1
|
Xue Y, Kang X. Crystal structure of the C1 domain of the surface-layer protein SlpM from Lactobacillus brevis: a module involved in protein self-assembly. Acta Crystallogr F Struct Biol Commun 2025; 81:255-262. [PMID: 40371669 PMCID: PMC12121393 DOI: 10.1107/s2053230x25004194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 05/08/2025] [Indexed: 05/16/2025] Open
Abstract
Surface-layer proteins (SLPs) play a crucial role in the self-assembly of bacterial surface layers, yet the structural details of their assembly domains remain largely unexplored. Here, we report the crystal structure of SlpM_C1, a structural module within the self-assembly domain of SlpM from Lactobacillus brevis. SlpM_C1 adopts a β-grasp fold, a conserved structural motif found in diverse protein families. Structural comparisons with ubiquitin and the SlpA_II domain from L. acidophilus reveal both shared and distinct features, highlighting elements of structural convergence despite sequence divergence. Furthermore, the dimerization patterns of SlpM_C1 and SlpA_II are compared and discussed. These findings provide new insights into the architecture and evolutionary adaptability of SLPs in Lactobacillus species.
Collapse
Affiliation(s)
- Yi Xue
- Institute of Drug Discovery TechnologyNingbo UniversityNingbo315211People’s Republic of China
| | - Xue Kang
- Institute of Drug Discovery TechnologyNingbo UniversityNingbo315211People’s Republic of China
| |
Collapse
|
2
|
Arshad H, Gardner QA, Rashid N, Waris M, Akhtar M. Identification and structural analysis of a surface layer protein from Geobacillus thermopakistaniensis MAS1: highlighting its larvicidal potential against Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti. Int J Biol Macromol 2025:144307. [PMID: 40403796 DOI: 10.1016/j.ijbiomac.2025.144307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/04/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025]
Abstract
Bacterial toxins can be an effective, economic and sustainable means to control mosquito-borne diseases. To explore the larvicidal potential of Geobacillus thermopakistaniensis MAS1, it was screened for surface layer (S-layer) protein by treating it with lithium chloride. A putative S-layer protein was extracted which identified by bottom-up proteomics. The peptide mass fingerprints of this protein matched a hypothetical protein of protein of G. thermopakistaniensis MAS1. Bioinformatics tools predicted it to be a non-cytoplasmic, secretory protein containing different domains of S-layer proteins of Gram-positive bacteria. The method of S-layer protein extraction by LiCl treatment was optimized and it yielded 53 mg of protein from 1 l culture. Circular dichroism (CD) spectroscopy shows that it has about 20 % α-helix and 32 % β-strands. 3D modeling was performed using I-TASSER, Phyre2 and AlphaFold3. Laboratory scale insecticidal assays revealed that this protein was toxic against Culex quinquefasciatus and Aedes aegypti larvae with LC50 values of 61 mM and 186 mM respectively. Anopheles stephensi larvae were not killed by this protein up to the concentration of 536 mM. Overall, the S-layer protein of G. thermopakistaniensis MAS1 is lethal against Culex and Aedes larvae and it can potentially be used as an insecticide.
Collapse
Affiliation(s)
- Hamayun Arshad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Qurratulann Afza Gardner
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Waris
- Primary and Secondary Healthcare Department, Government of the Punjab, Kasur, Pakistan
| | - Muhammad Akhtar
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan; Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
3
|
Grill-Walcher S, Schäffer C. A new age in structural S-layer biology - Experimental and in silico milestones. J Biol Chem 2025:110205. [PMID: 40345586 DOI: 10.1016/j.jbc.2025.110205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/11/2025] Open
Abstract
Surface (S-) layer proteins, considered as the most abundant proteins in nature, perform diverse and essential biological roles in many bacteria and most archaea. Their functions range from providing structural support, maintaining cell shape, and protecting against extreme environments to acting as a cell surface display matrix for biologically active molecules, such as S-layer protein-bound glycans, which facilitate interspecies interactions and cellular communication in both health and disease. The intricate, symmetric, nanometer-scale patterns of S-layer lattices have long fascinated structural biologists, yet only recent methodological advances have revealed detailed molecular insights. These advances include a deeper understanding of domain organization, cell wall anchoring mechanisms, and how nascent proteins are incorporated into existing lattices. Significant progress in sample preparation and high-resolution imaging has led to the precise structural characterization of S-layers across various bacterial and archaeal species. Furthermore, the advent of deep learning-based structure prediction has enabled modeling of S-layer proteins in several largely uncultured microbial lineages. This review summarizes major achievements in S-layer protein structural research over the past five years, presenting them with a typical workflow for the experimental structure determination. For the first time, it also explores recent breakthroughs in computational S-layer modelling and offers an outlook on how in silico methods may further advance our understanding of S-layer protein architecture.
Collapse
Affiliation(s)
- Stephanie Grill-Walcher
- Department of Natural Sciences and Sustainable Resources, Institute of Biochemistry, NanoGlycobiology Research Group, BOKU University, Vienna, Austria
| | - Christina Schäffer
- Department of Natural Sciences and Sustainable Resources, Institute of Biochemistry, NanoGlycobiology Research Group, BOKU University, Vienna, Austria.
| |
Collapse
|
4
|
Hamilton R, Gebbie W, Bowman C, Mantanona A, Kalyuzhnaya MG. Microbial hauberks: composition and function of surface layer proteins in gammaproteobacterial methanotrophs. Appl Environ Microbiol 2025; 91:e0136424. [PMID: 39745414 PMCID: PMC11784148 DOI: 10.1128/aem.01364-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/01/2024] [Indexed: 02/01/2025] Open
Abstract
Many species of proteobacterial methane-consuming bacteria (methanotrophs) form a hauberk-like envelope represented by a surface (S-) layer protein (SLP) matrix. While several proteins were predicted to be associated with the cell surface, the composition and function of the hauberk matrix remained elusive. Here, we report the identification of the genes encoding the hauberk-forming proteins in two gamma-proteobacterial (Type I) methanotrophs, Methylotuvimicrobium buryatense 5GB1 (EQU24_15540) and Methylotuvimicrobium alcaliphilum 20ZR (MEALZ_0971 and MEALZ_0972). The proteins share 40% amino acid (AA) sequence identity with each other and are distantly related to the RsaA proteins from Caulobacter crescentus (20% AA sequence identity). Deletion of these genes resulted in loss of the characteristic hauberk pattern on the cell surface. A set of transcriptional fusions between the MEALZ_0971 and a superfolder green fluorescent protein (sfGFP) further confirmed its surface localization. The functional roles of the hauberk and cell-surface-associated proteins, including MEALZ_0971, MEALZ_0972, EQU24_15540, and a copper-induced CorA protein, were further investigated via gene expression studies and phenotypic tests. The hauberk core protein of M. alcaliphilum 20ZR showed constitutive expression across 18 growth conditions with reduced growth at high salinity, high methanol, and metal-limited conditions, suggesting a role in cell-envelope stability and metal scavenging. Overall, understanding the genetics, composition, and cellular functions of S-layers contributes to our knowledge of methanotroph adaptation to environmental perturbations and opens a promising prospect for (nano)biotechnology applications. IMPORTANCE Understanding the genetics, composition, and cellular functions of the cell envelope proteins, such as S-layers, contributes to our knowledge of microbial cell biology and stress responses and molecular adaptations to environmental perturbations. In addition, this study opens a promising prospect for (nano)biotechnology applications of methane-derived self-assembling protein materials.
Collapse
Affiliation(s)
- Richard Hamilton
- Biology Department, San Diego State University, San Diego, California, USA
| | - William Gebbie
- Biology Department, San Diego State University, San Diego, California, USA
| | - Chynna Bowman
- Biology Department, San Diego State University, San Diego, California, USA
| | - Alex Mantanona
- Biology Department, San Diego State University, San Diego, California, USA
| | | |
Collapse
|
5
|
Sleytr UB, Pum D. S-layers: from a serendipitous discovery to a toolkit for nanobiotechnology. Q Rev Biophys 2025; 58:e4. [PMID: 39819733 DOI: 10.1017/s0033583524000106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Prokaryotic microorganisms, comprising Bacteria and Archaea, exhibit a fascinating diversity of cell envelope structures reflecting their adaptations that contribute to their resilience and survival in diverse environments. Among these adaptations, surface layers (S-layers) composed of monomolecular protein or glycoprotein lattices are one of the most observed envelope components. They are the most abundant cellular proteins and represent the simplest biological membranes that have developed during evolution. S-layers provide organisms with a great variety of selective advantages, including acting as an antifouling layer, protective coating, molecular sieve, ion trap, structure involved in cell and molecular adhesion, surface recognition and virulence factor for pathogens. In Archaea that possess S-layers as the exclusive cell wall component, the (glyco)protein lattices function as a cell shape-determining/maintaining scaffold. The wealth of information available on the structure, chemistry, genetics and in vivo and in vitro morphogenesis has revealed a broad application potential for S-layers as patterning elements in a molecular construction kit for bio- and nanotechnology, synthetic biology, biomimetics, biomedicine and diagnostics. In this review, we try to describe the scientifically exciting early days of S-layer research with a special focus on the 'Vienna-S-Layer-Group'. Our presentation is intended to illustrate how our curiosity and joy of discovery motivated us to explore this new structure and to make the scientific community aware of its relevance in the realm of prokaryotes, and moreover, how we developed concepts for exploiting this unique self-assembly structure. We hope that our presentation, with its many personal notes, is also of interest from the perspective of the history of S-layer research.
Collapse
Affiliation(s)
- Uwe B Sleytr
- Institute of Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dietmar Pum
- Institute of Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
6
|
Cecil AJ, Sogues A, Gurumurthi M, Lane KS, Remaut H, Pak AJ. Molecular dynamics and machine learning stratify motion-dependent activity profiles of S-layer destabilizing nanobodies. PNAS NEXUS 2024; 3:pgae538. [PMID: 39660065 PMCID: PMC11631148 DOI: 10.1093/pnasnexus/pgae538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Nanobody (Nb)-induced disassembly of surface array protein (Sap) S-layers, a two-dimensional paracrystalline protein lattice from Bacillus anthracis, has been presented as a therapeutic intervention for lethal anthrax infections. However, only a subset of existing Nbs with affinity to Sap exhibit depolymerization activity, suggesting that affinity and epitope recognition are not enough to explain inhibitory activity. In this study, we performed all-atom molecular dynamics simulations of each Nb bound to the Sap binding site and trained a collection of machine learning classifiers to predict whether each Nb induces depolymerization. We used feature importance analysis to filter out unnecessary features and engineered remaining features to regularize the feature landscape and encourage learning of the depolymerization mechanism. We find that, while not enforced in training, a gradient-boosting decision tree is able to reproduce the experimental activities of inhibitory Nbs while maintaining high classification accuracy, whereas neural networks were only able to discriminate between classes. Further feature analysis revealed that inhibitory Nbs restrain Sap motions toward an inhibitory conformational state described by domain-domain clamping and induced twisting of domains normal to the lattice plane. We believe these motions drive Sap lattice depolymerization and can be used as design targets for improved Sap-inhibitory Nbs. Finally, we expect our method of study to apply to S-layers that serve as virulence factors in other pathogens, paving the way forward for Nb therapeutics that target depolymerization mechanisms.
Collapse
Affiliation(s)
- Adam J Cecil
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Adrià Sogues
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Mukund Gurumurthi
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, CO 80401, USA
| | - Kaylee S Lane
- Computer Science and Software Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA
| | - Han Remaut
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Alexander J Pak
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, CO 80401, USA
- Materials Science Program, Colorado School of Mines, Golden, CO 80401, USA
| |
Collapse
|
7
|
Zhou S, Jia Y, Fang H, Jin C, Mo Y, Xiao Z, Zhang N, Sun L, Lu H. A new understanding on the prerequisite of antibiotic biodegradation in wastewater treatment: Adhesive behavior between antibiotic-degrading bacteria and ciprofloxacin. WATER RESEARCH 2024; 252:121226. [PMID: 38309071 DOI: 10.1016/j.watres.2024.121226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/10/2023] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The extensive exploration of antibiotic biodegradation by antibiotic-degrading bacteria in biological wastewater treatment processes has left a notable gap in understanding the behavior of these bacteria when exposed to antibiotics and the initiation of biodegradation processes. This study, therefore, delves into the adhesive behavior of Paraclostridium bifermentans, isolated from a bioreactor treating ciprofloxacin-laden wastewater, towards ciprofloxacin molecules. For the first time, this behavior is observed and characterized through quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy. The investigation further extends to identify key regulatory factors and mechanisms governing this adhesive behavior through a comparative proteomics analysis. The results reveal the dominance of extracellular proteins, particularly those involved in nucleotide binding, hydrolase, and transferase, in the adhesion process. These proteins play pivotal roles through direct chemical binding and the regulation of signaling molecule. Furthermore, QCM-D measurements provide evidence that transferase-related signaling molecules, especially tyrosine, augment the binding between ciprofloxacin and transferases, resulting in enhance ciprofloxacin removal by P. bifermentans (increased by ∼1.2-fold). This suggests a role for transferase-related signaling molecules in manipulating the adhesive behavior of P. bifermentans towards ciprofloxacin. These findings contribute to a new understanding of the prerequisites for antibiotic biodegradation and offer potential strategies for improving the application of antibiotic-degrading bacteria in the treatment of antibiotics-laden wastewater.
Collapse
Affiliation(s)
- Sining Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Yanyan Jia
- School of Ecology, Sun Yat-sen University, Shenzhen, PR China
| | - Heting Fang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Yijun Mo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Zihan Xiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Ning Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China.
| |
Collapse
|
8
|
Sogues A, Fioravanti A, Jonckheere W, Pardon E, Steyaert J, Remaut H. Structure and function of the EA1 surface layer of Bacillus anthracis. Nat Commun 2023; 14:7051. [PMID: 37923757 PMCID: PMC10624894 DOI: 10.1038/s41467-023-42826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
The Gram-positive spore-forming bacterium Bacillus anthracis is the causative agent of anthrax, a deadly disease mostly affecting wildlife and livestock, as well as representing a bioterrorism threat. Its cell surface is covered by the mutually exclusive S-layers Sap and EA1, found in early and late growth phases, respectively. Here we report the nanobody-based structural characterization of EA1 and its native lattice contacts. The EA1 assembly domain consists of 6 immunoglobulin-like domains, where three calcium-binding sites structure interdomain contacts that allow monomers to adopt their assembly-competent conformation. Nanobody-induced depolymerization of EA1 S-layers results in surface defects, membrane blebbing and cell lysis under hypotonic conditions, indicating that S-layers provide additional mechanical stability to the cell wall. Taken together, we report a complete model of the EA1 S-layer and present a set of nanobodies that may have therapeutic potential against Bacillus anthracis.
Collapse
Affiliation(s)
- Adrià Sogues
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Antonella Fioravanti
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Wim Jonckheere
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Han Remaut
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
9
|
Kong W, Gan J, Su M, Xiong B, Jiang X, Zhang T, Zeng X, Wu Z, Sun Y, Pan D, Liu Q, Ling N, Guo Y. Identification and Characterization of Domains Responsible for Cell Wall Binding, Self-Assembly, and Adhesion of S-layer Protein from Lactobacillus acidophilus CICC 6074. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12982-12989. [PMID: 36190122 DOI: 10.1021/acs.jafc.2c03907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lactobacillus S-layer protein (SLP) is a biologically active protein on the cell surface. To further elucidate the structures and functions of SLP in Lactobacillus acidophilus CICC 6074, this study was conducted to identify the functional domains of SLP which is responsible for cell wall anchoring, self-assembly, and adhesion. The gene (slpA) of L. acidophilus CICC 6074 SLP was amplified by polymerase chain reaction and speculated functional domains. Fusion proteins of C-terminal truncations from SLP were exogenously expressed in Escherichia coli BL21 (DE3). FITC-labeling N-terminal truncations of SLP were synthesized. The C-terminal domain was more likely to be the binding region, and the cell wall-anchored receptor of SLP was teichoic acid. Furthermore, N-terminal truncations could self-assemble to milk fat globule membrane polar lipid liposomes observed using a fluorescence microscope. Notably, SAN1 (region 32-55) of N-terminal truncations was mainly responsible for the adhesion of SLP to HT-29 cells. These results showed that SLP played a crucial role in the functions of L. acidophilus CICC 6074, which might be of significant reference value for future studies.
Collapse
Affiliation(s)
- Weimei Kong
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu210023, P. R. China
| | - Junai Gan
- Department of Food Science and Technology, University of California, Davis, California95616, United States
| | - Mi Su
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu210023, P. R. China
| | - Binyi Xiong
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu210023, P. R. China
| | - Xiaoxiao Jiang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu210023, P. R. China
| | - Tao Zhang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu210023, P. R. China
| | - Xiaoqun Zeng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang315211, P. R. China
| | - Zhen Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang315211, P. R. China
| | - Yangying Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang315211, P. R. China
| | - Daodong Pan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang315211, P. R. China
| | - Qing Liu
- Nanjing Weigang Dairy Co., Ltd., Nanjing, Jiangsu211100, P. R. China
| | - Nan Ling
- Nanjing Weigang Dairy Co., Ltd., Nanjing, Jiangsu211100, P. R. China
| | - Yuxing Guo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu210023, P. R. China
| |
Collapse
|
10
|
Lanzoni-Mangutchi P, Banerji O, Wilson J, Barwinska-Sendra A, Kirk JA, Vaz F, O'Beirne S, Baslé A, El Omari K, Wagner A, Fairweather NF, Douce GR, Bullough PA, Fagan RP, Salgado PS. Structure and assembly of the S-layer in C. difficile. Nat Commun 2022; 13:970. [PMID: 35217634 PMCID: PMC8881574 DOI: 10.1038/s41467-022-28196-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Many bacteria and archaea possess a two-dimensional protein array, or S-layer, that covers the cell surface and plays crucial roles in cell physiology. Here, we report the crystal structure of SlpA, the main S-layer protein of the bacterial pathogen Clostridioides difficile, and use electron microscopy to study S-layer organisation and assembly. The SlpA crystal lattice mimics S-layer assembly in the cell, through tiling of triangular prisms above the cell wall, interlocked by distinct ridges facing the environment. Strikingly, the array is very compact, with pores of only ~10 Å in diameter, compared to other S-layers (30-100 Å). The surface-exposed flexible ridges are partially dispensable for overall structure and assembly, although a mutant lacking this region becomes susceptible to lysozyme, an important molecule in host defence. Thus, our work gives insights into S-layer organisation and provides a basis for development of C. difficile-specific therapeutics.
Collapse
Affiliation(s)
- Paola Lanzoni-Mangutchi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Oishik Banerji
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK
- Royal Society of Chemistry, Burlington House, Piccadilly, London, UK
| | - Jason Wilson
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Anna Barwinska-Sendra
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Joseph A Kirk
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK
- Florey Institute, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Filipa Vaz
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Shauna O'Beirne
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK
- Florey Institute, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Arnaud Baslé
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | - Gillian R Douce
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Per A Bullough
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK.
| | - Robert P Fagan
- Krebs Institute, School of Biosciences, University of Sheffield, Sheffield, UK.
- Florey Institute, School of Biosciences, University of Sheffield, Sheffield, UK.
| | - Paula S Salgado
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
11
|
Simon P, Pompe W, Gruner D, Sturm E, Ostermann K, Matys S, Vogel M, Rödel G. Nested Formation of Calcium Carbonate Polymorphs in a Bacterial Surface Membrane with a Graded Nanoconfinement: An Evolutionary Strategy to Ensure Bacterial Survival. ACS Biomater Sci Eng 2022; 8:526-539. [PMID: 34995442 PMCID: PMC8848282 DOI: 10.1021/acsbiomaterials.1c01280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
It is the intention
of this study to elucidate the nested formation
of calcium carbonate polymorphs or polyamorphs in the different nanosized
compartments. With these observations, it can be concluded how the
bacteria can survive in a harsh environment with high calcium carbonate
supersaturation. The mechanisms of calcium carbonate precipitation
at the surface membrane and at the underlying cell wall membrane of
the thermophilic soil bacterium Geobacillus stearothermophilus DSM 13240 have been revealed by high-resolution transmission electron
microscopy and atomic force microscopy. In this Gram-positive bacterium,
nanopores in the surface layer (S-layer) and in the supporting cell
wall polymers are nucleation sites for metastable calcium carbonate
polymorphs and polyamorphs. In order to observe the different metastable
forms, various reaction times and a low reaction temperature (4 °C)
have been chosen. Calcium carbonate polymorphs nucleate in the confinement
of nanosized pores (⌀ 3–5 nm) of the S-layer. The hydrous
crystalline calcium carbonate (ikaite) is formed initially with [110]
as the favored growth direction. It transforms into the anhydrous
metastable vaterite by a solid-state transition. In a following reaction
step, calcite is precipitated, caused by dissolution of vaterite in
the aqueous solution. In the larger pores of the cell wall (⌀
20–50 nm), hydrated amorphous calcium carbonate is grown, which
transforms into metastable monohydrocalcite, aragonite, or calcite.
Due to the sequence of reaction steps via various metastable phases,
the bacteria gain time for chipping the partially mineralized S-layer,
and forming a fresh S-layer (characteristic growth time about 20 min).
Thus, the bacteria can survive in solutions with high calcium carbonate
supersaturation under the conditions of forced biomineralization.
Collapse
Affiliation(s)
- Paul Simon
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - Wolfgang Pompe
- Institute of Materials Science, Technische Universität Dresden, Helmholtzstraße 7, 01069 Dresden, Germany
| | - Denise Gruner
- Institute of Genetics, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany.,Polymeric Microsystems, Technische Universität Dresden, Helmholtzstraße 100, 01069 Dresden, Germany
| | - Elena Sturm
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany.,Physical Chemistry, University of Konstanz, POB 714, D-78457 Konstanz, Germany
| | - Kai Ostermann
- Institute of Genetics, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Sabine Matys
- Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzener Landstraße 400, 01328 Dresden, Germany
| | - Manja Vogel
- Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzener Landstraße 400, 01328 Dresden, Germany
| | - Gerhard Rödel
- Institute of Genetics, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| |
Collapse
|
12
|
Abstract
Bacterial surface layers (S-layers) have been observed as the outermost cell envelope component in a wide range of bacteria and most archaea. S-layers are monomolecular lattices composed of a single protein or glycoprotein species and have either oblique, square or hexagonal lattice symmetry with unit cell dimensions ranging from 3 to 30 nm. They are generally 5 to 10 nm thick (up to 70 nm in archaea) and represent highly porous protein lattices (30–70% porosity) with pores of uniform size and morphology in the range of 2 to 8 nm. Since S-layers can be considered as one of the simplest protein lattices found in nature and the constituent units are probably the most abundantly expressed proteins on earth, it seems justified to briefly review the different S-layer lattice types, the need for lattice imperfections and the discussion of S-layers from the perspective of an isoporous protein network in the ultrafiltration region. Finally, basic research on S-layers laid the foundation for applications in biotechnology, synthetic biology, and biomimetics.
Collapse
|
13
|
Farci D, Kereïche S, Pangeni S, Haniewicz P, Bodrenko IV, Ceccarelli M, Winterhalter M, Piano D. Structural analysis of the architecture and in situ localization of the main S-layer complex in Deinococcus radiodurans. Structure 2021; 29:1279-1285.e3. [PMID: 34265277 DOI: 10.1016/j.str.2021.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/22/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Bacterial surface layers are paracrystalline assemblies of proteins that provide the first line of defense against environmental shocks. Here, we report the 3D structure, in situ localization, and orientation of the S-layer deinoxanthin-binding complex (SDBC), a hetero-oligomeric assembly of proteins that in Deinococcus radiodurans represents the main S-layer unit. The SDBC is resolved at 11-Å resolution by single-particle analysis, while its in situ localization is determined by cryo-electron crystallography on intact cell-wall fragments leading to a projection map at 4.5-Å resolution. The SDBC exhibits a triangular base with three comma-shaped pores, and a stalk departing orthogonally from the center of the base and oriented toward the intracellular space. Combining state-of-the-art techniques, results show the organization of this S-layer and its connection within the underlying membranes, demonstrating the potential for applications from nanotechnologies to medicine.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland.
| | - Sami Kereïche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic.
| | - Sushil Pangeni
- Department of Life Sciences & Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Patrycja Haniewicz
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland
| | - Igor V Bodrenko
- Department of Physics and IOM/CNR, University of Cagliari, 09042 Monserrato, Italy
| | - Matteo Ceccarelli
- Department of Physics and IOM/CNR, University of Cagliari, 09042 Monserrato, Italy
| | - Mathias Winterhalter
- Department of Life Sciences & Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland; Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, 09123 Cagliari, Italy.
| |
Collapse
|
14
|
Bharat TAM, von Kügelgen A, Alva V. Molecular Logic of Prokaryotic Surface Layer Structures. Trends Microbiol 2021; 29:405-415. [PMID: 33121898 PMCID: PMC8559796 DOI: 10.1016/j.tim.2020.09.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Most prokaryotic cells are encased in a surface layer (S-layer) consisting of a paracrystalline array of repeating lattice-forming proteins. S-layer proteins populate a vast and diverse sequence space, performing disparate functions in prokaryotic cells, including cellular defense, cell-shape maintenance, and regulation of import and export of materials. This article highlights recent advances in the understanding of S-layer structure and assembly, made possible by rapidly evolving structural and cell biology methods. We underscore shared assembly principles revealed by recent work and discuss a common molecular framework that may be used to understand the structural organization of S-layer proteins across bacteria and archaea.
Collapse
Affiliation(s)
- Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford OX1 3RE, UK.
| | - Andriko von Kügelgen
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford OX1 3RE, UK
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tübingen 72076, Germany.
| |
Collapse
|
15
|
Farci D, Aksoyoglu MA, Farci SF, Bafna JA, Bodrenko I, Ceccarelli M, Kirkpatrick J, Winterhalter M, Kereïche S, Piano D. Structural insights into the main S-layer unit of Deinococcus radiodurans reveal a massive protein complex with porin-like features. J Biol Chem 2020; 295:4224-4236. [PMID: 32071085 PMCID: PMC7105295 DOI: 10.1074/jbc.ra119.012174] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/13/2020] [Indexed: 11/06/2022] Open
Abstract
In the extremophile bacterium Deinococcus radiodurans, the outermost surface layer is tightly connected with the rest of the cell wall. This integrated organization provides a compact structure that shields the bacterium against environmental stresses. The fundamental unit of this surface layer (S-layer) is the S-layer deinoxanthin-binding complex (SDBC), which binds the carotenoid deinoxanthin and provides both, thermostability and UV radiation resistance. However, the structural organization of the SDBC awaits elucidation. Here, we report the isolation of the SDBC with a gentle procedure consisting of lysozyme treatment and solubilization with the nonionic detergent n-dodecyl-β-d-maltoside, which preserved both hydrophilic and hydrophobic components of the SDBC and allows the retention of several minor subunits. As observed by low-resolution single-particle analysis, we show that the complex possesses a porin-like structural organization, but is larger than other known porins. We also noted that the main SDBC component, the protein DR_2577, shares regions of similarity with known porins. Moreover, results from electrophysiological assays with membrane-reconstituted SDBC disclosed that it is a nonselective channel that has some peculiar gating properties, but also exhibits behavior typically observed in pore-forming proteins, such as porins and ionic transporters. The functional properties of this system and its porin-like organization provide information critical for understanding ion permeability through the outer cell surface of S-layer-carrying bacterial species.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159, 02776 Warsaw, Poland.
| | | | - Stefano Francesco Farci
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, V.le S. Ignazio da Laconi 13, 09123 Cagliari, Italy
| | - Jayesh Arun Bafna
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Igor Bodrenko
- Department of Physics and IOM/CNR, University of Cagliari, 09042 Monserrato, Italy
| | - Matteo Ceccarelli
- Department of Physics and IOM/CNR, University of Cagliari, 09042 Monserrato, Italy
| | - Joanna Kirkpatrick
- Leibniz Institute on Ageing-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany; The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Sami Kereïche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague 128 00, Czech Republic.
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159, 02776 Warsaw, Poland.
| |
Collapse
|
16
|
Klotz C, Goh YJ, O'Flaherty S, Johnson B, Barrangou R. Deletion of S-Layer Associated Ig-Like Domain Protein Disrupts the Lactobacillus acidophilus Cell Surface. Front Microbiol 2020; 11:345. [PMID: 32256464 PMCID: PMC7090030 DOI: 10.3389/fmicb.2020.00345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/17/2020] [Indexed: 01/18/2023] Open
Abstract
Bacterial surface-layers (S-layers) are crystalline arrays of repeating proteinaceous subunits that coat the exterior of many cell envelopes. S-layers have demonstrated diverse functions in growth and survival, maintenance of cell integrity, and mediation of host interactions. Additionally, S-layers can act as scaffolds for the outward display of auxiliary proteins and glycoproteins. These non-covalently bound S-layer associated proteins (SLAPs) have characterized roles in cell division, adherence to intestinal cells, and modulation of the host immune response. Recently, IgdA (LBA0695), a Lactobacillus acidophilus SLAP that possesses a Group 3 immunoglobulin (Ig)-like domain and GW (Gly-Tryp) dipeptide surface anchor, was recognized for its high conservation among S-layer-forming lactobacilli, constitutive expression, and surface localization. These findings prompted its selection for examination within the present study. Although IgdA and corresponding orthologs were shown to be unique to host-adapted lactobacilli, the Ig domain itself was specific to vertebrate-adapted species suggesting a role in vertebrate adaptation. Using a counterselective gene replacement system, igdA was deleted from the L. acidophilus NCFM chromosome. The resultant mutant, NCK2532, exhibited a visibly disrupted cell surface which likely contributed to its higher salt sensitivity, severely reduced adhesive capacity, and altered immunogenicity profile. Transcriptomic analyses revealed the induction of several stress response genes and secondary surface proteins. Due to the broad impact of IgdA on the cellular physiology and probiotic attributes of L. acidophilus, identification of similar proteins in alternative bacterial species may help pinpoint next-generation host-adapted probiotic candidates.
Collapse
Affiliation(s)
- Courtney Klotz
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States.,Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Yong Jun Goh
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Sarah O'Flaherty
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Brant Johnson
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States.,Microbiology Graduate Program, North Carolina State University, Raleigh, NC, United States
| | - Rodolphe Barrangou
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States.,Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States.,Microbiology Graduate Program, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
17
|
Structure of S-layer protein Sap reveals a mechanism for therapeutic intervention in anthrax. Nat Microbiol 2019; 4:1805-1814. [DOI: 10.1038/s41564-019-0499-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
|
18
|
Boleij M, Pabst M, Neu TR, van Loosdrecht MCM, Lin Y. Identification of Glycoproteins Isolated from Extracellular Polymeric Substances of Full-Scale Anammox Granular Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13127-13135. [PMID: 30335377 PMCID: PMC6256349 DOI: 10.1021/acs.est.8b03180] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 05/22/2023]
Abstract
ANaerobic AMMonium OXidation (anammox) is an established process for efficient nitrogen removal from wastewater, relying on anammox bacteria to form stable biofilms or granules. To understand the formation, structure, and stability of anammox granules, it is important to determine the composition of the extracellular polymeric substances (EPS). The aim of this research was to elucidate the nature of the proteins, which are the major fraction of the EPS and were suspected to be glycosylated. EPS were extracted from full-scale anammox granular sludge, dominated by " Candidatus Brocadia", and subjected to denaturing polyacrylamide gel electrophoresis. By further analysis with mass spectrometry, a high abundant glycoprotein, carrying a heterogeneous O-glycan structure, was identified. The potential glycosylation sequence motif was identical to that proposed for the surface layer protein of " Candidatus Kuenenia stuttgartiensis". The heavily glycosylated protein forms a large fraction of the EPS and was also located by lectin staining. Therefore, we hypothesize an important role of glycoproteins in the structuring of anammox granules, comparable to the importance of glycans in the extracellular matrix of multicellular organisms. Furthermore, different glycoconjugates may have distinct roles in the matrix of granular sludge, which requires more in-depth characterization of different glycoconjugates in future EPS studies.
Collapse
Affiliation(s)
- Marissa Boleij
- Department of Biotechnology , Delft University of Technology , van der Maasweg 9 , 2629 HZ , Delft , The Netherlands
| | - Martin Pabst
- Department of Biotechnology , Delft University of Technology , van der Maasweg 9 , 2629 HZ , Delft , The Netherlands
| | - Thomas R Neu
- Department of River Ecology , Helmholtz Centre for Environmental Research - UFZ , Brueckstrasse 3A , 39114 Magdeburg , Germany
| | - Mark C M van Loosdrecht
- Department of Biotechnology , Delft University of Technology , van der Maasweg 9 , 2629 HZ , Delft , The Netherlands
| | - Yuemei Lin
- Department of Biotechnology , Delft University of Technology , van der Maasweg 9 , 2629 HZ , Delft , The Netherlands
| |
Collapse
|
19
|
The Sortase-Dependent Fimbriome of the Genus Bifidobacterium: Extracellular Structures with Potential To Modulate Microbe-Host Dialogue. Appl Environ Microbiol 2017; 83:AEM.01295-17. [PMID: 28754709 DOI: 10.1128/aem.01295-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022] Open
Abstract
Bifidobacteria are important gut commensals of mammals, including humans, of any age. However, the molecular mechanisms by which these microorganisms establish themselves in the mammalian gut and persist in this environment are largely unknown. Here, we analyzed the genetic diversity of the predicted arsenal of sortase-dependent pili of known and sequenced members of the Bifidobacterium genus and constructed a bifidobacterial sortase-dependent fimbriome database. Our analyses revealed considerable genetic variability of the sortase-dependent fimbriome among bifidobacterial (sub)species, which appears to have been due to horizontal gene transfer events and for which we were able to perform evolutionary mapping. Functional assessment by transcriptome analysis and binding assays involving different substrates demonstrates how bifidobacterial pili are pivotal in promoting various abilities for adhesion to glycans and extracellular matrix proteins, thereby supporting the ecological success of bifidobacteria in the mammalian gut.IMPORTANCE Adhesion of bifidobacterial cells to the mucosa of the large intestine is considered a hallmark for the persistence and colonization of these bacteria in the human gut. In this context, we analyzed the genetic diversity of the predicted arsenal of sortase-dependent pili of known and sequenced members of the Bifidobacterium genus, and constructed a bifidobacterial sortase-dependent fimbriome database. Our analyses revealed considerable genetic variability of the sortase-dependent fimbriome among bifidobacterial (sub)species, which appears to have been due to horizontal gene transfer events. In addition, functional assessment by transcriptome analysis and binding assays involving different substrates demonstrates how bifidobacterial pili are crucial in promoting various abilities for adhesion to glycans and extracellular matrix proteins, thereby supporting the ecological success of bifidobacteria in the mammalian gut. This study represents a complete genomic study regarding the presence of fimbriae in the genus Bifidobacterium.
Collapse
|
20
|
Jones MD, Chan ACK, Nomellini JF, Murphy MEP, Smit J. Surface-layer protein from Caulobacter crescentus: expression, purification and X-ray crystallographic analysis. Acta Crystallogr F Struct Biol Commun 2016; 72:677-80. [PMID: 27599857 PMCID: PMC5012206 DOI: 10.1107/s2053230x16011638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/16/2016] [Indexed: 11/10/2022] Open
Abstract
Protein surface layers are self-assembling, paracrystalline lattices on the surface of many prokaryotes. Surface-layer proteins have not benefited from widespread structural analysis owing to their resistance to crystallization. Here, the successful expression of a truncated version of RsaA, the surface-layer protein from Caulobacter crescentus, from a Caulobacter protein-expression system is reported. The purification, crystallization and initial X-ray diffraction analysis of the truncated RsaA, the largest surface-layer protein studied to date and the first from a Gram-negative bacterium, are also reported.
Collapse
Affiliation(s)
- Michael D. Jones
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Anson C. K. Chan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - John F. Nomellini
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michael E. P. Murphy
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - John Smit
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
21
|
Schäffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiol Rev 2016; 41:49-91. [PMID: 27566466 DOI: 10.1093/femsre/fuw036] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/17/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Glycosylation of proteins is one of the most prevalent post-translational modifications occurring in nature, with a wide repertoire of biological implications. Pathways for the main types of this modification, the N- and O-glycosylation, can be found in all three domains of life-the Eukarya, Bacteria and Archaea-thereby following common principles, which are valid also for lipopolysaccharides, lipooligosaccharides and glycopolymers. Thus, studies on any glycoconjugate can unravel novel facets of the still incompletely understood fundamentals of protein N- and O-glycosylation. While it is estimated that more than two-thirds of all eukaryotic proteins would be glycosylated, no such estimate is available for prokaryotic glycoproteins, whose understanding is lagging behind, mainly due to the enormous variability of their glycan structures and variations in the underlying glycosylation processes. Combining glycan structural information with bioinformatic, genetic, biochemical and enzymatic data has opened up an avenue for in-depth analyses of glycosylation processes as a basis for glycoengineering endeavours. Here, the common themes of glycosylation are conceptualised for the major classes of prokaryotic (i.e. bacterial and archaeal) glycoconjugates, with a special focus on glycosylated cell-surface proteins. We describe the current knowledge of biosynthesis and importance of these glycoconjugates in selected pathogenic and beneficial microbes.
Collapse
Affiliation(s)
- Christina Schäffer
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| |
Collapse
|
22
|
Zhu C, Guo G, Ma Q, Zhang F, Ma F, Liu J, Xiao D, Yang X, Sun M. Diversity in S-layers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 123:1-15. [PMID: 27498171 DOI: 10.1016/j.pbiomolbio.2016.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/16/2016] [Accepted: 08/02/2016] [Indexed: 01/29/2023]
Abstract
Surface layers, referred simply as S-layers, are the two-dimensional crystalline arrays of protein or glycoprotein subunits on cell surface. They are one of the most common outermost envelope components observed in prokaryotic organisms (Archaea and Bacteria). Over the past decades, S-layers have become an issue of increasing interest due to their ubiquitousness, special features and functions. Substantial work in this field provides evidences of an enormous diversity in S-layers. This paper reviews and illustrates the diversity from several different aspects, involving the S-layer-carrying strains, the structure of S-layers, the S-layer proteins and genes, as well as the functions of S-layers.
Collapse
Affiliation(s)
- Chaohua Zhu
- College of Environment and Plant protection, Hainan University/Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources (Hainan University), Ministry of Education, Haikou, 570228, Hainan, PR China
| | - Gang Guo
- Haikou Experimental Station/Hainan Key Laboratory of Banana Genetic Improvement, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, Hainan, PR China; State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Qiqi Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Fengjuan Zhang
- Haikou Experimental Station/Hainan Key Laboratory of Banana Genetic Improvement, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, Hainan, PR China
| | - Funing Ma
- Haikou Experimental Station/Hainan Key Laboratory of Banana Genetic Improvement, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, Hainan, PR China
| | - Jianping Liu
- Division of Functional Genomics, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm 17177, Sweden
| | - Dao Xiao
- Haikou Experimental Station/Hainan Key Laboratory of Banana Genetic Improvement, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, Hainan, PR China
| | - Xiaolin Yang
- College of Environment and Plant protection, Hainan University/Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources (Hainan University), Ministry of Education, Haikou, 570228, Hainan, PR China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| |
Collapse
|
23
|
Liu J, Falke S, Drobot B, Oberthuer D, Kikhney A, Guenther T, Fahmy K, Svergun D, Betzel C, Raff J. Analysis of self-assembly of S-layer protein slp-B53 from Lysinibacillus sphaericus. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:77-89. [PMID: 27270294 DOI: 10.1007/s00249-016-1139-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/29/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
The formation of stable and functional surface layers (S-layers) via self-assembly of surface-layer proteins on the cell surface is a dynamic and complex process. S-layers facilitate a number of important biological functions, e.g., providing protection and mediating selective exchange of molecules and thereby functioning as molecular sieves. Furthermore, S-layers selectively bind several metal ions including uranium, palladium, gold, and europium, some of them with high affinity. Most current research on surface layers focuses on investigating crystalline arrays of protein subunits in Archaea and bacteria. In this work, several complementary analytical techniques and methods have been applied to examine structure-function relationships and dynamics for assembly of S-layer protein slp-B53 from Lysinibacillus sphaericus: (1) The secondary structure of the S-layer protein was analyzed by circular dichroism spectroscopy; (2) Small-angle X-ray scattering was applied to gain insights into the three-dimensional structure in solution; (3) The interaction with bivalent cations was followed by differential scanning calorimetry; (4) The dynamics and time-dependent assembly of S-layers were followed by applying dynamic light scattering; (5) The two-dimensional structure of the paracrystalline S-layer lattice was examined by atomic force microscopy. The data obtained provide essential structural insights into the mechanism of S-layer self-assembly, particularly with respect to binding of bivalent cations, i.e., Mg2+ and Ca2+. Furthermore, the results obtained highlight potential applications of S-layers in the fields of micromaterials and nanobiotechnology by providing engineered or individual symmetric thin protein layers, e.g., for protective, antimicrobial, or otherwise functionalized surfaces.
Collapse
Affiliation(s)
- Jun Liu
- Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King Platz 6, 20146, Hamburg, Germany.,Bioengineering Faculty, Sichuan University of Science and Engineering, Huixing Rd., Xueyuan Street 180, Zigong, 643000, Sichuan, China
| | - Sven Falke
- Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King Platz 6, 20146, Hamburg, Germany
| | - Bjoern Drobot
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Dominik Oberthuer
- Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King Platz 6, 20146, Hamburg, Germany.,Center for Free-Electron Laser Science (CFEL), DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Alexey Kikhney
- EMBL Hamburg, European Molecular Biology Laboratory, Notkestr. 85, 22607, Hamburg, Germany
| | - Tobias Guenther
- Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Karim Fahmy
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Dmitri Svergun
- EMBL Hamburg, European Molecular Biology Laboratory, Notkestr. 85, 22607, Hamburg, Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King Platz 6, 20146, Hamburg, Germany
| | - Johannes Raff
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328, Dresden, Germany. .,Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328, Dresden, Germany.
| |
Collapse
|
24
|
Lighezan L, Georgieva R, Neagu A. The secondary structure and the thermal unfolding parameters of the S-layer protein from Lactobacillus salivarius. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:491-509. [DOI: 10.1007/s00249-016-1117-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/26/2016] [Accepted: 02/10/2016] [Indexed: 11/28/2022]
|
25
|
Sleytr UB, Schuster B, Egelseer E, Pum D. S-layers: principles and applications. FEMS Microbiol Rev 2014; 38:823-64. [PMID: 24483139 PMCID: PMC4232325 DOI: 10.1111/1574-6976.12063] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 01/12/2023] Open
Abstract
Monomolecular arrays of protein or glycoprotein subunits forming surface layers (S-layers) are one of the most commonly observed prokaryotic cell envelope components. S-layers are generally the most abundantly expressed proteins, have been observed in species of nearly every taxonomical group of walled bacteria, and represent an almost universal feature of archaeal envelopes. The isoporous lattices completely covering the cell surface provide organisms with various selection advantages including functioning as protective coats, molecular sieves and ion traps, as structures involved in surface recognition and cell adhesion, and as antifouling layers. S-layers are also identified to contribute to virulence when present as a structural component of pathogens. In Archaea, most of which possess S-layers as exclusive wall component, they are involved in determining cell shape and cell division. Studies on structure, chemistry, genetics, assembly, function, and evolutionary relationship of S-layers revealed considerable application potential in (nano)biotechnology, biomimetics, biomedicine, and synthetic biology.
Collapse
Affiliation(s)
- Uwe B. Sleytr
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Bernhard Schuster
- Institute of Synthetic BiologyDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Eva‐Maria Egelseer
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Dietmar Pum
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
26
|
Abstract
Crystalline bacterial cell surface layers (S-layers) represent the outermost cell envelope component in a broad range of bacteria and archaea. They are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. They are highly porous protein mesh works with unit cell sizes in the range of 3 to 30 nm, and pore sizes of 2 to 8 nm. S-layers are usually 5 to 20 nm thick (in archaea, up to 70 nm). S-layer proteins are one of the most abundant biopolymers on earth. One of their key features, and the focus of this review, is the intrinsic capability of isolated native and recombinant S-layer proteins to form self-assembled mono- or double layers in suspension, at solid supports, the air-water interface, planar lipid films, liposomes, nanocapsules, and nanoparticles. The reassembly is entropy-driven and a fascinating example of matrix assembly following a multistage, non-classical pathway in which the process of S-layer protein folding is directly linked with assembly into extended clusters. Moreover, basic research on the structure, synthesis, genetics, assembly, and function of S-layer proteins laid the foundation for their application in novel approaches in biotechnology, biomimetics, synthetic biology, and nanotechnology.
Collapse
Affiliation(s)
- Dietmar Pum
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | | |
Collapse
|
27
|
Abstract
Prokaryotic glycosylation fulfills an important role in maintaining and protecting the structural integrity and function of the bacterial cell wall, as well as serving as a flexible adaption mechanism to evade environmental and host-induced pressure. The scope of bacterial and archaeal protein glycosylation has considerably expanded over the past decade(s), with numerous examples covering the glycosylation of flagella, pili, glycosylated enzymes, as well as surface-layer proteins. This article addresses structure, analysis, function, genetic basis, biosynthesis, and biomedical and biotechnological applications of cell-envelope glycoconjugates, S-layer glycoprotein glycans, and "nonclassical" secondary-cell wall polysaccharides. The latter group of polymers mediates the important attachment and regular orientation of the S-layer to the cell wall. The structures of these glycopolymers reveal an enormous diversity, resembling the structural variability of bacterial lipopolysaccharides and capsular polysaccharides. While most examples are presented for Gram-positive bacteria, the S-layer glycan of the Gram-negative pathogen Tannerella forsythia is also discussed. In addition, archaeal S-layer glycoproteins are briefly summarized.
Collapse
Affiliation(s)
- Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | |
Collapse
|
28
|
Goessweiner-Mohr N, Fercher C, Arends K, Birner-Gruenberger R, Laverde-Gomez D, Huebner J, Grohmann E, Keller W. The type IV secretion protein TraK from the Enterococcus conjugative plasmid pIP501 exhibits a novel fold. ACTA ACUST UNITED AC 2014; 70:1124-35. [PMID: 24699656 DOI: 10.1107/s1399004714001606] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/22/2014] [Indexed: 11/11/2022]
Abstract
Conjugative plasmid transfer presents a serious threat to human health as the most important means of spreading antibiotic resistance and virulence genes among bacteria. The required direct cell-cell contact is established by a multi-protein complex, the conjugative type IV secretion system (T4SS). The conjugative core complex spans the cellular envelope and serves as a channel for macromolecular secretion. T4SSs of Gram-negative (G-) origin have been studied in great detail. In contrast, T4SSs of Gram-positive (G+) bacteria have only received little attention thus far, despite the medical relevance of numerous G+ pathogens (e.g. enterococci, staphylococci and streptococci). This study provides structural information on the type IV secretion (T4S) protein TraK of the G+ broad host range Enterococcus conjugative plasmid pIP501. The crystal structure of the N-terminally truncated construct TraKΔ was determined to 3.0 Å resolution and exhibits a novel fold. Immunolocalization demonstrated that the protein localizes to the cell wall facing towards the cell exterior, but does not exhibit surface accessibility. Circular dichroism, dynamic light scattering and size-exclusion chromatography confirmed the protein to be a monomer. With the exception of proteins from closely related T4SSs, no significant sequence or structural relatives were found. This observation marks the protein as a very exclusive, specialized member of the pIP501 T4SS.
Collapse
Affiliation(s)
- Nikolaus Goessweiner-Mohr
- Institute for Molecular Biosciences, Karl-Franzens-University Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
| | - Christian Fercher
- Institute for Molecular Biosciences, Karl-Franzens-University Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
| | | | - Ruth Birner-Gruenberger
- Institute for Pathology and Center of Medical Research, Medical University Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Diana Laverde-Gomez
- Division of Infectious Diseases, University Medical Center Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Johannes Huebner
- Division of Infectious Diseases, University Medical Center Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Elisabeth Grohmann
- Division of Infectious Diseases, University Medical Center Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Walter Keller
- Institute for Molecular Biosciences, Karl-Franzens-University Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
| |
Collapse
|
29
|
Abstract
Biomolecules positioned at interfaces have spawned many applications in bioanalysis, biophysics, and cell biology. This Highlight describes recent developments in the research areas of protein and DNA arrays, and single-molecule sensing. We cover the ultrasensitive scanning of conventional microarrays as well as the generation of arrays composed of individual molecules. The combination of these tools has improved the detection limits and the dynamic range of microarray analysis, helped develop powerful single-molecule sequencing approaches, and offered biophysical examination with high throughput and molecular detail. The topic of this Highlight integrates several disciplines and is written for interested chemists, biophysicists and nanotechnologists.
Collapse
Affiliation(s)
- Stefan Howorka
- Department of Chemistry, Institute for Structural and Molecular Biology, University College London, London WC1H 0AJ, UK.
| | | |
Collapse
|
30
|
Abstract
The outer surface of many archaea and bacteria is coated with a proteinaceous surface layer (known as an S-layer), which is formed by the self-assembly of monomeric proteins into a regularly spaced, two-dimensional array. Bacteria possess dedicated pathways for the secretion and anchoring of the S-layer to the cell wall, and some Gram-positive species have large S-layer-associated gene families. S-layers have important roles in growth and survival, and their many functions include the maintenance of cell integrity, enzyme display and, in pathogens and commensals, interaction with the host and its immune system. In this Review, we discuss our current knowledge of S-layer and related proteins, including their structures, mechanisms of secretion and anchoring and their diverse functions.
Collapse
|
31
|
Böth D, Steiner EM, Stadler D, Lindqvist Y, Schnell R, Schneider G. Structure of LdtMt2, an L,D-transpeptidase from Mycobacterium tuberculosis. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:432-41. [PMID: 23519418 PMCID: PMC3605044 DOI: 10.1107/s0907444912049268] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 11/30/2012] [Indexed: 05/12/2023]
Abstract
The transpeptidase LtdMt2 catalyzes the formation of the (3-3) cross-links characteristic of the peptidoglycan layer in the Mycobacterium tuberculosis cell wall. Bioinformatics analysis suggests that the extramembrane part of the enzyme consists of three domains: two smaller domains (denoted as A and B domains) and a transpeptidase domain (the C domain) at the C-terminus. The crystal structures of two fragments comprising the AB domains and the BC domains have been determined. The structure of the BC module, which was determined to 1.86 Å resolution using Se-SAD phasing, consists of the B domain with an immunoglobulin-related fold and the catalytic domain belonging to the ErfK/YbiS/YbnG fold family. The structure of the AB-domain fragment, which was solved by molecular replacement to 1.45 Å resolution, reveals that despite a lack of overall sequence identity the A domain is structurally very similar to the B domain. Combining the structures of the two fragments provides a view of the complete three-domain extramembrane part of LdtMt2 and shows that the protein extends at least 80-100 Å from the plasma membrane into the peptidoglycan layer and thus defines the maximal distance at which cross-links are formed by this enzyme. The LdtMt-related transpeptidases contain one or two immunoglobulin domains, which suggests that these might serve as extender units to position the catalytic domain at an appropriate distance from the membrane in the peptidoglycan layer.
Collapse
Affiliation(s)
- Dominic Böth
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 177 Stockholm, Sweden
| | - Eva Maria Steiner
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 177 Stockholm, Sweden
| | - Daniela Stadler
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 177 Stockholm, Sweden
| | - Ylva Lindqvist
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 177 Stockholm, Sweden
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 177 Stockholm, Sweden
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17 177 Stockholm, Sweden
| |
Collapse
|
32
|
Pleschberger M, Hildner F, Rünzler D, Gelbmann N, Mayer HF, Sleytr UB, Egelseer EM. Identification of a novel gene cluster in the upstream region of the S-layer gene sbpA involved in cell wall metabolism of Lysinibacillus sphaericus CCM 2177 and characterization of the recombinantly produced autolysin and pyruvyl transferase. Arch Microbiol 2013; 195:323-37. [PMID: 23443476 DOI: 10.1007/s00203-013-0876-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 11/29/2022]
Abstract
The S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177 assembles into a square (p4) lattice structure and recognizes a pyruvylated secondary cell wall polymer (SCWP) as the proper anchoring structure to the rigid cell wall layer. Sequencing of 8,004 bp in the 5'-upstream region of the S-layer gene sbpA led to five ORFs-encoding proteins involved in cell wall metabolism. After cloning and heterologous expression of ORF1 and ORF5 in Escherichia coli, the recombinant autolysin rAbpA and the recombinant pyruvyl transferase rCsaB were isolated, purified, and correct folding was confirmed by circular dichroism. Although rAbpA encoded by ORF1 showed amidase activity, it could attack whole cells of Ly. sphaericus CCM 2177 only after complete extraction of the S-layer lattice. Despite the presence of three S-layer-homology motifs on the N-terminal part, rAbpA did not show detectable affinity to peptidoglycan-containing sacculi, nor to isolated SCWP. As the molecular mass of the autolysin lies above the molecular exclusion limit of the S-layer, AbpA is obviously trapped within the rigid cell wall layer by the isoporous protein lattice. Immunogold-labeling of ultrathin-sectioned whole cells of Ly. sphaericus CCM 2177 with a polyclonal rabbit antiserum raised against rCsaB encoded by ORF5, and cell fractionation experiments demonstrated that the pyruvyl transferase was located in the cytoplasm, but not associated with cell envelope components including the plasma membrane. In enzymatic assays, rCsaB clearly showed pyruvyl transferase activity. By using RT-PCR, specific transcripts for each ORF could be detected. Cotranscription could be confirmed for ORF2 and ORF3.
Collapse
Affiliation(s)
- Magdalena Pleschberger
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
33
|
Goessweiner-Mohr N, Grumet L, Pavkov-Keller T, Birner-Gruenberger R, Grohmann E, Keller W. Crystallization and preliminary structure determination of the transfer protein TraM from the Gram-positive conjugative plasmid pIP501. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:178-83. [PMID: 23385763 PMCID: PMC3564624 DOI: 10.1107/s1744309113000134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/02/2013] [Indexed: 11/07/2023]
Abstract
The major means of horizontal gene spread (e.g. of antibiotic resistance) is conjugative plasmid transfer. It presents a serious threat especially for hospitalized and immuno-suppressed patients, as it can lead to the accelerated spread of bacteria with multiple antibiotic resistances. Detailed information about the process is available only for bacteria of Gram-negative (G-) origin and little is known about the corresponding mechanisms in Gram-positive (G+) bacteria. Here we present the purification, biophysical characterization, crystallization and preliminary structure determination of the TraM C-terminal domain (TraMΔ, comprising residues 190-322 of the full-length protein), a putative transfer protein from the G+ conjugative model plasmid pIP501. The crystals diffracted to 2.5 Å resolution and belonged to space group P1, with unit-cell parameters a = 39.21, b = 54.98, c = 93.47 Å, α = 89.91, β = 86.44, γ = 78.63° and six molecules per asymmetric unit. The preliminary structure was solved by selenomethionine single-wavelength anomalous diffraction.
Collapse
Affiliation(s)
- Nikolaus Goessweiner-Mohr
- Institute for Molecular Biosciences, Karl-Franzens-University Graz, Humboldtstrasse 50/III, 8010 Graz, Styria, Austria
| | - Lukas Grumet
- Institute for Molecular Biosciences, Karl-Franzens-University Graz, Humboldtstrasse 50/III, 8010 Graz, Styria, Austria
| | - Tea Pavkov-Keller
- Institute for Molecular Biosciences, Karl-Franzens-University Graz, Humboldtstrasse 50/III, 8010 Graz, Styria, Austria
| | - Ruth Birner-Gruenberger
- Institute of Pathology and Center of Medical Research – Core Facility Mass Spectrometry, Medical University Graz, Stiftingtalstrasse 24, 8010 Graz, Styria, Austria
| | - Elisabeth Grohmann
- Division of Infectious Diseases, University Medical Center Freiburg, Hugstetter Str. 55, Freiburg, 79106, Germany
| | - Walter Keller
- Institute for Molecular Biosciences, Karl-Franzens-University Graz, Humboldtstrasse 50/III, 8010 Graz, Styria, Austria
| |
Collapse
|
34
|
Pum D, Toca-Herrera JL, Sleytr UB. S-layer protein self-assembly. Int J Mol Sci 2013; 14:2484-501. [PMID: 23354479 PMCID: PMC3587997 DOI: 10.3390/ijms14022484] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 11/16/2022] Open
Abstract
Crystalline S(urface)-layers are the most commonly observed cell surface structures in prokaryotic organisms (bacteria and archaea). S-layers are highly porous protein meshworks with unit cell sizes in the range of 3 to 30 nm, and thicknesses of ~10 nm. One of the key features of S-layer proteins is their intrinsic capability to form self-assembled mono- or double layers in solution, and at interfaces. Basic research on S-layer proteins laid foundation to make use of the unique self-assembly properties of native and, in particular, genetically functionalized S-layer protein lattices, in a broad range of applications in the life and non-life sciences. This contribution briefly summarizes the knowledge about structure, genetics, chemistry, morphogenesis, and function of S-layer proteins and pays particular attention to the self-assembly in solution, and at differently functionalized solid supports.
Collapse
Affiliation(s)
- Dietmar Pum
- Department of Nanobiotechnology, Institute for Biophysics, University of Natural Resources and Life Science, Vienna, Muthgasse 11, Vienna 1190, Austria; E-Mails: (J.L.T.-H); (U.B.S.)
| | - Jose Luis Toca-Herrera
- Department of Nanobiotechnology, Institute for Biophysics, University of Natural Resources and Life Science, Vienna, Muthgasse 11, Vienna 1190, Austria; E-Mails: (J.L.T.-H); (U.B.S.)
| | - Uwe B. Sleytr
- Department of Nanobiotechnology, Institute for Biophysics, University of Natural Resources and Life Science, Vienna, Muthgasse 11, Vienna 1190, Austria; E-Mails: (J.L.T.-H); (U.B.S.)
| |
Collapse
|
35
|
Đordić A, Egelseer EM, Tesarz M, Sleytr UB, Keller W, Pavkov-Keller T. Crystallization of domains involved in self-assembly of the S-layer protein SbsC. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1511-4. [PMID: 23192035 PMCID: PMC3509976 DOI: 10.1107/s1744309112042650] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/11/2012] [Indexed: 12/02/2022]
Abstract
The Gram-positive bacterium Geobacillus stearothermophilus ATCC 12980 is completely covered with a two-dimensional crystalline monolayer composed of the S-layer protein SbsC. In order to complete the structure of the full-length protein, additional soluble constructs containing the crucial domains for self-assembly have been successfully cloned, expressed and purified. Crystals obtained from three different recombinant constructs yielded diffraction to 3.4, 2.8 and 1.5 Å resolution. Native data have been collected.
Collapse
Affiliation(s)
- Anđela Đordić
- Institute of Molecular Biosciences, Karl-Franzens University Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Eva M. Egelseer
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Manfred Tesarz
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Uwe B. Sleytr
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, Karl-Franzens University Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, Karl-Franzens University Graz, Humboldtstrasse 50, 8010 Graz, Austria
- ACIB (Austrian Centre of Industrial Biotechnology) GmbH, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
36
|
Are the surface layer homology domains essential for cell surface display and glycosylation of the S-layer protein from Paenibacillus alvei CCM 2051T? J Bacteriol 2012. [PMID: 23204458 DOI: 10.1128/jb.01487-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Paenibacillus alvei CCM 2051(T) cells are decorated with a two-dimensional (2D) crystalline array comprised of the glycosylated S-layer protein SpaA. At its N terminus, SpaA possesses three consecutive surface layer (S-layer) homology (SLH) domains containing the amino acid motif TRAE, known to play a key role in cell wall binding, as well as the TVEE and TRAQ variations thereof. SpaA is predicted to be anchored to the cell wall by interaction of the SLH domains with a peptidoglycan (PG)-associated, nonclassical, pyruvylated secondary cell wall polymer (SCWP). In this study, we have analyzed the role of the three predicted binding motifs within the SLH domains by mutating them into TAAA motifs, either individually, pairwise, or all of them. Effects were visualized in vivo by homologous expression of chimeras made of the mutated S-layer proteins and enhanced green fluorescent protein and in an in vitro binding assay using His-tagged SpaA variants and native PG-containing cell wall sacculi that either contained SCWP or were deprived of it. Experimental data indicated that (i) the TRAE, TVEE, and TRAQ motifs are critical for the binding function of SLH domains, (ii) two functional motifs are sufficient for cell wall binding, regardless of the domain location, (iii) SLH domains have a dual-recognition function for the SCWP and the PG, and (iv) cell wall anchoring is not necessary for SpaA glycosylation. Additionally, we showed that the SLH domains of SpaA are sufficient for in vivo cell surface display of foreign proteins at the cell surface of P. alvei.
Collapse
|
37
|
Baranova E, Fronzes R, Garcia-Pino A, Van Gerven N, Papapostolou D, Péhau-Arnaudet G, Pardon E, Steyaert J, Howorka S, Remaut H. SbsB structure and lattice reconstruction unveil Ca2+ triggered S-layer assembly. Nature 2012; 487:119-22. [PMID: 22722836 DOI: 10.1038/nature11155] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/19/2012] [Indexed: 11/09/2022]
Abstract
S-layers are regular two-dimensional semipermeable protein layers that constitute a major cell-wall component in archaea and many bacteria. The nanoscale repeat structure of the S-layer lattices and their self-assembly from S-layer proteins (SLPs) have sparked interest in their use as patterning and display scaffolds for a range of nano-biotechnological applications. Despite their biological abundance and the technological interest in them, structural information about SLPs is limited to truncated and assembly-negative proteins. Here we report the X-ray structure of the SbsB SLP of Geobacillus stearothermophilus PV72/p2 by the use of nanobody-aided crystallization. SbsB consists of a seven-domain protein, formed by an amino-terminal cell-wall attachment domain and six consecutive immunoglobulin-like domains, that organize into a φ-shaped disk-like monomeric crystallization unit stabilized by interdomain Ca(2+) ion coordination. A Ca(2+)-dependent switch to the condensed SbsB quaternary structure pre-positions intermolecular contact zones and renders the protein competent for S-layer assembly. On the basis of crystal packing, chemical crosslinking data and cryo-electron microscopy projections, we present a model for the molecular organization of this SLP into a porous protein sheet inside the S-layer. The SbsB lattice represents a previously undescribed structural model for protein assemblies and may advance our understanding of SLP physiology and self-assembly, as well as the rational design of engineered higher-order structures for biotechnology.
Collapse
Affiliation(s)
- Ekaterina Baranova
- Structural and Molecular Microbiology, VIB Department of Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Structure of the surface layer of the methanogenic archaean Methanosarcina acetivorans. Proc Natl Acad Sci U S A 2012; 109:11812-7. [PMID: 22753492 DOI: 10.1073/pnas.1120595109] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Archaea have a self-assembling proteinaceous surface (S-) layer as the primary and outermost boundary of their cell envelopes. The S-layer maintains structural rigidity, protects the organism from adverse environmental elements, and yet provides access to all essential nutrients. We have determined the crystal structure of one of the two "homologous" tandem polypeptide repeats that comprise the Methanosarcina acetivorans S-layer protein and propose a high-resolution model for a microbial S-layer. The molecular features of our hexameric S-layer model recapitulate those visualized by medium resolution electron microscopy studies of microbial S-layers and greatly expand our molecular view of S-layer dimensions, porosity, and symmetry. The S-layer model reveals a negatively charged molecular sieve that presents both a charge and size barrier to restrict access to the cell periplasmic-like space. The β-sandwich folds of the S-layer protein are structurally homologous to eukaryotic virus envelope proteins, suggesting that Archaea and viruses have arrived at a common solution for protective envelope structures. These results provide insight into the evolutionary origins of primitive cell envelope structures, of which the S-layer is considered to be among the most primitive: it also provides a platform for the development of self-assembling nanomaterials with diverse functional and structural properties.
Collapse
|
39
|
Schneewind O, Missiakas DM. Protein secretion and surface display in Gram-positive bacteria. Philos Trans R Soc Lond B Biol Sci 2012; 367:1123-39. [PMID: 22411983 PMCID: PMC3297441 DOI: 10.1098/rstb.2011.0210] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions.
Collapse
Affiliation(s)
- Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| | | |
Collapse
|
40
|
Korkmaz N, Börrnert F, Köhler D, Mendes RG, Bachmatiuk A, Rümmeli MH, Büchner B, Eng LM, Rödel G. Metallization and investigation of electrical properties of in vitro recrystallized mSbsC-eGFP assemblies. NANOTECHNOLOGY 2011; 22:375606. [PMID: 21857099 DOI: 10.1088/0957-4484/22/37/375606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Surface layer (SL) proteins are self-assembling nanosized arrays which can be recrystallized in solution or on surfaces. In this paper, we investigate the metallization, contact potential difference and conductivity of in vitro recrystallized mSbsC-eGFP tube-like assemblies for possible applications in nanobiotechnology. Treatment of mSbsC-eGFP tube-like structures with 150 mM Pt salt solution resulted in the formation of metallized SL assemblies decorated with Pt nanoparticles (∅ > 3 nm) which were closely packed and aggregated into metal clusters. Kelvin probe force microscopy (KPFM) measurements revealed that metallized and unmetallized SL templates showed different surface potential behaviours, demonstrating that the metal coating changes the electrostatic surface characteristics of SL assemblies. In situ conductivity measurements showed that unmetallized SL assemblies were not conductive. Metallized samples showed linear I-V dependence between - 1 and + 1 V with a conductivity of ∼ 10(3) S m( - 1).
Collapse
Affiliation(s)
- Nuriye Korkmaz
- Institut für Genetik, Technische Universität Dresden, 01217 Dresden, Germany. nuriye
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Horejs C, Ristl R, Tscheliessnig R, Sleytr UB, Pum D. Single-molecule force spectroscopy reveals the individual mechanical unfolding pathways of a surface layer protein. J Biol Chem 2011; 286:27416-24. [PMID: 21690085 PMCID: PMC3149335 DOI: 10.1074/jbc.m111.251322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/15/2011] [Indexed: 12/14/2022] Open
Abstract
Surface layers (S-layers) represent an almost universal feature of archaeal cell envelopes and are probably the most abundant bacterial cell proteins. S-layers are monomolecular crystalline structures of single protein or glycoprotein monomers that completely cover the cell surface during all stages of the cell growth cycle, thereby performing their intrinsic function under a constant intra- and intermolecular mechanical stress. In gram-positive bacteria, the individual S-layer proteins are anchored by a specific binding mechanism to polysaccharides (secondary cell wall polymers) that are linked to the underlying peptidoglycan layer. In this work, atomic force microscopy-based single-molecule force spectroscopy and a polyprotein approach are used to study the individual mechanical unfolding pathways of an S-layer protein. We uncover complex unfolding pathways involving the consecutive unfolding of structural intermediates, where a mechanical stability of 87 pN is revealed. Different initial extensibilities allow the hypothesis that S-layer proteins adapt highly stable, mechanically resilient conformations that are not extensible under the presence of a pulling force. Interestingly, a change of the unfolding pathway is observed when individual S-layer proteins interact with secondary cell wall polymers, which is a direct signature of a conformational change induced by the ligand. Moreover, the mechanical stability increases up to 110 pN. This work demonstrates that single-molecule force spectroscopy offers a powerful tool to detect subtle changes in the structure of an individual protein upon binding of a ligand and constitutes the first conformational study of surface layer proteins at the single-molecule level.
Collapse
Affiliation(s)
| | - Robin Ristl
- From the Department for Nanobiotechnology and
| | - Rupert Tscheliessnig
- the Austrian Centre of Industrial Biotechnology, c/o Institute for Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | | | - Dietmar Pum
- From the Department for Nanobiotechnology and
| |
Collapse
|
42
|
Howorka S. Rationally engineering natural protein assemblies in nanobiotechnology. Curr Opin Biotechnol 2011; 22:485-91. [PMID: 21664809 DOI: 10.1016/j.copbio.2011.05.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/06/2011] [Accepted: 05/10/2011] [Indexed: 01/07/2023]
Abstract
Multimeric protein assemblies are essential components in viruses, bacteria, eukaryotic cells, and organisms where they act as cytoskeletal scaffold, storage containers, or for directional transport. The bottom-up structures can be exploited in nanobiotechnology by harnessing their built-in properties and combining them with new functional modules. This review summarizes the design principles of natural protein assemblies, highlights recent progress in their structural elucidation, and shows how rational engineering can create new biomaterials for applications in vaccine development, biocatalysis, materials science, and synthetic biology.
Collapse
Affiliation(s)
- Stefan Howorka
- Department of Chemistry, University College London, London WC1H 0AJ, UK.
| |
Collapse
|
43
|
Kern J, Wilton R, Zhang R, Binkowski TA, Joachimiak A, Schneewind O. Structure of surface layer homology (SLH) domains from Bacillus anthracis surface array protein. J Biol Chem 2011; 286:26042-9. [PMID: 21572039 DOI: 10.1074/jbc.m111.248070] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Surface (S)-layers, para-crystalline arrays of protein, are deposited in the envelope of most bacterial species. These surface organelles are retained in the bacterial envelope through the non-covalent association of proteins with cell wall carbohydrates. Bacillus anthracis, a Gram-positive pathogen, produces S-layers of the protein Sap, which uses three consecutive repeats of the surface-layer homology (SLH) domain to engage secondary cell wall polysaccharides (SCWP). Using x-ray crystallography, we reveal here the structure of these SLH domains, which assume the shape of a three-prong spindle. Each SLH domain contributes to a three-helical bundle at the spindle base, whereas another α-helix and its connecting loops generate the three prongs. The inter-prong grooves contain conserved cationic and anionic residues, which are necessary for SLH domains to bind the B. anthracis SCWP. Modeling experiments suggest that the SLH domains of other S-layer proteins also fold into three-prong spindles and capture bacterial envelope carbohydrates by a similar mechanism.
Collapse
Affiliation(s)
- Justin Kern
- Department of Microbiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
44
|
Horejs C, Gollner H, Pum D, Sleytr UB, Peterlik H, Jungbauer A, Tscheliessnig R. Atomistic structure of monomolecular surface layer self-assemblies: toward functionalized nanostructures. ACS NANO 2011; 5:2288-2297. [PMID: 21375257 DOI: 10.1021/nn1035729] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The concept of self-assembly is one of the most promising strategies for the creation of defined nanostructures and therefore became an essential part of nanotechnology for the controlled bottom-up design of nanoscale structures. Surface layers (S-layers), which represent the cell envelope of a great variety of prokaryotic cells, show outstanding self-assembly features in vitro and have been successfully used as the basic matrix for molecular construction kits. Here we present the three-dimensional structure of an S-layer lattice based on tetrameric unit cells, which will help to facilitate the directed binding of various molecules on the S-layer lattice, thereby creating functional nanoarrays for applications in nanobiotechnology. Our work demonstrates the successful combination of computer simulations, electron microscopy (TEM), and small-angle X-ray scattering (SAXS) as a tool for the investigation of the structure of self-assembling or aggregating proteins, which cannot be determined by X-ray crystallography. To the best of our knowledge, this is the first structural model at an amino acid level of an S-layer unit cell that exhibits p4 lattice symmetry.
Collapse
Affiliation(s)
- Christine Horejs
- Department for Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
45
|
Korkmaz N, Ostermann K, Rödel G. Calcium dependent formation of tubular assemblies by recombinant S-layer proteins in vivo and in vitro. NANOTECHNOLOGY 2011; 22:095601. [PMID: 21258149 DOI: 10.1088/0957-4484/22/9/095601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Surface layer proteins have the appealing property to self-assemble in nanosized arrays in solution and on solid substrates. In this work, we characterize the formation of assembly structures of the recombinant surface layer protein SbsC of Geobacillus stearothermophilus ATTC 12980, which was tagged with enhanced green fluorescent protein and expressed in the yeast Saccharomyces cerevisiae. The tubular structures formed by the protein in vivo are retained upon bursting the cells by osmotic shock; however, their average length is decreased. During dialysis, monomers obtained by treatment with chaotropic chemicals recrystallize again to form tube-like structures. This process is strictly dependent on calcium (Ca(2+)) ions, with an optimal concentration of 10 mM. Further increase of the Ca(2+) concentration results in multiple non-productive nucleation points. We further show that the lengths of the S-layer assemblies increase with time and can be controlled by pH. After 48 h, the average length at pH 9.0 is 4.13 µm compared to 2.69 µm at pH 5.5. Successful chemical deposition of platinum indicates the potential of recrystallized mSbsC-eGFP structures for nanobiotechnological applications.
Collapse
Affiliation(s)
- Nuriye Korkmaz
- Institut für Genetik, Technische Universität Dresden, Dresden, Germany.
| | | | | |
Collapse
|
46
|
Horejs C, Pum D, Sleytr UB, Peterlik H, Jungbauer A, Tscheliessnig R. Surface layer protein characterization by small angle x-ray scattering and a fractal mean force concept: from protein structure to nanodisk assemblies. J Chem Phys 2011; 133:175102. [PMID: 21054069 DOI: 10.1063/1.3489682] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Surface layers (S-layers) are the most commonly observed cell surface structure of prokaryotic organisms. They are made up of proteins that spontaneously self-assemble into functional crystalline lattices in solution, on various solid surfaces, and interfaces. While classical experimental techniques failed to recover a complete structural model of an unmodified S-layer protein, small angle x-ray scattering (SAXS) provides an opportunity to study the structure of S-layer monomers in solution and of self-assembled two-dimensional sheets. For the protein under investigation we recently suggested an atomistic structural model by the use of molecular dynamics simulations. This structural model is now refined on the basis of SAXS data together with a fractal assembly approach. Here we show that a nondiluted critical system of proteins, which crystallize into monomolecular structures, might be analyzed by SAXS if protein-protein interactions are taken into account by relating a fractal local density distribution to a fractal local mean potential, which has to fulfill the Poisson equation. The present work demonstrates an important step into the elucidation of the structure of S-layers and offers a tool to analyze the structure of self-assembling systems in solution by means of SAXS and computer simulations.
Collapse
Affiliation(s)
- Christine Horejs
- Department for Nanobiotechnology, University of Natural Resources and Applied Life Sciences, 1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
47
|
Sleytr UB, Schuster B, Egelseer EM, Pum D, Horejs CM, Tscheliessnig R, Ilk N. Nanobiotechnology with S-layer proteins as building blocks. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:277-352. [PMID: 21999999 DOI: 10.1016/b978-0-12-415906-8.00003-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits. Most important, physicochemical properties and functional groups on the protein lattice are arranged in well-defined positions and orientations. Many applications of S-layers depend on the capability of isolated subunits to recrystallize into monomolecular arrays in suspension or on suitable surfaces (e.g., polymers, metals, silicon wafers) or interfaces (e.g., lipid films, liposomes, emulsomes). S-layers also represent a unique structural basis and patterning element for generating more complex supramolecular structures involving all major classes of biological molecules (e.g., proteins, lipids, glycans, nucleic acids, or combinations of these). Thus, S-layers fulfill key requirements as building blocks for the production of new supramolecular materials and nanoscale devices as required in molecular nanotechnology, nanobiotechnology, biomimetics, and synthetic biology.
Collapse
Affiliation(s)
- Uwe B Sleytr
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
48
|
The Structure of Bacterial S-Layer Proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:73-130. [DOI: 10.1016/b978-0-12-415906-8.00004-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
Analysis of the intact surface layer of Caulobacter crescentus by cryo-electron tomography. J Bacteriol 2010; 192:5855-65. [PMID: 20833802 DOI: 10.1128/jb.00747-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The surface layers (S layers) of those bacteria and archaea that elaborate these crystalline structures have been studied for 40 years. However, most structural analysis has been based on electron microscopy of negatively stained S-layer fragments separated from cells, which can introduce staining artifacts and allow rearrangement of structures prone to self-assemble. We present a quantitative analysis of the structure and organization of the S layer on intact growing cells of the Gram-negative bacterium Caulobacter crescentus using cryo-electron tomography (CET) and statistical image processing. Instead of the expected long-range order, we observed different regions with hexagonally organized subunits exhibiting short-range order and a broad distribution of periodicities. Also, areas of stacked double layers were found, and these increased in extent when the S-layer protein (RsaA) expression level was elevated by addition of multiple rsaA copies. Finally, we combined high-resolution amino acid residue-specific Nanogold labeling and subtomogram averaging of CET volumes to improve our understanding of the correlation between the linear protein sequence and the structure at the 2-nm level of resolution that is presently available. The results support the view that the U-shaped RsaA monomer predicted from negative-stain tomography proceeds from the N terminus at one vertex, corresponding to the axis of 3-fold symmetry, to the C terminus at the opposite vertex, which forms the prominent 6-fold symmetry axis. Such information will help future efforts to analyze subunit interactions and guide selection of internal sites for display of heterologous protein segments.
Collapse
|
50
|
Fluorescence energy transfer in the bi-fluorescent S-layer tandem fusion protein ECFP-SgsE-YFP. J Struct Biol 2010; 172:276-83. [PMID: 20650318 DOI: 10.1016/j.jsb.2010.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 07/05/2010] [Accepted: 07/07/2010] [Indexed: 11/21/2022]
Abstract
This work reports for the first time on the fabrication of a bi-functional S-layer tandem fusion protein which is able to self-assemble on solid supports without losing its functionality. Two variants of the green fluorescent protein (GFP) were genetically combined with a self-assembly system having the remarkable opportunity to interact with each other and act as functional nanopatterning biocoating. The S-layer protein SgsE of Geobacillus stearothermophilus NRS 2004/3a was fused with the cyan ECFP donor protein at the SgsE N-terminus and with the yellow YFP acceptor protein at the C-terminus. The fluorescence energy transfer was studied with spectrofluorimetry, confocal microscopy and flow cytometry, whilst protein self-assembly (on silicon dioxide particles) and structural investigations were carried out with atomic force microscopy (AFM). The fluorescence resonance energy transfer efficiency of reassembled SgsE tandem protein was 20.0 ± 6.1% which is almost the same transfer efficiency shown in solution (19.6 ± 0.1%). This work shows that bi-fluorescent S-layer fusion proteins self-assemble on silica particles retaining their fluorescent properties.
Collapse
|