1
|
Honrubia JM, Valverde JR, Muñoz-Santos D, Ripoll-Gómez J, de la Blanca N, Izquierdo J, Villarejo-Torres M, Marchena-Pasero A, Rueda-Huélamo M, Nombela I, Ruiz-Yuste M, Zuñiga S, Sola I, Enjuanes L. Interaction between SARS-CoV PBM and Cellular PDZ Domains Leading to Virus Virulence. Viruses 2024; 16:1214. [PMID: 39205188 PMCID: PMC11359647 DOI: 10.3390/v16081214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The interaction between SARS-CoV PDZ-binding motifs (PBMs) and cellular PDZs is responsible for virus virulence. The PBM sequence present in the 3a and envelope (E) proteins of SARS-CoV can potentially bind to over 400 cellular proteins containing PDZ domains. The role of SARS-CoV 3a and E proteins was studied. SARS-CoVs, in which 3a-PBM and E-PMB have been deleted (3a-PBM-/E-PBM-), reduced their titer around one logarithmic unit but still were viable. In addition, the absence of the E-PBM and the replacement of 3a-PBM with that of E did not allow the rescue of SARS-CoV. E protein PBM was necessary for virulence, activating p38-MAPK through the interaction with Syntenin-1 PDZ domain. However, the presence or absence of the homologous motif in the 3a protein, which does not bind to Syntenin-1, did not affect virus pathogenicity. Mutagenesis analysis and in silico modeling were performed to study the extension of the PBM of the SARS-CoV E protein. Alanine and glycine scanning was performed revealing a pair of amino acids necessary for optimum virus replication. The binding of E protein with the PDZ2 domain of the Syntenin-1 homodimer induced conformational changes in both PDZ domains 1 and 2 of the dimer.
Collapse
Affiliation(s)
- Jose M. Honrubia
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jose R. Valverde
- Scientific Computing Service, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Diego Muñoz-Santos
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jorge Ripoll-Gómez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nuria de la Blanca
- Scientific Computing Service, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Jorge Izquierdo
- Scientific Computing Service, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Marta Villarejo-Torres
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ana Marchena-Pasero
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María Rueda-Huélamo
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ivan Nombela
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mercedes Ruiz-Yuste
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
2
|
Sundermeyer L, Folkerts JG, Lückel B, Mack C, Baumgart M, Bott M. Cellular localization of the hybrid pyruvate/2-oxoglutarate dehydrogenase complex in the actinobacterium Corynebacterium glutamicum. Microbiol Spectr 2023; 11:e0266823. [PMID: 37754766 PMCID: PMC10581250 DOI: 10.1128/spectrum.02668-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/05/2023] [Indexed: 09/28/2023] Open
Abstract
For many bacterial proteins, specific localizations within the cell have been demonstrated, but enzymes involved in central metabolism are usually considered to be homogenously distributed within the cytoplasm. Here, we provide an example for a spatially defined localization of a unique enzyme complex found in actinobacteria, the hybrid pyruvate/2-oxoglutarate dehydrogenase complex (PDH-ODH). In non-actinobacterial cells, PDH and ODH form separate multienzyme complexes of megadalton size composed of three different subunits, E1, E2, and E3. The actinobacterial PDH-ODH complex is composed of four subunits, AceE (E1p), AceF (E2p), Lpd (E3), and OdhA (E1oE2o). Using fluorescence microscopy, we observed that in Corynebacterium glutamicum, all four subunits are co-localized in distinct spots at the cell poles, and in larger cells, additional spots are present at mid-cell. These results further confirm the existence of the hybrid complex. The unphosporylated OdhI protein, which binds to OdhA and inhibits ODH activity, was co-localized with OdhA at the poles, whereas phosphorylated OdhI, which does not bind OdhA, was distributed in the entire cytoplasm. Isocitrate dehydrogenase and glutamate dehydrogenase, both metabolically linked to ODH, were evenly distributed in the cytoplasm. Based on the available structural data for individual PDH-ODH subunits, a novel supramolecular architecture of the hybrid complex differing from classical PDH and ODH complexes has to be postulated. Our results suggest that localization at the poles or at mid-cell is most likely caused by nucleoid exclusion and results in a spatially organized metabolism in actinobacteria, with consequences yet to be studied. IMPORTANCE Enzymes involved in the central metabolism of bacteria are usually considered to be distributed within the entire cytoplasm. Here, we provide an example for a spatially defined localization of a unique enzyme complex of actinobacteria, the hybrid pyruvate dehydrogenase/2-oxoglutarate dehydrogenase (PDH-ODH) complex composed of four different subunits. Using fusions with mVenus or mCherry and fluorescence microscopy, we show that all four subunits are co-localized in distinct spots at the cell poles, and in larger cells, additional spots were observed at mid-cell. These results clearly support the presence of the hybrid PDH-ODH complex and suggest a similar localization in other actinobacteria. The observation of a defined spatial localization of an enzyme complex catalyzing two key reactions of central metabolism poses questions regarding possible consequences for the availability of substrates and products within the cell and other bacterial enzyme complexes showing similar behavior.
Collapse
Affiliation(s)
- Lea Sundermeyer
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Jan-Gerrit Folkerts
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Benita Lückel
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Christina Mack
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Meike Baumgart
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
3
|
Wang Q. The role of forkhead-associated (FHA)-domain proteins in plant biology. PLANT MOLECULAR BIOLOGY 2023; 111:455-472. [PMID: 36849846 DOI: 10.1007/s11103-023-01338-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The forkhead-associated (FHA) domain, a well-characterized small protein module that mediates protein-protein interactions by targeting motifs containing phosphothreonine, is present in many regulatory molecules like protein kinase, phosphatases, transcription factors, and other functional proteins. FHA-domain containing proteins in yeast and human are involved in a large variety of cellular processes such as DNA repair, cell cycle arrest, or pre-mRNA processing. Since the first FHA-domain protein, kinase-associated protein phosphatase (KAPP) was found in plants, the interest in plant FHA-containing proteins has increased dramatically, mainly due to the important role of FHA domain-containing proteins in plant growth and development. In this review, we provide a comprehensive overview of the fundamental properties of FHA domain-containing proteins in plants, and systematically summarized and analyzed the research progress of proteins containing the FHA domain in plants. We also emphasized that AT5G47790 and its homologs may play an important role as the regulatory subunit of protein phosphatase 1 (PP1) in plants.
Collapse
Affiliation(s)
- Qiuling Wang
- Institute of Future Agriculture, State Key Laboratory of Crop Stress Biology for Arid Areas, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
4
|
Melo RM, de Souza JMF, Williams TCR, Fontes W, de Sousa MV, Ricart CAO, do Vale LHF. Revealing Corynebacterium glutamicum proteoforms through top-down proteomics. Sci Rep 2023; 13:2602. [PMID: 36788287 PMCID: PMC9929327 DOI: 10.1038/s41598-023-29857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Corynebacterium glutamicum is a bacterium widely employed in the industrial production of amino acids as well as a broad range of other biotechnological products. The present study describes the characterization of C. glutamicum proteoforms, and their post-translational modifications (PTMs) employing top-down proteomics. Despite previous evidence of PTMs having roles in the regulation of C. glutamicum metabolism, this is the first top-down proteome analysis of this organism. We identified 1125 proteoforms from 273 proteins, with 60% of proteins presenting at least one mass shift, suggesting the presence of PTMs, including several acetylated, oxidized and formylated proteoforms. Furthermore, proteins relevant to amino acid production, protein secretion, and oxidative stress were identified with mass shifts suggesting the presence of uncharacterized PTMs and proteoforms that may affect biotechnologically relevant processes in this industrial workhorse. For instance, the membrane proteins mepB and SecG were identified as a cleaved and a formylated proteoform, respectively. While in the central metabolism, OdhI was identified as two proteoforms with potential biological relevance: a cleaved proteoform and a proteoform with PTMs corresponding to a 70 Da mass shift.
Collapse
Affiliation(s)
- Reynaldo Magalhães Melo
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Jaques Miranda Ferreira de Souza
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | | | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Carlos André Ornelas Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Luis Henrique Ferreira do Vale
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
5
|
Sundermeyer L, Bosco G, Gujar S, Brocker M, Baumgart M, Willbold D, Weiergräber OH, Bellinzoni M, Bott M. Characteristics of the GlnH and GlnX Signal Transduction Proteins Controlling PknG-Mediated Phosphorylation of OdhI and 2-Oxoglutarate Dehydrogenase Activity in Corynebacterium glutamicum. Microbiol Spectr 2022; 10:e0267722. [PMID: 36445153 PMCID: PMC9769921 DOI: 10.1128/spectrum.02677-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/05/2022] [Indexed: 12/03/2022] Open
Abstract
In Corynebacterium glutamicum the protein kinase PknG phosphorylates OdhI and thereby abolishes the inhibition of 2-oxoglutarate dehydrogenase activity by unphosphorylated OdhI. Our previous studies suggested that PknG activity is controlled by the periplasmic binding protein GlnH and the transmembrane protein GlnX, because ΔglnH and ΔglnX mutants showed a growth defect on glutamine similar to that of a ΔpknG mutant. We have now confirmed the involvement of GlnH and GlnX in the control of OdhI phosphorylation by analyzing the OdhI phosphorylation status and glutamate secretion in ΔglnH and ΔglnX mutants and by characterizing ΔglnX suppressor mutants. We provide evidence for GlnH being a lipoprotein and show by isothermal titration calorimetry that it binds l-aspartate and l-glutamate with moderate to low affinity, but not l-glutamine, l-asparagine, or 2-oxoglutarate. Based on a structural comparison with GlnH of Mycobacterium tuberculosis, two residues critical for the binding affinity were identified and verified. The predicted GlnX topology with four transmembrane segments and two periplasmic domains was confirmed by PhoA and LacZ fusions. A structural model of GlnX suggested that, with the exception of a poorly ordered N-terminal region, the entire protein is composed of α-helices and small loops or linkers, and it revealed similarities to other bacterial transmembrane receptors. Our results suggest that the GlnH-GlnX-PknG-OdhI-OdhA signal transduction cascade serves to adapt the flux of 2-oxoglutarate between ammonium assimilation via glutamate dehydrogenase and energy generation via the tricarboxylic acid (TCA) cycle to the availability of the amino group donors l-glutamate and l-aspartate in the environment. IMPORTANCE Actinobacteria comprise a large number of species playing important roles in biotechnology and medicine, such as Corynebacterium glutamicum, the major industrial amino acid producer, and Mycobacterium tuberculosis, the pathogen causing tuberculosis. Many actinobacteria use a signal transduction process in which the phosphorylation status of OdhI (corynebacteria) or GarA (mycobacteria) regulates the carbon flux at the 2-oxoglutarate node. Inhibition of 2-oxoglutarate dehydrogenase by unphosphorylated OdhI shifts the flux of 2-oxoglutarate from the TCA cycle toward glutamate formation and, thus, ammonium assimilation. Phosphorylation of OdhI/GarA is catalyzed by the protein kinase PknG, whose activity was proposed to be controlled by the periplasmic binding protein GlnH and the transmembrane protein GlnX. In this study, we combined genetic, biochemical, and structural modeling approaches to characterize GlnH and GlnX of C. glutamicum and confirm their roles in the GlnH-GlnX-PknG-OdhI-OdhA signal transduction cascade. These findings are relevant also to other Actinobacteria employing a similar control process.
Collapse
Affiliation(s)
- Lea Sundermeyer
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Graziella Bosco
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Srushti Gujar
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
- IBI-7: Structural Biochemistry, Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Melanie Brocker
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Meike Baumgart
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Dieter Willbold
- IBI-7: Structural Biochemistry, Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Oliver H. Weiergräber
- IBI-7: Structural Biochemistry, Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Marco Bellinzoni
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, Paris, France
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
6
|
Burastero O, Cabrera M, Lopez ED, Defelipe LA, Arcon JP, Durán R, Marti MA, Turjanski AG. Specificity and Reactivity of Mycobacterium tuberculosis Serine/Threonine Kinases PknG and PknB. J Chem Inf Model 2022; 62:1723-1733. [PMID: 35319884 DOI: 10.1021/acs.jcim.1c01358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of Tuberculosis, has 11 eukaryotic-like serine/threonine protein kinases, which play essential roles in cell growth, signal transduction, and pathogenesis. Protein kinase G (PknG) regulates the carbon and nitrogen metabolism by phosphorylation of the glycogen accumulation regulator (GarA) protein at Thr21. Protein kinase B (PknB) is involved in cell wall synthesis and cell shape, as well as phosphorylates GarA but at Thr22. While PknG seems to be constitutively activated and recognition of GarA requires phosphorylation in its unstructured tail, PknB activation is triggered by phosphorylation of its activation loop, which allows binding of the forkhead-associated domain of GarA. In the present work, we used molecular dynamics and quantum-mechanics/molecular mechanics simulations of the catalytically competent complex and kinase activity assays to understand PknG/PknB specificity and reactivity toward GarA. Two hydrophobic residues in GarA, Val24 and Phe25, seem essential for PknG binding and allow specificity for Thr21 phosphorylation. On the other hand, phosphorylated residues in PknB bind Arg26 in GarA and regulate its specificity for Thr22. We also provide a detailed analysis of the free energy profile for the phospho-transfer reaction and show why PknG has a constitutively active conformation not requiring priming phosphorylation in contrast to PknB. Our results provide new insights into these two key enzymes relevant for Mtb and the mechanisms of serine/threonine phosphorylation in bacteria.
Collapse
Affiliation(s)
- Osvaldo Burastero
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| | - Marisol Cabrera
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| | - Elias D Lopez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| | - Lucas A Defelipe
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| | - Juan Pablo Arcon
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| | - Rosario Durán
- Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay.,Instituto de Investigaciones BiológicasClemente Estable, 11600 Montevideo, Uruguay
| | - Marcelo A Marti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| | - Adrian G Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
7
|
A Tetratricopeptide Repeat Scaffold Couples Signal Detection to OdhI Phosphorylation in Metabolic Control by the Protein Kinase PknG. mBio 2021; 12:e0171721. [PMID: 34607462 PMCID: PMC8546545 DOI: 10.1128/mbio.01717-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal transduction is essential for bacteria to adapt to changing environmental conditions. Among many forms of posttranslational modifications, reversible protein phosphorylation has evolved as a ubiquitous molecular mechanism of protein regulation in response to specific stimuli. The Ser/Thr protein kinase PknG modulates the fate of intracellular glutamate by controlling the phosphorylation status of the 2-oxoglutarate dehydrogenase regulator OdhI, a function that is conserved among diverse actinobacteria. PknG has a modular organization characterized by the presence of regulatory domains surrounding the catalytic domain. Here, we present an investigation using in vivo experiments, as well as biochemical and structural methods, of the molecular basis of the regulation of PknG from Corynebacterium glutamicum (CgPknG), in the light of previous knowledge available for the kinase from Mycobacterium tuberculosis (MtbPknG). We found that OdhI phosphorylation by CgPknG is regulated by a conserved mechanism that depends on a C-terminal domain composed of tetratricopeptide repeats (TPRs) essential for metabolic homeostasis. Furthermore, we identified a conserved structural motif that physically connects the TPR domain to a β-hairpin within the flexible N-terminal region that is involved in docking interactions with OdhI. Based on our results and previous reports, we propose a model in which the TPR domain of PknG couples signal detection to the specific phosphorylation of OdhI. Overall, the available data indicate that conserved PknG domains in distant actinobacteria retain their roles in kinase regulation in response to nutrient availability.
Collapse
|
8
|
Ogata S, Hirasawa T. Induction of glutamic acid production by copper in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2021; 105:6909-6920. [PMID: 34463802 DOI: 10.1007/s00253-021-11516-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Abstract
From the previous transcriptome analysis (Hirasawa et al. Biotechnol J 13:e1700612, 2018), it was found that expression of genes whose expression is regulated by stress-responsive transcriptional regulators was altered during penicillin-induced glutamic acid production in Corynebacterium glutamicum. Therefore, we investigated whether stress treatments, such as copper and iron addition, could induce glutamic acid production in C. glutamicum and found that the addition of copper did induce glutamic acid production in this species. Moreover, we also determined that glutamic acid production levels upon copper addition in a gain-of-function mutant strain of the mechanosensitive channel, NCgl1221, involved in glutamic acid export, were comparable to glutamic acid levels produced upon penicillin addition and biotin limitation in the wild-type strain. Furthermore, disruption of the odhI gene, which encodes a protein responsible for the decreased activity of the 2-oxoglutarate dehydrogenase complex during glutamic acid production, significantly diminished glutamic acid production induced by copper. These results indicate that copper can induce glutamic acid production and this induction requires OdhI like biotin limitation and penicillin addition, but a gain-of-function mutation in the NCgl1221 mechanosensitive channel is necessary for its high-level glutamic acid production. However, a significant increase in odhI transcription was not observed with copper addition in both wild-type and NCgl1221 gain-of-function mutant strains. In addition, disruption of the csoR gene encoding a copper-responsive transcriptional repressor enhanced copper-induced glutamic acid production in the NCgl1221 gain-of-function mutant, indicating that unidentified CsoR-regulated genes may contribute to copper-induced glutamic acid production in C. glutamicum. KEY POINTS: • Copper can induce glutamic acid production by Corynebacterium glutamicum. • Copper-induced glutamic acid production requires OdhI protein. • Copper-induced glutamic acid production requires a gain-of-function mutation in the mechanosensitive channel NCgl1221, which is responsible for the production of glutamic acid.
Collapse
Affiliation(s)
- Shunsuke Ogata
- School of Life Science and Technology, Tokyo Institute of Technology, 4250 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Takashi Hirasawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4250 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
9
|
Cabarca S, Frazão de Souza M, Albert de Oliveira A, Vignoli Muniz GS, Lamy MT, Vinicius Dos Reis C, Takarada J, Effer B, Souza LS, Iriarte de la Torre L, Couñago R, Pinto Oliveira CL, Balan A. Structure of the Mycobacterium tuberculosis cPknF and conformational changes induced in forkhead-associated regulatory domains. Curr Res Struct Biol 2021; 3:165-178. [PMID: 34382010 PMCID: PMC8339232 DOI: 10.1016/j.crstbi.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) has 11 Serine-Threonine Protein Kinases (STPK) that control numerous physiological processes, including cell growth, cell division, metabolic flow, and transcription. PknF is one of the 11 Mtb STPKs that has, among other substrates, two FHA domains (FHA-1 and FHA-2) of the ATP-Binding Cassette (ABC) transporter Rv1747. Phosphorylation in T152 and T210 located in a non-structured linker that connects Rv1747 FHA domains is considerate to be the regulatory mechanism of the transporter. In this work, we resolved the three-dimensional structure of the PknF catalytic domain (cPknF) in complex with the human kinase inhibitor IKK16. cPknF is conserved when compared to other STPKs but shows specific residues in the binding site where the inhibitor is positioned. In addition, using Small Angle X-Ray Scattering analysis we monitored the behavior of the wild type and three FHA-phosphomimetic mutants in solution, and measured the cPknF affinity for these domains. The kinase showed higher affinity for the non-phosphorylated wild type domain and preference for phosphorylation of T152 inducing the rapprochement of the domains and significant structural changes. The results shed some light on the process of regulating the transporter's activity by phosphorylation and arises important questions about evolution and importance of this mechanism for the bacillus. Rv1747 is an ABC transporter which activity is regulated by PknF. cPknF is a typical Serine/Threonine Protein Kinase that can be explored as drug target. The higher affinity of cPknF for FHA-2 is important for further conformational changes. Rv1747 activation model reveals a concatenated activity essential for the system.
Collapse
Affiliation(s)
- Sindy Cabarca
- Programa de Pós-graduação em Genética, Universidade Estadual de Campinas, Campinas, 13083-862, SP, Brazil.,Laboratório de Biologia Estrutural Aplicada LBEA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil.,Grupo Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, 700001, Sucre, Colombia
| | - Maximilia Frazão de Souza
- Grupo de Fluidos Complexos, Departamento de Física Experimental, Instituto de Física, Universidade de São Paulo, São Paulo, 05508-090, SP, Brazil
| | - Andrew Albert de Oliveira
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Gabriel S Vignoli Muniz
- Departamento de Física Geral, Instituto de Física, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | - M Teresa Lamy
- Departamento de Física Geral, Instituto de Física, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | - Caio Vinicius Dos Reis
- Structural Genomics Consortium, Universidade Estadual de Campinas, Campinas, 13083-886, São Paulo, Brazil
| | - Jessica Takarada
- Structural Genomics Consortium, Universidade Estadual de Campinas, Campinas, 13083-886, São Paulo, Brazil
| | - Brian Effer
- Center of Excellence in Traslational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de la Frontera, Temuco, 01145, Chile
| | - Lucas Santos Souza
- Laboratório de Biologia Estrutural Aplicada LBEA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Lilia Iriarte de la Torre
- Programa de Pós-graduação em Genética, Universidade Estadual de Campinas, Campinas, 13083-862, SP, Brazil.,Laboratório de Biologia Estrutural Aplicada LBEA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil.,Grupo Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, 700001, Sucre, Colombia
| | - Rafael Couñago
- Structural Genomics Consortium, Universidade Estadual de Campinas, Campinas, 13083-886, São Paulo, Brazil
| | - Cristiano Luis Pinto Oliveira
- Grupo de Fluidos Complexos, Departamento de Física Experimental, Instituto de Física, Universidade de São Paulo, São Paulo, 05508-090, SP, Brazil
| | - Andrea Balan
- Laboratório de Biologia Estrutural Aplicada LBEA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Clerc I, Sagar A, Barducci A, Sibille N, Bernadó P, Cortés J. The diversity of molecular interactions involving intrinsically disordered proteins: A molecular modeling perspective. Comput Struct Biotechnol J 2021; 19:3817-3828. [PMID: 34285781 PMCID: PMC8273358 DOI: 10.1016/j.csbj.2021.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
Intrinsically Disordered Proteins and Regions (IDPs/IDRs) are key components of a multitude of biological processes. Conformational malleability enables IDPs/IDRs to perform very specialized functions that cannot be accomplished by globular proteins. The functional role for most of these proteins is related to the recognition of other biomolecules to regulate biological processes or as a part of signaling pathways. Depending on the extent of disorder, the number of interacting sites and the type of partner, very different architectures for the resulting assemblies are possible. More recently, molecular condensates with liquid-like properties composed of multiple copies of IDPs and nucleic acids have been proven to regulate key processes in eukaryotic cells. The structural and kinetic details of disordered biomolecular complexes are difficult to unveil experimentally due to their inherent conformational heterogeneity. Computational approaches, alone or in combination with experimental data, have emerged as unavoidable tools to understand the functional mechanisms of this elusive type of assemblies. The level of description used, all-atom or coarse-grained, strongly depends on the size of the molecular systems and on the timescale of the investigated mechanism. In this mini-review, we describe the most relevant architectures found for molecular interactions involving IDPs/IDRs and the computational strategies applied for their investigation.
Collapse
Affiliation(s)
- Ilinka Clerc
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Amin Sagar
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Alessandro Barducci
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Nathalie Sibille
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
11
|
Genetically Engineered Live-Attenuated Middle East Respiratory Syndrome Coronavirus Viruses Confer Full Protection against Lethal Infection. mBio 2021; 12:mBio.00103-21. [PMID: 33653888 PMCID: PMC8092200 DOI: 10.1128/mbio.00103-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
There are no approved vaccines against the life-threatening Middle East respiratory syndrome coronavirus (MERS-CoV). Attenuated vaccines have proven their potential to induce strong and long-lasting immune responses. We have previously described that severe acute respiratory syndrome coronavirus (SARS-CoV) envelope (E) protein is a virulence factor. Based on this knowledge, a collection of mutants carrying partial deletions spanning the C-terminal domain of the E protein (rMERS-CoV-E*) has been generated using a reverse genetics system. One of these mutants, MERS-CoV-E*Δ2in, was attenuated and provided full protection in a challenge with virulent MERS-CoV after a single immunization dose. The MERS-CoV-E*Δ2in mutant was stable as it maintained its attenuation after 16 passages in cell cultures and has been selected as a promising vaccine candidate.IMPORTANCE The emergence of the new highly pathogenic human coronavirus SARS-CoV-2 that has already infected more than 80 million persons, killing nearly two million of them, clearly indicates the need to design efficient and safe vaccines protecting from these coronaviruses. Modern vaccines can be derived from virus-host interaction research directed to the identification of signaling pathways essential for virus replication and for virus-induced pathogenesis, in order to learn how to attenuate these viruses and design vaccines. Using a reverse genetics system developed in our laboratory, an infectious cDNA clone of MERS-CoV was engineered. Using this cDNA, we sequentially deleted several predicted and conserved motifs within the envelope (E) protein of MERS-CoV, previously associated with the presence of virulence factors. The in vitro and in vivo evaluation of these deletion mutants highlighted the relevance of predicted linear motifs in viral pathogenesis. Two of them, an Atg8 protein binding motif (Atg8-BM), and a forkhead-associated binding motif (FHA-BM), when deleted, rendered an attenuated virus that was evaluated as a vaccine candidate, leading to full protection against challenge with a lethal dose of MERS-CoV. This approach can be extended to the engineering of vaccines protecting against the new pandemic SARS-CoV-2.
Collapse
|
12
|
Tan S, Shi F, Liu H, Yu X, Wei S, Fan Z, Li Y. Dynamic Control of 4-Hydroxyisoleucine Biosynthesis by Modified l-Isoleucine Biosensor in Recombinant Corynebacterium glutamicum. ACS Synth Biol 2020; 9:2378-2389. [PMID: 32813974 DOI: 10.1021/acssynbio.0c00127] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
4-Hydroxyisoleucine (4-HIL), a promising drug for treating diabetes, can be synthesized from the self-produced l-isoleucine (Ile) by expressing the Ile dioxygenase gene ido in Corynebacterium glutamicum. However, the requirement of three substrates, Ile, α-ketoglutarate (α-KG), and O2, makes such de novo biosynthesis difficult to be fulfilled effectively under static engineering conditions. In this study, dynamic control of 4-HIL biosynthesis by the Ile biosensor Lrp-PbrnFE was researched. The native PbrnFE promoter of natural Ile biosensor was still weak even under Ile induction. Through tetA dual genetic selection, several modified stronger PbrnFEN promoters were obtained from the synthetic library of the Ile biosensor. Dynamic regulation of ido expression by modified Ile biosensors increased the 4-HIL titer from 24.7 mM to 28.9-74.4 mM. The best strain ST04 produced even a little more 4-HIL than the static strain SN02 overexpressing ido by the strong PtacM promoter (69.7 mM). Further dynamic modulation of α-KG supply in ST04 by expressing different PbrnFEN-controlled odhI decreased the 4-HIL production but increased the l-glutamate or Ile accumulation. However, synergistic modulation of α-KG supply and O2 supply in ST04 by different combinations of PbrnFEN-odhI and PbrnFEN-vgb improved the 4-HIL production significantly, and the highest titer (135.3 mM) was obtained in ST17 strain regulating all the three genes by PbrnFE7. This titer was higher than those of all the static metabolic engineered C. glutamicum strains ever constructed. Therefore, dynamic regulation by modified Ile biosensor is a predominant strategy for enhancing 4-HIL de novo biosynthesis in C. glutamicum.
Collapse
Affiliation(s)
- Shuyu Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Feng Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Haiyan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinping Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shuyu Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhengyu Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yongfu Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Kinugawa H, Kondo N, Komine-Abe A, Tomita T, Nishiyama M, Kosono S. In vitro reconstitution and characterization of pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase hybrid complex from Corynebacterium glutamicum. Microbiologyopen 2020; 9:e1113. [PMID: 32864855 PMCID: PMC7568260 DOI: 10.1002/mbo3.1113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 01/09/2023] Open
Abstract
Pyruvate dehydrogenase (PDH) and 2‐oxoglutarate dehydrogenase (ODH) are critical enzymes in central carbon metabolism. In Corynebacterium glutamicum, an unusual hybrid complex consisting of CgE1p (thiamine diphosphate‐dependent pyruvate dehydrogenase, AceE), CgE2 (dihydrolipoamide acetyltransferase, AceF), CgE3 (dihydrolipoamide dehydrogenase, Lpd), and CgE1o (thiamine diphosphate‐dependent 2‐oxoglutarate dehydrogenase, OdhA) has been suggested. Here, we elucidated that the PDH‐ODH hybrid complex in C. glutamicum probably consists of six copies of CgE2 in its core, which is rather compact compared with PDH and ODH in other microorganisms that have twenty‐four copies of E2. We found that CgE2 formed a stable complex with CgE3 (CgE2‐E3 subcomplex) in vitro, hypothetically comprised of two CgE2 trimers and four CgE3 dimers. We also found that CgE1o exists mainly as a hexamer in solution and is ready to form an active ODH complex when mixed with the CgE2‐E3 subcomplex. Our in vitro reconstituted system showed CgE1p‐ and CgE1o‐dependent inhibition of ODH and PDH, respectively, actively supporting the formation of the hybrid complex, in which both CgE1p and CgE1o associate with a single CgE2‐E3. In gel filtration chromatography, all the subunits of CgODH were eluted in the same fraction, whereas CgE1p was eluted separately from CgE2‐E3, suggesting a weak association of CgE1p with CgE2 compared with that of CgE1o. This study revealed the unique molecular architecture of the hybrid complex from C. glutamicum and the compact‐sized complex would provide an advantage to determine the whole structure of the unusual hybrid complex.
Collapse
Affiliation(s)
- Hirokazu Kinugawa
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan
| | - Naoko Kondo
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan
| | - Ayano Komine-Abe
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan
| | - Takeo Tomita
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Japan
| | - Saori Kosono
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Japan.,RIKEN Center for Sustainable Resource Science, Wako, Japan
| |
Collapse
|
14
|
Caulton SG, Lovering AL. Bacterial invasion and killing by predatory Bdellovibrio primed by predator prey cell recognition and self protection. Curr Opin Microbiol 2020; 56:74-80. [DOI: 10.1016/j.mib.2020.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 01/13/2023]
|
15
|
Meek RW, Cadby IT, Moynihan PJ, Lovering AL. Structural basis for activation of a diguanylate cyclase required for bacterial predation in Bdellovibrio. Nat Commun 2019; 10:4086. [PMID: 31501441 PMCID: PMC6733907 DOI: 10.1038/s41467-019-12051-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 08/13/2019] [Indexed: 11/28/2022] Open
Abstract
The bacterial second messenger cyclic-di-GMP is a widespread, prominent effector of lifestyle change. An example of this occurs in the predatory bacterium Bdellovibrio bacteriovorus, which cycles between free-living and intraperiplasmic phases after entering (and killing) another bacterium. The initiation of prey invasion is governed by DgcB (GGDEF enzyme) that produces cyclic-di-GMP in response to an unknown stimulus. Here, we report the structure of DgcB, and demonstrate that the GGDEF and sensory forkhead-associated (FHA) domains form an asymmetric dimer. Our structures indicate that the FHA domain is a consensus phosphopeptide sensor, and that the ligand for activation is surprisingly derived from the N-terminal region of DgcB itself. We confirm this hypothesis by determining the structure of a FHA:phosphopeptide complex, from which we design a constitutively-active mutant (confirmed via enzyme assays). Our results provide an understanding of the stimulus driving DgcB-mediated prey invasion and detail a unique mechanism of GGDEF enzyme regulation. The initiation of prey invasion by the predatory bacterium Bdellovibrio bacteriovorus is governed by the activity of the diguanlylate cyclase DgcB. Here the authors show that the stimulus regulating DgcB activity is a phosphopeptide derived from DgcB itself and present the crystal structures of full-length DgcB and of its empty and peptide-bound sensor domain.
Collapse
Affiliation(s)
- Richard W Meek
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ian T Cadby
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Patrick J Moynihan
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Andrew L Lovering
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
16
|
Abstract
Bacterial pathogens can switch signaling by sensing threonine phosphorylation. In this issue of Structure, Heinkel et al. (2018) report novel rearrangements linking threonine phosphorylation to tandem forkhead-associated (FHA) domains from an ATP-binding cassette (ABC) transporter. The resulting associations probably regulate oligomerization and transport in Mycoplasma tuberculosis.
Collapse
Affiliation(s)
- Steven R Van Doren
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA.
| |
Collapse
|
17
|
Bellinzoni M, Wehenkel AM, Durán R, Alzari PM. Novel mechanistic insights into physiological signaling pathways mediated by mycobacterial Ser/Thr protein kinases. Microbes Infect 2019; 21:222-229. [PMID: 31254628 DOI: 10.1016/j.micinf.2019.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
Protein phosphorylation is known to be one of the keystones of signal sensing and transduction in all living organisms. Once thought to be essentially confined to the eukaryotic kingdoms, reversible phosphorylation on serine, threonine and tyrosine residues, has now been shown to play a major role in many prokaryotes, where the number of Ser/Thr protein kinases (STPKs) equals or even exceeds that of two component systems. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is one of the most studied organisms for the role of STPK-mediated signaling in bacteria. Driven by the interest and tractability of these enzymes as potential therapeutic targets, extensive studies revealed the remarkable conservation of protein kinases and their cognate phosphatases across evolution, and their involvement in bacterial physiology and virulence. Here, we present an overview of the current knowledge of mycobacterial STPKs structures and kinase activation mechanisms, and we then focus on PknB and PknG, two well-characterized STPKs that are essential for the intracellular survival of the bacillus. We summarize the mechanistic evidence that links PknB to the regulation of peptidoglycan synthesis in cell division and morphogenesis, and the major findings that establishes PknG as a master regulator of central carbon and nitrogen metabolism. Two decades after the discovery of STPKs in M. tuberculosis, the emerging landscape of O-phosphosignaling is starting to unveil how eukaryotic-like kinases can be engaged in unique, non-eukaryotic-like, signaling mechanisms in mycobacteria.
Collapse
Affiliation(s)
- Marco Bellinzoni
- Unit of Structural Microbiology, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528 & Université Paris Diderot, 25 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Anne Marie Wehenkel
- Unit of Structural Microbiology, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528 & Université Paris Diderot, 25 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Rosario Durán
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Mataojo 2020, Montevideo 11400, Uruguay
| | - Pedro M Alzari
- Unit of Structural Microbiology, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528 & Université Paris Diderot, 25 rue du Docteur Roux, 75724 Paris cedex 15, France.
| |
Collapse
|
18
|
Wagner T, André-Leroux G, Hindie V, Barilone N, Lisa MN, Hoos S, Raynal B, Vulliez-Le Normand B, O'Hare HM, Bellinzoni M, Alzari PM. Structural insights into the functional versatility of an FHA domain protein in mycobacterial signaling. Sci Signal 2019; 12:12/580/eaav9504. [PMID: 31064884 DOI: 10.1126/scisignal.aav9504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Forkhead-associated (FHA) domains are modules that bind to phosphothreonine (pThr) residues in signaling cascades. The FHA-containing mycobacterial protein GarA is a central element of a phosphorylation-dependent signaling pathway that redirects metabolic flux in response to amino acid starvation or cell growth requirements. GarA acts as a phosphorylation-dependent ON/OFF molecular switch. In its nonphosphorylated ON state, the GarA FHA domain engages in phosphorylation-independent interactions with various metabolic enzymes that orchestrate nitrogen flow, such as 2-oxoglutarate decarboxylase (KGD). However, phosphorylation at the GarA N-terminal region by the protein kinase PknB or PknG triggers autoinhibition through the intramolecular association of the N-terminal domain with the FHA domain, thus blocking all downstream interactions. To investigate these different FHA binding modes, we solved the crystal structures of the mycobacterial upstream (phosphorylation-dependent) complex PknB-GarA and the downstream (phosphorylation-independent) complex GarA-KGD. Our results show that the phosphorylated activation loop of PknB serves as a docking site to recruit GarA through canonical FHA-pThr interactions. However, the same GarA FHA-binding pocket targets an allosteric site on nonphosphorylated KGD, where a key element of recognition is a phosphomimetic aspartate. Further enzymatic and mutagenesis studies revealed that GarA acted as a dynamic allosteric inhibitor of KGD by preventing crucial motions in KGD that are necessary for catalysis. Our results provide evidence for physiological phosphomimetics, supporting numerous mutagenesis studies using such approaches, and illustrate how evolution can shape a single FHA-binding pocket to specifically interact with multiple phosphorylated and nonphosphorylated protein partners.
Collapse
Affiliation(s)
- Tristan Wagner
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528 & Université Paris Diderot, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Gwénaëlle André-Leroux
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528 & Université Paris Diderot, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Valérie Hindie
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528 & Université Paris Diderot, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Nathalie Barilone
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528 & Université Paris Diderot, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - María-Natalia Lisa
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528 & Université Paris Diderot, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Sylviane Hoos
- Institut Pasteur, Plateforme de Biophysique Moléculaire, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Bertrand Raynal
- Institut Pasteur, Plateforme de Biophysique Moléculaire, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Brigitte Vulliez-Le Normand
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528 & Université Paris Diderot, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Helen M O'Hare
- Leicester Tuberculosis Research Group (LTBRG) and Leicester Institute of Structural and Chemical Biology (LISCB), Department of Respiratory Science & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Marco Bellinzoni
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528 & Université Paris Diderot, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Pedro M Alzari
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS UMR 3528 & Université Paris Diderot, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
19
|
Bellinzoni M, Wehenkel AM, Durán R, Alzari PM. Novel mechanistic insights into physiological signaling pathways mediated by mycobacterial Ser/Thr protein kinases. Genes Immun 2019; 20:383-393. [DOI: 10.1038/s41435-019-0069-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022]
|
20
|
Xie C, He C, Jiang Y, Yu H, Cheng L, Nshogoza G, Ala MS, Tian C, Wu J, Shi Y, Li F. Structural insights into the recognition of phosphorylated Hop1 by Mek1. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:1027-1038. [PMID: 30289413 DOI: 10.1107/s2059798318011993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/24/2018] [Indexed: 11/10/2022]
Abstract
The FHA domain-containing protein Mek1 is a meiosis-specific kinase that is involved in the regulation of interhomolog recombination in meiosis in Saccharomyces cerevisiae. The recruitment and activation of Mek1 require the phosphorylation of the chromosome axis protein Hop1 at Thr318 (pT318), which is necessary for recognition by the Mek1 FHA domain. Here, crystal structures of the Mek1 FHA domain in the apo state and in complex with the Hop1 pT318 peptide are presented, demonstrating that the hydrophobic residues Phe320 and Val321 at the pT+2 and pT+3 positions in the ligand contribute to the preferential recognition. It was further found that in Schizosaccharomyces pombe Mek1 FHA binds both pT15 in its N-terminal SQ/TQ cluster domain (SCD) and pT270 in the Hop1 SCD. The results revealed the structural basis for the preferential recognition of phosphorylated Hop1 by Mek1 in S. cerevisiae and facilitate the understanding of the interaction between the S. pombe Mek1 FHA domain and its binding targets.
Collapse
Affiliation(s)
- Changlin Xie
- High Magnetic Field Laboratory, Chinese Academy of Sciences, 50 Shushanhu Road, Hefei, Anhui 230031, People's Republic of China
| | - Chao He
- Anhui Key Laboratory of Modern Biomanufacturing and School of Life Sciences, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Yiyang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Hailong Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Lin Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Gilbert Nshogoza
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Moududee Sayed Ala
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Changlin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, 50 Shushanhu Road, Hefei, Anhui 230031, People's Republic of China
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Yunyu Shi
- High Magnetic Field Laboratory, Chinese Academy of Sciences, 50 Shushanhu Road, Hefei, Anhui 230031, People's Republic of China
| | - Fudong Li
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
21
|
Biophysical Characterization of the Tandem FHA Domain Regulatory Module from the Mycobacterium tuberculosis ABC Transporter Rv1747. Structure 2018; 26:972-986.e6. [PMID: 29861345 DOI: 10.1016/j.str.2018.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/13/2018] [Accepted: 04/27/2018] [Indexed: 11/23/2022]
Abstract
The Mycobacterium tuberculosis ATP-binding cassette transporter Rv1747 is a putative exporter of cell wall biosynthesis intermediates. Rv1747 has a cytoplasmic regulatory module consisting of two pThr-interacting Forkhead-associated (FHA) domains connected by a conformationally disordered linker with two phospho-acceptor threonines (pThr). The structures of FHA-1 and FHA-2 were determined by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, respectively. Relative to the canonical 11-strand β-sandwich FHA domain fold of FHA-1, FHA-2 is circularly permuted and lacking one β-strand. Nevertheless, the two share a conserved pThr-binding cleft. FHA-2 is less stable and more dynamic than FHA-1, yet binds model pThr peptides with moderately higher affinity (∼50 μM versus 500 μM equilibrium dissociation constants). Based on NMR relaxation and chemical shift perturbation measurements, when joined within a polypeptide chain, either FHA domain can bind either linker pThr to form intra- and intermolecular complexes. We hypothesize that this enables tunable phosphorylation-dependent multimerization to regulate Rv1747 transporter activity.
Collapse
|
22
|
Hirasawa T, Saito M, Yoshikawa K, Furusawa C, Shmizu H. Integrated Analysis of the Transcriptome and Metabolome of Corynebacterium glutamicum during Penicillin-Induced Glutamic Acid Production. Biotechnol J 2018; 13:e1700612. [PMID: 29323472 DOI: 10.1002/biot.201700612] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/28/2017] [Indexed: 11/10/2022]
Abstract
Corynebacterium glutamicum is known for its ability to produce glutamic acid and has been utilized for the fermentative production of various amino acids. Glutamic acid production in C. glutamicum is induced by penicillin. In this study, the transcriptome and metabolome of C. glutamicum is analyzed to understand the mechanism of penicillin-induced glutamic acid production. Transcriptomic analysis with DNA microarray revealed that expression of some glycolysis- and TCA cycle-related genes, which include those encoding the enzymes involved in conversion of glucose to 2-oxoglutaric acid, is upregulated after penicillin addition. Meanwhile, expression of some TCA cycle-related genes, encoding the enzymes for conversion of 2-oxoglutaric acid to oxaloacetic acid, and the anaplerotic reactions decreased. In addition, expression of NCgl1221 and odhI, encoding proteins involved in glutamic acid excretion and inhibition of the 2-oxoglutarate dehydrogenase, respectively, is upregulated. Functional category enrichment analysis of genes upregulated and downregulated after penicillin addition revealed that genes for signal transduction systems are enriched among upregulated genes, whereas those for energy production and carbohydrate and amino acid metabolisms are enriched among the downregulated genes. As for the metabolomic analysis using capillary electrophoresis time-of-flight mass spectrometry, the intracellular content of most metabolites of the glycolysis and the TCA cycle decreased dramatically after penicillin addition. Overall, these results indicate that the cellular metabolism and glutamic acid excretion are mainly optimized at the transcription level during penicillin-induced glutamic acid production by C. glutamicum.
Collapse
Affiliation(s)
- Takashi Hirasawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Masaki Saito
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Katsunori Yoshikawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chikara Furusawa
- Quantitative Biology Center, RIKEN, Suita, Osaka 565-0874, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroshi Shmizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Karasev DA, Veselova DA, Veselovsky AV, Sobolev BN, Zgoda VG, Archakov AI. Spatial features of proteins related to their phosphorylation and associated structural changes. Proteins 2017; 86:13-20. [DOI: 10.1002/prot.25397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/13/2017] [Accepted: 10/04/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Dmitry A. Karasev
- Department of Bioinformatics; Institute of Biomedical Chemistry (IBMC); Moscow Russia
- Department of Biochemistry; Pirogov Russian National Research Medical University (RNRMU); Moscow Russia
| | - Darya A. Veselova
- Department of Bioinformatics; Institute of Biomedical Chemistry (IBMC); Moscow Russia
| | | | - Boris N. Sobolev
- Department of Bioinformatics; Institute of Biomedical Chemistry (IBMC); Moscow Russia
| | - Victor G. Zgoda
- Department of Bioinformatics; Institute of Biomedical Chemistry (IBMC); Moscow Russia
| | - Alexander I. Archakov
- Department of Bioinformatics; Institute of Biomedical Chemistry (IBMC); Moscow Russia
| |
Collapse
|
24
|
Effect of lysine succinylation on the regulation of 2-oxoglutarate dehydrogenase inhibitor, OdhI, involved in glutamate production in Corynebacterium glutamicum. Biosci Biotechnol Biochem 2017; 81:2130-2138. [PMID: 28899215 DOI: 10.1080/09168451.2017.1372182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In Corynebacterium glutamicum, the activity of the 2-oxoglutarate dehydrogenase (ODH) complex is negatively regulated by the unphosphorylated form of OdhI protein, which is critical for L-glutamate overproduction. We examined the potential impact of protein acylation at lysine (K)-132 of OdhI in C. glutamicum ATCC13032. The K132E succinylation-mimic mutation reduced the ability of OdhI to bind OdhA, the catalytic subunit of the ODH complex, which reduced the inhibition of ODH activity. In vitro succinylation of OdhI protein also reduced the ability to inhibit ODH, and the K132R mutation blocked the effect. These results suggest that succinylation at K132 may attenuate the OdhI function. Consistent with these results, the C. glutamicum mutant strain with OdhI-K132E showed decreased L-glutamate production. Our results indicated that not only phosphorylation but also succinylation of OdhI protein may regulate L-glutamate production in C. glutamicum.
Collapse
|
25
|
Almawi AW, Matthews LA, Guarné A. FHA domains: Phosphopeptide binding and beyond. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 127:105-110. [DOI: 10.1016/j.pbiomolbio.2016.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/06/2016] [Indexed: 01/18/2023]
|
26
|
Hirasawa T, Shimizu H. Glutamic Acid Fermentation: Discovery of Glutamic Acid-Producing Microorganisms, Analysis of the Production Mechanism, Metabolic Engineering, and Industrial Production Process. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807833.ch11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Takashi Hirasawa
- Tokyo Institute of Technology; School of Life Science and Technology; 4259 Nagatsuta-cho, Midori-ku Yokohama Kanagawa 226-8501 Japan
| | - Hiroshi Shimizu
- Osaka University; Department of Bioinformatic Engineering, Graduate School of Information Science and Technology; 1-5 Yamadaoka Suita Osaka 565-0871 Japan
| |
Collapse
|
27
|
Jia WZ, Cheng F, Zhang YJ, Ge JY, Yao SQ, Zhu Q. Rapid synthesis of flavone-based monoamine oxidase (MAO) inhibitors targeting two active sites using click chemistry. Chem Biol Drug Des 2016; 89:141-151. [DOI: 10.1111/cbdd.12841] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 05/29/2016] [Accepted: 08/13/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Zhen Jia
- Institute of Bioengineering; Zhejiang University of Technology; Zhejiang China
| | - Feng Cheng
- Institute of Bioengineering; Zhejiang University of Technology; Zhejiang China
| | - Yin Jun Zhang
- Institute of Bioengineering; Zhejiang University of Technology; Zhejiang China
| | - Jin Yan Ge
- Institute of Bioengineering; Zhejiang University of Technology; Zhejiang China
| | - Shao Q. Yao
- Department of Chemistry; National University of Singapore; Singapore Singapore
| | - Qing Zhu
- Institute of Bioengineering; Zhejiang University of Technology; Zhejiang China
| |
Collapse
|
28
|
Yang C, Zhang S, Bai Z, Hou S, Wu D, Huang J, Zhou P. A two-step binding mechanism for the self-binding peptide recognition of target domains. MOLECULAR BIOSYSTEMS 2016; 12:1201-13. [DOI: 10.1039/c5mb00800j] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
By using state-of-the-art molecular dynamics to reconstruct the complete structural dynamics picture of self-binding peptides, a two-step binding mechanism was proposed, including a fast, nonspecific diffusive phase and a slow, specific organizational phase.
Collapse
Affiliation(s)
- Chao Yang
- Center of Bioinformatics (COBI)
- School of Life Science and Technology
- University of Electronic Science and Technology of China (UESTC)
- Chengdu 610054
- China
| | - Shilei Zhang
- Center of Bioinformatics (COBI)
- School of Life Science and Technology
- University of Electronic Science and Technology of China (UESTC)
- Chengdu 610054
- China
| | - Zhengya Bai
- Center of Bioinformatics (COBI)
- School of Life Science and Technology
- University of Electronic Science and Technology of China (UESTC)
- Chengdu 610054
- China
| | - Shasha Hou
- Center of Bioinformatics (COBI)
- School of Life Science and Technology
- University of Electronic Science and Technology of China (UESTC)
- Chengdu 610054
- China
| | - Di Wu
- Center of Bioinformatics (COBI)
- School of Life Science and Technology
- University of Electronic Science and Technology of China (UESTC)
- Chengdu 610054
- China
| | - Jian Huang
- Center of Bioinformatics (COBI)
- School of Life Science and Technology
- University of Electronic Science and Technology of China (UESTC)
- Chengdu 610054
- China
| | - Peng Zhou
- Center of Bioinformatics (COBI)
- School of Life Science and Technology
- University of Electronic Science and Technology of China (UESTC)
- Chengdu 610054
- China
| |
Collapse
|
29
|
Hirasawa T, Wachi M. Glutamate Fermentation-2: Mechanism of L-Glutamate Overproduction in Corynebacterium glutamicum. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 159:57-72. [PMID: 27913829 DOI: 10.1007/10_2016_26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The nonpathogenic coryneform bacterium, Corynebacterium glutamicum, was isolated as an L-glutamate-overproducing microorganism by Japanese researchers and is currently utilized in various amino acid fermentation processes. L-Glutamate production by C. glutamicum is induced by limitation of biotin and addition of fatty acid ester surfactants and β-lactam antibiotics. These treatments affect the cell surface structures of C. glutamicum. After the discovery of C. glutamicum, many researchers have investigated the underlying mechanism of L-glutamate overproduction with respect to the cell surface structures of this organism. Furthermore, metabolic regulation during L-glutamate overproduction by C. glutamicum, particularly, the relationship between central carbon metabolism and L-glutamate biosynthesis, has been investigated. Recently, the role of a mechanosensitive channel protein in L-glutamate overproduction has been reported. In this chapter, mechanisms of L-glutamate overproduction by C. glutamicum have been reviewed.
Collapse
Affiliation(s)
- Takashi Hirasawa
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Masaaki Wachi
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
30
|
Weng JH, Hsieh YC, Huang CCF, Wei TYW, Lim LH, Chen YH, Ho MR, Wang I, Huang KF, Chen CJ, Tsai MD. Uncovering the Mechanism of Forkhead-Associated Domain-Mediated TIFA Oligomerization That Plays a Central Role in Immune Responses. Biochemistry 2015; 54:6219-29. [PMID: 26389808 DOI: 10.1021/acs.biochem.5b00500] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Forkhead-associated (FHA) domain is the only signaling domain that recognizes phosphothreonine (pThr) specifically. TRAF-interacting protein with an FHA domain (TIFA) was shown to be involved in immune responses by binding with TRAF2 and TRAF6. We recently reported that TIFA is a dimer in solution and that, upon stimulation by TNF-α, TIFA is phosphorylated at Thr9, which triggers TIFA oligomerization via pThr9-FHA domain binding and activates nuclear factor κB (NF-κB). However, the structural mechanism for the functionally important TIFA oligomerization remains to be established. While FHA domain-pThr binding is known to mediate protein dimerization, its role in oligomerization has not been demonstrated at the structural level. Here we report the crystal structures of TIFA (residues 1-150, with the unstructured C-terminal tail truncated) and its complex with the N-terminal pThr9 peptide (residues 1-15), which show unique features in the FHA structure (intrinsic dimer and extra β-strand) and in its interaction with the pThr peptide (with residues preceding rather than following pThr). These structural features support previous and additional functional analyses. Furthermore, the structure of the complex suggests that the pThr9-FHA domain interaction can occur only between different sets of dimers rather than between the two protomers within a dimer, providing the structural mechanism for TIFA oligomerization. Our results uncover the mechanism of FHA domain-mediated oligomerization in a key step of immune responses and expand the paradigm of FHA domain structure and function.
Collapse
Affiliation(s)
- Jui-Hung Weng
- Institute of Biological Chemistry, Academia Sinica , Taipei, Taiwan.,Taiwan International Graduate Program, Academia Sinica , Taipei, Taiwan.,Institute of Biochemical Sciences, Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan
| | - Yin-Cheng Hsieh
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center , Hsinchu, Taiwan
| | - Chia-Chi Flora Huang
- Institute of Biological Chemistry, Academia Sinica , Taipei, Taiwan.,Taiwan International Graduate Program, Academia Sinica , Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University , Taipei, Taiwan
| | - Tong-You Wade Wei
- Institute of Biological Chemistry, Academia Sinica , Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University , Taipei, Taiwan
| | - Liang-Hin Lim
- Institute of Biological Chemistry, Academia Sinica , Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University , Taipei, Taiwan
| | - Yu-Hou Chen
- Institute of Biological Chemistry, Academia Sinica , Taipei, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica , Taipei, Taiwan
| | - Iren Wang
- Institute of Biological Chemistry, Academia Sinica , Taipei, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica , Taipei, Taiwan
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center , Hsinchu, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica , Taipei, Taiwan.,Taiwan International Graduate Program, Academia Sinica , Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University , Taipei, Taiwan
| |
Collapse
|
31
|
Wright DP, Ulijasz AT. Regulation of transcription by eukaryotic-like serine-threonine kinases and phosphatases in Gram-positive bacterial pathogens. Virulence 2015; 5:863-85. [PMID: 25603430 PMCID: PMC4601284 DOI: 10.4161/21505594.2014.983404] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacterial eukaryotic-like serine threonine kinases (eSTKs) and serine threonine phosphatases (eSTPs) have emerged as important signaling elements that are indispensable for pathogenesis. Differing considerably from their histidine kinase counterparts, few eSTK genes are encoded within the average bacterial genome, and their targets are pleiotropic in nature instead of exclusive. The growing list of important eSTK/P substrates includes proteins involved in translation, cell division, peptidoglycan synthesis, antibiotic tolerance, resistance to innate immunity and control of virulence factors. Recently it has come to light that eSTK/Ps also directly modulate transcriptional machinery in many microbial pathogens. This novel form of regulation is now emerging as an additional means by which bacteria can alter their transcriptomes in response to host-specific environmental stimuli. Here we focus on the ability of eSTKs and eSTPs in Gram-positive bacterial pathogens to directly modulate transcription, the known mechanistic outcomes of these modifications, and their roles as an added layer of complexity in controlling targeted RNA synthesis to enhance virulence potential.
Collapse
Key Words
- OCS, one-component signaling
- PASTA, penicillin-binding protein and Ser/Thr kinase associated
- PPM, protein phosphatase metal binding
- PTM, posttranslational modification
- REC, receiver
- ROS, reactive oxygen species
- TCS, two-component signaling
- bacteria
- eSTK, eukaryotic-like serine-threonine kinase
- eSTP, eukaryotic-like serine-threonine phosphatase
- infection
- phosphorylation
- serine threonine kinase
- serine threonine phosphatase
- transcription
- wHTH, winged helix-turn-helix
Collapse
Affiliation(s)
- David P Wright
- a MRC Centre for Molecular Bacteriology and Infection (CMBI); Imperial College London ; London , UK
| | | |
Collapse
|
32
|
Molecular Basis of the Activity and the Regulation of the Eukaryotic-like S/T Protein Kinase PknG from Mycobacterium tuberculosis. Structure 2015; 23:1039-48. [DOI: 10.1016/j.str.2015.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/01/2015] [Accepted: 04/01/2015] [Indexed: 11/18/2022]
|
33
|
Phosphorylation of Mycobacterium tuberculosis ParB participates in regulating the ParABS chromosome segregation system. PLoS One 2015; 10:e0119907. [PMID: 25807382 PMCID: PMC4373775 DOI: 10.1371/journal.pone.0119907] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/04/2015] [Indexed: 11/19/2022] Open
Abstract
Here, we present for the first time that Mycobacterium tuberculosis ParB is phosphorylated by several mycobacterial Ser/Thr protein kinases in vitro. ParB and ParA are the key components of bacterial chromosome segregation apparatus. ParB is a cytosolic conserved protein that binds specifically to centromere-like DNA parS sequences and interacts with ParA, a weak ATPase required for its proper localization. Mass spectrometry identified the presence of ten phosphate groups, thus indicating that ParB is phosphorylated on eight threonines, Thr32, Thr41, Thr53, Thr110, Thr195, and Thr254, Thr300, Thr303 as well as on two serines, Ser5 and Ser239. The phosphorylation sites were further substituted either by alanine to prevent phosphorylation or aspartate to mimic constitutive phosphorylation. Electrophoretic mobility shift assays revealed a drastic inhibition of DNA-binding by ParB phosphomimetic mutant compared to wild type. In addition, bacterial two-hybrid experiments showed a loss of ParA-ParB interaction with the phosphomimetic mutant, indicating that phosphorylation is regulating the recruitment of the partitioning complex. Moreover, fluorescence microscopy experiments performed in the surrogate Mycobacterium smegmatis ΔparB strain revealed that in contrast to wild type Mtb ParB, which formed subpolar foci similar to M. smegmatis ParB, phoshomimetic Mtb ParB was delocalized. Thus, our findings highlight a novel regulatory role of the different isoforms of ParB representing a molecular switch in localization and functioning of partitioning protein in Mycobacterium tuberculosis.
Collapse
|
34
|
Xu Q, Deller MC, Nielsen TK, Grant JC, Lesley SA, Elsliger MA, Deacon AM, Wilson IA. Structural insights into the recognition of phosphopeptide by the FHA domain of kanadaptin. PLoS One 2014; 9:e107309. [PMID: 25197798 PMCID: PMC4157861 DOI: 10.1371/journal.pone.0107309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/09/2014] [Indexed: 01/15/2023] Open
Abstract
Kanadaptin is a nuclear protein of unknown function that is widely expressed in mammalian tissues. The crystal structure of the forkhead-associated (FHA) domain of human kanadaptin was determined to 1.6 Å resolution. The structure reveals an asymmetric dimer in which one monomer is complexed with a phosphopeptide mimic derived from a peptide segment from the N-terminus of a symmetry-related molecule as well as a sulfate bound to the structurally conserved phosphothreonine recognition cleft. This structure provides insights into the molecular recognition features utilized by this family of proteins and represents the first evidence that kanadaptin is likely involved in a phosphorylation-mediated signaling pathway. These results will be of use for designing experiments to further probe the function of kanadaptin.
Collapse
Affiliation(s)
- Qingping Xu
- Joint Center for Structural Genomics, La Jolla, California, United States of America
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, United States of America
| | - Marc C. Deller
- Joint Center for Structural Genomics, La Jolla, California, United States of America
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tine K. Nielsen
- Protein Production Facility, Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joanna C. Grant
- Joint Center for Structural Genomics, La Jolla, California, United States of America
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Scott A. Lesley
- Joint Center for Structural Genomics, La Jolla, California, United States of America
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Marc-André Elsliger
- Joint Center for Structural Genomics, La Jolla, California, United States of America
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ashley M. Deacon
- Joint Center for Structural Genomics, La Jolla, California, United States of America
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, United States of America
| | - Ian A. Wilson
- Joint Center for Structural Genomics, La Jolla, California, United States of America
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Jakob U, Kriwacki R, Uversky VN. Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Chem Rev 2014; 114:6779-805. [PMID: 24502763 PMCID: PMC4090257 DOI: 10.1021/cr400459c] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, United States
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
36
|
Raasch K, Bocola M, Labahn J, Leitner A, Eggeling L, Bott M. Interaction of 2-oxoglutarate dehydrogenase OdhA with its inhibitor OdhI in Corynebacterium glutamicum: Mutants and a model. J Biotechnol 2014; 191:99-105. [PMID: 24905147 DOI: 10.1016/j.jbiotec.2014.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 01/25/2023]
Abstract
Pyruvate dehydrogenase and oxoglutarate dehydrogenase catalyze key reactions in central metabolism. In Corynebacterium glutamicum and related bacteria like Mycobacterium tuberculosis both activities reside in a novel protein supercomplex with the fusion protein OdhA catalyzing the conversion of oxoglutarate to succinyl-coenzyme A. This activity is inhibited by the forkhead-associated (FHA) domain of the small autoinhibitory protein OdhI. Here we used a biological screen which enabled us to isolate suppressor mutants that are influenced in OdhA-OdhI interaction. Five mutants carrying an OdhI mutation were isolated and one with an OdhA mutation. The OdhA mutein OdhA-C704E and three additional C704 variants were constructed. They exhibited unaltered or even slightly enhanced OdhA activity but showed reduced inhibition and interaction with OdhI. The FHA domain of OdhI was crystallized and its structure found in full agreement with previously determined NMR structures. Based on further structural studies, OdhA-OdhI crosslinking experiments, and modeling we discuss the experimental data generated on OdhA-OdhI interaction, with the latter protein representing a rare example of an FHA domain also recognizing a non-phosphorylated interaction partner.
Collapse
Affiliation(s)
- Katharina Raasch
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Marco Bocola
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Jörg Labahn
- Institute of Complex Systems, ICS-6: Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany; Center for Structural Systems Biology, c/o DESY, Hamburg, Germany
| | - Alexander Leitner
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Lothar Eggeling
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
37
|
Leiba J, Carrère-Kremer S, Blondiaux N, Dimala MM, Wohlkönig A, Baulard A, Kremer L, Molle V. The Mycobacterium tuberculosis transcriptional repressor EthR is negatively regulated by Serine/Threonine phosphorylation. Biochem Biophys Res Commun 2014; 446:1132-8. [DOI: 10.1016/j.bbrc.2014.03.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
|
38
|
Khoury GA, Thompson JP, Smadbeck J, Kieslich CA, Floudas CA. Forcefield_PTM: Ab Initio Charge and AMBER Forcefield Parameters for Frequently Occurring Post-Translational Modifications. J Chem Theory Comput 2013; 9:5653-5674. [PMID: 24489522 PMCID: PMC3904396 DOI: 10.1021/ct400556v] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, we introduce Forcefield_PTM, a set of AMBER forcefield parameters consistent with ff03 for 32 common post-translational modifications. Partial charges were calculated through ab initio calculations and a two-stage RESP-fitting procedure in an ether-like implicit solvent environment. The charges were found to be generally consistent with others previously reported for phosphorylated amino acids, and trimethyllysine, using different parameterization methods. Pairs of modified and their corresponding unmodified structures were curated from the PDB for both single and multiple modifications. Background structural similarity was assessed in the context of secondary and tertiary structures from the global dataset. Next, the charges derived for Forcefield_PTM were tested on a macroscopic scale using unrestrained all-atom Langevin molecular dynamics simulations in AMBER for 34 (17 pairs of modified/unmodified) systems in implicit solvent. Assessment was performed in the context of secondary structure preservation, stability in energies, and correlations between the modified and unmodified structure trajectories on the aggregate. As an illustration of their utility, the parameters were used to compare the structural stability of the phosphorylated and dephosphorylated forms of OdhI. Microscopic comparisons between quantum and AMBER single point energies along key χ torsions on several PTMs were performed and corrections to improve their agreement in terms of mean squared errors and squared correlation coefficients were parameterized. This forcefield for post-translational modifications in condensed-phase simulations can be applied to a number of biologically relevant and timely applications including protein structure prediction, protein and peptide design, docking, and to study the effect of PTMs on folding and dynamics. We make the derived parameters and an associated interactive webtool capable of performing post-translational modifications on proteins using Forcefield_PTM available at http://selene.princeton.edu/FFPTM.
Collapse
Affiliation(s)
- George A. Khoury
- Department of Chemical and Biological Engineering, Princeton, NJ, USA
| | - Jeff P. Thompson
- Department of Chemical and Biological Engineering, Princeton, NJ, USA
| | - James Smadbeck
- Department of Chemical and Biological Engineering, Princeton, NJ, USA
| | - Chris A. Kieslich
- Department of Chemical and Biological Engineering, Princeton, NJ, USA
| | | |
Collapse
|
39
|
Ventura M, Rieck B, Boldrin F, Degiacomi G, Bellinzoni M, Barilone N, Alzaidi F, Alzari PM, Manganelli R, O'Hare HM. GarA is an essential regulator of metabolism in Mycobacterium tuberculosis. Mol Microbiol 2013; 90:356-66. [PMID: 23962235 DOI: 10.1111/mmi.12368] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2013] [Indexed: 01/16/2023]
Abstract
Alpha-ketoglutarate is a key metabolic intermediate at the crossroads of carbon and nitrogen metabolism, whose fate is tightly regulated. In mycobacteria the protein GarA regulates the tricarboxylic acid cycle and glutamate synthesis by direct binding and regulation of three enzymes that use α-ketoglutarate. GarA, in turn, is thought to be regulated via phosphorylation by protein kinase G and other kinases. We have investigated the requirement for GarA for metabolic regulation during growth in vitro and in macrophages. GarA was found to be essential to Mycobacterium tuberculosis, but dispensable in non-pathogenic Mycobacterium smegmatis. Disruption of garA caused a distinctive, nutrient-dependent phenotype, fitting with its proposed role in regulating glutamate metabolism. The data underline the importance of the TCA cycle and the balance with glutamate synthesis in M. tuberculosis and reveal vulnerability to disruption of these pathways.
Collapse
Affiliation(s)
- Marcello Ventura
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Leiba J, Syson K, Baronian G, Zanella-Cléon I, Kalscheuer R, Kremer L, Bornemann S, Molle V. Mycobacterium tuberculosis maltosyltransferase GlgE, a genetically validated antituberculosis target, is negatively regulated by Ser/Thr phosphorylation. J Biol Chem 2013; 288:16546-16556. [PMID: 23609448 DOI: 10.1074/jbc.m112.398503] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GlgE is a maltosyltransferase involved in the biosynthesis of α-glucans that has been genetically validated as a potential therapeutic target against Mycobacterium tuberculosis. Despite also making α-glucan, the GlgC/GlgA glycogen pathway is distinct and allosterically regulated. We have used a combination of genetics and biochemistry to establish how the GlgE pathway is regulated. M. tuberculosis GlgE was phosphorylated specifically by the Ser/Thr protein kinase PknB in vitro on one serine and six threonine residues. Furthermore, GlgE was phosphorylated in vivo when expressed in Mycobacterium bovis bacillus Calmette-Guérin (BCG) but not when all seven phosphorylation sites were replaced by Ala residues. The GlgE orthologues from Mycobacterium smegmatis and Streptomyces coelicolor were phosphorylated by the corresponding PknB orthologues in vitro, implying that the phosphorylation of GlgE is widespread among actinomycetes. PknB-dependent phosphorylation of GlgE led to a 2 orders of magnitude reduction in catalytic efficiency in vitro. The activities of phosphoablative and phosphomimetic GlgE derivatives, where each phosphorylation site was substituted with either Ala or Asp residues, respectively, correlated with negative phosphoregulation. Complementation studies of a M. smegmatis glgE mutant strain with these GlgE derivatives, together with both classical and chemical forward genetics, were consistent with flux through the GlgE pathway being correlated with GlgE activity. We conclude that the GlgE pathway appears to be negatively regulated in actinomycetes through the phosphorylation of GlgE by PknB, a mechanism distinct from that known in the classical glycogen pathway. Thus, these findings open new opportunities to target the GlgE pathway therapeutically.
Collapse
Affiliation(s)
- Jade Leiba
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier II et I, CNRS, UMR 5235, case 107, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Karl Syson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Grégory Baronian
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier II et I, CNRS, UMR 5235, case 107, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Isabelle Zanella-Cléon
- Institut de Biologie et Chimie des Protéines (IBCP UMR 5086), CNRS, Université Lyon1, IFR128 BioSciences, Lyon Gerland, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Rainer Kalscheuer
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Laurent Kremer
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier II et I, CNRS, UMR 5235, case 107, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France; INSERM, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Stephen Bornemann
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| | - Virginie Molle
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier II et I, CNRS, UMR 5235, case 107, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France.
| |
Collapse
|
41
|
Weiling H, Xiaowen Y, Chunmei L, Jianping X. Function and evolution of ubiquitous bacterial signaling adapter phosphopeptide recognition domain FHA. Cell Signal 2013. [DOI: 10.1016/j.cellsig.2012.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Bott M, Eikmanns BJ. TCA Cycle and Glyoxylate Shunt of Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Corrales RM, Leiba J, Cohen-Gonsaud M, Molle V, Kremer L. Mycobacterium tuberculosis S-adenosyl-l-homocysteine hydrolase is negatively regulated by Ser/Thr phosphorylation. Biochem Biophys Res Commun 2012. [PMID: 23178568 DOI: 10.1016/j.bbrc.2012.11.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
S-Adenosylhomocysteine hydrolase (SahH) is known as an ubiquitous player in methylation-based process that maintains the intracellular S-adenosylhomocysteine (SAH) and S-adenosylmethionine (SAM) equilibrium. Given its crucial role in central metabolism in both eukaryotes and prokaryotes, it is assumed that SahH must be regulated, albeit little is known regarding molecular mechanisms governing its activity. We report here that SahH from Mycobacterium tuberculosis can be phosphorylated by mycobacterial Ser/Thr protein kinases and that phosphorylation negatively affects its enzymatic activity. Mass spectrometric analyses and site-directed mutagenesis identified Thr2 and Thr221 as the two phosphoacceptors. SahH_T2D, SahH_T221D and SahH_T2D/T221D, designed to mimic constitutive phosphorylation, exhibited markedly decreased activity compared to the wild-type enzyme. Both residues are fully conserved in other mycobacterial SahH orthologues, suggesting that SahH phosphorylation on Thr2 and Thr221 may represent a novel and presumably more general mechanism of regulation of the SAH/SAM balance in mycobacteria.
Collapse
Affiliation(s)
- Rosa Milagros Corrales
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier 2, CNRS, UMR 5235, case 107, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | | | |
Collapse
|
44
|
Leiba J, Hartmann T, Cluzel ME, Cohen-Gonsaud M, Delolme F, Bischoff M, Molle V. A novel mode of regulation of the Staphylococcus aureus catabolite control protein A (CcpA) mediated by Stk1 protein phosphorylation. J Biol Chem 2012; 287:43607-19. [PMID: 23132867 DOI: 10.1074/jbc.m112.418913] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Staphylococcus aureus serine/threonine protein kinase Stk1 (also known as PknB) affects different key pathways such as cell wall metabolism, antibiotic susceptibility, and regulation of virulence. Here we report that the catabolite control protein A (CcpA), a highly conserved regulator of carbon catabolite repression and virulence in a number of gram-positive pathogens, was efficiently phosphorylated in vitro and in vivo by Stk1 in S. aureus, whereas the CcpA homologues of Bacillus subtilis and Bacillus anthracis were not affected by the Stk1 orthologue PrkC. Mass spectrometry and mutational analyses identified Thr-18 and Thr-33 as the phosphoacceptors; both are located in the DNA binding domain of this protein. Electrophoretic mobility shift assays demonstrated that the CcpA DNA binding activity was completely abrogated for the phosphorylated CcpA. The physiological relevance of CcpA phosphorylation was assessed by generating CcpA phosphoablative (T18A/T33A) or phosphomimetic (T18D/T33D) mutants. In contrast to the wild-type and phosphoablative ccpA alleles, introduction of the phosphomimetic ccpA allele in a ΔccpA mutant failed to restore the parental biofilm formation profile and the transcription of citZ and hla to levels seen with the wild type. The strong up regulation of ccpA transcripts and CcpA level in the ccpA mutant trans-complemented with the phosphomimetic CcpA variant suggest furthermore that CcpA acts as a negative regulator of its own expression. Together, these findings demonstrate that Stk1-driven phosphorylation of CcpA inhibits its DNA binding activity toward its regulon in S. aureus, representing a novel regulatory mechanism of CcpA activity in addition to the well known regulation via HprKP/Hpr in this clinically important pathogen.
Collapse
Affiliation(s)
- Jade Leiba
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier II, CNRS UMR 5235, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Structure and interactions of the cytoplasmic domain of the Yersinia type III secretion protein YscD. J Bacteriol 2012; 194:5949-58. [PMID: 22942247 DOI: 10.1128/jb.00513-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The virulence of a large number of Gram-negative bacterial pathogens depends on the type III secretion (T3S) system, which transports select bacterial proteins into host cells. An essential component of the Yersinia T3S system is YscD, a single-pass inner membrane protein. We report here the 2.52-Å resolution structure of the cytoplasmic domain of YscD, called YscDc. The structure confirms that YscDc consists of a forkhead-associated (FHA) fold, which in many but not all cases specifies binding to phosphothreonine. YscDc, however, lacks the structural properties associated with phosphothreonine binding and thus most likely interacts with partners in a phosphorylation-independent manner. Structural comparison highlighted two loop regions, L3 and L4, as potential sites of interactions. Alanine substitutions at L3 and L4 had no deleterious effects on protein structure or stability but abrogated T3S in a dominant negative manner. To gain insight into the function of L3 and L4, we identified proteins associated with YscD by affinity purification coupled to mass spectrometry. The lipoprotein YscJ was found associated with wild-type YscD, as was the effector YopH. Notably, the L3 and L4 substitution mutants interacted with more YopH than did wild-type YscD. These substitution mutants also interacted with SycH (the specific chaperone for YopH), the putative C-ring component YscQ, and the ruler component YscP, whereas wild-type YscD did not. These results suggest that substitutions in the L3 and L4 loops of YscD disrupted the dissociation of SycH from YopH, leading to the accumulation of a large protein complex that stalled the T3S apparatus.
Collapse
|
46
|
Corrales RM, Molle V, Leiba J, Mourey L, de Chastellier C, Kremer L. Phosphorylation of mycobacterial PcaA inhibits mycolic acid cyclopropanation: consequences for intracellular survival and for phagosome maturation block. J Biol Chem 2012; 287:26187-99. [PMID: 22621931 DOI: 10.1074/jbc.m112.373209] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pathogenic mycobacteria survive within macrophages by residing in phagosomes, which they prevent from maturing and fusing with lysosomes. Although several bacterial components were seen to modulate phagosome processing, the molecular regulatory mechanisms taking part in this process remain elusive. We investigated whether the phagosome maturation block (PMB) could be modulated by signaling through Ser/Thr phosphorylation. Here, we demonstrated that mycolic acid cyclopropane synthase PcaA, but not MmaA2, was phosphorylated by mycobacterial Ser/Thr kinases at Thr-168 and Thr-183 both in vitro and in mycobacteria. Phosphorylation of PcaA was associated with a significant decrease in the methyltransferase activity, in agreement with the strategic structural localization of these two phosphoacceptors. Using a BCG ΔpcaA mutant, we showed that PcaA was required for intracellular survival and prevention of phagosome maturation in human monocyte-derived macrophages. The physiological relevance of PcaA phosphorylation was further assessed by generating PcaA phosphoablative (T168A/T183A) or phosphomimetic (T168D/T183D) mutants. In contrast to the wild-type and phosphoablative pcaA alleles, introduction of the phosphomimetic pcaA allele in the ΔpcaA mutant failed to restore the parental mycolic acid profile and cording morphotype. Importantly, the PcaA phosphomimetic strain, as the ΔpcaA mutant, exhibited reduced survival in human macrophages and was unable to prevent phagosome maturation. Our results add new insight into the importance of mycolic acid cyclopropane rings in the PMB and provide the first evidence of a Ser/Thr kinase-dependent mechanism for modulating mycolic acid composition and PMB.
Collapse
Affiliation(s)
- Rosa Milagros Corrales
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier II et I, CNRS, UMR 5235, case 107, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | | | | | |
Collapse
|
47
|
Intermolecular binding between TIFA-FHA and TIFA-pT mediates tumor necrosis factor alpha stimulation and NF-κB activation. Mol Cell Biol 2012; 32:2664-73. [PMID: 22566686 DOI: 10.1128/mcb.00438-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The forkhead-associated (FHA) domain recognizes phosphothreonine (pT) with high specificity and functional diversity. TIFA (TRAF-interacting protein with an FHA domain) is the smallest FHA-containing human protein. Its overexpression was previously suggested to provoke NF-κB activation, yet its exact roles in this signaling pathway and the underlying molecular mechanism remain unclear. Here we identify a novel threonine phosphorylation site on TIFA and show that this phosphorylated threonine (pT) binds with the FHA domain of TIFA, leading to TIFA oligomerization and TIFA-mediated NF-κB activation. Detailed analysis indicated that unphosphorylated TIFA exists as an intrinsic dimer and that the FHA-pT9 binding occurs between different dimers of TIFA. In addition, silencing of endogenous TIFA resulted in attenuation of tumor necrosis factor alpha (TNF-α)-mediated downstream signaling. We therefore propose that the TIFA FHA-pT9 binding provides a previously unidentified link between TNF-α stimulation and NF-κB activation. The intermolecular FHA-pT9 binding between dimers also represents a new mechanism for the FHA domain.
Collapse
|
48
|
Bott M, Brocker M. Two-component signal transduction in Corynebacterium glutamicum and other corynebacteria: on the way towards stimuli and targets. Appl Microbiol Biotechnol 2012; 94:1131-50. [PMID: 22539022 PMCID: PMC3353115 DOI: 10.1007/s00253-012-4060-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 11/30/2022]
Abstract
In bacteria, adaptation to changing environmental conditions is often mediated by two-component signal transduction systems. In the prototypical case, a specific stimulus is sensed by a membrane-bound histidine kinase and triggers autophosphorylation of a histidine residue. Subsequently, the phosphoryl group is transferred to an aspartate residue of the cognate response regulator, which then becomes active and mediates a specific response, usually by activating and/or repressing a set of target genes. In this review, we summarize the current knowledge on two-component signal transduction in Corynebacterium glutamicum. This Gram-positive soil bacterium is used for the large-scale biotechnological production of amino acids and can also be applied for the synthesis of a wide variety of other products, such as organic acids, biofuels, or proteins. Therefore, C. glutamicum has become an important model organism in industrial biotechnology and in systems biology. The type strain ATCC 13032 possesses 13 two-component systems and the role of five has been elucidated in recent years. They are involved in citrate utilization (CitAB), osmoregulation and cell wall homeostasis (MtrAB), adaptation to phosphate starvation (PhoSR), adaptation to copper stress (CopSR), and heme homeostasis (HrrSA). As C. glutamicum does not only face changing conditions in its natural environment, but also during cultivation in industrial bioreactors of up to 500 m(3) volume, adaptability can also be crucial for good performance in biotechnological production processes. Detailed knowledge on two-component signal transduction and regulatory networks therefore will contribute to both the application and the systemic understanding of C. glutamicum and related species.
Collapse
Affiliation(s)
- Michael Bott
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, Jülich, Germany.
| | | |
Collapse
|
49
|
Roumestand C, Leiba J, Galophe N, Margeat E, Padilla A, Bessin Y, Barthe P, Molle V, Cohen-Gonsaud M. Structural insight into the Mycobacterium tuberculosis Rv0020c protein and its interaction with the PknB kinase. Structure 2012; 19:1525-34. [PMID: 22000520 DOI: 10.1016/j.str.2011.07.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/20/2011] [Accepted: 07/07/2011] [Indexed: 01/09/2023]
Abstract
The protein Rv0020c from Mycobacterium tuberculosis, also called FhaA, is one of the major substrates of the essential Ser/Thr protein kinase (STPK) PknB. The protein is composed of three domains and is phosphorylated on a unique site in its N terminus. We solved the solution structure of both N- and C-terminal domains and demonstrated that the approximately 300 amino acids of the intermediate domain are not folded. We present evidence that the FHA, a phosphospecific binding domain, of Rv0020c does not interact with the phosphorylated catalytic domains of PknB, but with the phosphorylated juxtamembrane domain that links the catalytic domain to the mycobacterial membrane. We also demonstrated that the degree and the pattern of phosphorylation of this juxtamembrane domain modulates the affinity of the substrate (Rv0020c) toward its kinase (PknB).
Collapse
Affiliation(s)
- Christian Roumestand
- CNRS UMR 5048, Centre de Biochimie Structurale, 29, rue de Navacelles 34090 Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Luo S, Ye K. Dimerization, but not phosphothreonine binding, is conserved between the forkhead-associated domains of Drosophila MU2 and human MDC1. FEBS Lett 2012; 586:344-9. [PMID: 22273583 DOI: 10.1016/j.febslet.2012.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 01/15/2012] [Indexed: 10/14/2022]
Abstract
Mutator 2 (MU2) in Drosophila melanogaster has been proposed to be the ortholog of human MDC1, a key mediator in DNA damage response. The forkhead-associated (FHA) domain of MDC1 is a dimerization module regulated by trans binding to phosphothreonine 4 from another molecule. Here we present the crystal structure of the MU2 FHA domain at 1.9Å resolution, revealing its evolutionarily conserved role in dimerization. As compared to the MDC1 FHA domain, the MU2 FHA domain dimerizes using a different and more stable interface and contains a degenerate phosphothreonine-binding pocket. Our results suggest that the MU2 dimerization is constitutive and lacks phosphorylation-mediated regulation.
Collapse
Affiliation(s)
- Shukun Luo
- College of Biological Sciences, China Agricultural University, Beijing, China
| | | |
Collapse
|