1
|
Santoro AM, Persico M, D’Urso A, Cunsolo A, Tkachuk O, Milardi D, Purrello R, Tundo GR, Sbardella D, Osmulski PA, Gaczynska M, Coletta M, Fattorusso C. Tetra-anionic porphyrin mimics protein-protein interactions between regulatory particles and the catalytic core, allosterically activating human 20S proteasome. J Enzyme Inhib Med Chem 2025; 40:2482892. [PMID: 40192126 PMCID: PMC11980194 DOI: 10.1080/14756366.2025.2482892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Decreased proteasome activity is a hallmark of brain and retinal neurodegenerative diseases (Alzheimer's, Parkinson's diseases, glaucoma) boosting the search for molecules acting as proteasome activators. Based on the hypothesis of an electrostatic key code driving catalytic core particle (20S) activation by regulatory particles (RPs), we identified the tetra-anionic meso-Tetrakis(4-sulphonatophenyl)-porphyrin (H2TPPS) as a new activator of human proteasome. By means of an integrated approach, including bioinformatics, enzymatic kinetic analysis, atomic force microscopy, and dynamic docking simulations, we show how binding of H2TPPS affects the closed/open conformational equilibrium of human 20S to ultimately promote substrate gate opening and proteolytic activity. These outcomes support our hypothesis and pave the way to the rational discovery of new proteasome allosteric modulators able to reproduce the key structural elements of regulatory particles responsible for catalytic activation.
Collapse
Affiliation(s)
- A. M. Santoro
- National Research Council, Institute of Crystallography, Sede Secondaria di Catania, Catania, Italy
| | - M. Persico
- Department of Pharmacy, University of Naples “Federico II”, Napoli, Italy
| | - A. D’Urso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - A. Cunsolo
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Epic Sciences, San Diego, California, USA
| | - O. Tkachuk
- Department of Pharmacy, University of Naples “Federico II”, Napoli, Italy
| | - D. Milardi
- National Research Council, Institute of Crystallography, Sede Secondaria di Catania, Catania, Italy
| | - R. Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G. R. Tundo
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Roma, Italy
| | | | - P. A. Osmulski
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - M. Gaczynska
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | | | - C. Fattorusso
- Department of Pharmacy, University of Naples “Federico II”, Napoli, Italy
| |
Collapse
|
2
|
Turner M, Uday AB, Velyvis A, Rennella E, Zeytuni N, Vahidi S. Structural basis for allosteric modulation of M. tuberculosis proteasome core particle. Nat Commun 2025; 16:3138. [PMID: 40169579 PMCID: PMC11962144 DOI: 10.1038/s41467-025-58430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/24/2025] [Indexed: 04/03/2025] Open
Abstract
The Mycobacterium tuberculosis (Mtb) proteasome system selectively degrades damaged or misfolded proteins and is crucial for the pathogen's survival within the host. Targeting the 20S core particle (CP) offers a viable strategy for developing tuberculosis treatments. The activity of Mtb 20S CP, like that of its eukaryotic counterpart, is allosterically regulated, yet the specific conformations involved have not been captured in high-resolution structures to date. Here, we use single-particle electron cryomicroscopy and H/D exchange mass spectrometry to determine the Mtb 20S CP structure in an auto-inhibited state that is distinguished from the canonical resting state by the conformation of switch helices at the α/β interface. The rearrangement of these helices collapses the S1 pocket, effectively inhibiting substrate binding. Biochemical experiments show that the Mtb 20S CP activity can be altered through allosteric sites far from the active site. Our findings underscore the potential of targeting allostery to develop antituberculosis therapeutics.
Collapse
Affiliation(s)
- Madison Turner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Adwaith B Uday
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Algirdas Velyvis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Enrico Rennella
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Natalie Zeytuni
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada.
- Centre de Recherche en Biologie Structurale (CRBS), Montréal, QC, Canada.
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
3
|
Witkowska J, Giżyńska M, Karpowicz P, Sowik D, Trepczyk K, Hennenberg F, Chari A, Giełdoń A, Pierzynowska K, Gaffke L, Węgrzyn G, Jankowska E. Blm10-Based Compounds Add to the Knowledge of How Allosteric Modulators Influence Human 20S Proteasome. ACS Chem Biol 2025; 20:266-280. [PMID: 39907714 PMCID: PMC11851449 DOI: 10.1021/acschembio.4c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Proteasomes catalyze protein degradation in cells and play an integral role in cellular homeostasis. Its activity decreases with age alongside the load of defective proteins, resulting from mutations or oxidative stress-induced damage. Such proteins are prone to aggregation and, if not efficiently degraded, can form toxic oligomers and amyloid plaques. Developing an effective way to activate the proteasome could prevent such pathologies. Designing activators is not easy because they do not bind in the active site, which is well-defined and highly conserved, but away from it. The structures of proteasome complexes with natural activators can help here, but these are large proteins, some even multimeric, whose activity is difficult to replace with a small-molecule compound. Nevertheless, the use of fragments of such proteins makes it possible to accumulate knowledge about the relevance of various structural elements for efficient and selective activation. Here, we presented peptidic activators of the 20S proteasome, which were designed based on both the C-terminal sequence of the yeast proteasome activator, Blm10 protein, and the interactions predicted by molecular modeling. These Blm analogs were able to stimulate human 20S proteasome to more efficiently degrade both small fluorogenic substrates and proteins. The best activators also demonstrated their efficacy in cell lysates. X-ray crystallography indicated that an effective modulator can bind to several sites on the surface of the proteasome without causing permanent structural changes in its immediate vicinity but affecting the active sites.
Collapse
Affiliation(s)
- Julia Witkowska
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| | - Małgorzata Giżyńska
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| | - Przemysław Karpowicz
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| | - Daria Sowik
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| | - Karolina Trepczyk
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| | - Fabian Hennenberg
- Department
of Structural Dynamics, Max-Planck-Institute
for Biophysical Chemistry, Goettingen 37077, Germany
| | - Ashwin Chari
- Department
of Structural Dynamics, Max-Planck-Institute
for Biophysical Chemistry, Goettingen 37077, Germany
- Research
Group for Structural Biochemistry and Mechanisms, Max-Planck-Institute for Biophysical Chemistry, Goettingen 37077, Germany
| | - Artur Giełdoń
- Department
of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| | - Karolina Pierzynowska
- Department
of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk 80-308, Poland
| | - Lidia Gaffke
- Department
of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk 80-308, Poland
| | - Grzegorz Węgrzyn
- Department
of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk 80-308, Poland
| | - Elżbieta Jankowska
- Department
of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk 80-308, Poland
| |
Collapse
|
4
|
Kaur M, Chen X, Lee SY, Weaver TM, Freudenthal BD, Walters KJ, Roelofs J. Structure of Blm10:13S proteasome intermediate reveals parallel assembly pathways for the proteasome core particle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621988. [PMID: 39574619 PMCID: PMC11580919 DOI: 10.1101/2024.11.04.621988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Proteasomes are formed by chaperone-assisted assembly of core particles (CPs) and regulatory particles (RPs). The CP chaperone dimer Pba1/Pba2 binds early to proteasome subunits, and is thought to be replaced by Blm10 to form Blm10:CP, which promotes ATP-independent degradation of disordered proteins. Here, we present evidence of distinct parallel assembly pathways for CP by solving five cryo-EM structures including a Blm10:13S pre-assembly intermediate. Our data conflict with the current model of Blm10 and Pba1/Pba2 sequential activity in a single assembly pathway, as we find their CP binding is mutually exclusive and both are present on early and late assembly intermediates. CP affinity for Pba1/Pba2 is reduced during maturation, promoting Pba1/Pba2 release. We find Blm10 undergoes no such affinity switch, suggesting this pathway predominantly yields mature Blm10-bound CP. Altogether, our findings conflict with the current paradigm of sequential CP binding to instead indicate parallel assembly pathways by Pba1/Pba2 and Blm10.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., HLSIC 1077, Kansas, USA
| | - Xiang Chen
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Stella Y. Lee
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., HLSIC 1077, Kansas, USA
| | - Tyler M. Weaver
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., HLSIC 1077, Kansas, USA
| | - Bret D. Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., HLSIC 1077, Kansas, USA
| | - Kylie J. Walters
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jeroen Roelofs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, 3901 Rainbow Blvd., HLSIC 1077, Kansas, USA
| |
Collapse
|
5
|
Loy CA, Trader DJ. Primed for Interactions: Investigating the Primed Substrate Channel of the Proteasome for Improved Molecular Engagement. Molecules 2024; 29:3356. [PMID: 39064934 PMCID: PMC11279888 DOI: 10.3390/molecules29143356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Protein homeostasis is a tightly conserved process that is regulated through the ubiquitin proteasome system (UPS) in a ubiquitin-independent or ubiquitin-dependent manner. Over the past two decades, the proteasome has become an excellent therapeutic target through inhibition of the catalytic core particle, inhibition of subunits responsible for recognizing and binding ubiquitinated proteins, and more recently, through targeted protein degradation using proteolysis targeting chimeras (PROTACs). The majority of the developed inhibitors of the proteasome's core particle rely on gaining selectivity through binding interactions within the unprimed substrate channel. Although this has allowed for selective inhibitors and chemical probes to be generated for the different proteasome isoforms, much remains unknown about the interactions that could be harnessed within the primed substrate channel to increase potency or selectivity. Herein, we discuss small molecules that interact with the primed substrate pocket and how their differences may give rise to altered activity. Taking advantage of additional interactions with the primed substrate pocket of the proteasome could allow for the generation of improved chemical tools for perturbing or monitoring proteasome activity.
Collapse
Affiliation(s)
| | - Darci J. Trader
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92617, USA;
| |
Collapse
|
6
|
Wang J, Kjellgren A, DeMartino GN. Differential Interactions of the Proteasome Inhibitor PI31 with Constitutive and Immuno-20S Proteasomes. Biochemistry 2024; 63:1000-1015. [PMID: 38577872 DOI: 10.1021/acs.biochem.3c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
PI31 (Proteasome Inhibitor of 31,000 Da) is a 20S proteasome binding protein originally identified as an in vitro inhibitor of 20S proteasome proteolytic activity. Recently reported cryo-electron microscopy structures of 20S-PI31 complexes have revealed that the natively disordered proline-rich C-terminus of PI31 enters the central chamber in the interior of the 20S proteasome and interacts directly with the proteasome's multiple catalytic threonine residues in a manner predicted to inhibit their enzymatic function while evading its own proteolysis. Higher eukaryotes express an alternative form of the 20S proteasome (termed "immuno-proteasome") that features genetically and functionally distinct catalytic subunits. The effect of PI31 on immuno-proteasome function is unknown. We examine the relative inhibitory effects of PI31 on purified constitutive (20Sc) and immuno-(20Si) 20S proteasomes in vitro and show that PI31 inhibits 20Si hydrolytic activity to a significantly lesser degree than that of 20Sc. Unlike 20Sc, 20Si hydrolyzes the carboxyl-terminus of PI31 and this effect contributes to the reduced inhibitory activity of PI31 toward 20Si. Conversely, loss of 20Sc inhibition by PI31 point mutants leads to PI31 degradation by 20Sc. These results demonstrate unexpected differential interactions of PI31 with 20Sc and 20Si and document their functional consequences.
Collapse
Affiliation(s)
- Jason Wang
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9040, United States
| | - Abbey Kjellgren
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9040, United States
| | - George N DeMartino
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9040, United States
| |
Collapse
|
7
|
Pelon M, Krzeminski P, Tracz-Gaszewska Z, Misiewicz-Krzeminska I. Factors determining the sensitivity to proteasome inhibitors of multiple myeloma cells. Front Pharmacol 2024; 15:1351565. [PMID: 38500772 PMCID: PMC10944964 DOI: 10.3389/fphar.2024.1351565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Multiple myeloma is an incurable cancer that originates from antibody-producing plasma cells. It is characterized by an intrinsic ability to produce large amounts of immunoglobulin-like proteins. The high rate of synthesis makes myeloma cells dependent on protein processing mechanisms related to the proteasome. This dependence made proteasome inhibitors such as bortezomib and carfilzomib one of the most important classes of drugs used in multiple myeloma treatment. Inhibition of the proteasome is associated with alteration of a number of important biological processes leading, in consequence, to inhibition of angiogenesis. The effect of drugs in this group and the degree of patient response to the treatment used is itself an extremely complex process that depends on many factors. At cellular level the change in sensitivity to proteasome inhibitors may be related to differences in the expression level of proteasome subunits, the degree of proteasome loading, metabolic adaptation, transcriptional or epigenetic factors. These are just some of the possibilities that may influence differences in response to proteasome inhibitors. This review describes the main cellular factors that determine the degree of response to proteasome inhibitor drugs, as well as information on the key role of the proteasome and the performance characteristics of the inhibitors that are the mainstay of multiple myeloma treatment.
Collapse
Affiliation(s)
- Marta Pelon
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Patryk Krzeminski
- Department of Nanobiotechnology, Biology Institute, Warsaw University of Life Sciences, Warsaw, Poland
| | - Zuzanna Tracz-Gaszewska
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | |
Collapse
|
8
|
Cerruti F, Borrelli A, Degiovanni A, Mengozzi G, Borella F, Cascio P. Detection and biochemical characterization of circulating proteasomes in dog plasma. Res Vet Sci 2023; 162:104950. [PMID: 37453228 DOI: 10.1016/j.rvsc.2023.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
A growing body of evidence convincingly indicates that proteasomes are not located exclusively within cells but also in different extracellular compartments. In humans, in fact, this large multimeric protease has been identified in many body fluids and secretions such as blood, urine, tears, sweat, saliva, milk, and cerebrospinal and pericardial fluid. Intriguingly, the exact origins of these extracellular proteasomes as well as the specific biological functions they perform are largely unknown. As no data on this important subject is yet available in domestic animals, the present study was undertaken to investigate the presence of extracellular proteasomes in canine blood. As a result, for the first time, circulating proteasomes could be clearly detected in the plasma of a cohort of 20 healthy dogs. Furthermore, all three main proteasomal peptidase activities were measured and characterized using fluorogenic peptides and highly specific inhibitors. Finally, the effect of ATP and PA28 family activators on this circulating proteasome was investigated. Collectively, our data indicate that at least a part of the proteasome present in dog plasma consists of a particle that in vitro displays the enzymatic properties of the 20S proteasome.
Collapse
Affiliation(s)
- F Cerruti
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini, 2, 10095, Grugliasco, Turin, Italy
| | - A Borrelli
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini, 2, 10095, Grugliasco, Turin, Italy
| | - A Degiovanni
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini, 2, 10095, Grugliasco, Turin, Italy
| | - G Mengozzi
- Department of Public Health and Pediatric Sciences, University of Turin, C.so Bramante, 88/90, 10100 Turin, Italy
| | - F Borella
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini, 2, 10095, Grugliasco, Turin, Italy
| | - P Cascio
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini, 2, 10095, Grugliasco, Turin, Italy.
| |
Collapse
|
9
|
Hsu HC, Wang J, Kjellgren A, Li H, DeMartino GN. Ηigh-resolution structure of mammalian PI31-20S proteasome complex reveals mechanism of proteasome inhibition. J Biol Chem 2023; 299:104862. [PMID: 37236357 PMCID: PMC10319324 DOI: 10.1016/j.jbc.2023.104862] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Proteasome-catalyzed protein degradation mediates and regulates critical aspects of many cellular functions and is an important element of proteostasis in health and disease. Proteasome function is determined in part by the types of proteasome holoenzymes formed between the 20S core particle that catalyzes peptide bond hydrolysis and any of multiple regulatory proteins to which it binds. One of these regulators, PI31, was previously identified as an in vitro 20S proteasome inhibitor, but neither the molecular mechanism nor the possible physiologic significance of PI31-mediated proteasome inhibition has been clear. Here we report a high-resolution cryo-EM structure of the mammalian 20S proteasome in complex with PI31. The structure shows that two copies of the intrinsically disordered carboxyl terminus of PI31 are present in the central cavity of the closed-gate conformation of the proteasome and interact with proteasome catalytic sites in a manner that blocks proteolysis of substrates but resists their own degradation. The two inhibitory polypeptide chains appear to originate from PI31 monomers that enter the catalytic chamber from opposite ends of the 20S cylinder. We present evidence that PI31 can inhibit proteasome activity in mammalian cells and may serve regulatory functions for the control of cellular proteostasis.
Collapse
Affiliation(s)
- Hao-Chi Hsu
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Jason Wang
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Abbey Kjellgren
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| | - George N DeMartino
- Department of Physiology, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
10
|
D’Urso A, Purrello R, Cunsolo A, Milardi D, Fattorusso C, Persico M, Gaczynska M, Osmulski PA, Santoro AM. Electronic Circular Dichroism Detects Conformational Changes Associated with Proteasome Gating Confirmed Using AFM Imaging. Biomolecules 2023; 13:704. [PMID: 37189451 PMCID: PMC10136135 DOI: 10.3390/biom13040704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Many chronic diseases, including cancer and neurodegeneration, are linked to proteasome dysregulation. Proteasome activity, essential for maintaining proteostasis in a cell, is controlled by the gating mechanism and its underlying conformational transitions. Thus, developing effective methods to detect gate-related specific proteasome conformations could be a significant contribution to rational drug design. Since the structural analysis suggests that gate opening is associated with a decrease in the content of α-helices and β-sheets and an increase in random coil structures, we decided to explore the application of electronic circular dichroism (ECD) in the UV region to monitor the proteasome gating. A comparison of ECD spectra of wild type yeast 20S proteasome (predominantly closed) and an open-gate mutant (α3ΔN) revealed an increased intensity in the ECD band at 220 nm, which suggests increased contents of random coil and β-turn structures. This observation was further supported by evaluating ECD spectra of human 20S treated with low concentration of SDS, known as a gate-opening reagent. Next, to evaluate the power of ECD to probe a ligand-induced gate status, we treated the proteasome with H2T4, a tetracationic porphyrin that we showed previously to induce large-scale protein conformational changes upon binding to h20S. H2T4 caused a significant increase in the ECD band at 220 nm, interpreted as an induced opening of the 20S gate. In parallel, we imaged the gate-harboring alpha ring of the 20S with AFM, a technique that we used previously to visualize the predominantly closed gate in latent human or yeast 20S and the open gate in α3ΔN mutant. The results were convergent with the ECD data and showed a marked decrease in the content of closed-gate conformation in the H2T4-treated h20S. Our findings provide compelling support for the use of ECD measurements to conveniently monitor proteasome conformational changes related to gating phenomena. We predict that the observed association of spectroscopic and structural results will help with efficient design and characterization of exogenous proteasome regulators.
Collapse
Affiliation(s)
- Alessandro D’Urso
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.P.); (A.C.)
| | - Roberto Purrello
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.P.); (A.C.)
| | - Alessandra Cunsolo
- Dipartimento Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; (R.P.); (A.C.)
| | - Danilo Milardi
- Istituto di Cristallografia—CNR Sede Secondaria di Catania, Via P. Gaifami 18, 95126 Catania, Italy;
| | - Caterina Fattorusso
- Dipartimento di Farmacia, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (C.F.); (M.P.)
| | - Marco Persico
- Dipartimento di Farmacia, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (C.F.); (M.P.)
| | - Maria Gaczynska
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; (M.G.); (P.A.O.)
| | - Pawel A. Osmulski
- Department of Molecular Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA; (M.G.); (P.A.O.)
| | - Anna Maria Santoro
- Istituto di Cristallografia—CNR Sede Secondaria di Catania, Via P. Gaifami 18, 95126 Catania, Italy;
| |
Collapse
|
11
|
Hsu HC, Wang J, Kjellgren A, Li H, DeMartino GN. High-resolution structure of mammalian PI31â€"20S proteasome complex reveals mechanism of proteasome inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535455. [PMID: 37066326 PMCID: PMC10103979 DOI: 10.1101/2023.04.03.535455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Proteasome-catalyzed protein degradation mediates and regulates critical aspects of many cellular functions and is an important element of proteostasis in health and disease. Proteasome function is determined in part by the types of proteasome holoenzymes formed between the 20S core particle that catalyzes peptide bond hydrolysis and any of multiple regulatory proteins to which it binds. One of these regulators, PI31, was previously identified as an in vitro 20S proteasome inhibitor, but neither the molecular mechanism nor the possible physiologic significance of PI31-mediated proteasome inhibition has been clear. Here we report a high- resolution cryo-EM structure of the mammalian 20S proteasome in complex with PI31. The structure shows that two copies of the intrinsically-disordered carboxyl-terminus of PI31 are present in the central cavity of the closed-gate conformation of the proteasome and interact with proteasome catalytic sites in a manner that blocks proteolysis of substrates but resists their own degradation. The two inhibitory polypeptide chains appear to originate from PI31 monomers that enter the catalytic chamber from opposite ends of the 20S cylinder. We present evidence that PI31 can inhibit proteasome activity in mammalian cells and may serve regulatory functions for the control of cellular proteostasis.
Collapse
|
12
|
Sahu I, Bajorek M, Tan X, Srividya M, Krutauz D, Reis N, Osmulski PA, Gaczynska ME, Glickman MH. A Role for the Proteasome Alpha2 Subunit N-Tail in Substrate Processing. Biomolecules 2023; 13:480. [PMID: 36979414 PMCID: PMC10046698 DOI: 10.3390/biom13030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The proteolytic active sites of the 26S proteasome are sequestered within the catalytic chamber of its 20S core particle (CP). Access to this chamber is through a narrow channel defined by the seven outer α subunits. In the resting state, the N-termini of neighboring α subunits form a gate blocking access to the channel. The attachment of the activators or regulatory particles rearranges the blocking α subunit N-termini facilitating the entry of substrates. By truncating or mutating each of the participating α N-termini, we report that whereas only a few N-termini are important for maintaining the closed gate, all seven N-termini participate in the open gate. Specifically, the open state is stabilized by a hydrogen bond between an invariant tyrosine (Y) in each subunit with a conserved aspartate (D) in its counterclockwise neighbor. The lone exception is the α1-α2 pair leaving a gap in the ring circumference. The third residue (X) of this YD(X) motif aligns with the open channel. Phenylalanine at this position in the α2 subunit comes in direct contact with the translocating substrate. Consequently, deletion of the α2 N-terminal tail attenuates proteolysis despite the appearance of an open gate state. In summary, the interlacing N-terminal YD(X) motifs regulate both the gating and translocation of the substrate.
Collapse
Affiliation(s)
- Indrajit Sahu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Monika Bajorek
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Xiaolin Tan
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Madabhushi Srividya
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Daria Krutauz
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Noa Reis
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Pawel A. Osmulski
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Maria E. Gaczynska
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michael H. Glickman
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| |
Collapse
|
13
|
Allostery Modulates Interactions between Proteasome Core Particles and Regulatory Particles. Biomolecules 2022; 12:biom12060764. [PMID: 35740889 PMCID: PMC9221237 DOI: 10.3390/biom12060764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023] Open
Abstract
Allostery-regulation at distant sites is a key concept in biology. The proteasome exhibits multiple forms of allosteric regulation. This regulatory communication can span a distance exceeding 100 Ångstroms and can modulate interactions between the two major proteasome modules: its core particle and regulatory complexes. Allostery can further influence the assembly of the core particle with regulatory particles. In this focused review, known and postulated interactions between these proteasome modules are described. Allostery may explain how cells build and maintain diverse populations of proteasome assemblies and can provide opportunities for therapeutic interventions.
Collapse
|
14
|
Modulation of the 20S Proteasome Activity by Porphyrin Derivatives Is Steered through Their Charge Distribution. Biomolecules 2022; 12:biom12060741. [PMID: 35740865 PMCID: PMC9220251 DOI: 10.3390/biom12060741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 11/20/2022] Open
Abstract
Cationic porphyrins exhibit an amazing variety of binding modes and inhibition mechanisms of 20S proteasome. Depending on the spatial distribution of their electrostatic charges, they can occupy different sites on α rings of 20S proteasome by exploiting the structural code responsible for the interaction with regulatory proteins. Indeed, they can act as competitive or allosteric inhibitors by binding at the substrate gate or at the grooves between the α subunits, respectively. Moreover, the substitution of a charged moiety in the peripheral arm with a hydrophobic moiety revealed a “new” 20S functional state with higher substrate affinity and catalytic efficiency. In the present study, we expand our structure–activity relationship (SAR) analysis in order to further explore the potential of this versatile class of 20S modulators. Therefore, we have extended the study to additional macrocyclic compounds, displaying different structural features, comparing their interaction behavior on the 20S proteasome with previously investigated compounds. In particular, in order to evaluate how the introduction of a peptidic chain can affect the affinity and the interacting mechanism of porphyrins, we investigate the MTPyApi, a porphyrin derivatized with an Arg–Pro-rich antimicrobial peptide. Moreover, to unveil the role played by the porphyrin core, this was replaced with a corrole scaffold, a “contracted” version of the tetrapyrrolic ring due to the lack of a methine bridge. The analysis has been undertaken by means of integrated kinetic, Nuclear Magnetic Resonance, and computational studies. Finally, in order to assess a potential pharmacological significance of this type of investigation, a preliminary attempt has been performed to evaluate the biological effect of these molecules on MCF7 breast cancer cells in dark conditions, envisaging that porphyrins may indeed represent a powerful tool for the modulation of cellular proteostasis.
Collapse
|
15
|
Sahu I, Mali SM, Sulkshane P, Xu C, Rozenberg A, Morag R, Sahoo MP, Singh SK, Ding Z, Wang Y, Day S, Cong Y, Kleifeld O, Brik A, Glickman MH. The 20S as a stand-alone proteasome in cells can degrade the ubiquitin tag. Nat Commun 2021; 12:6173. [PMID: 34702852 PMCID: PMC8548400 DOI: 10.1038/s41467-021-26427-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
The proteasome, the primary protease for ubiquitin-dependent proteolysis in eukaryotes, is usually found as a mixture of 30S, 26S, and 20S complexes. These complexes have common catalytic sites, which makes it challenging to determine their distinctive roles in intracellular proteolysis. Here, we chemically synthesize a panel of homogenous ubiquitinated proteins, and use them to compare 20S and 26S proteasomes with respect to substrate selection and peptide-product generation. We show that 20S proteasomes can degrade the ubiquitin tag along with the conjugated substrate. Ubiquitin remnants on branched peptide products identified by LC-MS/MS, and flexibility in the 20S gate observed by cryo-EM, reflect the ability of the 20S proteasome to proteolyze an isopeptide-linked ubiquitin-conjugate. Peptidomics identifies proteasome-trapped ubiquitin-derived peptides and peptides of potential 20S substrates in Hi20S cells, hypoxic cells, and human failing-heart. Moreover, elevated levels of 20S proteasomes appear to contribute to cell survival under stress associated with damaged proteins.
Collapse
Affiliation(s)
- Indrajit Sahu
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Sachitanand M Mali
- Schulich faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Prasad Sulkshane
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Cong Xu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Roni Morag
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | | | - Sumeet K Singh
- Schulich faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Zhanyu Ding
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yifan Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Sharleen Day
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yao Cong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | - Ashraf Brik
- Schulich faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| | - Michael H Glickman
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
16
|
Oleuropein Activates Neonatal Neocortical Proteasomes, but Proteasome Gene Targeting by AAV9 Is Variable in a Clinically Relevant Piglet Model of Brain Hypoxia-Ischemia and Hypothermia. Cells 2021; 10:cells10082120. [PMID: 34440889 PMCID: PMC8391411 DOI: 10.3390/cells10082120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 10/26/2022] Open
Abstract
Cerebral hypoxia-ischemia (HI) compromises the proteasome in a clinically relevant neonatal piglet model. Protecting and activating proteasomes could be an adjunct therapy to hypothermia. We investigated whether chymotrypsin-like proteasome activity differs regionally and developmentally in the neonatal brain. We also tested whether neonatal brain proteasomes can be modulated by oleuropein, an experimental pleiotropic neuroprotective drug, or by targeting a proteasome subunit gene using recombinant adeno-associated virus-9 (AAV). During post-HI hypothermia, we treated piglets with oleuropein, used AAV-short hairpin RNA (shRNA) to knock down proteasome activator 28γ (PA28γ), or enforced PA28γ using AAV-PA28γ with green fluorescent protein (GFP). Neonatal neocortex and subcortical white matter had greater proteasome activity than did liver and kidney. Neonatal white matter had higher proteasome activity than did juvenile white matter. Lower arterial pH 1 h after HI correlated with greater subsequent cortical proteasome activity. With increasing brain homogenate protein input into the assay, the initial proteasome activity increased only among shams, whereas HI increased total kinetic proteasome activity. OLE increased the initial neocortical proteasome activity after hypothermia. AAV drove GFP expression, and white matter PA28γ levels correlated with proteasome activity and subunit levels. However, AAV proteasome modulation varied. Thus, neonatal neocortical proteasomes can be pharmacologically activated. HI slows the initial proteasome performance, but then augments ongoing catalytic activity. AAV-mediated genetic manipulation in the piglet brain holds promise, though proteasome gene targeting requires further development.
Collapse
|
17
|
Giong HK, Subramanian M, Yu K, Lee JS. Non-Rodent Genetic Animal Models for Studying Tauopathy: Review of Drosophila, Zebrafish, and C. elegans Models. Int J Mol Sci 2021; 22:8465. [PMID: 34445171 PMCID: PMC8395099 DOI: 10.3390/ijms22168465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Tauopathy refers to a group of progressive neurodegenerative diseases, including frontotemporal lobar degeneration and Alzheimer's disease, which correlate with the malfunction of microtubule-associated protein Tau (MAPT) due to abnormal hyperphosphorylation, leading to the formation of intracellular aggregates in the brain. Despite extensive efforts to understand tauopathy and develop an efficient therapy, our knowledge is still far from complete. To find a solution for this group of devastating diseases, several animal models that mimic diverse disease phenotypes of tauopathy have been developed. Rodents are the dominating tauopathy models because of their similarity to humans and established disease lines, as well as experimental approaches. However, powerful genetic animal models using Drosophila, zebrafish, and C. elegans have also been developed for modeling tauopathy and have contributed to understanding the pathophysiology of tauopathy. The success of these models stems from the short lifespans, versatile genetic tools, real-time in-vivo imaging, low maintenance costs, and the capability for high-throughput screening. In this review, we summarize the main findings on mechanisms of tauopathy and discuss the current tauopathy models of these non-rodent genetic animals, highlighting their key advantages and limitations in tauopathy research.
Collapse
Affiliation(s)
- Hoi-Khoanh Giong
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Manivannan Subramanian
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Kweon Yu
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Jeong-Soo Lee
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| |
Collapse
|
18
|
Song C, Satoh T, Sekiguchi T, Kato K, Murata K. Structural Fluctuations of the Human Proteasome α7 Homo-Tetradecamer Double Ring Imply the Proteasomal α-Ring Assembly Mechanism. Int J Mol Sci 2021; 22:ijms22094519. [PMID: 33926037 PMCID: PMC8123668 DOI: 10.3390/ijms22094519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
The 20S proteasome, which is composed of layered α and β heptameric rings, is the core complex of the eukaryotic proteasome involved in proteolysis. The α7 subunit is a component of the α ring, and it self-assembles into a homo-tetradecamer consisting of two layers of α7 heptameric rings. However, the structure of the α7 double ring in solution has not been fully elucidated. We applied cryo-electron microscopy to delineate the structure of the α7 double ring in solution, revealing a structure different from the previously reported crystallographic model. The D7-symmetrical double ring was stacked with a 15° clockwise twist and a separation of 3 Å between the two rings. Two more conformations, dislocated and fully open, were also identified. Our observations suggest that the α7 double-ring structure fluctuates considerably in solution, allowing for the insertion of homologous α subunits, finally converting to the hetero-heptameric α rings in the 20S proteasome.
Collapse
Affiliation(s)
- Chihong Song
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; (C.S.); (T.S.)
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan
| | - Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan;
| | - Taichiro Sekiguchi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; (C.S.); (T.S.)
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan;
- School of Physical Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; (C.S.); (T.S.)
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan;
- School of Physical Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Correspondence: (K.K.); (K.M.)
| | - Kazuyoshi Murata
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; (C.S.); (T.S.)
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan
- Correspondence: (K.K.); (K.M.)
| |
Collapse
|
19
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
20
|
Cascio P. PA28γ: New Insights on an Ancient Proteasome Activator. Biomolecules 2021; 11:228. [PMID: 33562807 PMCID: PMC7915322 DOI: 10.3390/biom11020228] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
PA28 (also known as 11S, REG or PSME) is a family of proteasome regulators whose members are widely present in many of the eukaryotic supergroups. In jawed vertebrates they are represented by three paralogs, PA28α, PA28β, and PA28γ, which assemble as heptameric hetero (PA28αβ) or homo (PA28γ) rings on one or both extremities of the 20S proteasome cylindrical structure. While they share high sequence and structural similarities, the three isoforms significantly differ in terms of their biochemical and biological properties. In fact, PA28α and PA28β seem to have appeared more recently and to have evolved very rapidly to perform new functions that are specifically aimed at optimizing the process of MHC class I antigen presentation. In line with this, PA28αβ favors release of peptide products by proteasomes and is particularly suited to support adaptive immune responses without, however, affecting hydrolysis rates of protein substrates. On the contrary, PA28γ seems to be a slow-evolving gene that is most similar to the common ancestor of the PA28 activators family, and very likely retains its original functions. Notably, PA28γ has a prevalent nuclear localization and is involved in the regulation of several essential cellular processes including cell growth and proliferation, apoptosis, chromatin structure and organization, and response to DNA damage. In striking contrast with the activity of PA28αβ, most of these diverse biological functions of PA28γ seem to depend on its ability to markedly enhance degradation rates of regulatory protein by 20S proteasome. The present review will focus on the molecular mechanisms and biochemical properties of PA28γ, which are likely to account for its various and complex biological functions and highlight the common features with the PA28αβ paralog.
Collapse
Affiliation(s)
- Paolo Cascio
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
21
|
Structural Insights into Substrate Recognition and Processing by the 20S Proteasome. Biomolecules 2021; 11:biom11020148. [PMID: 33498876 PMCID: PMC7910952 DOI: 10.3390/biom11020148] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Four decades of proteasome research have yielded extensive information on ubiquitin-dependent proteolysis. The archetype of proteasomes is a 20S barrel-shaped complex that does not rely on ubiquitin as a degradation signal but can degrade substrates with a considerable unstructured stretch. Since roughly half of all proteasomes in most eukaryotic cells are free 20S complexes, ubiquitin-independent protein degradation may coexist with ubiquitin-dependent degradation by the highly regulated 26S proteasome. This article reviews recent advances in our understanding of the biochemical and structural features that underlie the proteolytic mechanism of 20S proteasomes. The two outer α-rings of 20S proteasomes provide a number of potential docking sites for loosely folded polypeptides. The binding of a substrate can induce asymmetric conformational changes, trigger gate opening, and initiate its own degradation through a protease-driven translocation mechanism. Consequently, the substrate translocates through two additional narrow apertures augmented by the β-catalytic active sites. The overall pulling force through the two annuli results in a protease-like unfolding of the substrate and subsequent proteolysis in the catalytic chamber. Although both proteasomes contain identical β-catalytic active sites, the differential translocation mechanisms yield distinct peptide products. Nonoverlapping substrate repertoires and product outcomes rationalize cohabitation of both proteasome complexes in cells.
Collapse
|
22
|
Lesne J, Locard-Paulet M, Parra J, Zivković D, Menneteau T, Bousquet MP, Burlet-Schiltz O, Marcoux J. Conformational maps of human 20S proteasomes reveal PA28- and immuno-dependent inter-ring crosstalks. Nat Commun 2020; 11:6140. [PMID: 33262340 PMCID: PMC7708635 DOI: 10.1038/s41467-020-19934-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/06/2020] [Indexed: 01/17/2023] Open
Abstract
Hydrogen-Deuterium eXchange coupled to Mass Spectrometry (HDX-MS) is now common practice in structural biology. However, it is most of the time applied to rather small oligomeric complexes. Here, we report on the use of HDX-MS to investigate conformational differences between the human standard 20S (std20S) and immuno 20S (i20s) proteasomes alone or in complex with PA28αβ or PA28γ activators. Their solvent accessibility is analyzed through a dedicated bioinformatic pipeline including stringent statistical analysis and 3D visualization. These data confirm the existence of allosteric differences between the std20S and i20S at the surface of the α-ring triggered from inside the catalytic β-ring. Additionally, binding of the PA28 regulators to the 20S proteasomes modify solvent accessibility due to conformational changes of the β-rings. This work is not only a proof-of-concept that HDX-MS can be used to get structural insights on large multi-protein complexes in solution, it also demonstrates that the binding of the std20S or i20S subtype to any of its PA28 activator triggers allosteric changes that are specific to this 20S/PA28 pair.
Collapse
Affiliation(s)
- Jean Lesne
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
- Centre de Biologie Structurale, CNRS, Université de Montpellier, INSERM, 34090, Montpellier, France
| | - Marie Locard-Paulet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Julien Parra
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Dušan Zivković
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Thomas Menneteau
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
23
|
Santoro AM, D’Urso A, Cunsolo A, Milardi D, Purrello R, Sbardella D, Tundo GR, Diana D, Fattorusso R, Dato AD, Paladino A, Persico M, Coletta M, Fattorusso C. Cooperative Binding of the Cationic Porphyrin Tris-T4 Enhances Catalytic Activity of 20S Proteasome Unveiling a Complex Distribution of Functional States. Int J Mol Sci 2020; 21:ijms21197190. [PMID: 33003385 PMCID: PMC7582714 DOI: 10.3390/ijms21197190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
The present study provides new evidence that cationic porphyrins may be considered as tunable platforms to interfere with the structural “key code” present on the 20S proteasome α-rings and, by consequence, with its catalytic activity. Here, we describe the functional and conformational effects on the 20S proteasome induced by the cooperative binding of the tri-cationic 5-(phenyl)-10,15,20-(tri N-methyl-4-pyridyl) porphyrin (Tris-T4). Our integrated kinetic, NMR, and in silico analysis allowed us to disclose a complex effect on the 20S catalytic activity depending on substrate/porphyrin concentration. The analysis of the kinetic data shows that Tris-T4 shifts the relative populations of the multiple interconverting 20S proteasome conformations leading to an increase in substrate hydrolysis by an allosteric pathway. Based on our Tris-T4/h20S interaction model, Tris-T4 is able to affect gating dynamics and substrate hydrolysis by binding to an array of negatively charged and hydrophobic residues present on the protein surface involved in the 20S molecular activation by the regulatory proteins (RPs). Accordingly, despite the fact that Tris-T4 also binds to the α3ΔN mutant, allosteric modulation is not observed since the molecular mechanism connecting gate dynamics with substrate hydrolysis is impaired. We envisage that the dynamic view of the 20S conformational equilibria, activated through cooperative Tris-T4 binding, may work as a simplified model for a better understanding of the intricate network of 20S conformational/functional states that may be mobilized by exogenous ligands, paving the way for the development of a new generation of proteasome allosteric modulators.
Collapse
Affiliation(s)
- Anna Maria Santoro
- Istituto di Cristallografia—CNR Sede Secondaria di Catania, Via P. Gaifami 9/18, 95126 Catania, Italy; (A.M.S.); (D.M.)
| | - Alessandro D’Urso
- Dipartimento di Scienze Chimiche, Università Degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.D.); (A.C.); (R.P.)
| | - Alessandra Cunsolo
- Dipartimento di Scienze Chimiche, Università Degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.D.); (A.C.); (R.P.)
- Department of Molecular Medicine, The University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78245, USA
| | - Danilo Milardi
- Istituto di Cristallografia—CNR Sede Secondaria di Catania, Via P. Gaifami 9/18, 95126 Catania, Italy; (A.M.S.); (D.M.)
| | - Roberto Purrello
- Dipartimento di Scienze Chimiche, Università Degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.D.); (A.C.); (R.P.)
| | - Diego Sbardella
- IRCCS-Fondazione Bietti, 00198 Rome, Italy; (D.S.); (G.R.T.)
| | - Grazia R. Tundo
- IRCCS-Fondazione Bietti, 00198 Rome, Italy; (D.S.); (G.R.T.)
| | - Donatella Diana
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy;
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli” Via Vivaldi 43, 81100 Caserta, Italy;
| | - Antonio Di Dato
- Dipartimento di Farmacia, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (A.D.D.); (M.P.)
| | - Antonella Paladino
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via M. Bianco 9, 20131 Milano, Italy;
| | - Marco Persico
- Dipartimento di Farmacia, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (A.D.D.); (M.P.)
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, 80131 Napoli, Italy
| | - Massimo Coletta
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier 1, 00133 Roma, Italy
- Correspondence: (M.C.); (C.F.); Tel.: +39-06-72596365 (M.C.); +39-081-678544 (C.F.)
| | - Caterina Fattorusso
- Dipartimento di Farmacia, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (A.D.D.); (M.P.)
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, 80131 Napoli, Italy
- Correspondence: (M.C.); (C.F.); Tel.: +39-06-72596365 (M.C.); +39-081-678544 (C.F.)
| |
Collapse
|
24
|
Allosteric coupling between α-rings of the 20S proteasome. Nat Commun 2020; 11:4580. [PMID: 32917864 PMCID: PMC7486400 DOI: 10.1038/s41467-020-18415-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 08/21/2020] [Indexed: 11/21/2022] Open
Abstract
Proteasomal machinery performs essential regulated protein degradation in eukaryotes. Classic proteasomes are symmetric, with a regulatory ATPase docked at each end of the cylindrical 20S. Asymmetric complexes are also present in cells, either with a single ATPase or with an ATPase and non-ATPase at two opposite ends. The mechanism that populates these different proteasomal complexes is unknown. Using archaea homologs, we construct asymmetric forms of proteasomes. We demonstrate that the gate conformation of the two opposite ends of 20S are coupled: binding one ATPase opens a gate locally, and also opens the opposite gate allosterically. Such allosteric coupling leads to cooperative binding of proteasomal ATPases to 20S and promotes formation of proteasomes symmetrically configured with two identical ATPases. It may also promote formation of asymmetric complexes with an ATPase and a non-ATPase at opposite ends. We propose that in eukaryotes a similar mechanism regulates the composition of the proteasomal population. The 26S proteasome is a protein degradation machine composed of a 20S core particle (CP) flanked at one or both ends by a 19S ATPase regulatory particle (RP). Here the authors reconstitute asymmetric archaeal proteasomes and reveal allosteric coupling between the conformations of gates in the α-rings positioned at opposite ends of the CP, which modulates RP assembly and substrate entry.
Collapse
|
25
|
Boulpicante M, Darrigrand R, Pierson A, Salgues V, Rouillon M, Gaudineau B, Khaled M, Cattaneo A, Bachi A, Cascio P, Apcher S. Tumors escape immunosurveillance by overexpressing the proteasome activator PSME3. Oncoimmunology 2020; 9:1761205. [PMID: 32923122 PMCID: PMC7458623 DOI: 10.1080/2162402x.2020.1761205] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/03/2020] [Indexed: 11/09/2022] Open
Abstract
The success of CD8+ T cell-based cancer immunotherapy emphasizes the importance of understanding the mechanisms of generation of MHC-I peptide ligands and the possible pathways of tumor cell escape from immunosurveillance. Recently, we showed that peptides generated in the nucleus during a pioneer round of mRNA translation (pioneer translation products, or PTPs) are an important source of tumor specific peptides which correlates with the aberrant splicing and transcription events associated with oncogenesis. Here we show that up-regulation of PSME3 proteasome activator in cancer cells results in increased destruction of PTP-derived peptides in the nucleus thus enabling cancer cell to subvert immunosurveillance. These findings unveil a previously unexpected role for PSME3 in antigen processing and identify PSME3 as a druggable target to improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Mathilde Boulpicante
- Immunologie des Tumeurs et Immunothérapie, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Romain Darrigrand
- Immunologie des Tumeurs et Immunothérapie, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Alison Pierson
- Immunologie des Tumeurs et Immunothérapie, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Valérie Salgues
- Immunologie des Tumeurs et Immunothérapie, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Marine Rouillon
- Immunologie des Tumeurs et Immunothérapie, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Benoit Gaudineau
- Dynamique des Cellules Tumorales, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Mehdi Khaled
- Dynamique des Cellules Tumorales, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Angela Cattaneo
- IFOM, The FIRC Institute of Molecular Oncology, Milano, Italy
| | - Angela Bachi
- IFOM, The FIRC Institute of Molecular Oncology, Milano, Italy
| | - Paolo Cascio
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Turin, Italy
| | - Sébastien Apcher
- Immunologie des Tumeurs et Immunothérapie, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| |
Collapse
|
26
|
Osmulski PA, Karpowicz P, Jankowska E, Bohmann J, Pickering AM, Gaczyńska M. New Peptide-Based Pharmacophore Activates 20S Proteasome. Molecules 2020; 25:E1439. [PMID: 32235805 PMCID: PMC7145288 DOI: 10.3390/molecules25061439] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 02/01/2023] Open
Abstract
The proteasome is a pivotal element of controlled proteolysis, responsible for the catabolic arm of proteostasis. By inducing apoptosis, small molecule inhibitors of proteasome peptidolytic activities are successfully utilized in treatment of blood cancers. However, the clinical potential of proteasome activation remains relatively unexplored. In this work, we introduce short TAT peptides derived from HIV-1 Tat protein and modified with synthetic turn-stabilizing residues as proteasome agonists. Molecular docking and biochemical studies point to the α1/α2 pocket of the core proteasome α ring as the binding site of TAT peptides. We postulate that the TATs' pharmacophore consists of an N-terminal basic pocket-docking "activation anchor" connected via a β turn inducer to a C-terminal "specificity clamp" that binds on the proteasome α surface. By allosteric effects-including destabilization of the proteasomal gate-the compounds substantially augment activity of the core proteasome in vitro. Significantly, this activation is preserved in the lysates of cultured cells treated with the compounds. We propose that the proteasome-stimulating TAT pharmacophore provides an attractive lead for future clinical use.
Collapse
Affiliation(s)
- Paweł A. Osmulski
- Department of Molecular Medicine, UT Health San Antonio, Texas, TX 78245, USA;
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, Texas, TX 78245, USA
| | - Przemysław Karpowicz
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Elżbieta Jankowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Jonathan Bohmann
- Southwest Research Institute, San Antonio, Texas, TX 78238, USA;
| | - Andrew M. Pickering
- Department of Molecular Medicine, UT Health San Antonio, Texas, TX 78245, USA;
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, Texas, TX 78245, USA
- The Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, UT Health San Antonio, TX 78229, USA
| | - Maria Gaczyńska
- Department of Molecular Medicine, UT Health San Antonio, Texas, TX 78245, USA;
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, Texas, TX 78245, USA
| |
Collapse
|
27
|
Exploring long-range cooperativity in the 20S proteasome core particle from Thermoplasma acidophilum using methyl-TROSY-based NMR. Proc Natl Acad Sci U S A 2020; 117:5298-5309. [PMID: 32094174 DOI: 10.1073/pnas.1920770117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The 20S core particle (CP) proteasome is a molecular assembly catalyzing the degradation of misfolded proteins or proteins no longer required for function. It is composed of four stacked heptameric rings that form a barrel-like structure, sequestering proteolytic sites inside its lumen. Proteasome function is regulated by gates derived from the termini of α-rings and through binding of regulatory particles (RPs) to one or both ends of the barrel. The CP is dynamic, with an extensive allosteric pathway extending from one end of the molecule to catalytic sites in its center. Here, using methyl-transverse relaxation optimized spectroscopy (TROSY)-based NMR optimized for studies of high-molecular-weight complexes, we evaluate whether the pathway extends over the entire 150-Å length of the molecule. By exploiting a number of different labeling schemes, the two halves of the molecule can be distinguished, so that the effects of 11S RP binding, or the introduction of gate or allosteric pathway mutations at one end of the barrel can be evaluated at the distal end. Our results establish that while 11S binding and the introduction of key mutations affect each half of the CP allosterically, they do not further couple opposite ends of the molecule. This may have implications for the function of so-called "hybrid" proteasomes where each end of the CP is bound with a different regulator, allowing the CP to be responsive to both RPs simultaneously. The methodology presented introduces a general NMR strategy for dissecting pathways of communication in homo-oligomeric molecular machines.
Collapse
|
28
|
Giletto MB, Osmulski PA, Jones CL, Gaczynska ME, Tepe JJ. Pipecolic esters as minimized templates for proteasome inhibition. Org Biomol Chem 2020; 17:2734-2746. [PMID: 30778435 DOI: 10.1039/c9ob00122k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Allosteric regulators of clinically important enzymes are gaining popularity as alternatives to competitive inhibitors. This is also the case for the proteasome, a major intracellular protease and a target of anti-cancer drugs. All clinically used proteasome inhibitors bind to the active sites in catalytic chamber and display a competitive mechanism. Unfortunately, inevitable resistance associated with this type of inhibition drives the search for non-competitive agents. The multisubunit and multicatalytic "proteolytic machine" such as the proteasome is occasionally found to be affected by agents with other primary targets. For example the immunosuppressive agent rapamycin has been shown to allosterically inhibit the proteasome albeit at levels far higher than its mTOR related efficacy. As part of an ongoing program to search for novel proteasome-targeting pharmacophores, we identified the binding domain of rapamycin as required for proteasome inhibition even without the macrocyclic context of the parent compound. By subsequent structure-activity relationship studies, we generated a pipecolic ester derivative compound 3 representing a new class of proteasome inhibitors. Compound 3 affects the core proteasome activities and proliferation of cancer cells with low micromolar/high nanomolar efficacy. Molecular modeling, atomic force microscopy imaging and biochemical data suggest that compound 3 binds into one of intersubunit pockets in the proteasomal α ring and destabilizes the α face and the gate. The α face is used as a docking area for proteasome-regulating protein modules and the gate is critical for controlling access to the catalytic chamber. Thus, the pipecolic ester template elicits a new and attractive mechanism for proteasome inhibition distinct from classical competitive drugs.
Collapse
Affiliation(s)
- Matthew B Giletto
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | |
Collapse
|
29
|
Morozov AV, Karpov VL. Proteasomes and Several Aspects of Their Heterogeneity Relevant to Cancer. Front Oncol 2019; 9:761. [PMID: 31456945 PMCID: PMC6700291 DOI: 10.3389/fonc.2019.00761] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/29/2019] [Indexed: 01/19/2023] Open
Abstract
The life of every organism is dependent on the fine-tuned mechanisms of protein synthesis and breakdown. The degradation of most intracellular proteins is performed by the ubiquitin proteasome system (UPS). Proteasomes are central elements of the UPS and represent large multisubunit protein complexes directly responsible for the protein degradation. Accumulating data indicate that there is an intriguing diversity of cellular proteasomes. Different proteasome forms, containing different subunits and attached regulators have been described. In addition, proteasomes specific for a particular tissue were identified. Cancer cells are highly dependent on the proper functioning of the UPS in general, and proteasomes in particular. At the same time, the information regarding the role of different proteasome forms in cancer is limited. This review describes the functional and structural heterogeneity of proteasomes, their association with cancer as well as several established and novel proteasome-directed therapeutic strategies.
Collapse
Affiliation(s)
- Alexey V. Morozov
- Laboratory of Regulation of Intracellular Proteolysis, W.A. Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | | |
Collapse
|
30
|
Kudriaeva AA, Belogurov AA. Proteasome: a Nanomachinery of Creative Destruction. BIOCHEMISTRY (MOSCOW) 2019; 84:S159-S192. [PMID: 31213201 DOI: 10.1134/s0006297919140104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the middle of the 20th century, it was postulated that degradation of intracellular proteins is a stochastic process. More than fifty years of intense studies have finally proven that protein degradation is a very complex and tightly regulated in time and space process that plays an incredibly important role in the vast majority of metabolic pathways. Degradation of more than a half of intracellular proteins is controlled by a hierarchically aligned and evolutionarily perfect system consisting of many components, the main ones being ubiquitin ligases and proteasomes, together referred to as the ubiquitin-proteasome system (UPS). The UPS includes more than 1000 individual components, and most of them are critical for the cell functioning and survival. In addition to the well-known signaling functions of ubiquitination, such as modification of substrates for proteasomal degradation and DNA repair, polyubiquitin (polyUb) chains are involved in other important cellular processes, e.g., cell cycle regulation, immunity, protein degradation in mitochondria, and even mRNA stability. This incredible variety of ubiquitination functions is related to the ubiquitin ability to form branching chains through the ε-amino group of any of seven lysine residues in its sequence. Deubiquitination is accomplished by proteins of the deubiquitinating enzyme family. The second main component of the UPS is proteasome, a multisubunit proteinase complex that, in addition to the degradation of functionally exhausted and damaged proteins, regulates many important cellular processes through controlled degradation of substrates, for example, transcription factors and cyclins. In addition to the ubiquitin-dependent-mediated degradation, there is also ubiquitin-independent degradation, when the proteolytic signal is either an intrinsic protein sequence or shuttle molecule. Protein hydrolysis is a critically important cellular function; therefore, any abnormalities in this process lead to systemic impairments further transforming into serious diseases, such as diabetes, malignant transformation, and neurodegenerative disorders (multiple sclerosis, Alzheimer's disease, Parkinson's disease, Creutzfeldt-Jakob disease and Huntington's disease). In this review, we discuss the mechanisms that orchestrate all components of the UPS, as well as the plurality of the fine-tuning pathways of proteasomal degradation.
Collapse
Affiliation(s)
- A A Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - A A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia. .,Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
31
|
Effect of Protein Denaturation and Enzyme Inhibitors on Proteasomal-Mediated Production of Peptides in Human Embryonic Kidney Cells. Biomolecules 2019; 9:biom9060207. [PMID: 31142026 PMCID: PMC6627375 DOI: 10.3390/biom9060207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022] Open
Abstract
Peptides produced by the proteasome have been proposed to function as signaling molecules that regulate a number of biological processes. In the current study, we used quantitative peptidomics to test whether conditions that affect protein stability, synthesis, or turnover cause changes in the levels of peptides in Human Embryonic Kidney 293T (HEK293T) cells. Mild heat shock (42 °C for 1 h) or treatment with the deubiquitinase inhibitor b-AP15 led to higher levels of ubiquitinated proteins but did not significantly increase the levels of intracellular peptides. Treatment with cycloheximide, an inhibitor of protein translation, did not substantially alter the levels of intracellular peptides identified herein. Cells treated with a combination of epoxomicin and bortezomib showed large increases in the levels of most peptides, relative to the levels in cells treated with either compound alone. Taken together with previous studies, these results support a mechanism in which the proteasome cleaves proteins into peptides that are readily detected in our assays (i.e., 6–37 amino acids) and then further degrades many of these peptides into smaller fragments.
Collapse
|
32
|
Tang M, Harrison J, Deaton CA, Johnson GVW. Tau Clearance Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:57-68. [PMID: 32096028 DOI: 10.1007/978-981-32-9358-8_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Efficient quality control mechanisms are essential for a healthy, functional neuron. Recognition and degradation of misfolded, damaged, or potentially toxic proteins, is a crucial aspect of protein quality control. Tau is a protein that is highly expressed in neurons, and plays an important role in modulating a number of physiological processes. Maintaining appropriate levels of tau is key for neuronal health; hence perturbations in tau clearance mechanisms are likely significant contributors to neurodegenerative diseases such as Alzheimer's disease and frontotemporal lobar degeneration. In this chapter we will first briefly review the two primary degradative mechanisms that mediate tau clearance: the proteasome system and the autophagy-lysosome pathway. This will be followed by a discussion about what is known about the contribution of each of these pathways to tau clearance. We will also present recent findings on tau degradation through the endolysosomal system. Further, how deficits in these degradative systems may contribute to the accumulation of dysfunctional or toxic forms of tau in neurodegenerative conditions is considered.
Collapse
|
33
|
Giżyńska M, Witkowska J, Karpowicz P, Rostankowski R, Chocron ES, Pickering AM, Osmulski P, Gaczynska M, Jankowska E. Proline- and Arginine-Rich Peptides as Flexible Allosteric Modulators of Human Proteasome Activity. J Med Chem 2018; 62:359-370. [PMID: 30452262 PMCID: PMC6796967 DOI: 10.1021/acs.jmedchem.8b01025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Proline-
and arginine-rich peptide PR11 is an allosteric inhibitor
of 20S proteasome. We modified its sequence inter alia by introducing
HbYX, RYX, or RHbX C-terminal extensions (Hb, hydrophobic moiety;
R, arginine; Y, tyrosine; X, any residue). Consequently, we were able
to improve inhibitory potency or to convert inhibitors into strong
activators: the former with an aromatic penultimate Hb residue and
the latter with the HbYX motif. The PR peptide activator stimulated
20S proteasome in vitro to efficiently degrade protein substrates,
such as α-synuclein and enolase, but also activated proteasome
in cultured fibroblasts. The positive and negative PR modulators differently
influenced the proteasome conformational dynamics and affected opening
of the substrate entry pore. The resolved crystal structure showed
PR inhibitor bound far from the active sites, at the proteasome outer
face, in the pocket used by natural activators. Our studies indicate
the opportunity to tune proteasome activity by allosteric regulators
based on PR peptide scaffold.
Collapse
Affiliation(s)
- Małgorzata Giżyńska
- Department of Biomedical Chemistry, Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| | - Julia Witkowska
- Department of Biomedical Chemistry, Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| | - Przemysław Karpowicz
- Department of Biomedical Chemistry, Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| | - Rafał Rostankowski
- Department of Biomedical Chemistry, Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| | - Estrella S Chocron
- Department of Molecular Medicine, The Barshop Institute for Longevity and Aging Studies , University of Texas Health Science Center , 15355 Lambda Drive , San Antonio , Texas 78245 , United States
| | - Andrew M Pickering
- Department of Molecular Medicine, The Barshop Institute for Longevity and Aging Studies , University of Texas Health Science Center , 15355 Lambda Drive , San Antonio , Texas 78245 , United States
| | - Pawel Osmulski
- Department of Molecular Medicine, Institute of Biotechnology , University of Texas Health Science Center , 15355 Lambda Drive , San Antonio , Texas 78245 , United States
| | - Maria Gaczynska
- Department of Molecular Medicine, Institute of Biotechnology , University of Texas Health Science Center , 15355 Lambda Drive , San Antonio , Texas 78245 , United States
| | - Elżbieta Jankowska
- Department of Biomedical Chemistry, Faculty of Chemistry , University of Gdansk , Wita Stwosza 63 , 80-308 Gdansk , Poland
| |
Collapse
|
34
|
Coleman RA, Trader DJ. All About the Core: A Therapeutic Strategy to Prevent Protein Accumulation with Proteasome Core Particle Stimulators. ACS Pharmacol Transl Sci 2018; 1:140-142. [PMID: 32219211 DOI: 10.1021/acsptsci.8b00042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Indexed: 12/18/2022]
Abstract
The proteasome is an essential enzyme complex in cells whose main responsibility is to degrade proteins. Proteins can be degraded through either a ubiquitin-dependent or -independent mechanism by the proteasome. A variety of small molecules have been discovered that can increase the rate of protein degradation through either mechanism. However, stimulation of the ubiquitin-independent system is likely to be the most therapeutically impactful for protein-accumulation diseases. Preliminary evidence has demonstrated efficacy of this approach for reducing proteins associated with disease. To advance the field forward, validation of this mechanism in a disease model as well as more detailed studies on how much stimulation is required to achieve a therapeutic effect must be performed.
Collapse
Affiliation(s)
- Rachel A Coleman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
35
|
Njomen E, Osmulski PA, Jones CL, Gaczynska M, Tepe JJ. Small Molecule Modulation of Proteasome Assembly. Biochemistry 2018; 57:4214-4224. [PMID: 29897236 DOI: 10.1021/acs.biochem.8b00579] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The 20S proteasome is the main protease that directly targets intrinsically disordered proteins (IDPs) for proteolytic degradation. Mutations, oxidative stress, or aging can induce the buildup of IDPs resulting in incorrect signaling or aggregation, associated with the pathogenesis of many cancers and neurodegenerative diseases. Drugs that facilitate 20S-mediated proteolysis therefore have many potential therapeutic applications. We report herein the modulation of proteasome assembly by the small molecule TCH-165, resulting in an increase in 20S levels. The increase in the level of free 20S corresponds to enhanced proteolysis of IDPs, including α-synuclein, tau, ornithine decarboxylase, and c-Fos, but not structured proteins. Clearance of ubiquitinated protein was largely maintained by single capped proteasome complexes (19S-20S), but accumulation occurs when all 19S capped proteasome complexes are depleted. This study illustrates the first example of a small molecule capable of targeting disordered proteins for degradation by regulating the dynamic equilibrium between different proteasome complexes.
Collapse
Affiliation(s)
- Evert Njomen
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Pawel A Osmulski
- Institute of Biotechnology , University of Texas Health Science Center at San Antonio , 15355 Lambda Drive , San Antonio , Texas 78245 , United States
| | - Corey L Jones
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Maria Gaczynska
- Institute of Biotechnology , University of Texas Health Science Center at San Antonio , 15355 Lambda Drive , San Antonio , Texas 78245 , United States
| | - Jetze J Tepe
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| |
Collapse
|
36
|
Zhu Y, Wang WL, Yu D, Ouyang Q, Lu Y, Mao Y. Structural mechanism for nucleotide-driven remodeling of the AAA-ATPase unfoldase in the activated human 26S proteasome. Nat Commun 2018; 9:1360. [PMID: 29636472 PMCID: PMC5893597 DOI: 10.1038/s41467-018-03785-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/12/2018] [Indexed: 01/08/2023] Open
Abstract
The proteasome is a sophisticated ATP-dependent molecular machine responsible for protein degradation in all known eukaryotic cells. It remains elusive how conformational changes of the AAA-ATPase unfoldase in the regulatory particle (RP) control the gating of the substrate–translocation channel leading to the proteolytic chamber of the core particle (CP). Here we report three alternative states of the ATP-γ-S-bound human proteasome, in which the CP gates are asymmetrically open, visualized by cryo-EM at near-atomic resolutions. At least four nucleotides are bound to the AAA-ATPase ring in these open-gate states. Variation in nucleotide binding gives rise to an axial movement of the pore loops narrowing the substrate-translation channel, which exhibit remarkable structural transitions between the spiral-staircase and saddle-shaped-circle topologies. Gate opening in the CP is thus regulated by nucleotide-driven conformational changes of the AAA-ATPase unfoldase. These findings demonstrate an elegant mechanism of allosteric coordination among sub-machines within the human proteasome holoenzyme. The 26S proteasome consists of a core particle that is capped at each side by a regulatory particle. Here the authors present cryo-EM structures of the activated human 26S proteasome holoenzyme in three alternative open-gate states, which provides mechanistic insights into gate opening and dynamic remodeling of the substrate–translocation pathway.
Collapse
Affiliation(s)
- Yanan Zhu
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Wei Li Wang
- Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Daqi Yu
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Qi Ouyang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Youdong Mao
- Center for Quantitative Biology, Peking University, Beijing, 100871, China. .,State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing, 100871, China. .,Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA. .,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
37
|
Dato AD, Cunsolo A, Persico M, Santoro AM, D'Urso A, Milardi D, Purrello R, Stefanelli M, Paolesse R, Tundo GR, Sbardella D, Fattorusso C, Coletta M. Electrostatic Map Of Proteasome α-Rings Encodes The Design of Allosteric Porphyrin-Based Inhibitors Able To Affect 20S Conformation By Cooperative Binding. Sci Rep 2017; 7:17098. [PMID: 29213119 PMCID: PMC5719074 DOI: 10.1038/s41598-017-17008-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
Abstract
The importance of allosteric proteasome inhibition in the treatment of cancer is becoming increasingly evident. Motivated by this urgent therapeutic need, we have recently identified cationic porphyrins as a highly versatile class of molecules able to regulate proteasome activity by interfering with gating mechanisms. In the present study, the mapping of electrostatic contacts bridging the regulatory particles with the α-rings of the human 20S proteasome led us to the identification of (meso-tetrakis(4-N-methylphenyl pyridyl)-porphyrin (pTMPyPP4) as a novel non-competitive inhibitor of human 20S proteasome. pTMPyPP4 inhibition mechanism implies a positive cooperative binding to proteasome, which disappears when a permanently open proteasome mutant (α-3ΔN) is used, supporting the hypothesis that the events associated with allosteric proteasome inhibition by pTMPyPP4 interfere with 20S gating and affect its "open-closed" equilibrium. Therefore, we propose that the spatial distribution of the negatively charged residues responsible for the interaction with regulatory particles at the α-ring surface of human 20S may be exploited as a blueprint for the design of allosteric proteasome regulators.
Collapse
Affiliation(s)
- Antonio Di Dato
- Dipartimento di Farmacia Università di Napoli "Federico II", Via D. Montesano, 49 I, 80131, Napoli, Italy
| | - Alessandra Cunsolo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Marco Persico
- Dipartimento di Farmacia Università di Napoli "Federico II", Via D. Montesano, 49 I, 80131, Napoli, Italy
| | - Anna Maria Santoro
- Istituto di Biostrutture e Bioimmagini-CNR sede secondaria di Catania, Via P. Gaifami, 9- 95126, Catania, Italy
| | - Alessandro D'Urso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Danilo Milardi
- Istituto di Biostrutture e Bioimmagini-CNR sede secondaria di Catania, Via P. Gaifami, 9- 95126, Catania, Italy
| | - Roberto Purrello
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Manuela Stefanelli
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata-Via della Ricerca Scientifica, 00133, Roma, Italy
| | - Roberto Paolesse
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata-Via della Ricerca Scientifica, 00133, Roma, Italy
| | - Grazia R Tundo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier 1, 00133, Roma, Italy
| | - Diego Sbardella
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier 1, 00133, Roma, Italy
| | - Caterina Fattorusso
- Dipartimento di Farmacia Università di Napoli "Federico II", Via D. Montesano, 49 I, 80131, Napoli, Italy.
| | - Massimo Coletta
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier 1, 00133, Roma, Italy.
| |
Collapse
|
38
|
Kozai T, Sekiguchi T, Satoh T, Yagi H, Kato K, Uchihashi T. Two-step process for disassembly mechanism of proteasome α7 homo-tetradecamer by α6 revealed by high-speed atomic force microscopy. Sci Rep 2017; 7:15373. [PMID: 29133893 PMCID: PMC5684232 DOI: 10.1038/s41598-017-15708-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/31/2017] [Indexed: 01/06/2023] Open
Abstract
The 20S proteasome is a core particle of the eukaryotic proteasome responsible for proteolysis and is composed of layered α and β hetero-heptameric rings. The α7 subunit, which is one of components of the α ring, is known to self-assemble into a double-ringed homo-tetradecamer composed of two layers of the α7 heptameric ring. The α7 tetradecamer is known to disassemble upon the addition of α6 subunit, producing a 1:7 hetero-octameric α6-α7 complex. However, the detailed disassembly mechanism remains unclear. Here, we applied high-speed atomic force microscopy (HS-AFM) to dissect the disassembly process of the α7 double ring caused by interaction with the α6. HS-AFM movies clearly demonstrated two different modes of interaction in which the α6 monomer initially cracks at the interface between the stacked two α7 single rings and the subsequent intercalation of the α6 monomer in the open pore of the α7 single ring blocks the re-association of the single rings into the double ring. This result provides a mechanistic insight about the disassembly process of non-native homo-oligomers formed by proteasome components which is crucial for the initial process for assembly of 20S proteasome.
Collapse
Affiliation(s)
- Toshiya Kozai
- College of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Taichiro Sekiguchi
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Tadashi Satoh
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Hirokazu Yagi
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Koichi Kato
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan. .,Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan. .,CREST, JST (Japan Science and Technology), Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
39
|
Gaczynska M, Osmulski PA. Targeting Protein-Protein Interactions in the Ubiquitin-Proteasome Pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 110:123-165. [PMID: 29412995 DOI: 10.1016/bs.apcsb.2017.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ubiquitin-proteasome pathway (UPP) is a major venue for controlled intracellular protein degradation in Eukaryota. The machinery of several hundred proteins is involved in recognizing, tagging, transporting, and cleaving proteins, all in a highly regulated manner. Short-lived transcription factors, misfolded translation products, stress-damaged polypeptides, or worn-out long-lived proteins, all can be found among the substrates of UPP. Carefully choreographed protein-protein interactions (PPI) are involved in each step of the pathway. For many of the steps small-molecule inhibitors have been identified and often they directly or indirectly target PPI. The inhibitors may destabilize intracellular proteostasis and trigger apoptosis. So far this is the most explored option used as an anticancer strategy. Alternatively, substrate-specific polyubiquitination may be regulated for a precise intervention aimed at a particular metabolic pathway. This very attractive opportunity is moving close to clinical application. The best known drug target in UPP is the proteasome: the end point of the journey of a protein destined for degradation. The proteasome alone is a perfect object to study the mechanisms and roles of PPI on many levels. This giant protease is built from multisubunit modules and additionally utilizes a service from transient protein ligands, for example, delivering substrates. An elaborate set of PPI within the highest-order proteasome assembly is involved in substrate recognition and processing. Below we will outline PPI involved in the UPP and discuss the growing prospects for their utilization in pharmacological interventions.
Collapse
Affiliation(s)
- Maria Gaczynska
- Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.
| | - Pawel A Osmulski
- Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
40
|
Jones CL, Njomen E, Sjögren B, Dexheimer TS, Tepe JJ. Small Molecule Enhancement of 20S Proteasome Activity Targets Intrinsically Disordered Proteins. ACS Chem Biol 2017; 12:2240-2247. [PMID: 28719185 DOI: 10.1021/acschembio.7b00489] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 20S proteasome is the main protease for the degradation of oxidatively damaged and intrinsically disordered proteins. When accumulation of disordered or oxidatively damaged proteins exceeds proper clearance in neurons, imbalanced pathway signaling or aggregation occurs, which have been implicated in the pathogenesis of several neurological disorders. Screening of the NIH Clinical Collection and Prestwick libraries identified the neuroleptic agent chlorpromazine as a lead agent capable of enhancing 20S proteasome activity. Chemical manipulation of chlorpromazine abrogated its D2R receptor binding affinity while retaining its ability to enhance 20S mediated proteolysis at low micromolar concentrations. The resulting small molecule enhancers of 20S proteasome activity induced the degradation of intrinsically disordered proteins, α-synuclein, and tau but not structured proteins. These small molecule 20S agonists can serve as leads to explore the therapeutic potential of 20S activation or as new tools to provide insight into the yet unclear mechanics of 20S-gate regulation.
Collapse
Affiliation(s)
- Corey L. Jones
- Department
of Chemistry and ‡Department of Pharmacology and Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Evert Njomen
- Department
of Chemistry and ‡Department of Pharmacology and Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Benita Sjögren
- Department
of Chemistry and ‡Department of Pharmacology and Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Thomas S. Dexheimer
- Department
of Chemistry and ‡Department of Pharmacology and Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Jetze J. Tepe
- Department
of Chemistry and ‡Department of Pharmacology and Toxicology, Michigan State University, East
Lansing, Michigan 48824, United States
| |
Collapse
|
41
|
Yedidi RS, Wendler P, Enenkel C. AAA-ATPases in Protein Degradation. Front Mol Biosci 2017; 4:42. [PMID: 28676851 PMCID: PMC5476697 DOI: 10.3389/fmolb.2017.00042] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
Proteolytic machineries containing multisubunit protease complexes and AAA-ATPases play a key role in protein quality control and the regulation of protein homeostasis. In these protein degradation machineries, the proteolytically active sites are formed by either threonines or serines which are buried inside interior cavities of cylinder-shaped complexes. In eukaryotic cells, the proteasome is the most prominent protease complex harboring AAA-ATPases. To degrade protein substrates, the gates of the axial entry ports of the protease need to be open. Gate opening is accomplished by AAA-ATPases, which form a hexameric ring flanking the entry ports of the protease. Protein substrates with unstructured domains can loop into the entry ports without the assistance of AAA-ATPases. However, folded proteins require the action of AAA-ATPases to unveil an unstructured terminus or domain. Cycles of ATP binding/hydrolysis fuel the unfolding of protein substrates which are gripped by loops lining up the central pore of the AAA-ATPase ring. The AAA-ATPases pull on the unfolded polypeptide chain for translocation into the proteolytic cavity of the protease. Conformational changes within the AAA-ATPase ring and the adjacent protease chamber create a peristaltic movement for substrate degradation. The review focuses on new technologies toward the understanding of the function and structure of AAA-ATPases to achieve substrate recognition, unfolding and translocation into proteasomes in yeast and mammalian cells and into proteasome-equivalent proteases in bacteria and archaea.
Collapse
Affiliation(s)
| | - Petra Wendler
- Department of Biochemistry, Institute of Biochemistry and Biology, University of PotsdamPotsdam, Germany
| | - Cordula Enenkel
- Department of Biochemistry, University of TorontoToronto, ON, Canada
| |
Collapse
|
42
|
Budenholzer L, Cheng CL, Li Y, Hochstrasser M. Proteasome Structure and Assembly. J Mol Biol 2017; 429:3500-3524. [PMID: 28583440 DOI: 10.1016/j.jmb.2017.05.027] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
The eukaryotic 26S proteasome is a large multisubunit complex that degrades the majority of proteins in the cell under normal conditions. The 26S proteasome can be divided into two subcomplexes: the 19S regulatory particle and the 20S core particle. Most substrates are first covalently modified by ubiquitin, which then directs them to the proteasome. The function of the regulatory particle is to recognize, unfold, deubiquitylate, and translocate substrates into the core particle, which contains the proteolytic sites of the proteasome. Given the abundance and subunit complexity of the proteasome, the assembly of this ~2.5MDa complex must be carefully orchestrated to ensure its correct formation. In recent years, significant progress has been made in the understanding of proteasome assembly, structure, and function. Technical advances in cryo-electron microscopy have resulted in a series of atomic cryo-electron microscopy structures of both human and yeast 26S proteasomes. These structures have illuminated new intricacies and dynamics of the proteasome. In this review, we focus on the mechanisms of proteasome assembly, particularly in light of recent structural information.
Collapse
Affiliation(s)
- Lauren Budenholzer
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Chin Leng Cheng
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Yanjie Li
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA.
| |
Collapse
|
43
|
High-resolution cryo-EM structure of the proteasome in complex with ADP-AlFx. Cell Res 2017; 27:373-385. [PMID: 28106073 DOI: 10.1038/cr.2017.12] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/05/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022] Open
Abstract
The 26S proteasome is an ATP-dependent dynamic 2.5 MDa protease that regulates numerous essential cellular functions through degradation of ubiquitinated substrates. Here we present a near-atomic-resolution cryo-EM map of the S. cerevisiae 26S proteasome in complex with ADP-AlFx. Our biochemical and structural data reveal that the proteasome-ADP-AlFx is in an activated state, displaying a distinct conformational configuration especially in the AAA-ATPase motor region. Noteworthy, this map demonstrates an asymmetric nucleotide binding pattern with four consecutive AAA-ATPase subunits bound with nucleotide. The remaining two subunits, Rpt2 and Rpt6, with empty or only partially occupied nucleotide pocket exhibit pronounced conformational changes in the AAA-ATPase ring, which may represent a collective result of allosteric cooperativity of all the AAA-ATPase subunits responding to ATP hydrolysis. This collective motion of Rpt2 and Rpt6 results in an elevation of their pore loops, which could play an important role in substrate processing of proteasome. Our data also imply that the nucleotide occupancy pattern could be related to the activation status of the complex. Moreover, the HbYX tail insertion may not be sufficient to maintain the gate opening of 20S core particle. Our results provide new insights into the mechanisms of nucleotide-driven allosteric cooperativity of the complex and of the substrate processing by the proteasome.
Collapse
|
44
|
Welk V, Coux O, Kleene V, Abeza C, Trümbach D, Eickelberg O, Meiners S. Inhibition of Proteasome Activity Induces Formation of Alternative Proteasome Complexes. J Biol Chem 2016; 291:13147-59. [PMID: 27129254 DOI: 10.1074/jbc.m116.717652] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 11/06/2022] Open
Abstract
The proteasome is an intracellular protease complex consisting of the 20S catalytic core and its associated regulators, including the 19S complex, PA28αβ, PA28γ, PA200, and PI31. Inhibition of the proteasome induces autoregulatory de novo formation of 20S and 26S proteasome complexes. Formation of alternative proteasome complexes, however, has not been investigated so far. We here show that catalytic proteasome inhibition results in fast recruitment of PA28γ and PA200 to 20S and 26S proteasomes within 2-6 h. Rapid formation of alternative proteasome complexes did not involve transcriptional activation of PA28γ and PA200 but rather recruitment of preexisting activators to 20S and 26S proteasome complexes. Recruitment of proteasomal activators depended on the extent of active site inhibition of the proteasome with inhibition of β5 active sites being sufficient for inducing recruitment. Moreover, specific inhibition of 26S proteasome activity via siRNA-mediated knockdown of the 19S subunit RPN6 induced recruitment of only PA200 to 20S proteasomes, whereas PA28γ was not mobilized. Here, formation of alternative PA200 complexes involved transcriptional activation of the activator. Alternative proteasome complexes persisted when cells had regained proteasome activity after pulse exposure to proteasome inhibitors. Knockdown of PA28γ sensitized cells to proteasome inhibitor-mediated growth arrest. Thus, formation of alternative proteasome complexes appears to be a formerly unrecognized but integral part of the cellular response to impaired proteasome function and altered proteostasis.
Collapse
Affiliation(s)
- Vanessa Welk
- From the Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Olivier Coux
- the Centre de Recherche de Biochimie Macromoléculaire (CRBM-CNRS UMR 5237), Université de Montpellier, 34293 Montpellier, France, and
| | - Vera Kleene
- From the Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Claire Abeza
- the Centre de Recherche de Biochimie Macromoléculaire (CRBM-CNRS UMR 5237), Université de Montpellier, 34293 Montpellier, France, and
| | - Dietrich Trümbach
- the Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Oliver Eickelberg
- From the Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Silke Meiners
- From the Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany,
| |
Collapse
|
45
|
Padmanabhan A, Vuong SAT, Hochstrasser M. Assembly of an Evolutionarily Conserved Alternative Proteasome Isoform in Human Cells. Cell Rep 2016; 14:2962-74. [PMID: 26997268 DOI: 10.1016/j.celrep.2016.02.068] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/25/2016] [Accepted: 02/16/2016] [Indexed: 11/17/2022] Open
Abstract
Targeted intracellular protein degradation in eukaryotes is largely mediated by the proteasome. Here, we report the formation of an alternative proteasome isoform in human cells, previously found only in budding yeast, that bears an altered subunit arrangement in the outer ring of the proteasome core particle. These proteasomes result from incorporation of an additional α4 (PSMA7) subunit in the position normally occupied by α3 (PSMA4). Assembly of "α4-α4" proteasomes depends on the relative cellular levels of α4 and α3 and on the proteasome assembly chaperone PAC3. The oncogenic tyrosine kinases ABL and ARG and the tumor suppressor BRCA1 regulate cellular α4 levels and formation of α4-α4 proteasomes. Cells primed to assemble α4-α4 proteasomes exhibit enhanced resistance to toxic metal ions. Taken together, our results establish the existence of an alternative mammalian proteasome isoform and suggest a potential role in enabling cells to adapt to environmental stresses.
Collapse
Affiliation(s)
- Achuth Padmanabhan
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Simone Anh-Thu Vuong
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA.
| |
Collapse
|
46
|
Karpowicz P, Osmulski PA, Witkowska J, Sikorska E, Giżyńska M, Belczyk-Ciesielska A, Gaczynska ME, Jankowska E. Interplay between Structure and Charge as a Key to Allosteric Modulation of Human 20S Proteasome by the Basic Fragment of HIV-1 Tat Protein. PLoS One 2015; 10:e0143038. [PMID: 26575189 PMCID: PMC4648528 DOI: 10.1371/journal.pone.0143038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/29/2015] [Indexed: 12/25/2022] Open
Abstract
The proteasome is a giant protease responsible for degradation of the majority of cytosolic proteins. Competitive inhibitors of the proteasome are used against aggressive blood cancers. However, broadening the use of proteasome-targeting drugs requires new mechanistic approaches to the enzyme's inhibition. In our previous studies we described Tat1 peptide, an allosteric inhibitor of the proteasome derived from a fragment of the basic domain of HIV-Tat1 protein. Here, we attempted to dissect the structural determinants of the proteasome inhibition by Tat1. Single- and multiple- alanine walking scans were performed. Tat1 analogs with stabilized beta-turn conformation at positions 4-5 and 8-9, pointed out by the molecular dynamics modeling and the alanine scan, were synthesized. Structure of Tat1 analogs were analyzed by circular dichroism, Fourier transform infrared and nuclear magnetic resonance spectroscopy studies, supplemented by molecular dynamics simulations. Biological activity tests and structural studies revealed that high flexibility and exposed positive charge are hallmarks of Tat1 peptide. Interestingly, stabilization of a beta-turn at the 8-9 position was necessary to significantly improve the inhibitory potency.
Collapse
Affiliation(s)
- Przemysław Karpowicz
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Paweł A. Osmulski
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Julia Witkowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Emilia Sikorska
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Małgorzata Giżyńska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | - Maria E. Gaczynska
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Elżbieta Jankowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
47
|
Santoro AM, Cunsolo A, D'Urso A, Sbardella D, Tundo GR, Ciaccio C, Coletta M, Diana D, Fattorusso R, Persico M, Di Dato A, Fattorusso C, Milardi D, Purrello R. Cationic porphyrins are tunable gatekeepers of the 20S proteasome. Chem Sci 2015; 7:1286-1297. [PMID: 29910886 PMCID: PMC5975898 DOI: 10.1039/c5sc03312h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/06/2015] [Indexed: 12/17/2022] Open
Abstract
Three homologous cationic porphyrins differently affect the 20S proteasome gating mechanism.
The 20S proteasome is a barrel-shaped enzymatic assembly playing a critical role in proteome maintenance. Access of proteasome substrates to the catalytic chamber is finely regulated through gating mechanisms which involve aromatic and negatively charged residues located at the N-terminal tails of α subunits. However, despite the importance of gates in regulating proteasome function, up to now very few molecules have been shown to interfere with the equilibrium by which the catalytic channel exchanges between the open and closed states. In this light, and inspired by previous results evidencing the antiproteasome potential of cationic porphyrins, here we combine experimental (enzyme kinetics, UV stopped flow and NMR) and computational (bioinformatic analysis and docking studies) approaches to inspect proteasome inhibition by meso-tetrakis(4-N-methylpyridyl)-porphyrin (H2T4) and its two ortho- and meta-isomers. We show that in a first, fast binding event H2T4 accommodates in a pocket made of negatively charged and aromatic residues present in α1 (Asp10, Phe9), α3 (Tyr5), α5 (Asp9, Tyr8), α6 (Asp7, Tyr6) and α7 (Asp9, Tyr8) subunits thereby stabilizing the closed conformation. A second, slower binding mode involves interaction with the grooves which separate the α- from the β-rings. Of note, the proteasome inhibition by ortho- and meta-H2T4 decreases significantly if compared to the parent compound, thus underscoring the role played by spatial distribution of the four peripheral positive charges in regulating proteasome–ligand interactions. We think that our results may pave the way to further studies aimed at rationalizing the molecular basis of novel, and more sophisticated, proteasome regulatory mechanisms.
Collapse
Affiliation(s)
- Anna M Santoro
- Istituto di Biostrutture e Bioimmagini - CNR UOS di Catania , Via P. Gaifami 18 , 95126 Catania , Italy .
| | - Alessandra Cunsolo
- Dipartimento di Scienze Chimiche , Università di Catania , Viale Andrea Doria 6 , 95125 Catania , Italy .
| | - Alessandro D'Urso
- Dipartimento di Scienze Chimiche , Università di Catania , Viale Andrea Doria 6 , 95125 Catania , Italy .
| | - Diego Sbardella
- Dipartimento di Scienze Cliniche e Medicina Traslazionale , Università di Roma Tor Vergata , Via Montpellier 1 , I-00133 Roma , Italy .
| | - Grazia R Tundo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale , Università di Roma Tor Vergata , Via Montpellier 1 , I-00133 Roma , Italy .
| | - Chiara Ciaccio
- Dipartimento di Scienze Cliniche e Medicina Traslazionale , Università di Roma Tor Vergata , Via Montpellier 1 , I-00133 Roma , Italy .
| | - Massimiliano Coletta
- Dipartimento di Scienze Cliniche e Medicina Traslazionale , Università di Roma Tor Vergata , Via Montpellier 1 , I-00133 Roma , Italy .
| | - Donatella Diana
- Istituto di Biostrutture e Bioimmagini , CNR , Via Mezzocannone 16 , 80134 Napoli , Italy
| | - Roberto Fattorusso
- Dipartimento di Scienze e Tecnologie Ambientali , Biologiche e Farmaceutiche , Seconda Università degli Studi Napoli , Via Vivaldi 43 , 81100 , Caserta , Italy .
| | - Marco Persico
- Dipartimento di Farmacia Università di Napoli "Federico II" , Via D. Montesano , 49 I-80131 Napoli , Italy .
| | - Antonio Di Dato
- Dipartimento di Farmacia Università di Napoli "Federico II" , Via D. Montesano , 49 I-80131 Napoli , Italy .
| | - Caterina Fattorusso
- Dipartimento di Farmacia Università di Napoli "Federico II" , Via D. Montesano , 49 I-80131 Napoli , Italy .
| | - Danilo Milardi
- Istituto di Biostrutture e Bioimmagini - CNR UOS di Catania , Via P. Gaifami 18 , 95126 Catania , Italy .
| | - Roberto Purrello
- Dipartimento di Scienze Chimiche , Università di Catania , Viale Andrea Doria 6 , 95125 Catania , Italy .
| |
Collapse
|
48
|
Liepe J, Holzhütter HG, Bellavista E, Kloetzel PM, Stumpf MPH, Mishto M. Quantitative time-resolved analysis reveals intricate, differential regulation of standard- and immuno-proteasomes. eLife 2015; 4:e07545. [PMID: 26393687 PMCID: PMC4611054 DOI: 10.7554/elife.07545] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/18/2015] [Indexed: 12/15/2022] Open
Abstract
Proteasomal protein degradation is a key determinant of protein half-life and hence of cellular processes ranging from basic metabolism to a host of immunological processes. Despite its importance the mechanisms regulating proteasome activity are only incompletely understood. Here we use an iterative and tightly integrated experimental and modelling approach to develop, explore and validate mechanistic models of proteasomal peptide-hydrolysis dynamics. The 20S proteasome is a dynamic enzyme and its activity varies over time because of interactions between substrates and products and the proteolytic and regulatory sites; the locations of these sites and the interactions between them are predicted by the model, and experimentally supported. The analysis suggests that the rate-limiting step of hydrolysis is the transport of the substrates into the proteasome. The transport efficiency varies between human standard- and immuno-proteasomes thereby impinging upon total degradation rate and substrate cleavage-site usage. DOI:http://dx.doi.org/10.7554/eLife.07545.001 Cells have to be able to reliably destroy or remove molecules from their interior that they no longer need. Structures called proteasomes play a central part in this complex process by cutting up and digesting proteins. Mammals have several different types of proteasomes, each made up of several protein ‘subunits’. For example, when a cell experiences inflammation some proteasomes change some of their subunits and form an immuno-proteasome. These immuno-proteasomes tend to break down proteins more quickly than ‘standard’ proteasomes, but it was not clear how they are able to do so. Liepe et al. have now combined experiments and mathematical modelling to construct a detailed model of proteasome activity. The model shows that protein transport into and out of the proteasome chamber are the steps that limit how quickly the proteasomes can break down proteins. Furthermore, these transport processes are also to a large extent responsible for the different rates at which standard and immuno-proteasomes process proteins. Liepe et al. were also able to confirm the existence of regulatory sites within the proteasome, and describe how these are arranged. Problems that alter the rate at which proteasomes break down proteins have been linked to tumors and neurological and autoimmune diseases. Liepe et al.'s model opens up the ability to study how the proteasome's activity is affected by drugs and therefore makes it easier to investigate ways of interfering with this activity for therapeutic purposes. DOI:http://dx.doi.org/10.7554/eLife.07545.002
Collapse
Affiliation(s)
- Juliane Liepe
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Elena Bellavista
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Peter M Kloetzel
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael P H Stumpf
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Michele Mishto
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Luigi Galvani, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
49
|
Wani PS, Rowland MA, Ondracek A, Deeds EJ, Roelofs J. Maturation of the proteasome core particle induces an affinity switch that controls regulatory particle association. Nat Commun 2015; 6:6384. [PMID: 25812915 PMCID: PMC4380239 DOI: 10.1038/ncomms7384] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 01/25/2015] [Indexed: 01/09/2023] Open
Abstract
Proteasome assembly is a complex process, requiring 66 subunits distributed over several subcomplexes to associate in a coordinated fashion. Ten proteasome-specific chaperones have been identified that assist in this process. For two of these, the Pba1-Pba2 dimer, it is well established that they only bind immature core particles (CP) in vivo. In contrast, the regulatory particle (RP) utilizes the same binding surface but only interacts with the mature CP in vivo. It is unclear how these binding events are regulated. Here, we show that Pba1-Pba2 binds tightly to immature CP, preventing RP binding. Changes in the CP that occur upon maturation significantly reduce its affinity for Pba1-Pba2, enabling the RP to displace the chaperone. Mathematical modeling indicates that this “affinity switch” mechanism has likely evolved to improve assembly efficiency by preventing the accumulation of stable, non-productive intermediates. Our work thus provides mechanistic insights into a crucial step in proteasome biogenesis.
Collapse
Affiliation(s)
- Prashant S Wani
- Graduate Biochemistry Group, Department of Biochemistry and Molecular Biophysics, Kansas State University, 336 Ackert Hall, Manhattan, Kansas 66506, USA
| | - Michael A Rowland
- Center for Computational Biology, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
| | - Alex Ondracek
- Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, Kansas 66506, USA
| | - Eric J Deeds
- 1] Center for Computational Biology, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA [2] Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, USA [3] Santa Fe Institute, Santa Fe, New Mexico 87501, USA
| | - Jeroen Roelofs
- 1] Graduate Biochemistry Group, Department of Biochemistry and Molecular Biophysics, Kansas State University, 336 Ackert Hall, Manhattan, Kansas 66506, USA [2] Molecular, Cellular and Developmental Biology Program, Division of Biology, Kansas State University, 338 Ackert Hall, Manhattan, Kansas 66506, USA
| |
Collapse
|
50
|
McCarthy MK, Weinberg JB. The immunoproteasome and viral infection: a complex regulator of inflammation. Front Microbiol 2015; 6:21. [PMID: 25688236 PMCID: PMC4310299 DOI: 10.3389/fmicb.2015.00021] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
During viral infection, proper regulation of immune responses is necessary to ensure successful viral clearance with minimal host tissue damage. Proteasomes play a crucial role in the generation of antigenic peptides for presentation on MHC class I molecules, and thus activation of CD8 T cells, as well as activation of the NF-κB pathway. A specialized type of proteasome called the immunoproteasome is constitutively expressed in hematopoietic cells and induced in non-immune cells during viral infection by interferon signaling. The immunoproteasome regulates CD8 T cell responses to many viral epitopes during infection. Accumulating evidence suggests that the immunoproteasome may also contribute to regulation of proinflammatory cytokine production, activation of the NF-κB pathway, and management of oxidative stress. Many viruses have mechanisms of interfering with immunoproteasome function, including prevention of transcriptional upregulation of immunoproteasome components as well as direct interaction of viral proteins with immunoproteasome subunits. A better understanding of the role of the immunoproteasome in different cell types, tissues, and hosts has the potential to improve vaccine design and facilitate the development of effective treatment strategies for viral infections.
Collapse
Affiliation(s)
- Mary K McCarthy
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA
| | - Jason B Weinberg
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA ; Department of Pediatrics and Communicable Diseases, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|