1
|
Gao P, Chen H, Sun Y, Qian X, Sun T, Fan Y, Zhang J. ALG13-Related Epilepsy: Current Insights and Future Research Directions. Neurochem Res 2024; 50:60. [PMID: 39673593 DOI: 10.1007/s11064-024-04300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024]
Abstract
The ALG13 gene encodes a subunit of the uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) transferase enzyme, which plays a key role in the N-linked glycosylation pathway. This pathway involves the attachment of carbohydrate structures to asparagine (Asn) residues in proteins within the endoplasmic reticulum, by which N-glycosylated proteins produced participate a wide range of processes such as electrical gradients formation and neurotransmission. Mutations in the ALG13 gene have been identified as a causative factor for congenital disorders of glycosylation (CDG) and have been frequently associated with epilepsy in affected individuals. Several studies have demonstrated a strong correlation between abnormal N-glycosylation due to ALG13 deficiency and the onset of epilepsy. Despite these findings, the precise role of ALG13 in the pathogenesis of epilepsy remains unclear. This review provides a comprehensive overview of the current literature on ALG13-related disorders, with a focus on recent evidence regarding its role in epilepsy development and progression. Future research directions are also proposed to further elucidate the molecular mechanisms underlying this association.
Collapse
Affiliation(s)
- Peng Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China
- Ningxia Key Laboratory of Cerebrocranial Diseases, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China
| | - Haoran Chen
- Ningxia Key Laboratory of Cerebrocranial Diseases, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China
| | - Yangyang Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China
| | - Xin Qian
- Ningxia Key Laboratory of Cerebrocranial Diseases, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China
- Ningxia Key Laboratory of Cerebrocranial Diseases, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China
| | - Yuhan Fan
- General Hospital of Ningxia Medical University, No. 804 of Shengli Street, Yinchuan, Ningxia Province, 750004, China
| | - Jing Zhang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China.
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Province, 750004, China.
| |
Collapse
|
2
|
Bretagne D, Pâris A, Matthews D, Fougère L, Burrini N, Wagner GK, Daniellou R, Lafite P. "Mix and match" auto-assembly of glycosyltransferase domains delivers biocatalysts with improved substrate promiscuity. J Biol Chem 2024; 300:105747. [PMID: 38354783 PMCID: PMC10937113 DOI: 10.1016/j.jbc.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Glycosyltransferases (GT) catalyze the glycosylation of bioactive natural products, including peptides and proteins, flavonoids, and sterols, and have been extensively used as biocatalysts to generate glycosides. However, the often narrow substrate specificity of wild-type GTs requires engineering strategies to expand it. The GT-B structural family is constituted by GTs that share a highly conserved tertiary structure in which the sugar donor and acceptor substrates bind in dedicated domains. Here, we have used this selective binding feature to design an engineering process to generate chimeric glycosyltransferases that combine auto-assembled domains from two different GT-B enzymes. Our approach enabled the generation of a stable dimer with broader substrate promiscuity than the parent enzymes that were related to relaxed interactions between domains in the dimeric GT-B. Our findings provide a basis for the development of a novel class of heterodimeric GTs with improved substrate promiscuity for applications in biotechnology and natural product synthesis.
Collapse
Affiliation(s)
- Damien Bretagne
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS-Université d'Orléans, Université d'Orléans, Orléans Cedex 2, France; School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, United Kingdom
| | - Arnaud Pâris
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS-Université d'Orléans, Université d'Orléans, Orléans Cedex 2, France
| | - David Matthews
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, United Kingdom
| | - Laëtitia Fougère
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS-Université d'Orléans, Université d'Orléans, Orléans Cedex 2, France
| | - Nastassja Burrini
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS-Université d'Orléans, Université d'Orléans, Orléans Cedex 2, France
| | - Gerd K Wagner
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, United Kingdom
| | - Richard Daniellou
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS-Université d'Orléans, Université d'Orléans, Orléans Cedex 2, France; Chaire de Cosmétologie, AgroParisTech, Orléans, France; Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| | - Pierre Lafite
- Institut de Chimie Organique et Analytique (ICOA), UMR 7311 CNRS-Université d'Orléans, Université d'Orléans, Orléans Cedex 2, France.
| |
Collapse
|
3
|
Mei J, Li Z, Zhou S, Chen XL, Wilson RA, Liu W. Effector secretion and stability in the maize anthracnose pathogen Colletotrichum graminicola requires N-linked protein glycosylation and the ER chaperone pathway. THE NEW PHYTOLOGIST 2023; 240:1449-1466. [PMID: 37598305 DOI: 10.1111/nph.19213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/01/2023] [Indexed: 08/21/2023]
Abstract
N-linked protein glycosylation is a conserved and essential modification mediating protein processing and quality control in the endoplasmic reticulum (ER), but how this contributes to the infection cycle of phytopathogenic fungi is largely unknown. In this study, we discovered that inhibition of protein N-glycosylation severely affected vegetative growth, hyphal tip development, conidial germination, appressorium formation, and, ultimately, the ability of the maize (Zea mays) anthracnose pathogen Colletotrichum graminicola to infect its host. Quantitative proteomics analysis showed that N-glycosylation can coordinate protein O-glycosylation, glycosylphosphatidylinositol anchor modification, and endoplasmic reticulum quality control (ERQC) by directly targeting the proteins from the corresponding pathway in the ER. We performed a functional study of the N-glycosylation pathway-related protein CgALG3 and of the ERQC pathway-related protein CgCNX1, which demonstrated that N-glycosylation of ER chaperone proteins is essential for effector stability, secretion, and pathogenicity of C. graminicola. Our study provides concrete evidence for the regulation of effector protein stability and secretion by N-glycosylation.
Collapse
Affiliation(s)
- Jie Mei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Richard A Wilson
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
4
|
Mora-Montes HM, García-Gutiérrez K, García-Carnero LC, Lozoya-Pérez NE, Ramirez-Prado JH. The Search for Cryptic L-Rhamnosyltransferases on the Sporothrix schenckii Genome. J Fungi (Basel) 2022; 8:jof8050529. [PMID: 35628784 PMCID: PMC9145935 DOI: 10.3390/jof8050529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 01/08/2023] Open
Abstract
The fungal cell wall is an attractive structure to look for new antifungal drug targets and for understanding the host-fungus interaction. Sporothrix schenckii is one of the main causative agents of both human and animal sporotrichosis and currently is the species most studied of the Sporothrix genus. The cell wall of this organism has been previously analyzed, and rhamnoconjugates are signature molecules found on the surface of both mycelia and yeast-like cells. Similar to other reactions where sugars are covalently linked to other sugars, lipids, or proteins, the rhamnosylation process in this organism is expected to involve glycosyltransferases with the ability to transfer rhamnose from a sugar donor to the acceptor molecule, i.e., rhamnosyltransferases. However, no obvious rhamnosyltransferase has thus far been identified within the S. schenckii proteome or genome. Here, using a Hidden Markov Model profile strategy, we found within the S. schenckii genome five putative genes encoding for rhamnosyltransferases. Expression analyses indicated that only two of them, named RHT1 and RHT2, were significantly expressed in yeast-like cells and during interaction with the host. These two genes were heterologously expressed in Escherichia coli, and the purified recombinant proteins showed rhamnosyltransferase activity, dependent on the presence of UDP-rhamnose as a sugar donor. To the best of our knowledge, this is the first report about rhamnosyltransferases in S. schenckii.
Collapse
Affiliation(s)
- Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, Guanajuato 360501, Mexico; (H.M.M.-M.); (K.G.-G.); (L.C.G.-C.); (N.E.L.-P.)
| | - Karina García-Gutiérrez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, Guanajuato 360501, Mexico; (H.M.M.-M.); (K.G.-G.); (L.C.G.-C.); (N.E.L.-P.)
| | - Laura C. García-Carnero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, Guanajuato 360501, Mexico; (H.M.M.-M.); (K.G.-G.); (L.C.G.-C.); (N.E.L.-P.)
| | - Nancy E. Lozoya-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato, Guanajuato 360501, Mexico; (H.M.M.-M.); (K.G.-G.); (L.C.G.-C.); (N.E.L.-P.)
| | - Jorge H. Ramirez-Prado
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatan 97205, Mexico
- Correspondence:
| |
Collapse
|
5
|
Meyer BH, Adam PS, Wagstaff BA, Kolyfetis GE, Probst AJ, Albers SV, Dorfmueller HC. Agl24 is an ancient archaeal homolog of the eukaryotic N-glycan chitobiose synthesis enzymes. eLife 2022; 11:e67448. [PMID: 35394422 PMCID: PMC8993221 DOI: 10.7554/elife.67448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/13/2022] [Indexed: 11/13/2022] Open
Abstract
Protein N-glycosylation is a post-translational modification found in organisms of all domains of life. The crenarchaeal N-glycosylation begins with the synthesis of a lipid-linked chitobiose core structure, identical to that in Eukaryotes, although the enzyme catalyzing this reaction remains unknown. Here, we report the identification of a thermostable archaeal β-1,4-N-acetylglucosaminyltransferase, named archaeal glycosylation enzyme 24 (Agl24), responsible for the synthesis of the N-glycan chitobiose core. Biochemical characterization confirmed its function as an inverting β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol glycosyltransferase. Substitution of a conserved histidine residue, found also in the eukaryotic and bacterial homologs, demonstrated its functional importance for Agl24. Furthermore, bioinformatics and structural modeling revealed similarities of Agl24 to the eukaryotic Alg14/13 and a distant relation to the bacterial MurG, which are catalyzing the same or a similar reaction, respectively. Phylogenetic analysis of Alg14/13 homologs indicates that they are ancient in Eukaryotes, either as a lateral transfer or inherited through eukaryogenesis.
Collapse
Affiliation(s)
- Benjamin H Meyer
- Environmental Microbiology and Biotechnology (EMB), Aquatic Microbial Ecology, University of Duisburg-EssenEssenGermany
- Division of Molecular Microbiology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
- Molecular Biology of Archaea, Faculty of Biology, University of FreiburgFreiburgGermany
| | - Panagiotis S Adam
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Faculty of Chemistry University Duisburg-EssenEssenGermany
| | - Ben A Wagstaff
- Division of Molecular Microbiology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - George E Kolyfetis
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of AthensAthensGreece
| | - Alexander J Probst
- Centre of Water and Environmental Research (ZWU), University of Duisburg-EssenEssenGermany
| | - Sonja V Albers
- Molecular Biology of Archaea, Faculty of Biology, University of FreiburgFreiburgGermany
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
6
|
Structural Analysis of the Effect of Asn107Ser Mutation on Alg13 Activity and Alg13-Alg14 Complex Formation and Expanding the Phenotypic Variability of ALG13-CDG. Biomolecules 2022; 12:biom12030398. [PMID: 35327592 PMCID: PMC8945535 DOI: 10.3390/biom12030398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
Congenital Disorders of Glycosylation (CDG) are multisystemic metabolic disorders showing highly heterogeneous clinical presentation, molecular etiology, and laboratory results. Here, we present different transferrin isoform patterns (obtained by isoelectric focusing) from three female patients harboring the ALG13 c.320A>G mutation. Contrary to other known variants of type I CDGs, where transferrin isoelectric focusing revealed notably increased asialo- and disialotransferrin fractions, a normal glycosylation pattern was observed in the probands. To verify this data and give novel insight into this variant, we modeled the human Alg13 protein and analyzed the dynamics of the apo structure and the complex with the UDP-GlcNAc substrate. We also modeled the Alg13-Alg14 heterodimer and ran multiple simulations of the complex in the presence of the substrate. Finally, we proposed a plausible complex formation mechanism.
Collapse
|
7
|
Ng BG, Eklund EA, Shiryaev SA, Dong YY, Abbott MA, Asteggiano C, Bamshad MJ, Barr E, Bernstein JA, Chelakkadan S, Christodoulou J, Chung WK, Ciliberto MA, Cousin J, Gardiner F, Ghosh S, Graf WD, Grunewald S, Hammond K, Hauser NS, Hoganson GE, Houck KM, Kohler JN, Morava E, Larson AA, Liu P, Madathil S, McCormack C, Meeks NJ, Miller R, Monaghan KG, Nickerson DA, Palculict TB, Papazoglu GM, Pletcher BA, Scheffer IE, Schenone AB, Schnur RE, Si Y, Rowe LJ, Serrano Russi AH, Russo RS, Thabet F, Tuite A, Mercedes Villanueva M, Wang RY, Webster RI, Wilson D, Zalan A, Undiagnosed Diseases Network, University of Washington Center for Mendelian Genomics (UW-CMG), Wolfe LA, Rosenfeld JA, Rhodes L, Freeze HH. Predominant and novel de novo variants in 29 individuals with ALG13 deficiency: Clinical description, biomarker status, biochemical analysis, and treatment suggestions. J Inherit Metab Dis 2020; 43:1333-1348. [PMID: 32681751 PMCID: PMC7722193 DOI: 10.1002/jimd.12290] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Asparagine-linked glycosylation 13 homolog (ALG13) encodes a nonredundant, highly conserved, X-linked uridine diphosphate (UDP)-N-acetylglucosaminyltransferase required for the synthesis of lipid linked oligosaccharide precursor and proper N-linked glycosylation. De novo variants in ALG13 underlie a form of early infantile epileptic encephalopathy known as EIEE36, but given its essential role in glycosylation, it is also considered a congenital disorder of glycosylation (CDG), ALG13-CDG. Twenty-four previously reported ALG13-CDG cases had de novo variants, but surprisingly, unlike most forms of CDG, ALG13-CDG did not show the anticipated glycosylation defects, typically detected by altered transferrin glycosylation. Structural homology modeling of two recurrent de novo variants, p.A81T and p.N107S, suggests both are likely to impact the function of ALG13. Using a corresponding ALG13-deficient yeast strain, we show that expressing yeast ALG13 with either of the highly conserved hotspot variants rescues the observed growth defect, but not its glycosylation abnormality. We present molecular and clinical data on 29 previously unreported individuals with de novo variants in ALG13. This more than doubles the number of known cases. A key finding is that a vast majority of the individuals presents with West syndrome, a feature shared with other CDG types. Among these, the initial epileptic spasms best responded to adrenocorticotropic hormone or prednisolone, while clobazam and felbamate showed promise for continued epilepsy treatment. A ketogenic diet seems to play an important role in the treatment of these individuals.
Collapse
Affiliation(s)
- Bobby G. Ng
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Erik A. Eklund
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
- Department of Clinical Sciences, Lund, Pediatrics, Lund University, Lund, Sweden
| | - Sergey A. Shiryaev
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Yin Y. Dong
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mary-Alice Abbott
- Department of Pediatrics, Baystate Children’s Hospital, University of Massachusetts Medical School - Baystate, Springfield, Massachusetts
| | - Carla Asteggiano
- CEMECO—CONICET, Children Hospital, School of Medicine, National University of Cordoba, Cordoba, Argentina
- Chair of Pharmacology, Catholic University of Cordoba, Cordoba, Argentina
| | - Michael J. Bamshad
- Department of Pediatrics, University of Washington, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Eileen Barr
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - Jonathan A. Bernstein
- Stanford University School of Medicine, Stanford, California
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, California
| | | | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University, New York, New York
- Department of Medicine, Columbia University, New York, New York
| | - Michael A. Ciliberto
- Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Janice Cousin
- Section of Human Biochemical Genetics, National Human Genome Research Institute, Bethesda, Maryland
| | - Fiona Gardiner
- University of Melbourne, Austin Health, Melbourne, Australia
| | - Suman Ghosh
- Department of Pediatrics Division of Pediatric Neurology, University of Florida College of Medicine, Gainesville, Florida
| | - William D. Graf
- Division of Pediatric Neurology, Department of Pediatrics, Connecticut Children’s; University of Connecticut, Farmington, Connecticut
| | - Stephanie Grunewald
- Metabolic Medicine Department, Great Ormond Street Hospital, Institute of Child Health University College London, NIHR Biomedical Research Center, London, UK
| | - Katherine Hammond
- Division of Pediatric Neurology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Natalie S. Hauser
- Inova Translational Medicine Institute Division of Medical Genomics Inova Fairfax Hospital Falls Church, Virginia
| | - George E. Hoganson
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Kimberly M. Houck
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Jennefer N. Kohler
- Stanford University School of Medicine, Stanford, California
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Austin A. Larson
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Baylor Genetics Laboratories, Houston, Texas
| | - Sujana Madathil
- Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Colleen McCormack
- Stanford University School of Medicine, Stanford, California
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Naomi J.L. Meeks
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Rebecca Miller
- Inova Translational Medicine Institute Division of Medical Genomics Inova Fairfax Hospital Falls Church, Virginia
| | | | | | | | - Gabriela Magali Papazoglu
- CEMECO—CONICET, Children Hospital, School of Medicine, National University of Cordoba, Cordoba, Argentina
| | - Beth A. Pletcher
- Department of Pediatrics, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Ingrid E. Scheffer
- University of Melbourne, Austin Health, Melbourne, Australia
- University of Melbourne, Royal Children’s Hospital, Florey and Murdoch Institutes, Melbourne, Australia
| | | | | | - Yue Si
- GeneDx, Inc. Laboratory, Gaithersburg, Maryland
| | - Leah J. Rowe
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Alvaro H. Serrano Russi
- Division of Medical Genetics Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | - Allysa Tuite
- Department of Pediatrics, Rutgers New Jersey Medical School, Newark, New Jersey
| | | | - Raymond Y. Wang
- Division of Metabolic Disorders, Children’s Hospital of Orange County, Orange, California
- Department of Pediatrics, University of California-Irvine, Orange, California
| | - Richard I. Webster
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children’s Hospital, Westmead, Australia
- Kids Neuroscience Centre, The Children’s Hospital, Westmead, Australia
| | - Dorcas Wilson
- Netcare Sunninghill Hospital, Sandton, South Africa
- Nelson Mandela Children’s Hospital, Johannesburg, South Africa
| | - Alice Zalan
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | | | - Lynne A. Wolfe
- Undiagnosed Diseases Program, Common Fund, National Institutes of Health, Bethesda, Maryland
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Baylor Genetics Laboratories, Houston, Texas
| | | | - Hudson H. Freeze
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| |
Collapse
|
8
|
Deng J, Hou G, Fang Z, Liu J, Lv XD. Distinct expression and prognostic value of OTU domain-containing proteins in non-small-cell lung cancer. Oncol Lett 2019; 18:5417-5427. [PMID: 31612050 PMCID: PMC6781715 DOI: 10.3892/ol.2019.10883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin-proteasome pathway is an important protein degradation regulatory system in cells. This pathway is also a reversible process that is strictly regulated, and the regulation of deubiquitinating enzymes (DUBs) represents an important facet of the process. Ovarian tumor-associated proteases domain-containing proteins (OTUDs), as a subfamily within the DUB family, serve an important role in regulatory mechanisms of several biological processes, through the regulation of gene transcription, cell cycle, immune response, inflammation and tumor growth processes, and may be important in the diagnosis of various diseases and constitute novel drug targets. However, the role of OTUDs in non-small-cell lung cancer (NSCLC) has not been fully elucidated. In the present study, the Oncomine database was used to examine gene expression in NSCLC, and the prognostic value of each gene was analyzed by Kaplan-Meier analysis. The results indicated that high mRNA expression levels of OTUD1, OTUD3, OTUD4 and putative bifunctional UDP-N-acetylglucosamine transferase and deubiquitinase ALG13 were associated with improved prognosis in all NSCLC and adenocarcinoma, but not in squamous cell carcinoma. By contrast, high expression levels of OTUD2 mRNA were associated with poorer overall survival in patients with NSCLC. These data suggested that these OTUD isozymes may be a potential drug target for NSCLC.
Collapse
Affiliation(s)
- Jingjing Deng
- Department of Respiration, Key Medical Discipline of Jiaxing, Jiaxing Lung Cancer Innovation Team, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Gouxin Hou
- Department of Oncology, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Zhixian Fang
- Department of Respiration, Key Medical Discipline of Jiaxing, Jiaxing Lung Cancer Innovation Team, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Jialiang Liu
- Department of Respiration, Key Medical Discipline of Jiaxing, Jiaxing Lung Cancer Innovation Team, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiao-Dong Lv
- Department of Respiration, Key Medical Discipline of Jiaxing, Jiaxing Lung Cancer Innovation Team, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
9
|
Xu XX, Li ST, Wang N, Kitajima T, Yoko-O T, Fujita M, Nakanishi H, Gao XD. Structural and functional analysis of Alg1 beta-1,4 mannosyltransferase reveals the physiological importance of its membrane topology. Glycobiology 2019; 28:741-753. [PMID: 29939232 DOI: 10.1093/glycob/cwy060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/24/2018] [Indexed: 12/20/2022] Open
Abstract
In eukaryotes, the biosynthesis of a highly conserved dolichol-linked oligosaccharide (DLO) precursor Glc3Man9GlcNAc2-pyrophosphate-dolichol (PP-Dol) begins on the cytoplasmic face of the endoplasmic reticulum (ER) and ends within the lumen. Two functionally distinguished heteromeric glycosyltransferase (GTase) complexes are responsible for the cytosolic DLO assembly. Alg1, a β-1, 4 mannosyltransferase (MTase) physically interacts with Alg2 and Alg11 proteins to form the multienzyme complex which catalyzes the addition of all five mannose to generate the Man5GlcNAc2-PP-Dol intermediate. Despite the fact that Alg1 plays a central role in the formation of the multi-MTase has been confirmed, the topological information of Alg1 including the molecular mechanism of membrane association are still poorly understood. Using a combination of bioinformatics and biological approaches, we have undertaken a structural and functional study on Alg1 protein, in which the enzymatic activities of Alg1 and its variants were monitored by a complementation assay using the GALpr-ALG1 yeast strain, and further confirmed by a liquid chromatography-mass spectrometry-based in vitro quantitative assay. Computational and experimental evidence confirmed Alg1 shares structure similarity with Alg13/14 complex, which has been defined as a membrane-associated GT-B GTase. Particularly, we provide clear evidence that the N-terminal transmembrane domain including the following positively charged amino acids and an N-terminal amphiphilic-like α helix domain exposed on the protein surface strictly coordinate the Alg1 orientation on the ER membrane. This work provides detailed membrane topology of Alg1 and further reveals its biological importance at the spatial aspect in coordination of cytosolic DLO biosynthesis.
Collapse
Affiliation(s)
- Xin-Xin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, China
| | - Sheng-Tao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, China
| | - Toshihiko Kitajima
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, China
| | - Takehiko Yoko-O
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 6, Higashi, Tsukuba, Japan
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, China
| |
Collapse
|
10
|
Ng BG, Freeze HH. Perspectives on Glycosylation and Its Congenital Disorders. Trends Genet 2018; 34:466-476. [PMID: 29606283 DOI: 10.1016/j.tig.2018.03.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/12/2022]
Abstract
Congenital disorders of glycosylation (CDG) are a rapidly expanding group of metabolic disorders that result from abnormal protein or lipid glycosylation. They are often difficult to clinically diagnose because they broadly affect many organs and functions and lack clinical uniformity. However, recent technological advances in next-generation sequencing have revealed a treasure trove of new genetic disorders, expanded the knowledge of known disorders, and showed a critical role in infectious diseases. More comprehensive genetic tools specifically tailored for mammalian cell-based models have revealed a critical role for glycosylation in pathogen-host interactions, while also identifying new CDG susceptibility genes. We highlight recent advancements that have resulted in a better understanding of human glycosylation disorders, perspectives for potential future therapies, and mysteries for which we continue to seek new insights and solutions.
Collapse
Affiliation(s)
- Bobby G Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Bissar-Tadmouri N, Donahue WL, Al-Gazali L, Nelson SF, Bayrak-Toydemir P, Kantarci S. X chromosome exome sequencing reveals a novel ALG13 mutation in a nonsyndromic intellectual disability family with multiple affected male siblings. Am J Med Genet A 2015; 164A:164-9. [PMID: 24501762 DOI: 10.1002/ajmg.a.36233] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
X-linked intellectual disability (XLID) is a heterogeneous condition associated with mutations in >100 genes, accounting for over 10% of all cases of intellectual impairment. The majority of XLID cases show nonsyndromic forms (NSXLID), in which intellectual disability is the sole clinically consistent manifestation. Here we performed X chromosome exome (X-exome) sequencing to identify the causative mutation in an NSXLID family with four affected male siblings and five unaffected female siblings. The X-exome sequencing at 88× coverage in one affected male sibling revealed a novel missense mutation (p.Tyr1074Cys) in the asparagine-linked glycosylation 13 homolog (ALG13) gene. Segregation analysis by Sanger sequencing showed that the all affected siblings were hemizygous and the mother was heterozygous for the mutation. Recently, a de novo missense mutation in ALG13 has been reported in a patient with X-linked congenital disorders of glycosylation type I. Our study reports the first case of NSXLID caused by a mutation in ALG13 involved in protein N-glycosylation.
Collapse
|
12
|
Jaffé SRP, Strutton B, Levarski Z, Pandhal J, Wright PC. Escherichia coli as a glycoprotein production host: recent developments and challenges. Curr Opin Biotechnol 2014; 30:205-10. [PMID: 25156401 DOI: 10.1016/j.copbio.2014.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 11/19/2022]
Abstract
Chinese Hamster Ovary cells are the most popular host expression system for the large-scale production of human therapeutic glycoproteins, but, the race to engineer Escherichia coli to perform glycosylation is gathering pace. The successful functional transfer of an N-glycosylation pathway from Campylobacter jejuni to Escherichia coli in 2002 can be considered as the crucial first engineering step. Here, we discuss the recent advancements in the field of N-glycosylation of recombinant therapeutic proteins in E. coli cells, from the manipulation of glycan composition, to the improvement in glycosylation efficiency, along with the challenges that remain before E. coli can be available as an industry host cell for economically viable glycoprotein production.
Collapse
Affiliation(s)
- Stephen R P Jaffé
- ChELSI Institute, Department of Chemical and Biological Engineering, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Benjamin Strutton
- ChELSI Institute, Department of Chemical and Biological Engineering, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Zdenko Levarski
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Molecular Biology, Mlynská dolina, 842 15 Bratislava 4, Slovak Republic
| | - Jagroop Pandhal
- ChELSI Institute, Department of Chemical and Biological Engineering, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Phillip C Wright
- ChELSI Institute, Department of Chemical and Biological Engineering, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK.
| |
Collapse
|
13
|
Albesa-Jové D, Giganti D, Jackson M, Alzari PM, Guerin ME. Structure-function relationships of membrane-associated GT-B glycosyltransferases. Glycobiology 2013; 24:108-24. [PMID: 24253765 DOI: 10.1093/glycob/cwt101] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Membrane-associated GT-B glycosyltransferases (GTs) comprise a large family of enzymes that catalyze the transfer of a sugar moiety from nucleotide-sugar donors to a wide range of membrane-associated acceptor substrates, mostly in the form of lipids and proteins. As a consequence, they generate a significant and diverse amount of glycoconjugates in biological membranes, which are particularly important in cell-cell, cell-matrix and host-pathogen recognition events. Membrane-associated GT-B enzymes display two "Rossmann-fold" domains separated by a deep cleft that includes the catalytic center. They associate permanently or temporarily to the phospholipid bilayer by a combination of hydrophobic and electrostatic interactions. They have the remarkable property to access both hydrophobic and hydrophilic substrates that reside within chemically distinct environments catalyzing their enzymatic transformations in an efficient manner. Here, we discuss the considerable progress that has been made in recent years in understanding the molecular mechanism that governs substrate and membrane recognition, and the impact of the conformational transitions undergone by these GTs during the catalytic cycle.
Collapse
Affiliation(s)
- David Albesa-Jové
- Unidad de Biofísica, Centro Mixto Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
| | | | | | | | | |
Collapse
|
14
|
Huang H, Vogel HJ. Purification and stable isotope labeling of the calcium- and integrin-binding protein 1 for structural and functional NMR studies. Methods Mol Biol 2013; 963:99-113. [PMID: 23296607 DOI: 10.1007/978-1-62703-230-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The Calcium- and Integrin-Binding protein 1 (CIB1) has been identified as an important regulatory Ca(2+)-binding protein that is involved in various cellular functions. Nuclear Magnetic Resonance (NMR) spectroscopy provides a powerful approach to study the structure, dynamics, and interactions of CIB1 and related proteins. Multidimensional NMR spectroscopy combined with various selective isotope labeling strategies has proven to be successful in the structure determination of CIB1. Moreover, the same approach allowed the detection of conformational changes when the protein binds different metal ions, and it facilitated the study of the interaction of CIB1 with the cytoplasmic domain of the human integrin αIIb subunit. In this protocol, we describe the purification and isotope labeling strategies for productive NMR studies of CIB1. The same isotope labeling strategies can be implemented to study numerous related regulatory calcium-binding proteins.
Collapse
Affiliation(s)
- Hao Huang
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Canada
| | | |
Collapse
|
15
|
Aebi M. N-linked protein glycosylation in the ER. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2430-7. [PMID: 23583305 DOI: 10.1016/j.bbamcr.2013.04.001] [Citation(s) in RCA: 514] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/25/2013] [Accepted: 04/01/2013] [Indexed: 01/18/2023]
Abstract
N-linked protein glycosylation in the endoplasmic reticulum (ER) is a conserved two phase process in eukaryotic cells. It involves the assembly of an oligosaccharide on a lipid carrier, dolichylpyrophosphate and the transfer of the oligosaccharide to selected asparagine residues of polypeptides that have entered the lumen of the ER. The assembly of the oligosaccharide (LLO) takes place at the ER membrane and requires the activity of several specific glycosyltransferases. The biosynthesis of the LLO initiates at the cytoplasmic side of the ER membrane and terminates in the lumen where oligosaccharyltransferase (OST) selects N-X-S/T sequons of polypeptide and generates the N-glycosidic linkage between the side chain amide of asparagine and the oligosaccharide. The N-glycosylation pathway in the ER modifies a multitude of proteins at one or more asparagine residues with a unique carbohydrate structure that is used as a signalling molecule in their folding pathway. In a later stage of glycoprotein processing, the same systemic modification is used in the Golgi compartment, but in this process, remodelling of the N-linked glycans in a protein-, cell-type and species specific manner generates the high structural diversity of N-linked glycans observed in eukaryotic organisms. This article summarizes the current knowledge of the N-glycosylation pathway in the ER that results in the covalent attachment of an oligosaccharide to asparagine residues of polypeptide chains and focuses on the model organism Saccharomyces cerevisiae. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
Affiliation(s)
- Markus Aebi
- Department of Biology, Institute of Microbiology, Zurich, Switzerland.
| |
Collapse
|
16
|
Chan PHW, Weissbach S, Okon M, Withers SG, McIntosh LP. Nuclear magnetic resonance spectral assignments of α-1,4-galactosyltransferase LgtC from Neisseria meningitidis: substrate binding and multiple conformational states. Biochemistry 2012; 51:8278-92. [PMID: 22992161 DOI: 10.1021/bi3010279] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lipopolysaccharide α-1,4-galactosyltransferase C (LgtC) from Neisseria meningitidis is responsible for a key step in lipooligosaccharide biosynthesis involving the transfer of α-galactose from the sugar donor UDP-galactose to a terminal acceptor lactose. Crystal structures of the complexes of LgtC with Mn(2+) and the sugar donor analogue UDP-2-deoxy-2-fluorogalactose in the absence and presence of the sugar acceptor analogue 4'-deoxylactose provided key insights into the galactosyl-transfer mechanism. Combined with kinetic analyses, the enzymatic mechanism of LgtC appears to involve a "front-side attack" S(N)i-like mechanism with a short-lived oxocarbenium-phosphate ion pair intermediate. As a prerequisite for investigating the required roles of structural dynamics in this catalytic mechanism by nuclear magnetic resonance techniques, the transverse relaxation-optimized amide (15)N heteronuclear single-quantum correlation and methyl (13)C heteronuclear multiple-quantum correlation spectra of LgtC in its apo, substrate analogue, and product complexes were partially assigned. This was accomplished using a suite of complementary spectroscopic approaches, combined with selective isotopic labeling and mutagenesis of all the isoleucine residues in the protein. Only ~70% of the amide signals could be detected, whereas more than the expected number of methyl signals were observed, indicating that LgtC adopts multiple interconverting conformational states. Chemical shift perturbation mapping provided insights into substrate and product binding, including the demonstration that the sugar donor analogue (UDP-2FGal) associates with LgtC only in the presence of a metal ion (Mg(2+)). These spectral assignments provide the foundation for detailed studies of the conformational dynamics of LgtC.
Collapse
Affiliation(s)
- Patrick H W Chan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
17
|
Timal S, Hoischen A, Lehle L, Adamowicz M, Huijben K, Sykut-Cegielska J, Paprocka J, Jamroz E, van Spronsen FJ, Körner C, Gilissen C, Rodenburg RJ, Eidhof I, Van den Heuvel L, Thiel C, Wevers RA, Morava E, Veltman J, Lefeber DJ. Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing. Hum Mol Genet 2012; 21:4151-61. [PMID: 22492991 DOI: 10.1093/hmg/dds123] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Congenital disorders of glycosylation type I (CDG-I) form a growing group of recessive neurometabolic diseases. Identification of disease genes is compromised by the enormous heterogeneity in clinical symptoms and the large number of potential genes involved. Until now, gene identification included the sequential application of biochemical methods in blood samples and fibroblasts. In genetically unsolved cases, homozygosity mapping has been applied in consanguineous families. Altogether, this time-consuming diagnostic strategy led to the identification of defects in 17 different CDG-I genes. Here, we applied whole-exome sequencing (WES) in combination with the knowledge of the protein N-glycosylation pathway for gene identification in our remaining group of six unsolved CDG-I patients from unrelated non-consanguineous families. Exome variants were prioritized based on a list of 76 potential CDG-I candidate genes, leading to the rapid identification of one known and two novel CDG-I gene defects. These included the first X-linked CDG-I due to a de novo mutation in ALG13, and compound heterozygous mutations in DPAGT1, together the first two steps in dolichol-PP-glycan assembly, and mutations in PGM1 in two cases, involved in nucleotide sugar biosynthesis. The pathogenicity of the mutations was confirmed by showing the deficient activity of the corresponding enzymes in patient fibroblasts. Combined with these results, the gene defect has been identified in 98% of our CDG-I patients. Our results implicate the potential of WES to unravel disease genes in the CDG-I in newly diagnosed singleton families.
Collapse
Affiliation(s)
- Sharita Timal
- Department of Neurology, Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat Chem Biol 2012; 8:434-6. [PMID: 22446837 DOI: 10.1038/nchembio.921] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/24/2011] [Indexed: 12/28/2022]
Abstract
We performed bottom-up engineering of a synthetic pathway in Escherichia coli for the production of eukaryotic trimannosyl chitobiose glycans and the transfer of these glycans to specific asparagine residues in target proteins. The glycan biosynthesis was enabled by four eukaryotic glycosyltransferases, including the yeast uridine diphosphate-N-acetylglucosamine transferases Alg13 and Alg14 and the mannosyltransferases Alg1 and Alg2. By including the bacterial oligosaccharyltransferase PglB from Campylobacter jejuni, we successfully transferred glycans to eukaryotic proteins.
Collapse
|
19
|
Lu J, Takahashi T, Ohoka A, Nakajima KI, Hashimoto R, Miura N, Tachikawa H, Gao XD. Alg14 organizes the formation of a multiglycosyltransferase complex involved in initiation of lipid-linked oligosaccharide biosynthesis. Glycobiology 2011; 22:504-16. [PMID: 22061998 DOI: 10.1093/glycob/cwr162] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein N-glycosylation begins with the assembly of a lipid-linked oligosaccharide (LLO) on the endoplasmic reticulum (ER) membrane. The first two steps of LLO biosynthesis are catalyzed by a functional multienzyme complex comprised of the Alg7 GlcNAc phosphotransferase and the heterodimeric Alg13/Alg14 UDP-GlcNAc transferase on the cytosolic face of the ER. In the Alg13/14 glycosyltransferase, Alg14 recruits cytosolic Alg13 to the ER membrane through interaction between their C-termini. Bioinformatic analysis revealed that eukaryotic Alg14 contains an evolved N-terminal region that is missing in bacterial orthologs. Here, we show that this N-terminal region of Saccharomyces cerevisiae Alg14 localize its green fluorescent protein fusion to the ER membrane. Deletion of this region causes defective growth at 38.5°C that can be partially complemented by overexpression of Alg7. Coimmunoprecipitation demonstrated that the N-terminal region of Alg14 is required for direct interaction with Alg7. Our data also show that Alg14 lacking the N-terminal region remains on the ER membrane through a nonperipheral association, suggesting the existence of another membrane-binding site. Mutational studies guided by the 3D structure of Alg14 identified a conserved α-helix involved in the second membrane association site that contributes to an integral interaction and protein stability. We propose a model in which the N- and C-termini of Alg14 coordinate recruitment of catalytic Alg7 and Alg13 to the ER membrane for initiating LLO biosynthesis.
Collapse
Affiliation(s)
- Jishun Lu
- Graduate School of Life Science, Hokkaido University, N8, W5, Kita-Ku, Sapporo 060-0808, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Asparagine-linked glycosylation involves the sequential assembly of an oligosaccharide onto a polyisoprenyl donor, followed by the en bloc transfer of the glycan to particular asparagine residues within acceptor proteins. These N-linked glycans play a critical role in a wide variety of biological processes, such as protein folding, cellular targeting and motility, and the immune response. In the past decade, research in the field of N-linked glycosylation has achieved major advances, including the discovery of new carbohydrate modifications, the biochemical characterization of the enzymes involved in glycan assembly, and the determination of the biological impact of these glycans on target proteins. It is now firmly established that this enzyme-catalyzed modification occurs in all three domains of life. However, despite similarities in the overall logic of N-linked glycoprotein biosynthesis among the three kingdoms, the structures of the appended glycans are markedly different and thus influence the functions of elaborated proteins in various ways. Though nearly all eukaryotes produce the same nascent tetradecasaccharide (Glc(3)Man(9)GlcNAc(2)), heterogeneity is introduced into this glycan structure after it is transferred to the protein through a complex series of glycosyl trimming and addition steps. In contrast, bacteria and archaea display diversity within their N-linked glycan structures through the use of unique monosaccharide building blocks during the assembly process. In this review, recent progress toward gaining a deeper biochemical understanding of this modification across all three kingdoms will be summarized. In addition, a brief overview of the role of N-linked glycosylation in viruses will also be presented.
Collapse
Affiliation(s)
- Angelyn Larkin
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Barbara Imperiali
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
21
|
Guerin ME, Korduláková J, Alzari PM, Brennan PJ, Jackson M. Molecular basis of phosphatidyl-myo-inositol mannoside biosynthesis and regulation in mycobacteria. J Biol Chem 2010; 285:33577-83. [PMID: 20801880 PMCID: PMC2962455 DOI: 10.1074/jbc.r110.168328] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Phosphatidyl-myo-inositol mannosides (PIMs) are unique glycolipids found in abundant quantities in the inner and outer membranes of the cell envelope of all Mycobacterium species. They are based on a phosphatidyl-myo-inositol lipid anchor carrying one to six mannose residues and up to four acyl chains. PIMs are considered not only essential structural components of the cell envelope but also the structural basis of the lipoglycans (lipomannan and lipoarabinomannan), all important molecules implicated in host-pathogen interactions in the course of tuberculosis and leprosy. Although the chemical structure of PIMs is now well established, knowledge of the enzymes and sequential events leading to their biosynthesis and regulation is still incomplete. Recent advances in the identification of key proteins involved in PIM biogenesis and the determination of the three-dimensional structures of the essential phosphatidyl-myo-inositol mannosyltransferase PimA and the lipoprotein LpqW have led to important insights into the molecular basis of this pathway.
Collapse
Affiliation(s)
- Marcelo E. Guerin
- From the Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
- the Departamento de Bioquímica, Universidad del País Vasco, 48940 País Vasco, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Jana Korduláková
- the Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, 84215 Bratislava, Slovakia
| | - Pedro M. Alzari
- the Unité de Biochimie Structurale, CNRS URA 2185, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, and
| | - Patrick J. Brennan
- the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Mary Jackson
- the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| |
Collapse
|
22
|
Raman S, Lange OF, Rossi P, Tyka M, Wang X, Aramini J, Liu G, Ramelot T, Eletsky A, Szyperski T, Kennedy M, Prestegard J, Montelione GT, Baker D. NMR structure determination for larger proteins using backbone-only data. Science 2010; 327:1014-8. [PMID: 20133520 PMCID: PMC2909653 DOI: 10.1126/science.1183649] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Conventional protein structure determination from nuclear magnetic resonance data relies heavily on side-chain proton-to-proton distances. The necessary side-chain resonance assignment, however, is labor intensive and prone to error. Here we show that structures can be accurately determined without nuclear magnetic resonance (NMR) information on the side chains for proteins up to 25 kilodaltons by incorporating backbone chemical shifts, residual dipolar couplings, and amide proton distances into the Rosetta protein structure modeling methodology. These data, which are too sparse for conventional methods, serve only to guide conformational search toward the lowest-energy conformations in the folding landscape; the details of the computed models are determined by the physical chemistry implicit in the Rosetta all-atom energy function. The new method is not hindered by the deuteration required to suppress nuclear relaxation processes for proteins greater than 15 kilodaltons and should enable routine NMR structure determination for larger proteins.
Collapse
Affiliation(s)
- Srivatsan Raman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Oliver F. Lange
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Paolo Rossi
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, NJ 08854
| | - Michael Tyka
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Xu Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602
| | - James Aramini
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, NJ 08854
| | - Gaohua Liu
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, NJ 08854
| | - Theresa Ramelot
- Department of Chemistry and Biochemistry and Northeast Structural Genomics Consortium, Miami University, Oxford, OH
| | - Alexander Eletsky
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260
| | - Thomas Szyperski
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260
| | - Michael Kennedy
- Department of Chemistry and Biochemistry and Northeast Structural Genomics Consortium, Miami University, Oxford, OH
| | - James Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602
| | - Gaetano T. Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers University, Piscataway, NJ 08854
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195
| |
Collapse
|
23
|
Kaur D, Guerin ME, Skovierová H, Brennan PJ, Jackson M. Chapter 2: Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. ADVANCES IN APPLIED MICROBIOLOGY 2009; 69:23-78. [PMID: 19729090 DOI: 10.1016/s0065-2164(09)69002-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The re-emergence of tuberculosis in its present-day manifestations - single, multiple and extensive drug-resistant forms and as HIV-TB coinfections - has resulted in renewed research on fundamental questions such as the nature of the organism itself, Mycobacterium tuberculosis, the molecular basis of its pathogenesis, definition of the immunological response in animal models and humans, and development of new intervention strategies such as vaccines and drugs. Foremost among these developments has been the precise chemical definition of the complex and distinctive cell wall of M. tuberculosis, elucidation of the relevant pathways and underlying genetics responsible for the synthesis of the hallmark moieties of the tubercle bacillus such as the mycolic acid-arabinogalactan-peptidoglycan complex, the phthiocerol- and trehalose-containing effector lipids, the phosphatidylinositol-containing mannosides, lipomannosides and lipoarabinomannosides, major immunomodulators, and others. In this review, the laboratory personnel who have been the focal point of some to these developments review recent progress towards a comprehensive understanding of the basic physiology and functions of the cell wall of M. tuberculosis.
Collapse
Affiliation(s)
- Devinder Kaur
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO 80523-1682, USA
| | | | | | | | | |
Collapse
|
24
|
Guerin ME, Schaeffer F, Chaffotte A, Gest P, Giganti D, Korduláková J, van der Woerd M, Jackson M, Alzari PM. Substrate-induced conformational changes in the essential peripheral membrane-associated mannosyltransferase PimA from mycobacteria: implications for catalysis. J Biol Chem 2009; 284:21613-25. [PMID: 19520856 PMCID: PMC2755885 DOI: 10.1074/jbc.m109.003947] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/03/2009] [Indexed: 11/06/2022] Open
Abstract
Phosphatidyl-myo-inositol mannosyltransferase A (PimA) is an essential glycosyltransferase (GT) involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIMs), which are key components of the mycobacterial cell envelope. PimA is the paradigm of a large family of peripheral membrane-binding GTs for which the molecular mechanism of substrate/membrane recognition and catalysis is still unknown. Strong evidence is provided showing that PimA undergoes significant conformational changes upon substrate binding. Specifically, the binding of the donor GDP-Man triggered an important interdomain rearrangement that stabilized the enzyme and generated the binding site for the acceptor substrate, phosphatidyl-myo-inositol (PI). The interaction of PimA with the beta-phosphate of GDP-Man was essential for this conformational change to occur. In contrast, binding of PI had the opposite effect, inducing the formation of a more relaxed complex with PimA. Interestingly, GDP-Man stabilized and PI destabilized PimA by a similar enthalpic amount, suggesting that they formed or disrupted an equivalent number of interactions within the PimA complexes. Furthermore, molecular docking and site-directed mutagenesis experiments provided novel insights into the architecture of the myo-inositol 1-phosphate binding site and the involvement of an essential amphiphatic alpha-helix in membrane binding. Altogether, our experimental data support a model wherein the flexibility and conformational transitions confer the adaptability of PimA to the donor and acceptor substrates, which seems to be of importance during catalysis. The proposed mechanism has implications for the comprehension of the peripheral membrane-binding GTs at the molecular level.
Collapse
Affiliation(s)
- Marcelo E Guerin
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Noffz C, Keppler-Ross S, Dean N. Hetero-oligomeric interactions between early glycosyltransferases of the dolichol cycle. Glycobiology 2009; 19:472-8. [PMID: 19129246 PMCID: PMC2667158 DOI: 10.1093/glycob/cwp001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 01/02/2009] [Accepted: 01/03/2009] [Indexed: 11/14/2022] Open
Abstract
N-Linked glycosylation begins with the formation of a dolichol-linked oligosaccharide in the endoplasmic reticulum (ER). The first two steps of this pathway lead to the formation of GlcNAc(2)-PP-dolichol, whose synthesis is sequentially catalyzed by the Alg7p GlcNAc phosphotransferase and by the dimeric Alg13p/Alg14p UDP-GlcNAc transferase on the cytosolic face of the endoplasmic reticulum. Here, we show that the Alg7p, Alg13p, and Alg14p glycosyltransferases form a functional multienzyme complex. Coimmunoprecipitation and gel filtration assays demonstrate that the Alg7p/Alg13p/Alg14p complex is a hexamer with a native molecular weight of approximately 200 kDa and an Alg7p:Alg13:Alg14p stoichiometry of 1:1:1. These results highlight and extend the striking parallels that exist between these eukaryotic UDP-GlcNAc transferases and their bacterial MraY and MurG homologs that catalyze the first two steps of the lipid-linked peptidoglycan precursor. In addition to their preferred substrate and lipid acceptors, these enzymes are similar in their structure, chemistry, temporal, and spatial organization. These similarities point to an evolutionary link between the early steps of N-linked glycosylation and those of peptidoglycan synthesis.
Collapse
Affiliation(s)
- Christine Noffz
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Sabine Keppler-Ross
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Neta Dean
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
26
|
Osmani SA, Bak S, Møller BL. Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. PHYTOCHEMISTRY 2009; 70:325-47. [PMID: 19217634 DOI: 10.1016/j.phytochem.2008.12.009] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/01/2008] [Accepted: 12/05/2008] [Indexed: 05/05/2023]
Abstract
Plant family 1 UDP-dependent glycosyltransferases (UGTs) catalyze the glycosylation of a plethora of bioactive natural products. In Arabidopsis thaliana, 120 UGT encoding genes have been identified. The crystal-based 3D structures of four plant UGTs have recently been published. Despite low sequence conservation, the UGTs show a highly conserved secondary and tertiary structure. The sugar acceptor and sugar donor substrates of UGTs are accommodated in the cleft formed between the N- and C-terminal domains. Several regions of the primary sequence contribute to the formation of the substrate binding pocket including structurally conserved domains as well as loop regions differing both with respect to their amino acid sequence and sequence length. In this review we provide a detailed analysis of the available plant UGT crystal structures to reveal structural features determining substrate specificity. The high 3D structural conservation of the plant UGTs render homology modeling an attractive tool for structure elucidation. The accuracy and utility of UGT structures obtained by homology modeling are discussed and quantitative assessments of model quality are performed by modeling of a plant UGT for which the 3D crystal structure is known. We conclude that homology modeling offers a high degree of accuracy. Shortcomings in homology modeling are also apparent with modeling of loop regions remaining as a particularly difficult task.
Collapse
Affiliation(s)
- Sarah A Osmani
- University of Copenhagen, Department of Plant Biology and Biotechnology, Plant Biochemistry Laboratory, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | |
Collapse
|
27
|
Gao XD, Moriyama S, Miura N, Dean N, Nishimura SI. Interaction between the C termini of Alg13 and Alg14 mediates formation of the active UDP-N-acetylglucosamine transferase complex. J Biol Chem 2008; 283:32534-41. [PMID: 18809682 DOI: 10.1074/jbc.m804060200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The second step of eukaryotic N-linked glycosylation in endoplasmic reticulum is catalyzed by an UDP-N-acetylglucosamine transferase that is comprised of two subunits, Alg13 and Alg14. The interaction between Alg13 and 14 is crucial for UDP-GlcNAc transferase activity, so formation of the Alg13/14 complex is likely to play a key role in the regulation of N-glycosylation. Using a combination of bioinformatics and molecular biological methods, we have undertaken a functional analysis of yeast Alg13 and Alg14 proteins to elucidate the mechanism of their interaction. Our mutational studies demonstrated that a short C-terminal alpha-helix of Alg13 is required for interaction with Alg14 and for enzyme activity. Electrostatic surface views of the modeled Alg13/14 complex suggest the presence of a hydrophobic cleft in Alg14 that provides a pocket for the Alg13 C-terminal alpha-helix. Co-immunoprecipitation assays confirmed the C-terminal three amino acids of Alg14 are required for maintaining the integrity of Alg13/Alg14 complex, and this depends on their hydrophobicity. Modeling studies place these three Alg14 residues at the entrance of the hydrophobic-binding pocket, suggesting their role in the stabilization of the interaction between the C termini of Alg13 and Alg14. Together, these results demonstrate that formation of this hetero-oligomeric complex is mediated by a short C-terminal alpha-helix of Alg13 in cooperation with the last three amino acids of Alg14. In addition, deletion of the N-terminal beta-strand of Alg13 caused the destruction of protein, indicating the structural importance of this region in protein stability.
Collapse
Affiliation(s)
- Xiao-Dong Gao
- Graduate School of Advanced Life Science, Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, N21, W11, Kita-Ku, Sapporo 001-0021, Japan
| | | | | | | | | |
Collapse
|
28
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|