmacology, University Medical Center, Georg-August University, Göttingen, Germany (M.J.M., M.V.T.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medical Center Greifswald, Greifswald, Germany (M.V.T.); and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany (T.D.M., H.K.)
| | - Marleen J Meyer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany (V.G.,S.R. C.M.A., U.R. H.K.); Institute of Clinical Pharmacology, University Medical Center, Georg-August University, Göttingen, Germany (M.J.M., M.V.T.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medical Center Greifswald, Greifswald, Germany (M.V.T.); and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany (T.D.M., H.K.)
| | - Mladen V Tzvetkov
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany (V.G.,S.R. C.M.A., U.R. H.K.); Institute of Clinical Pharmacology, University Medical Center, Georg-August University, Göttingen, Germany (M.J.M., M.V.T.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medical Center Greifswald, Greifswald, Germany (M.V.T.); and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany (T.D.M., H.K.)
| | - Thomas D Mueller
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany (V.G.,S.R. C.M.A., U.R. H.K.); Institute of Clinical Pharmacology, University Medical Center, Georg-August University, Göttingen, Germany (M.J.M., M.V.T.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medical Center Greifswald, Greifswald, Germany (M.V.T.); and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany (T.D.M., H.K.)
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany (V.G.,S.R. C.M.A., U.R. H.K.); Institute of Clinical Pharmacology, University Medical Center, Georg-August University, Göttingen, Germany (M.J.M., M.V.T.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medical Center Greifswald, Greifswald, Germany (M.V.T.); and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany (T.D.M., H.K.)
| |
Collapse
|
17
|
Xianwei T, Diannan L, Boxiong W. Substrate transport pathway inside outward open conformation of EmrD: a molecular dynamics simulation study. MOLECULAR BIOSYSTEMS 2017; 12:2634-41. [PMID: 27327574 DOI: 10.1039/c6mb00348f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The EmrD transporter, which is a classical major facilitator superfamily (MFS) protein, can extrude a range of drug molecules out of E. coil. The drug molecules transport through the channel of MFS in an outward open state, an important issue in research about bacterial drug resistance, which however, is still unknown. In this paper, we construct a starting outward-open model of the EmrD transporter using a state transition method. The starting model is refined by a conventional molecular dynamics simulation. Locally enhanced sampling simulation (LES) is used to validate the outward-open model of EmrD. In the locally enhanced sampling simulation, ten substrates are placed along the channel of the outward-open EmrD, and these substrates are sampled in the outward-open center cavity. It is found that the translocation pathway of these substrates from the inside to the outside of the cell through the EmrD transporter is composed of two sub-pathways, one sub-pathway, including H2, H4, and H5, and another sub-pathway, including H8, H10, and H11. The results give us have a further insight to the ways of substrate translocation of an MFS protein. The model method is based on common features of an MFS protein, so this modeling method can be used to construct various MFS protein models which have a desired state with other conformations not known in the alternating-access mechanism.
Collapse
Affiliation(s)
- Tan Xianwei
- School of Life Sciences, Tsinghua University, Beijing, China.
| | - Lu Diannan
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Wang Boxiong
- Department of Precision Instrument, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Jewel Y, Dutta P, Liu J. Exploration of conformational changes in lactose permease upon sugar binding and proton transfer through coarse-grained simulations. Proteins 2017. [PMID: 28639287 DOI: 10.1002/prot.25340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Escherichia coli lactose permease (LacY) actively transports lactose and other galactosides across cell membranes through lactose/H+ symport process. Lactose/H+ symport is a highly complex process that involves sugar translocation, H+ transfer, and large-scale protein conformational changes. The complete picture of lactose/H+ symport is largely unclear due to the complexity and multiscale nature of the process. In this work, we develop the force field for sugar molecules compatible with PACE, a hybrid and coarse-grained force field that couples the united-atom protein models with the coarse-grained MARTINI water/lipid. After validation, we implement the new force field to investigate the binding of a β-d-galactopyranosyl-1-thio- β-d-galactopyranoside (TDG) molecule to a wild-type LacY. Results show that the local interactions between TDG and LacY at the binding pocket are consistent with the X-ray experiment. Transitions from inward-facing to outward-facing conformations upon TDG binding and protonation of Glu269 have been achieved from ∼5.5 µs simulations. Both the opening of the periplasmic side and closure of the cytoplasmic side of LacY are consistent with double electron-electron resonance and thiol cross-linking experiments. Our analysis suggests that the conformational changes of LacY are a cumulative consequence of interdomain H-bonds breaking at the periplasmic side, interdomain salt-bridge formation at the cytoplasmic side, and the TDG orientational changes during the transition.
Collapse
Affiliation(s)
- Yead Jewel
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, 99164
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, 99164
| | - Jin Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, 99164
| |
Collapse
|
19
|
Mechanism of Substrate Translocation in an Alternating Access Transporter. Cell 2017; 169:96-107.e12. [PMID: 28340354 DOI: 10.1016/j.cell.2017.03.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/15/2017] [Accepted: 03/03/2017] [Indexed: 12/11/2022]
Abstract
Transporters shuttle molecules across cell membranes by alternating among distinct conformational states. Fundamental questions remain about how transporters transition between states and how such structural rearrangements regulate substrate translocation. Here, we capture the translocation process by crystallography and unguided molecular dynamics simulations, providing an atomic-level description of alternating access transport. Simulations of a SWEET-family transporter initiated from an outward-open, glucose-bound structure reported here spontaneously adopt occluded and inward-open conformations. Strikingly, these conformations match crystal structures, including our inward-open structure. Mutagenesis experiments further validate simulation predictions. Our results reveal that state transitions are driven by favorable interactions formed upon closure of extracellular and intracellular "gates" and by an unfavorable transmembrane helix configuration when both gates are closed. This mechanism leads to tight allosteric coupling between gates, preventing them from opening simultaneously. Interestingly, the substrate appears to take a "free ride" across the membrane without causing major structural rearrangements in the transporter.
Collapse
|
20
|
Emulating proton-induced conformational changes in the vesicular monoamine transporter VMAT2 by mutagenesis. Proc Natl Acad Sci U S A 2016; 113:E7390-E7398. [PMID: 27821772 DOI: 10.1073/pnas.1605162113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurotransporters located in synaptic vesicles are essential for communication between nerve cells in a process mediated by neurotransmitters. Vesicular monoamine transporter (VMAT), a member of the largest superfamily of transporters, mediates transport of monoamines to synaptic vesicles and storage organelles in a process that involves exchange of two H+ per substrate. VMAT transport is inhibited by the competitive inhibitor reserpine, a second-line agent to treat hypertension, and by the noncompetitive inhibitor tetrabenazine, presently in use for symptomatic treatment of hyperkinetic disorders. During the transport cycle, VMAT is expected to occupy at least three different conformations: cytoplasm-facing, occluded, and lumen-facing. The lumen- to cytoplasm-facing transition, facilitated by protonation of at least one of the essential membrane-embedded carboxyls, generates a binding site for reserpine. Here we have identified residues in the cytoplasmic gate and show that mutations that disrupt the interactions in this gate also shift the equilibrium toward the cytoplasm-facing conformation, emulating the effect of protonation. These experiments provide significant insight into the role of proton translocation in the conformational dynamics of a mammalian H+-coupled antiporter, and also identify key aspects of the mode of action and binding of two potent inhibitors of VMAT2: reserpine binds the cytoplasm-facing conformation, and tetrabenazine binds the lumen-facing conformation.
Collapse
|
21
|
Manouchehri F, Izadmanesh Y, Aghaee E, Ghasemi JB. Experimental, computational and chemometrics studies of BSA-vitamin B6 interaction by UV–Vis, FT-IR, fluorescence spectroscopy, molecular dynamics simulation and hard-soft modeling methods. Bioorg Chem 2016; 68:124-36. [DOI: 10.1016/j.bioorg.2016.07.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/13/2022]
|
22
|
Zhang JL, Zheng QC, Yu LY, Li ZQ, Zhang HX. Effect of External Electric Field on Substrate Transport of a Secondary Active Transporter. J Chem Inf Model 2016; 56:1539-46. [PMID: 27472561 DOI: 10.1021/acs.jcim.6b00212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Substrate transport across a membrane accomplished by a secondary active transporter (SAT) is essential to the normal physiological function of living cells. In the present research, a series of all-atom molecular dynamics (MD) simulations under different electric field (EF) strengths was performed to investigate the effect of an external EF on the substrate transport of an SAT. The results show that EF both affects the interaction between substrate and related protein's residues by changing their conformations and tunes the timeline of the transport event, which collectively reduces the height of energy barrier for substrate transport and results in the appearance of two intermediate conformations under the existence of an external EF. Our work spotlights the crucial influence of external EFs on the substrate transport of SATs and could provide a more penetrating understanding of the substrate transport mechanism of SATs.
Collapse
Affiliation(s)
- Ji-Long Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University , Changchun 130023, Jilin, People's Republic of China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University , Changchun 130021, Jilin, People's Republic of China.,Department of Chemistry and Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Qing-Chuan Zheng
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University , Changchun 130023, Jilin, People's Republic of China
| | - Li-Ying Yu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University , Changchun 130023, Jilin, People's Republic of China
| | - Zheng-Qiang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University , Changchun 130021, Jilin, People's Republic of China
| | - Hong-Xing Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University , Changchun 130023, Jilin, People's Republic of China
| |
Collapse
|
23
|
Modeling structural transitions from the periplasmic-open state of lactose permease and interpretations of spin label experiments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1541-52. [DOI: 10.1016/j.bbamem.2016.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/25/2016] [Accepted: 04/19/2016] [Indexed: 11/22/2022]
|
24
|
Jewel Y, Dutta P, Liu J. Coarse-grained simulations of proton-dependent conformational changes in lactose permease. Proteins 2016; 84:1067-74. [PMID: 27090495 DOI: 10.1002/prot.25053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/29/2016] [Accepted: 04/11/2016] [Indexed: 11/09/2022]
Abstract
During lactose/H(+) symport, the Escherichia coli lactose permease (LacY) undergoes a series of global conformational transitions between inward-facing (open to cytoplasmic side) and outward-facing (open to periplasmic side) states. However, the exact local interactions and molecular mechanisms dictating those large-scale structural changes are not well understood. All-atom molecular dynamics simulations have been performed to investigate the molecular interactions involved in conformational transitions of LacY, but the simulations can only explore early or partial global structural changes because of the computational limits (< 100 ns). In this work, we implement a hybrid force field that couples the united-atom protein models with the coarse-grained MARTINI water/lipid, to investigate the proton-dependent dynamics and conformational changes of LacY. The effects of the protonation states on two key glutamate residues (Glu325 and Glu269) have been studied. Our results on the salt-bridge dynamics agreed with all-atom simulations at early short time period, validating our simulations. From our microsecond simulations, we were able to observe the complete transition from inward-facing to outward-facing conformations of LacY. Our results showed that all helices have participated during the global conformational transitions and helical movements of LacY. The inter-helical distances measured in our simulations were consistent with the double electron-electron resonance experiments at both cytoplasmic and periplasmic sides. Our simulations indicated that the deprotonation of Glu325 induced the opening of the periplasmics side and partial closure of the cytoplasmic side of LacY, while protonation of the Glu269 caused a stable cross-domain salt-bridge (Glu130-Arg344) and completely closed the cytoplasmic side. Proteins 2016; 84:1067-1074. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yead Jewel
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, 99164
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, 99164
| | - Jin Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, 99164
| |
Collapse
|
25
|
Khakbaz P, Klauda JB. Probing the importance of lipid diversity in cell membranes via molecular simulation. Chem Phys Lipids 2015; 192:12-22. [PMID: 26260616 DOI: 10.1016/j.chemphyslip.2015.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/31/2022]
Abstract
Lipid membranes in prokaryotes and eukaryotes have a wide array of lipids that are necessary for proper membrane structure and function. In this paper, an introduction to lipid diversity in biology and a mini-review on how molecular simulations have been used to model biological membranes (primarily limited to one to three lipid types in most simulation-based models) is provided, which motivates the use of all-atom molecular dynamics (MD) simulations to study the effect of lipid diversity on properties of realistic membrane models of prokaryotes and eukaryotes. As an example, cytoplasmic membrane models of Escherichia coli were developed at different stages of the colony growth cycle (early-log, mid-log, stationary and overnight). The main difference between lipid compositions at each stage was the concentration of a cyclopropane-containing moiety on the sn-2 lipid acyl chain (cyC17:0). Triplicate MD simulations for each stage were run for 300 ns to study the influence of lipid diversity on the surface area per lipid, area compressibility modulus, deuterium order parameters, and electron density profiles. The overnight stage (also known as the death stage) had the highest average surface area per lipid, highest rigidity, and lowest bilayer thickness compare to other stages of E. coli cytoplasmic membrane. Although bilayer thickness did depend on the growth stage, the changes between these were small suggesting that the hydrophobic core of transmembrane proteins fit well with the membrane in all growth stages. Although it is still common practise in MD simulations of membrane proteins to use simple one- or two-component membranes, it can be important to use diverse lipid model membranes when membrane protein structure and function are influenced by changes in lipid membrane composition.
Collapse
Affiliation(s)
- Pouyan Khakbaz
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA; Biophysics Program, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
26
|
Daniels V, Wood M, Leclercq K, Kaminski RM, Gillard M. Modulation of the conformational state of the SV2A protein by an allosteric mechanism as evidenced by ligand binding assays. Br J Pharmacol 2015; 169:1091-101. [PMID: 23530581 DOI: 10.1111/bph.12192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/05/2013] [Accepted: 03/15/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Synaptic vesicle protein 2A (SV2A) is the specific binding site of the anti-epileptic drug levetiracetam (LEV) and its higher affinity analogue UCB30889. Moreover, the protein has been well validated as a target for anticonvulsant therapy. Here, we report the identification of UCB1244283 acting as a SV2A positive allosteric modulator of UCB30889. EXPERIMENTAL APPROACH UCB1244283 was characterized in vitro using radioligand binding assays with [(3)H]UCB30889 on recombinant SV2A expressed in HEK cells and on rat cortex. In vivo, the compound was tested in sound-sensitive mice. KEY RESULTS Saturation binding experiments in the presence of UCB1244283 demonstrated a fivefold increase in the affinity of [(3)H]UCB30889 for human recombinant SV2A, combined with a twofold increase of the total number of binding sites. Similar results were obtained on rat cortex. In competition binding experiments, UCB1244283 potentiated the affinity of UCB30889 while the affinity of LEV remained unchanged. UCB1244283 significantly slowed down both the association and dissociation kinetics of [(3)H]UCB30889. Following i.c.v. administration in sound-sensitive mice, UCB1244283 showed a clear protective effect against both tonic and clonic convulsions. CONCLUSIONS AND IMPLICATIONS These results indicate that UCB1244283 can modulate the conformation of SV2A, thereby inducing a higher affinity state for UCB30889. Our results also suggest that the conformation of SV2A per se might be an important determinant of its functioning, especially during epileptic seizures. Therefore, agents that act on the conformation of SV2A might hold great potential in the search for new SV2A-based anticonvulsant therapies.
Collapse
Affiliation(s)
- V Daniels
- NewMedicines, CNS Discovery Research, UCB Pharma, Braine-l'Alleud, Belgium
| | | | | | | | | |
Collapse
|
27
|
The Structure and Function of OxlT, the Oxalate Transporter of Oxalobacter formigenes. J Membr Biol 2014; 248:641-50. [DOI: 10.1007/s00232-014-9728-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/05/2014] [Indexed: 01/01/2023]
|
28
|
Stelzl LS, Fowler PW, Sansom MS, Beckstein O. Flexible gates generate occluded intermediates in the transport cycle of LacY. J Mol Biol 2014; 426:735-51. [PMID: 24513108 PMCID: PMC3905165 DOI: 10.1016/j.jmb.2013.10.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/17/2013] [Accepted: 10/18/2013] [Indexed: 12/29/2022]
Abstract
The major facilitator superfamily (MFS) transporter lactose permease (LacY) alternates between cytoplasmic and periplasmic open conformations to co-transport a sugar molecule together with a proton across the plasma membrane. Indirect experimental evidence suggested the existence of an occluded transition intermediate of LacY, which would prevent leaking of the proton gradient. As no experimental structure is known, the conformational transition is not fully understood in atomic detail. We simulated transition events from a cytoplasmic open conformation to a periplasmic open conformation with the dynamic importance sampling molecular dynamics method and observed occluded intermediates. Analysis of water permeation pathways and the electrostatic free-energy landscape of a solvated proton indicated that the occluded state contains a solvated central cavity inaccessible from either side of the membrane. We propose a pair of geometric order parameters that capture the state of the pathway through the MFS transporters as shown by a survey of available crystal structures and models. We present a model for the occluded state of apo-LacY, which is similar to the occluded crystal structures of the MFS transporters EmrD, PepTSo, NarU, PiPT and XylE. Our simulations are consistent with experimental double electron spin–spin distance measurements that have been interpreted to show occluded conformations. During the simulations, a salt bridge that has been postulated to be involved in driving the conformational transition formed. Our results argue against a simple rigid-body domain motion as implied by a strict “rocker-switch mechanism” and instead hint at an intricate coupling between two flexible gates. The transport mechanism of LacY is hypothesized to involve an intermediate “occluded” state. Such a state is observed in computer simulations of the conformational transitions. Simulation data are validated with experimental double electron–electron spin resonance measurements. The structural gating elements of LacY are identified. Occluded LacY is similar to known occluded structures of homologous proteins.
Collapse
Affiliation(s)
- Lukas S. Stelzl
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Philip W. Fowler
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S.P. Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Oliver Beckstein
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, AZ 85287, USA
- Corresponding author Department of Physics, Center for Biological Physics, Arizona State University, P.O. Box 871504, Tempe, AZ 85287-1504, USA.
| |
Collapse
|
29
|
Masureel M, Martens C, Stein RA, Mishra S, Ruysschaert JM, Mchaourab HS, Govaerts C. Protonation drives the conformational switch in the multidrug transporter LmrP. Nat Chem Biol 2014; 10:149-55. [PMID: 24316739 PMCID: PMC4749020 DOI: 10.1038/nchembio.1408] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 10/18/2013] [Indexed: 02/07/2023]
Abstract
Multidrug antiporters of the major facilitator superfamily couple proton translocation to the extrusion of cytotoxic molecules. The conformational changes that underlie the transport cycle and the structural basis of coupling of these transporters have not been elucidated. Here we used extensive double electron-electron resonance measurements to uncover the conformational equilibrium of LmrP, a multidrug transporter from Lactococcus lactis, and to investigate how protons and ligands shift this equilibrium to enable transport. We find that the transporter switches between outward-open and outward-closed conformations, depending on the protonation states of specific acidic residues forming a transmembrane protonation relay. Our data can be framed in a model of transport wherein substrate binding initiates the transport cycle by opening the extracellular side. Subsequent protonation of membrane-embedded acidic residues induces substrate release to the extracellular side and triggers a cascade of conformational changes that concludes in proton release to the intracellular side.
Collapse
Affiliation(s)
- Matthieu Masureel
- 1] Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium. [2]
| | - Chloé Martens
- 1] Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium. [2]
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Smriti Mishra
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jean-Marie Ruysschaert
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Hassane S Mchaourab
- 1] Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee, USA. [2]
| | - Cédric Govaerts
- 1] Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium. [2]
| |
Collapse
|
30
|
Mendoza-Torreblanca JG, Vanoye-Carlo A, Phillips-Farfán BV, Carmona-Aparicio L, Gómez-Lira G. Synaptic vesicle protein 2A: basic facts and role in synaptic function. Eur J Neurosci 2013; 38:3529-39. [DOI: 10.1111/ejn.12360] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/09/2013] [Accepted: 08/17/2013] [Indexed: 10/26/2022]
Affiliation(s)
| | | | | | | | - Gisela Gómez-Lira
- Department of Pharmacobiology; Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional; Calzada de los Tenorios 235 Col. Granjas Coapa C.P. 14330 D. F., Mexico
| |
Collapse
|
31
|
Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT. Proc Natl Acad Sci U S A 2013; 110:11343-8. [PMID: 23798427 DOI: 10.1073/pnas.1301079110] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proton-dependent oligopeptide transporters (POTs) are major facilitator superfamily (MFS) proteins that mediate the uptake of peptides and peptide-like molecules, using the inwardly directed H(+) gradient across the membrane. The human POT family transporter peptide transporter 1 is present in the brush border membrane of the small intestine and is involved in the uptake of nutrient peptides and drug molecules such as β-lactam antibiotics. Although previous studies have provided insight into the overall structure of the POT family transporters, the question of how transport is coupled to both peptide and H(+) binding remains unanswered. Here we report the high-resolution crystal structures of a bacterial POT family transporter, including its complex with a dipeptide analog, alafosfalin. These structures revealed the key mechanistic and functional roles for a conserved glutamate residue (Glu310) in the peptide binding site. Integrated structural, biochemical, and computational analyses suggested a mechanism for H(+)-coupled peptide symport in which protonated Glu310 first binds the carboxyl group of the peptide substrate. The deprotonation of Glu310 in the inward open state triggers the release of the bound peptide toward the intracellular space and salt bridge formation between Glu310 and Arg43 to induce the state transition to the occluded conformation.
Collapse
|
32
|
Pedersen BP, Kumar H, Waight AB, Risenmay AJ, Roe-Zurz Z, Chau BH, Schlessinger A, Bonomi M, Harries W, Sali A, Johri AK, Stroud RM. Crystal structure of a eukaryotic phosphate transporter. Nature 2013; 496:533-6. [PMID: 23542591 PMCID: PMC3678552 DOI: 10.1038/nature12042] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/25/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Bjørn P Pedersen
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Stability and membrane interactions of an autotransport protein: MD simulations of the Hia translocator domain in a complex membrane environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:715-23. [DOI: 10.1016/j.bbamem.2012.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/25/2012] [Accepted: 09/06/2012] [Indexed: 11/19/2022]
|
34
|
Enkavi G, Li J, Mahinthichaichan P, Wen PC, Huang Z, Shaikh SA, Tajkhorshid E. Simulation studies of the mechanism of membrane transporters. Methods Mol Biol 2013; 924:361-405. [PMID: 23034756 DOI: 10.1007/978-1-62703-017-5_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Membrane transporters facilitate active transport of their specific substrates, often against their electrochemical gradients across the membrane, through coupling the process to various sources of cellular energy, for example, ATP binding and hydrolysis in primary transporters, and pre-established electrochemical gradient of molecular species other than the substrate in the case of secondary transporters. In order to provide efficient energy-coupling mechanisms, membrane transporters have evolved into molecular machines in which stepwise binding, translocation, and transformation of various molecular species are closely coupled to protein conformational changes that take the transporter from one functional state to another during the transport cycle. Furthermore, in order to prevent the formation of leaky states and to be able to pump the substrate against its electrochemical gradient, all membrane transporters use the widely-accepted "alternating access mechanism," which ensures that the substrate is only accessible from one side of the membrane at a given time, but relies on complex and usually global protein conformational changes that differ for each family of membrane transporters. Describing the protein conformational changes of different natures and magnitudes is therefore at the heart of mechanistic studies of membrane transporters. Here, using a number of membrane transporters from diverse families, we present common protocols used in setting up and performing molecular dynamics simulations of membrane transporters and in analyzing the results, in order to characterize relevant motions of the system. The emphasis will be on highlighting how optimal design of molecular dynamics simulations combined with mechanistically oriented analysis can shed light onto key functionally relevant protein conformational changes in this family of membrane proteins.
Collapse
Affiliation(s)
- Giray Enkavi
- Department of Biochemistry, Center for Biophysics and Computational Biology, College of Medicine, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Andersson M, Bondar AN, Freites JA, Tobias DJ, Kaback HR, White SH. Proton-coupled dynamics in lactose permease. Structure 2012; 20:1893-904. [PMID: 23000385 DOI: 10.1016/j.str.2012.08.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 07/05/2012] [Accepted: 08/10/2012] [Indexed: 11/17/2022]
Abstract
Lactose permease of Escherichia coli (LacY) catalyzes symport of a galactopyranoside and an H⁺ via an alternating access mechanism. The transition from an inward- to an outward-facing conformation of LacY involves sugar-release followed by deprotonation. Because the transition depends intimately upon the dynamics of LacY in a bilayer environment, molecular dynamics (MD) simulations may be the only means of following the accompanying structural changes in atomic detail. Here, we describe MD simulations of wild-type apo LacY in phosphatidylethanolamine (POPE) lipids that features two protonation states of the critical Glu325. While the protonated system displays configurational stability, deprotonation of Glu325 causes significant structural rearrangements that bring into proximity side chains important for H⁺ translocation and sugar binding and closes the internal cavity. Moreover, protonated LacY in phosphatidylcholine (DMPC) lipids shows that the observed dynamics are lipid-dependent. Together, the simulations describe early dynamics of the inward-to-outward transition of LacY that agree well with experimental data.
Collapse
Affiliation(s)
- Magnus Andersson
- Department of Physiology and Biophysics and Center for Biomembrane Systems, University of California at Irvine, Irvine, CA 92697-4560, USA
| | | | | | | | | | | |
Collapse
|
36
|
Herzog E, Gu W, Juhnke H, Haas A, Mäntele W, Simon J, Helms V, Lancaster C. Hydrogen-bonded networks along and bifurcation of the E-pathway in quinol:fumarate reductase. Biophys J 2012; 103:1305-14. [PMID: 22995503 PMCID: PMC3446689 DOI: 10.1016/j.bpj.2012.07.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 02/06/2023] Open
Abstract
The E-pathway of transmembrane proton transfer has been demonstrated previously to be essential for catalysis by the diheme-containing quinol:fumarate reductase (QFR) of Wolinella succinogenes. Two constituents of this pathway, Glu-C180 and heme b(D) ring C (b(D)-C-) propionate, have been validated experimentally. Here, we identify further constituents of the E-pathway by analysis of molecular dynamics simulations. The redox state of heme groups has a crucial effect on the connectivity patterns of mobile internal water molecules that can transiently support proton transfer from the b(D)-C-propionate to Glu-C180. The short H-bonding paths formed in the reduced states can lead to high proton conduction rates and thus provide a plausible explanation for the required opening of the E-pathway in reduced QFR. We found evidence that the b(D)-C-propionate group is the previously postulated branching point connecting proton transfer to the E-pathway from the quinol-oxidation site via interactions with the heme b(D) ligand His-C44. An essential functional role of His-C44 is supported experimentally by site-directed mutagenesis resulting in its replacement with Glu. Although the H44E variant enzyme retains both heme groups, it is unable to catalyze quinol oxidation. All results obtained are relevant to the QFR enzymes from the human pathogens Campylobacter jejuni and Helicobacter pylori.
Collapse
Affiliation(s)
- Elena Herzog
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Department of Structural Biology, Center of Human and Molecular Biology, Institute of Biophysics, Faculty of Medicine, Saarland University, Homburg, Germany
| | - Wei Gu
- Center for Bioinformatics and Center of Human and Molecular Biology, Saarland University, Saarbrücken, Germany
| | - Hanno D. Juhnke
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Alexander H. Haas
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Werner Mäntele
- Institute of Biophysics, J. W. Goethe University, Frankfurt am Main, Germany
| | - Jörg Simon
- Institute of Molecular Biosciences, J. W. Goethe University, Frankfurt am Main, Germany
| | - Volkhard Helms
- Center for Bioinformatics and Center of Human and Molecular Biology, Saarland University, Saarbrücken, Germany
| | - C. Roy D. Lancaster
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Department of Structural Biology, Center of Human and Molecular Biology, Institute of Biophysics, Faculty of Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
37
|
Alanine scanning mutagenesis of a high-affinity nitrate transporter highlights the requirement for glycine and asparagine residues in the two nitrate signature motifs. Biochem J 2012; 447:35-42. [DOI: 10.1042/bj20120631] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Common to all of the nitrate nitrite porter family are two conserved motifs in transmembrane helices 5 and 11 termed NS (nitrate signature) 1 and NS2. Although perfectly conserved substrate-interacting arginine residues have been described in transmembrane helices 2 and 8, the role of NSs has not been investigated. In the present study, a combination of structural modelling of NrtA (nitrate transporter from Aspergillus nidulans) with alanine scanning mutagenesis of residues within and around the NSs has been used to shed light on the probable role of conserved residues in the NSs. Models show that Asn168 in NS1 and Asn459 in NS2 are positioned approximately midway within the protein at the central pivot point in close proximity to the substrate-binding residues Arg368 and Arg87 respectively, which lie offset from the pivot point towards the cytoplasmic face. The Asn168/Arg368 and Asn459/Arg87 residue pairs are relatively widely separated on opposite sides of the probable substrate translocation pore. The results of the present study demonstrate the critical structural contribution of several glycine residues in each NS at sites of close helix packing. Given the relative locations of Asn168/Arg368 and Asn459/Arg87 pairs, the validity of the models and possible role of the NSs together with the substrate-binding arginine residues are discussed.
Collapse
|
38
|
Zhou Y, Moin SM, Urban S, Zhang Y. An internal water-retention site in the rhomboid intramembrane protease GlpG ensures catalytic efficiency. Structure 2012; 20:1255-63. [PMID: 22705210 DOI: 10.1016/j.str.2012.04.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/29/2012] [Accepted: 04/05/2012] [Indexed: 12/11/2022]
Abstract
Rhomboid proteases regulate key cellular pathways, but their biochemical mechanism including how water is made available to the membrane-immersed active site remains ambiguous. We performed four prolonged molecular dynamics simulations initiated from both gate-open and gate-closed states of Escherichia coli rhomboid GlpG in a phospholipid bilayer. GlpG was notably stable in both gating states, experiencing similar tilt and local membrane thinning, with no observable gating transitions, highlighting that gating is rate-limiting. Analysis of dynamics revealed rapid loss of crystallographic waters from the active site, but retention of a water cluster within a site formed by His141, Ser181, Ser185, and/or Gln189. Experimental interrogation of 14 engineered mutants revealed an essential role for at least Gln189 and Ser185 in catalysis with no effect on structural stability. Our studies indicate that spontaneous water supply to the intramembrane active site of rhomboid proteases is rare, but its availability for catalysis is ensured by an unanticipated active site element, the water-retention site.
Collapse
Affiliation(s)
- Yanzi Zhou
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|
39
|
Baker J, Wright SH, Tama F. Simulations of substrate transport in the multidrug transporter EmrD. Proteins 2012; 80:1620-32. [PMID: 22434745 DOI: 10.1002/prot.24056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/22/2012] [Accepted: 01/27/2012] [Indexed: 11/07/2022]
Abstract
EmrD is a multidrug resistance (MDR) transporter from Escherichia coli, which is involved in the efflux of amphipathic compounds from the cytoplasm, and the first MDR member of the major facilitator superfamily to be crystallized. Molecular dynamics simulation of EmrD in a phospholipid bilayer was used to characterize the conformational dynamics of the protein. Motions that support a previously proposed lateral diffusion pathway for substrate from the cytoplasmic membrane leaflet into the EmrD central cavity were observed. In addition, the translocation pathway of meta-chloro carbonylcyanide phenylhydrazone (CCCP) was probed using both standard and steered molecular dynamics simulation. In particular, interactions of a few specific residues with CCCP have been identified. Finally, a large motion of two residues, Val 45 and Leu 233, was observed with the passage of CCCP into the periplasmic space, placing a lower bound on the extent of opening required at this end of the protein for substrate transport. Overall, our simulations probe details of the transport pathway, motions of EmrD at an atomic level of detail, and offer new insights into the functioning of MDR transporters.
Collapse
Affiliation(s)
- Joseph Baker
- Department of Physics, The University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
40
|
Stansfeld P, Sansom M. Molecular Simulation Approaches to Membrane Proteins. Structure 2011; 19:1562-72. [DOI: 10.1016/j.str.2011.10.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 11/17/2022]
|
41
|
Gillard M, Fuks B, Leclercq K, Matagne A. Binding characteristics of brivaracetam, a selective, high affinity SV2A ligand in rat, mouse and human brain: Relationship to anti-convulsant properties. Eur J Pharmacol 2011; 664:36-44. [DOI: 10.1016/j.ejphar.2011.04.064] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 11/26/2022]
|
42
|
Jeon J, Nam HJ, Choi YS, Yang JS, Hwang J, Kim S. Molecular evolution of protein conformational changes revealed by a network of evolutionarily coupled residues. Mol Biol Evol 2011; 28:2675-85. [PMID: 21470969 DOI: 10.1093/molbev/msr094] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
An improved understanding of protein conformational changes has broad implications for elucidating the mechanisms of various biological processes and for the design of protein engineering experiments. Understanding rearrangements of residue interactions is a key component in the challenge of describing structural transitions. Evolutionary properties of protein sequences and structures are extensively studied; however, evolution of protein motions, especially with respect to interaction rearrangements, has yet to be explored. Here, we investigated the relationship between sequence evolution and protein conformational changes and discovered that structural transitions are encoded in amino acid sequences as coevolving residue pairs. Furthermore, we found that highly coevolving residues are clustered in the flexible regions of proteins and facilitate structural transitions by forming and disrupting their interactions cooperatively. Our results provide insight into the evolution of protein conformational changes and help to identify residues important for structural transitions.
Collapse
Affiliation(s)
- Jouhyun Jeon
- Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | | | |
Collapse
|
43
|
Radestock S, Forrest LR. The alternating-access mechanism of MFS transporters arises from inverted-topology repeats. J Mol Biol 2011; 407:698-715. [PMID: 21315728 DOI: 10.1016/j.jmb.2011.02.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/16/2011] [Accepted: 02/02/2011] [Indexed: 11/19/2022]
Abstract
Lactose permease (LacY) is the prototype of the major facilitator superfamily (MFS) of secondary transporters. Available structures of LacY reveal a state in which the substrate is exposed to the cytoplasm but is occluded from the periplasm. However, the alternating-access transport mechanism requires the existence of a periplasm-facing state. We recently showed that inverted-topology structural repeats provide the foundation for the mechanisms of two transporter families with folds distinct from the MFS. Here, we generated a structural model of LacY by swapping the conformations of inverted-topology repeats identified in its two domains. The model exhibits all required properties of an outward-facing conformation, i.e., closure of the binding site to the cytoplasm and exposure to the periplasm. Furthermore, the model agrees with double electron-electron resonance distance changes, accessibility to cysteine-modifying reagents, cysteine cross-linking data, and a recent structure of a distantly related transporter. Analysis of the intradomain differences between the two states suggests a role for conserved sequence motifs in occluding the central pathway through kinking of the pore-lining helices. In addition, predicted re-pairing of critical salt-bridging residues in the binding sites agrees remarkably well with previous proposals, allowing a description of the proton/sugar transport mechanism. More fundamentally, our model demonstrates that inverted-topology repeats provide the foundation for the alternating-access mechanisms of MFS transporters.
Collapse
Affiliation(s)
- Sebastian Radestock
- Computational Structural Biology Group, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurtam Main, Germany
| | | |
Collapse
|
44
|
Jiang X, Nie Y, Kaback HR. Site-directed alkylation studies with LacY provide evidence for the alternating access model of transport. Biochemistry 2011; 50:1634-40. [PMID: 21254783 DOI: 10.1021/bi101988s] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In total, 59 single Cys-replacement mutants in helix VII and helix X of the lactose permease of Escherichia coli were subjected to site-directed fluorescence labeling in right-side-out membrane vesicles to complete the testing of Cys accessibility or reactivity. For both helices, accessibility/reactivity is relatively low at the level of the sugar-binding site where the helices are tightly packed. However, labeling of Cys substitutions in helix VII with tetramethylrhodamine-5-maleimide decreases from the middle toward the cytoplasmic end and increases toward the periplasmic end. Helix X is labeled mainly on the side facing the central hydrophilic cavity with relatively small or no changes in the presence of ligand. In contrast, sugar binding causes a significant increase in accessibility/reactivity at the periplasmic end of helix VII. When considered with similar findings from N-ethylmaleimide alkylation studies, the results confirm and extend support for the alternating access model.
Collapse
Affiliation(s)
- Xiaoxu Jiang
- Department of Physiology, University of California, Los Angeles, California 90095, United States
| | | | | |
Collapse
|
45
|
Mohan S, Sheena A, Poulose N, Anilkumar G. Molecular dynamics simulation studies of GLUT4: substrate-free and substrate-induced dynamics and ATP-mediated glucose transport inhibition. PLoS One 2010; 5:e14217. [PMID: 21151967 PMCID: PMC2997047 DOI: 10.1371/journal.pone.0014217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 11/15/2010] [Indexed: 02/03/2023] Open
Abstract
Background Glucose transporter 4 (GLUT4) is an insulin facilitated glucose transporter that plays an important role in maintaining blood glucose homeostasis. GLUT4 is sequestered into intracellular vesicles in unstimulated cells and translocated to the plasma membrane by various stimuli. Understanding the structural details of GLUT4 will provide insights into the mechanism of glucose transport and its regulation. To date, a crystal structure for GLUT4 is not available. However, earlier work from our laboratory proposed a well validated homology model for GLUT4 based on the experimental data available on GLUT1 and the crystal structure data obtained from the glycerol 3-phosphate transporter. Methodology/Principal Findings In the present study, the dynamic behavior of GLUT4 in a membrane environment was analyzed using three forms of GLUT4 (apo, substrate and ATP-substrate bound states). Apo form simulation analysis revealed an extracellular open conformation of GLUT4 in the membrane favoring easy exofacial binding of substrate. Simulation studies with the substrate bound form proposed a stable state of GLUT4 with glucose, which can be a substrate-occluded state of the transporter. Principal component analysis suggested a clockwise movement for the domains in the apo form, whereas ATP substrate-bound form induced an anti-clockwise rotation. Simulation studies suggested distinct conformational changes for the GLUT4 domains in the ATP substrate-bound form and favor a constricted behavior for the transport channel. Various inter-domain hydrogen bonds and switching of a salt-bridge network from E345-R350-E409 to E345-R169-E409 contributed to this ATP-mediated channel constriction favoring substrate occlusion and prevention of its release into cytoplasm. These data are consistent with the biochemical studies, suggesting an inhibitory role for ATP in GLUT-mediated glucose transport. Conclusions/Significance In the absence of a crystal structure for any glucose transporter, this study provides mechanistic details of the conformational changes in GLUT4 induced by substrate and its regulator.
Collapse
Affiliation(s)
- Suma Mohan
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Aswathy Sheena
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - Ninu Poulose
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | | |
Collapse
|
46
|
Shaikh S, Wen PC, Enkavi G, Huang Z, Tajkhorshid E. Capturing Functional Motions of Membrane Channels and Transporters with Molecular Dynamics Simulation. JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE 2010; 7:2481-2500. [PMID: 23710155 PMCID: PMC3661405 DOI: 10.1166/jctn.2010.1636] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Conformational changes of proteins are involved in all aspects of protein function in biology. Almost all classes of proteins respond to changes in their environment, ligand binding, and interaction with other proteins and regulatory agents through undergoing conformational changes of various degrees and magnitudes. Membrane channels and transporters are the major classes of proteins that are responsible for mediating efficient and selective transport of materials across the cellular membrane. Similar to other proteins, they take advantage of conformational changes to make transitions between various functional states. In channels, large-scale conformational changes are mostly involved in the process of "gating", i.e., opening and closing of the pore of the channel protein in response to various signals. In transporters, conformational changes constitute various steps of the conduction process, and, thus, are more closely integrated in the transport process. Owing to significant progress in developing highly efficient parallel algorithms in molecular dynamics simulations and increased computational resources, and combined with the availability of high-resolution, atomic structures of membrane proteins, we are in an unprecedented position to use computer simulation and modeling methodologies to investigate the mechanism of function of membrane channels and transporters. While the entire transport cycle is still out of reach of current methodologies, many steps involved in the function of transport proteins have been characterized with molecular dynamics simulations. Here, we present several examples of such studies from our laboratory, in which functionally relevant conformational changes of membrane channels and transporters have been characterized using extended simulations.
Collapse
Affiliation(s)
- Saher Shaikh
- Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Po-Chao Wen
- Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Giray Enkavi
- Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Zhijian Huang
- Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Emad Tajkhorshid
- Department of Biochemistry, Beckman Institute, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| |
Collapse
|
47
|
Abstract
Membrane proteins play a key role in energy conversion, transport, signal recognition, transduction, and other fundamental biological processes. Despite considerable progress in experimental techniques, the determination of structure and dynamics of membrane proteins still represents a great challenge. Computer simulation methods are becoming an increasingly important tool not only in the interpretation of experiments but also in the prediction of membrane protein dynamics. In the present review, we give a brief introduction to molecular modeling techniques currently used to explore protein dynamics on time scales ranging from femtoseconds to microseconds. We then describe a few recent example applications of these techniques to membrane proteins. In conclusion, we also discuss some of the newest developments in simulation methodology that have the potential to further extend the time scale accessible to explore (membrane) protein dynamics.
Collapse
|
48
|
Forrest LR, Krämer R, Ziegler C. The structural basis of secondary active transport mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:167-88. [PMID: 21029721 DOI: 10.1016/j.bbabio.2010.10.014] [Citation(s) in RCA: 328] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 10/13/2010] [Accepted: 10/15/2010] [Indexed: 12/22/2022]
Abstract
Secondary active transporters couple the free energy of the electrochemical potential of one solute to the transmembrane movement of another. As a basic mechanistic explanation for their transport function the model of alternating access was put forward more than 40 years ago, and has been supported by numerous kinetic, biochemical and biophysical studies. According to this model, the transporter exposes its substrate binding site(s) to one side of the membrane or the other during transport catalysis, requiring a substantial conformational change of the carrier protein. In the light of recent structural data for a number of secondary transport proteins, we analyze the model of alternating access in more detail, and correlate it with specific structural and chemical properties of the transporters, such as their assignment to different functional states in the catalytic cycle of the respective transporter, the definition of substrate binding sites, the type of movement of the central part of the carrier harboring the substrate binding site, as well as the impact of symmetry on fold-specific conformational changes. Besides mediating the transmembrane movement of solutes, the mechanism of secondary carriers inherently involves a mechanistic coupling of substrate flux to the electrochemical potential of co-substrate ions or solutes. Mainly because of limitations in resolution of available transporter structures, this important aspect of secondary transport cannot yet be substantiated by structural data to the same extent as the conformational change aspect. We summarize the concepts of coupling in secondary transport and discuss them in the context of the available evidence for ion binding to specific sites and the impact of the ions on the conformational state of the carrier protein, which together lead to mechanistic models for coupling.
Collapse
Affiliation(s)
- Lucy R Forrest
- Structural Biology Department, Max Planck Institute for Biophysics, Frankfurt, Germany
| | | | | |
Collapse
|
49
|
Pendse PY, Brooks BR, Klauda JB. Probing the periplasmic-open state of lactose permease in response to sugar binding and proton translocation. J Mol Biol 2010; 404:506-21. [PMID: 20875429 DOI: 10.1016/j.jmb.2010.09.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 08/24/2010] [Accepted: 09/17/2010] [Indexed: 10/19/2022]
Abstract
Based on the crystal structure of lactose permease (LacY) open to the cytoplasm, a hybrid molecular simulation approach with self-guided Langevin dynamics is used to describe conformational changes that lead to a periplasmic-open state. This hybrid approach consists of implicit (IM) and explicit (EX) membrane simulations and requires self-guided Langevin dynamics to enhance protein motions during the IM simulations. The pore radius of the lumen increases by 3.5 Å on the periplasmic side and decreases by 2.5 Å on the cytoplasmic side (relative to the crystal structure), suggesting a lumen that is fully open to the periplasm to allow for extracellular sugar transport and closed to the cytoplasm. Based on our simulations, the mechanism that triggers this conformational change to the periplasmic-open state is the protonation of Glu269 and binding of the disaccharide. Then, helix packing is destabilized by breaking of several side chains involved in hydrogen bonding (Asn245, Ser41, Glu374, Lys42, and Gln242). For the periplasmic-open conformations obtained from our simulations, helix-helix distances agree well with experimental measurements using double electron-electron resonance, fluorescence resonance energy transfer, and varying sized cross-linkers. The periplasmic-open conformations are also in compliance with various substrate accessibility/reactivity measurements that indicate an opening of the protein lumen on the periplasmic side on sugar binding. The comparison with these measurements suggests a possible incomplete closure of the cytoplasmic half in our simulations. However, the closure is sufficient to prevent the disaccharide from transporting to the cytoplasm, which is in accordance with the well-established alternating access model. Ser53, Gln60, and Phe354 are determined to be important in sugar transport during the periplasmic-open stage of the sugar transport cycle and the sugar is found to undergo an orientational change in order to escape the protein lumen.
Collapse
Affiliation(s)
- Pushkar Y Pendse
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
50
|
Deeb O, Rosales-Hernández MC, Gómez-Castro C, Garduño-Juárez R, Correa-Basurto J. Exploration of human serum albumin binding sites by docking and molecular dynamics flexible ligandâprotein interactions. Biopolymers 2010; 93:161-70. [DOI: 10.1002/bip.21314] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|