1
|
Zhang Y, Luo M, Wu P, Wu S, Lee TY, Bai C. Application of Computational Biology and Artificial Intelligence in Drug Design. Int J Mol Sci 2022; 23:13568. [PMID: 36362355 PMCID: PMC9658956 DOI: 10.3390/ijms232113568] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 08/24/2023] Open
Abstract
Traditional drug design requires a great amount of research time and developmental expense. Booming computational approaches, including computational biology, computer-aided drug design, and artificial intelligence, have the potential to expedite the efficiency of drug discovery by minimizing the time and financial cost. In recent years, computational approaches are being widely used to improve the efficacy and effectiveness of drug discovery and pipeline, leading to the approval of plenty of new drugs for marketing. The present review emphasizes on the applications of these indispensable computational approaches in aiding target identification, lead discovery, and lead optimization. Some challenges of using these approaches for drug design are also discussed. Moreover, we propose a methodology for integrating various computational techniques into new drug discovery and design.
Collapse
Affiliation(s)
- Yue Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Mengqi Luo
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Peng Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Song Wu
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Tzong-Yi Lee
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| | - Chen Bai
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Warshel Institute for Computational Biology, Shenzhen 518172, China
| |
Collapse
|
2
|
Vu HT, Zhang Z, Tehver R, Thirumalai D. Plus and minus ends of microtubules respond asymmetrically to kinesin binding by a long-range directionally driven allosteric mechanism. SCIENCE ADVANCES 2022; 8:eabn0856. [PMID: 35417226 PMCID: PMC9007332 DOI: 10.1126/sciadv.abn0856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Although it is known that majority of kinesin motors walk predominantly toward the plus end of microtubules (MTs) in a hand-over-hand manner, the structural origin of the stepping directionality is not understood. To resolve this issue, we modeled the structures of kinesin-1 (Kin1), MT, and the Kin1-MT complex using the elastic network model and calculated the residue-dependent responses to a local perturbation in the constructs. Kin1 binding elicits an asymmetric response that is pronounced in α/β-tubulin dimers in the plus end of the MT. Kin1 opens the clefts of multiple plus end α/β-tubulin dimers, creating binding-competent conformations, which is required for processivity. Reciprocally, MT induces correlations between switches I and II in the motor and enhances fluctuations in adenosine 5'-diphosphate and the residues in the binding pocket. Our findings explain both the directionality of stepping and MT effects on a key step in the catalytic cycle of kinesin.
Collapse
Affiliation(s)
- Huong T. Vu
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry CV4 7AL, UK
| | - Zhechun Zhang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Riina Tehver
- Department of Physics, Denison University, Granville, OH 43023, USA
| | - D. Thirumalai
- Department of Chemistry, University of Texas, Austin, TX 78702, USA
| |
Collapse
|
3
|
Takaki R, Dey A, Shi G, Thirumalai D. Theory and simulations of condensin mediated loop extrusion in DNA. Nat Commun 2021; 12:5865. [PMID: 34620869 PMCID: PMC8497514 DOI: 10.1038/s41467-021-26167-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/15/2021] [Indexed: 11/08/2022] Open
Abstract
Condensation of hundreds of mega-base-pair-long human chromosomes in a small nuclear volume is a spectacular biological phenomenon. This process is driven by the formation of chromosome loops. The ATP consuming motor, condensin, interacts with chromatin segments to actively extrude loops. Motivated by real-time imaging of loop extrusion (LE), we created an analytically solvable model, predicting the LE velocity and step size distribution as a function of external load. The theory fits the available experimental data quantitatively, and suggests that condensin must undergo a large conformational change, induced by ATP binding, bringing distant parts of the motor to proximity. Simulations using a simple model confirm that the motor transitions between an open and a closed state in order to extrude loops by a scrunching mechanism, similar to that proposed in DNA bubble formation during bacterial transcription. Changes in the orientation of the motor domains are transmitted over ~50 nm, connecting the motor head and the hinge, thus providing an allosteric basis for LE.
Collapse
Affiliation(s)
- Ryota Takaki
- Department of Physics, The University of Texas at Austin, Austin, 78712, USA
| | - Atreya Dey
- Department of Chemistry, The University of Texas at Austin, Austin, 78712, USA
| | - Guang Shi
- Department of Chemistry, The University of Texas at Austin, Austin, 78712, USA
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, 78712, USA.
| |
Collapse
|
4
|
Hasnain S, Mugnai ML, Thirumalai D. Effects of Gold Nanoparticles on the Stepping Trajectories of Kinesin. J Phys Chem B 2021; 125:10432-10444. [PMID: 34499499 DOI: 10.1021/acs.jpcb.1c02218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A substantial increase in the temporal resolution of the stepping of dimeric molecular motors is possible by tracking the position of a large gold nanoparticle (GNP) attached to a labeled site on one of the heads. This technique was employed to measure the stepping trajectories of conventional kinesin (Kin1) using the time-dependent position of the GNP as a proxy. The trajectories revealed that the detached head always passes to the right of the head that is tightly bound to the microtubule (MT) during a step. In interpreting the results of such experiments, it is assumed that the GNP does not significantly alter the diffusive motion of the detached head. We used coarse-grained simulations of a system consisting of the MT-Kin1 complex with and without attached GNP to investigate how the stepping trajectories are affected. The two significant findings are: (1) The GNP does not faithfully track the position of the stepping head, and (2) the rightward bias is typically exaggerated by the GNP. Both these findings depend on the precise residue position to which the GNP is attached. Surprisingly, the stepping trajectories of kinesin are not significantly affected if, in addition to the GNP, a 1 μm diameter cargo is attached to the coiled coil. Our simulations suggest the effects of the large probe have to be considered when inferring the stepping mechanisms using GNP tracking experiments.
Collapse
Affiliation(s)
- Sabeeha Hasnain
- Department of Chemistry, The University of Texas at Austin, Austin 78712, Texas, United States
| | - Mauro L Mugnai
- Department of Chemistry, The University of Texas at Austin, Austin 78712, Texas, United States
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin 78712, Texas, United States
| |
Collapse
|
5
|
Bai C, Wang J, Mondal D, Du Y, Ye RD, Warshel A. Exploring the Activation Process of the β2AR-G s Complex. J Am Chem Soc 2021; 143:11044-11051. [PMID: 34255502 DOI: 10.1021/jacs.1c03696] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
G-Protein-coupled receptors (GPCRs) belong to an important family of integral membrane receptor proteins that are essential for a variety of transmembrane signaling process, such as vision, olfaction, and hormone responses. They are also involved in many human diseases (Alzheimer's, heart diseases, etc.) and are therefore common drug targets. Thus, understanding the details of the GPCR activation process is a task of major importance. Various types of crystal structures of GPCRs have been solved either at stable end-point states or at possible intermediate states. However, the detailed mechanism of the activation process is still poorly understood. For example, it is not completely clear when the nucleotide release from the G protein occurs and how the key residues on α5 contribute to the coupling process and further affect the binding specificity. In this work we show by free energy analysis that the guanosine diphosphate (GDP) molecule could be released from the Gs protein when the binding cavity is half open. This occurs during the transition to the Gs open state, which is the rate-determining step in the system conformational change. We also account for the experimentally observed slow-down effects by the change of the reaction barriers after mutations. Furthermore, we identify potential key residues on α5 and validated their significance by site-directed mutagenesis, which illustrates that computational works have predictive value even for complex biophysical systems. The methodology of the current work may be applied to other biophysical systems of interest.
Collapse
Affiliation(s)
- Chen Bai
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Shenzhen 518172, China
| | - Junlin Wang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Shenzhen 518172, China
| | - Dibyendu Mondal
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Yang Du
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Shenzhen 518172, China
| | - Richard D Ye
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Shenzhen 518172, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| |
Collapse
|
6
|
Goldtzvik Y, Thirumalai D. Multiscale Coarse-Grained Model for the Stepping of Molecular Motors with Application to Kinesin. J Chem Theory Comput 2021; 17:5358-5368. [PMID: 34251798 DOI: 10.1021/acs.jctc.1c00317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conventional kinesin, a motor protein that transports cargo within cells, walks by taking multiple steps toward the plus end of the microtubule (MT). While significant progress has been made in understanding the details of the walking mechanism of kinesin, there are many unresolved issues. From a computational perspective, a central challenge is the large size of the system, which limits the scope of time scales accessible in standard computer simulations. Here, we create a general multiscale coarse-grained model for motors that enables us to simulate the stepping process of motors on polar tracks (actin and MT) with a focus on kinesin. Our approach greatly shortens the computation times without a significant loss in detail, thus allowing us to better describe the molecular basis of the stepping kinetics. The small number of parameters, which are determined by fitting to experimental data, allows us to develop an accurate method that may be adopted to simulate stepping in other molecular motors. The model enables us to simulate a large number of steps, which was not possible previously. We show in agreement with experiments that due to the docking of the neck linker (NL) of kinesin, sometimes deemed as the power stroke, the space explored diffusively by the tethered head is severely restricted, allowing the step to be completed in tens of microseconds. We predict that increasing the interaction strength between the NL and the motor head, achievable by mutations in the NL, decreases the stepping time but reaches a saturation value. Furthermore, the full three-dimensional dynamics of the cargo are fully resolved in our model, contributing to the predictive power and allowing us to study the important aspects of cargo-motor interactions.
Collapse
Affiliation(s)
- Yonathan Goldtzvik
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78705, United States
| | - D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78705, United States
| |
Collapse
|
7
|
Luettmer-Strathmann J, Adeli Koudehi M, Paudyal N. Five-Site Model for Brownian Dynamics Simulations of a Molecular Walker in Three Dimensions. J Phys Chem B 2021; 125:4726-4733. [PMID: 33909422 DOI: 10.1021/acs.jpcb.1c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Motor proteins play an important role in many biological processes and have inspired the development of synthetic analogues. Molecular walkers, such as kinesin, dynein, and myosin V, fulfill a diverse set of functions including transporting cargo along tracks, pulling molecules through membranes, and deforming fibers. The complexity of molecular motors and their environment makes it difficult to model the detailed dynamics of molecular walkers over long time scales. In this work, we present a simple, three-dimensional model for a molecular walker on a bead-spring substrate. The walker is represented by five spherically symmetric particles that interact through common intermolecular potentials and can be simulated efficiently in Brownian dynamics simulations. The movement of motor protein walkers entails energy conversion through ATP hydrolysis while artificial motors typically rely on a local conversion of energy supplied through external fields. We model energy conversion through rate equations for mechanochemical states that couple positional and chemical degrees of freedom and determine the walker conformation through interaction potential parameters. We perform Brownian dynamics simulations for two scenarios: In the first, the model walker transports cargo by walking on a substrate whose ends are fixed. In the second, a tethered motor pulls a mobile substrate chain against a variable force. We measure relative displacements and determine the effects of cargo size and retarding force on the efficiency of the walker. We find that, while the efficiency of our model walker is less than for the biological system, our simulations reproduce trends observed in single-molecule experiments on kinesin. In addition, the model and simulation method presented here can be readily adapted to biological and synthetic systems with multiple walkers.
Collapse
Affiliation(s)
- Jutta Luettmer-Strathmann
- Department of Physics, The University of Akron, Akron, Ohio 44325-4001, United States.,Department of Chemistry, The University of Akron, Akron, Ohio 44325-4001, United States
| | - Maral Adeli Koudehi
- Department of Physics, The University of Akron, Akron, Ohio 44325-4001, United States
| | - Nabina Paudyal
- Department of Physics, The University of Akron, Akron, Ohio 44325-4001, United States
| |
Collapse
|
8
|
Mechanistic basis of propofol-induced disruption of kinesin processivity. Proc Natl Acad Sci U S A 2021; 118:2023659118. [PMID: 33495322 DOI: 10.1073/pnas.2023659118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Propofol is a widely used general anesthetic to induce and maintain anesthesia, and its effects are thought to occur through impact on the ligand-gated channels including the GABAA receptor. Propofol also interacts with a large number of proteins including molecular motors and inhibits kinesin processivity, resulting in significant decrease in the run length for conventional kinesin-1 and kinesin-2. However, the molecular mechanism by which propofol achieves this outcome is not known. The structural transition in the kinesin neck-linker region is crucial for its processivity. In this study, we analyzed the effect of propofol and its fluorine derivative (fropofol) on the transition in the neck-linker region of kinesin. Propofol binds at two crucial surfaces in the leading head: one at the microtubule-binding interface and the other in the neck-linker region. We observed in both the cases the order-disorder transition of the neck-linker was disrupted and kinesin lost its signal for forward movement. In contrast, there was not an effect on the neck-linker transition with propofol binding at the trailing head. Free-energy calculations show that propofol at the microtubule-binding surface significantly reduces the microtubule-binding affinity of the kinesin head. While propofol makes pi-pi stacking and H-bond interactions with the propofol binding cavity, fropofol is unable to make a suitable interaction at this binding surface. Therefore, the binding affinity of fropofol is much lower compared to propofol. Hence, this study provides a mechanism by which propofol disrupts kinesin processivity and identifies transitions in the ATPase stepping cycle likely affected.
Collapse
|
9
|
How Kinesin-1 Utilize the Energy of Nucleotide: The Conformational Changes and Mechanochemical Coupling in the Unidirectional Motion of Kinesin-1. Int J Mol Sci 2020; 21:ijms21186977. [PMID: 32972035 PMCID: PMC7555842 DOI: 10.3390/ijms21186977] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022] Open
Abstract
Kinesin-1 is a typical motile molecular motor and the founding member of the kinesin family. The most significant feature in the unidirectional motion of kinesin-1 is its processivity. To realize the fast and processive movement on the microtubule lattice, kinesin-1 efficiently transforms the chemical energy of nucleotide binding and hydrolysis to the energy of mechanical movement. The chemical and mechanical cycle of kinesin-1 are coupled to avoid futile nucleotide hydrolysis. In this paper, the research on the mechanical pathway of energy transition and the regulating mechanism of the mechanochemical cycle of kinesin-1 is reviewed.
Collapse
|
10
|
The catalytic dwell in ATPases is not crucial for movement against applied torque. Nat Chem 2020; 12:1187-1192. [PMID: 32958886 DOI: 10.1038/s41557-020-0549-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
The ATPase-catalysed conversion of ATP to ADP is a fundamental process in biology. During the hydrolysis of ATP, the α3β3 domain undergoes conformational changes while the central stalk (γ/D) rotates unidirectionally. Experimental studies have suggested that different catalytic mechanisms operate depending on the type of ATPase, but the structural and energetic basis of these mechanisms remains unclear. In particular, it is not clear how the positions of the catalytic dwells influence the energy transduction. Here we show that the observed dwell positions, unidirectional rotation and movement against the applied torque are reflections of the free-energy surface of the systems. Instructively, we determine that the dwell positions do not substantially affect the stopping torque. Our results suggest that the three resting states and the pathways that connect them should not be treated equally. The current work demonstrates how the free-energy landscape determines the behaviour of different types of ATPases.
Collapse
|
11
|
Guo SK, Xie P. A common chemomechanical coupling model for orphan and conventional kinesin molecular motors. Biophys Chem 2020; 264:106427. [PMID: 32682233 DOI: 10.1016/j.bpc.2020.106427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/07/2020] [Accepted: 07/01/2020] [Indexed: 01/12/2023]
Abstract
Orphan and conventional kinesin dimers represent two families of the kinesin superfamily molecular motors. Conventional kinesin, having a 14-residue neck linker (NL) in each head, can step processively on microtubule (MT), with an ATP hydrolysis being coupled with a mechanical stepping under no load. Orphan kinesin phragmoplast-associated kinesin-related protein 2 (PAKRP2) dimer, despite having a NL of 32 residues in each head, can also step processively on MT and exhibits tight chemomechanical coupling under no load. However, the dynamic properties of the wild type PAKRP2 and the mutant one with each NL truncated to 14 residues are very different from those of the wild type conventional kinesin and the mutant one with each NL being replaced by the 32-residue NL from PAKRP2. Here, based on a common chemomechanical coupling model we study computationally the dynamics of the two families of the kinesin dimers, with the simulated results explaining quantitatively the available experimental data. The large differences in the dynamics between the two families of kinesin dimers arise mainly from different rate constants of NL docking and ATPase activity and different weak affinities of the head in ADP state for MT. The studies indicate that both the orphan kinesin PAKRP2 and conventional kinesin use the same mechanism for processive motility.
Collapse
Affiliation(s)
- Si-Kao Guo
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
12
|
Bigman LS, Levy Y. Protein Diffusion on Charged Biopolymers: DNA versus Microtubule. Biophys J 2020; 118:3008-3018. [PMID: 32492371 DOI: 10.1016/j.bpj.2020.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Protein diffusion in lower-dimensional spaces is used for various cellular functions. For example, sliding on DNA is essential for proteins searching for their target sites, and protein diffusion on microtubules is important for proper cell division and neuronal development. On the one hand, these linear diffusion processes are mediated by long-range electrostatic interactions between positively charged proteins and negatively charged biopolymers and have similar characteristic diffusion coefficients. On the other hand, DNA and microtubules have different structural properties. Here, using computational approaches, we studied the mechanism of protein diffusion along DNA and microtubules by exploring the diffusion of both protein types on both biopolymers. We found that DNA-binding and microtubule-binding proteins can diffuse on each other's substrates; however, the adopted diffusion mechanism depends on the molecular properties of the diffusing proteins and the biopolymers. On the protein side, only DNA-binding proteins can perform rotation-coupled diffusion along DNA, with this being due to their higher net charge and its spatial organization at the DNA recognition helix. By contrast, the lower net charge on microtubule-binding proteins enables them to diffuse more quickly than DNA-binding proteins on both biopolymers. On the biopolymer side, microtubules possess intrinsically disordered, negatively charged C-terminal tails that interact with microtubule-binding proteins, thus supporting their diffusion. Thus, although both DNA-binding and microtubule-binding proteins can diffuse on the negatively charged biopolymers, the unique molecular features of the biopolymers and of their natural substrates are essential for function.
Collapse
Affiliation(s)
- Lavi S Bigman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Świątek M, Gudowska-Nowak E. Delineating elastic properties of kinesin linker and their sensitivity to point mutations. Sci Rep 2020; 10:4832. [PMID: 32179821 PMCID: PMC7075872 DOI: 10.1038/s41598-020-61399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/24/2020] [Indexed: 12/03/2022] Open
Abstract
We analyze free energy estimators from simulation trials mimicking single-molecule pulling experiments on a neck linker of a kinesin motor. For that purpose, we have performed a version of steered molecular dynamics (SMD) calculations. The sample trajectories have been analyzed to derive distribution of work done on the system. In order to induce stretching of the linker, we have applied a constant pulling force to the molecule and allowed for a subsequent relaxation of its structure. The use of fluctuation relations (FR) relevant to non-equilibrium systems subject to thermal fluctuations allows us to assess the difference in free energy between stretched and relaxed conformations. To further understand effects of potential mutations on elastic properties of the linker, we have performed similar in silico studies on a structure formed of a polyalanine sequence (Ala-only) and on three other structures, created by substituting selected types of amino acid residues in the linker’s sequence with alanine (Ala) ones. The results of SMD simulations indicate a crucial role played by the Asparagine (Asn) and Lysine (Lys) residues in controlling stretching and relaxation properties of the linker domain of the motor.
Collapse
Affiliation(s)
- Michał Świątek
- Department of Pharmaceutical Biophysics, Jagiellonian University Medical College, ul. Medyczna 9, 30-688, Kraków, Poland. .,Jagiellonian University, Marian Smoluchowski Institute of Physics, ul. Prof. S.Łojasiewicza 11, Kraków, 30-348, Poland.
| | - Ewa Gudowska-Nowak
- Jagiellonian University, Marian Smoluchowski Institute of Physics and Mark Kac Center for Complex Systems Research, ul. Prof. S.Łojasiewicza 11, Kraków, 30-348, Poland
| |
Collapse
|
14
|
Monroy BY, Tan TC, Oclaman JM, Han JS, Simó S, Niwa S, Nowakowski DW, McKenney RJ, Ori-McKenney KM. A Combinatorial MAP Code Dictates Polarized Microtubule Transport. Dev Cell 2020; 53:60-72.e4. [PMID: 32109385 DOI: 10.1016/j.devcel.2020.01.029] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/19/2019] [Accepted: 01/27/2020] [Indexed: 01/14/2023]
Abstract
Many eukaryotic cells distribute their intracellular components asymmetrically through regulated active transport driven by molecular motors along microtubule tracks. While intrinsic and extrinsic regulation of motor activity exists, what governs the overall distribution of activated motor-cargo complexes within cells remains unclear. Here, we utilize in vitro reconstitution of purified motor proteins and non-enzymatic microtubule-associated proteins (MAPs) to demonstrate that MAPs exhibit distinct influences on the motility of the three main classes of transport motors: kinesin-1, kinesin-3, and cytoplasmic dynein. Further, we dissect how combinations of MAPs affect motors and unveil MAP9 as a positive modulator of kinesin-3 motility. From these data, we propose a general "MAP code" that has the capacity to strongly bias directed movement along microtubules and helps elucidate the intricate intracellular sorting observed in highly polarized cells such as neurons.
Collapse
Affiliation(s)
- Brigette Y Monroy
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Tracy C Tan
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Janah May Oclaman
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Jisoo S Han
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | | | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Kassandra M Ori-McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
15
|
How kinesin waits for ATP affects the nucleotide and load dependence of the stepping kinetics. Proc Natl Acad Sci U S A 2019; 116:23091-23099. [PMID: 31659052 DOI: 10.1073/pnas.1913650116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Conventional kinesin, responsible for directional transport of cellular vesicles, takes multiple nearly uniform 8.2-nm steps by consuming one ATP molecule per step as it walks toward the plus end of the microtubule (MT). Despite decades of intensive experimental and theoretical studies, there are gaps in the elucidation of key steps in the catalytic cycle of kinesin. How the motor waits for ATP to bind to the leading head is controversial. Two experiments using a similar protocol have arrived at different conclusions. One asserts that kinesin waits for ATP in a state with both the heads bound to the MT, whereas the other shows that ATP binds to the leading head after the trailing head detaches. To discriminate between the 2 scenarios, we developed a minimal model, which analytically predicts the outcomes of a number of experimental observable quantities (the distribution of run length, the distribution of velocity [[Formula: see text]], and the randomness parameter) as a function of an external resistive force (F) and ATP concentration ([T]). The differences in the predicted bimodality in [Formula: see text] as a function of F between the 2 models may be amenable to experimental testing. Most importantly, we predict that the F and [T] dependence of the randomness parameters differ qualitatively depending on the waiting states. The randomness parameters as a function of F and [T] can be quantitatively measured from stepping trajectories with very little prejudice in data analysis. Therefore, an accurate measurement of the randomness parameter and the velocity distribution as a function of load and nucleotide concentration could resolve the apparent controversy.
Collapse
|
16
|
Shi XX, Guo SK, Wang PY, Chen H, Xie P. All-atom molecular dynamics simulations reveal how kinesin transits from one-head-bound to two-heads-bound state. Proteins 2019; 88:545-557. [PMID: 31589786 DOI: 10.1002/prot.25833] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
Abstract
Kinesin dimer walks processively along a microtubule (MT) protofilament in a hand-over-hand manner, transiting alternately between one-head-bound (1HB) and two-heads-bound (2HB) states. In 1HB state, one head bound by adenosine diphosphate (ADP) is detached from MT and the other head is bound to MT. Here, using all-atom molecular dynamics simulations we determined the position and orientation of the detached ADP-head relative to the MT-bound head in 1HB state. We showed that in 1HB state when the MT-bound head is in ADP or nucleotide-free state, with its neck linker being undocked, the detached ADP-head and the MT-bound head have the high binding energy, and after adenosine triphosphate (ATP) binds to the MT-bound head, with its neck linker being docked, the binding energy between the two heads is reduced greatly. These results reveal how the kinesin dimer retains 1HB state before ATP binding and how the dimer transits from 1HB to 2HB state after ATP binding. Key residues involved in the head-head interaction in 1HB state were identified.
Collapse
Affiliation(s)
- Xiao-Xuan Shi
- School of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, China.,Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Si-Kao Guo
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Peng-Ye Wang
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Hong Chen
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, China
| | - Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Lee J, Seyler SL, Pressé S. Hydrodynamic interaction facilitates the unsteady transport of two neighboring vesicles. J Chem Phys 2019; 151:094108. [DOI: 10.1063/1.5113880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Julian Lee
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, South Korea
| | - Sean L. Seyler
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Steve Pressé
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
18
|
Recent Advances in Coarse-Grained Models for Biomolecules and Their Applications. Int J Mol Sci 2019; 20:ijms20153774. [PMID: 31375023 PMCID: PMC6696403 DOI: 10.3390/ijms20153774] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022] Open
Abstract
Molecular dynamics simulations have emerged as a powerful tool to study biological systems at varied length and timescales. The conventional all-atom molecular dynamics simulations are being used by the wider scientific community in routine to capture the conformational dynamics and local motions. In addition, recent developments in coarse-grained models have opened the way to study the macromolecular complexes for time scales up to milliseconds. In this review, we have discussed the principle, applicability and recent development in coarse-grained models for biological systems. The potential of coarse-grained simulation has been reviewed through state-of-the-art examples of protein folding and structure prediction, self-assembly of complexes, membrane systems and carbohydrates fiber models. The multiscale simulation approaches have also been discussed in the context of their emerging role in unravelling hierarchical level information of biosystems. We conclude this review with the future scope of coarse-grained simulations as a constantly evolving tool to capture the dynamics of biosystems.
Collapse
|
19
|
Mickolajczyk KJ, Cook ASI, Jevtha JP, Fricks J, Hancock WO. Insights into Kinesin-1 Stepping from Simulations and Tracking of Gold Nanoparticle-Labeled Motors. Biophys J 2019; 117:331-345. [PMID: 31301807 DOI: 10.1016/j.bpj.2019.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 02/02/2023] Open
Abstract
High-resolution tracking of gold nanoparticle-labeled proteins has emerged as a powerful technique for measuring the structural kinetics of processive enzymes and other biomacromolecules. These techniques use point spread function (PSF) fitting methods borrowed from single-molecule fluorescence imaging to determine molecular positions below the diffraction limit. However, compared to fluorescence, gold nanoparticle tracking experiments are performed at significantly higher frame rates and utilize much larger probes. In the current work, we use Brownian dynamics simulations of nanoparticle-labeled proteins to investigate the regimes in which the fundamental assumptions of PSF fitting hold and where they begin to break down. We find that because gold nanoparticles undergo tethered diffusion around their anchor point, PSF fitting cannot be extended to arbitrarily fast frame rates. Instead, camera exposure times that allow the nanoparticle to fully populate its stationary positional distribution achieve a spatial averaging that increases fitting precision. We furthermore find that changes in the rotational freedom of the tagged protein can lead to artifactual translations in the fitted particle position. Finally, we apply these lessons to dissect a standing controversy in the kinesin field over the structure of a dimer in the ATP waiting state. Combining new experiments with simulations, we determine that the rear kinesin head in the ATP waiting state is unbound but not displaced from its previous microtubule binding site and that apparent differences in separately published reports were simply due to differences in the gold nanoparticle attachment position. Our results highlight the importance of gold conjugation decisions and imaging parameters to high-resolution tracking results and will serve as a useful guide for the design of future gold nanoparticle tracking experiments.
Collapse
Affiliation(s)
- Keith J Mickolajczyk
- Department of Biomedical Engineering; Intercollege Graduate Degree Program in Bioengineering
| | - Annan S I Cook
- Department of Biomedical Engineering; Department of Physics, Pennsylvania State University, University Park, Pennsylvania
| | | | - John Fricks
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona
| | - William O Hancock
- Department of Biomedical Engineering; Intercollege Graduate Degree Program in Bioengineering.
| |
Collapse
|
20
|
Thirumalai D, Hyeon C, Zhuravlev PI, Lorimer GH. Symmetry, Rigidity, and Allosteric Signaling: From Monomeric Proteins to Molecular Machines. Chem Rev 2019; 119:6788-6821. [DOI: 10.1021/acs.chemrev.8b00760] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. Thirumalai
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Pavel I. Zhuravlev
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - George H. Lorimer
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
21
|
Thirumalai D, Hyeon C. Signalling networks and dynamics of allosteric transitions in bacterial chaperonin GroEL: implications for iterative annealing of misfolded proteins. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0182. [PMID: 29735736 DOI: 10.1098/rstb.2017.0182] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Signal transmission at the molecular level in many biological complexes occurs through allosteric transitions. Allostery describes the responses of a complex to binding of ligands at sites that are spatially well separated from the binding region. We describe the structural perturbation method, based on phonon propagation in solids, which can be used to determine the signal-transmitting allostery wiring diagram (AWD) in large but finite-sized biological complexes. Application to the bacterial chaperonin GroEL-GroES complex shows that the AWD determined from structures also drives the allosteric transitions dynamically. From both a structural and dynamical perspective these transitions are largely determined by formation and rupture of salt-bridges. The molecular description of allostery in GroEL provides insights into its function, which is quantitatively described by the iterative annealing mechanism. Remarkably, in this complex molecular machine, a deep connection is established between the structures, reaction cycle during which GroEL undergoes a sequence of allosteric transitions, and function, in a self-consistent manner.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
Collapse
Affiliation(s)
- D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, South Korea
| |
Collapse
|
22
|
Advances in coarse-grained modeling of macromolecular complexes. Curr Opin Struct Biol 2018; 52:119-126. [PMID: 30508766 DOI: 10.1016/j.sbi.2018.11.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/05/2018] [Accepted: 11/17/2018] [Indexed: 01/12/2023]
Abstract
Recent progress in coarse-grained (CG) molecular modeling and simulation has facilitated an influx of computational studies on biological macromolecules and their complexes. Given the large separation of length-scales and time-scales that dictate macromolecular biophysics, CG modeling and simulation are well-suited to bridge the microscopic and mesoscopic or macroscopic details observed from all-atom molecular simulations and experiments, respectively. In this review, we first summarize recent innovations in the development of CG models, which broadly include structure-based, knowledge-based, and dynamics-based approaches. We then discuss recent applications of different classes of CG models to explore various macromolecular complexes. Finally, we conclude with an outlook for the future in this ever-growing field of biomolecular modeling.
Collapse
|
23
|
Xie P, Chen H. A non-tight chemomechanical coupling model for force-dependence of movement dynamics of molecular motors. Phys Chem Chem Phys 2018; 20:4752-4759. [PMID: 29379931 DOI: 10.1039/c7cp05557a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the available experimental evidence, we present a simple and general model to describe the movement dynamics of molecular motors that can move processively on their linear tracks by using the chemical energy derived from ATP hydrolysis. An important aspect of the model is the non-tight coupling between the ATP hydrolysis and mechanical stepping, in contrast to the prevailing models presented in the literature that assume the tight chemomechanical coupling. With kinesin as an example, based on the current model, we study in detail its movement dynamics under a backward load, reproducing well the diverse available single-molecule experimental data such as the forward to backward step ratio, velocity, dwell time, randomness, run length, etc., versus the load. Moreover, predicted results are provided on the force-dependence of the mean number of ATP molecules consumed per mechanical step. Additionally, the theoretical data for the dynamics of myosin-V obtained based on the model are also in good agreement with the available experimental data.
Collapse
Affiliation(s)
- Ping Xie
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, 528000, China
| | | |
Collapse
|
24
|
Shi XX, Fu YB, Guo SK, Wang PY, Chen H, Xie P. Investigating role of conformational changes of microtubule in regulating its binding affinity to kinesin by all-atom molecular dynamics simulation. Proteins 2018; 86:1127-1139. [PMID: 30132979 DOI: 10.1002/prot.25592] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/05/2018] [Accepted: 08/16/2018] [Indexed: 11/08/2022]
Abstract
Changes of affinity of kinesin head to microtubule regulated by changes in the nucleotide state are essential to processive movement of kinesin on microtubule. Here, using all-atom molecular dynamics simulations we show that besides the nucleotide state, large conformational changes of microtubule-tubulin heterodimers induced by strong interaction with the head in strongly binding state are also indispensable to regulate the affinity of the head to the tubulin. In strongly binding state the high affinity of the head to microtubule arises largely from mutual conformational changes of the microtubule and head induced by the specific interaction between them via an induced-fit mechanism. Moreover, the ADP-head has a much weaker affinity to the local microtubule-tubulin, whose conformation is largely altered by the interaction with the head in strongly binding state, than to other unperturbed tubulins. This indicates that upon Pi release the ADP-head temporarily has a much weaker affinity to the local tubulin than to other tubulins.
Collapse
Affiliation(s)
- Xiao-Xuan Shi
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yi-Ben Fu
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Si-Kao Guo
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Peng-Ye Wang
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Hong Chen
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, China
| | - Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Structural consequences of hereditary spastic paraplegia disease-related mutations in kinesin. Proc Natl Acad Sci U S A 2018; 115:E10822-E10829. [PMID: 30366951 DOI: 10.1073/pnas.1810622115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A wide range of mutations in the kinesin motor Kif5A have been linked to a neuronal disorder called hereditary spastic paraplegia (HSP). The position of these mutations can vary, and a range of different motile behaviors have been observed, indicating that the HSP mutants can alter distinct aspects of kinesin mechanochemistry. While focusing on four key HSP-associated mutants, this study examined the structural and dynamic perturbations that arise from these mutations using a series of different computational methods, ranging from bioinformatics analyses to all-atom simulations, that account for solvent effects explicitly. We show that two catalytic domain mutations (R280S and K253N) reduce the microtubule (MT) binding affinity of the kinesin head domains appreciably, while N256S has a much smaller impact. Bioinformatics analysis suggests that the stalk mutation A361V perturbs motor dimerization. Subsequent integration of these effects into a coarse-grained structure-based model of dimeric kinesin revealed that the order-disorder transition of the neck linker is substantially affected, indicating a hampered directionality and processivity of kinesin. The present analyses therefore suggest that, in addition to kinesin-MT binding and coiled-coil dimerization, HSP mutations affecting motor stepping transitions and processivity can lead to disease.
Collapse
|
26
|
Wang Q, Jana B, Diehl MR, Cheung MS, Kolomeisky AB, Onuchic JN. Molecular mechanisms of the interhead coordination by interhead tension in cytoplasmic dyneins. Proc Natl Acad Sci U S A 2018; 115:10052-10057. [PMID: 30224489 PMCID: PMC6176594 DOI: 10.1073/pnas.1806688115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cytoplasmic dyneins play a major role in retrograde cellular transport by moving vesicles and organelles along microtubule filaments. Dyneins are multidomain motor proteins with two heads that coordinate their motion via their interhead tension. Compared with the leading head, the trailing head has a higher detachment rate from microtubules, facilitating the movement. However, the molecular mechanism of such coordination is unknown. To elucidate this mechanism, we performed molecular dynamics simulations on a cytoplasmic dynein with a structure-based coarse-grained model that probes the effect of the interhead tension on the structure. The tension creates a torque that influences the head rotating about its stalk. The conformation of the stalk switches from the α registry to the β registry during the rotation, weakening the binding affinity to microtubules. The directions of the tension and the torque of the leading head are opposite to those of the trailing head, breaking the structural symmetry between the heads. The leading head transitions less often to the β registry than the trailing head. The former thus has a greater binding affinity to the microtubule than the latter. We measured the moment arm of the torque from a dynein structure in the simulations to develop a phenomenological model that captures the influence of the head rotating about its stalk on the differential detachment rates of the two heads. Our study provides a consistent molecular picture for interhead coordination via interhead tension.
Collapse
Affiliation(s)
- Qian Wang
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
| | - Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, 700032 Kolkata, India
| | - Michael R Diehl
- Department of Bioengineering, Rice University, Houston, TX 77030
- Department of Chemistry, Rice University, Houston, TX 77030
| | - Margaret S Cheung
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
- Department of Physics, University of Houston, Houston, TX 77204
| | - Anatoly B Kolomeisky
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
- Department of Bioengineering, Rice University, Houston, TX 77030
- Department of Chemistry, Rice University, Houston, TX 77030
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005;
- Department of Chemistry, Rice University, Houston, TX 77030
- Department of Physics and Astronomy, Rice University, Houston, TX 77005
- Department of Biosciences, Rice University, Houston, TX 77005
| |
Collapse
|
27
|
Goldtzvik Y, Mugnai ML, Thirumalai D. Dynamics of Allosteric Transitions in Dynein. Structure 2018; 26:1664-1677.e5. [PMID: 30270176 DOI: 10.1016/j.str.2018.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/19/2018] [Accepted: 08/08/2018] [Indexed: 12/20/2022]
Abstract
Cytoplasmic dynein, whose motor domain belongs to the AAA+ family, walks on microtubules toward the minus end. Using the available structures in different nucleotide states, we performed simulations of a coarse-grained model to elucidate the dynamics of allosteric transitions. Binding of ATP closes the cleft between the AAA1 and AAA2 domains, triggering conformational changes in the rest of the motor domain, thus forming the pre-power stroke state. Interactions with the microtubule, modeled implicitly, enhance ADP release rate, and the formation of the post-power stroke state. The dynamics of the linker (LN), which reversibly changes from a straight to a bent state, is heterogeneous. Persistent interactions between the LN and the insert loops in the AAA2 domain prevent the formation of pre-power stroke state when ATP is bound to AAA3, thus locking dynein in a repressed non-functional state. Application of mechanical force to the LN restores motility in the repressed state.
Collapse
Affiliation(s)
- Yonathan Goldtzvik
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | | | - D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
28
|
Directionally biased sidestepping of Kip3/kinesin-8 is regulated by ATP waiting time and motor-microtubule interaction strength. Proc Natl Acad Sci U S A 2018; 115:E7950-E7959. [PMID: 30093386 DOI: 10.1073/pnas.1801820115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kinesin-8 motors, which move in a highly processive manner toward microtubule plus ends where they act as depolymerases, are essential regulators of microtubule dynamics in cells. To understand their navigation strategy on the microtubule lattice, we studied the 3D motion of single yeast kinesin-8 motors, Kip3, on freely suspended microtubules in vitro. We observed short-pitch, left-handed helical trajectories indicating that kinesin-8 motors frequently switch protofilaments in a directionally biased manner. Intriguingly, sidestepping was not directly coupled to forward stepping but rather depended on the average dwell time per forward step under limiting ATP concentrations. Based on our experimental findings and numerical simulations we propose that effective sidestepping toward the left is regulated by a bifurcation in the Kip3 step cycle, involving a transition from a two-head-bound to a one-head-bound conformation in the ATP-waiting state. Results from a kinesin-1 mutant with extended neck linker hint toward a generic sidestepping mechanism for processive kinesins, facilitating the circumvention of intracellular obstacles on the microtubule surface.
Collapse
|
29
|
Guo SK, Shi XX, Wang PY, Xie P. Processivity of dimeric kinesin-1 molecular motors. FEBS Open Bio 2018; 8:1332-1351. [PMID: 30087836 PMCID: PMC6070657 DOI: 10.1002/2211-5463.12486] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 11/25/2022] Open
Abstract
Kinesin‐1 is a homodimeric motor protein that can move along microtubule filaments by hydrolyzing ATP with a high processivity. How the two motor domains are coordinated to achieve such high processivity is not clear. To address this issue, we computationally studied the run length of the dimer with our proposed model. The computational data quantitatively reproduced the puzzling experimental data, including the dramatically asymmetric character of the run length with respect to the direction of external load acting on the coiled‐coil stalk, the enhancement of the run length by addition of phosphate, and the contrary features of the run length for different types of kinesin‐1 with extensions of their neck linkers compared with those without extension of the neck linker. The computational data on other aspects of the movement dynamics such as velocity and durations of one‐head‐bound and two‐head‐bound states in a mechanochemical coupling cycle were also in quantitative agreement with the available experimental data. Moreover, predicted results are provided on dependence of the run length upon external load acting on one head of the dimer, which can be easily tested in the future using single‐molecule optical trapping assays.
Collapse
Affiliation(s)
- Si-Kao Guo
- Key Laboratory of Soft Matter Physics Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Science Beijing China.,School of Physical Sciences University of Chinese Academy of Sciences Beijing China
| | - Xiao-Xuan Shi
- Key Laboratory of Soft Matter Physics Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Science Beijing China.,School of Physical Sciences University of Chinese Academy of Sciences Beijing China
| | - Peng-Ye Wang
- Key Laboratory of Soft Matter Physics Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Science Beijing China.,School of Physical Sciences University of Chinese Academy of Sciences Beijing China
| | - Ping Xie
- Key Laboratory of Soft Matter Physics Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Science Beijing China.,School of Physical Sciences University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
30
|
Kuffel A, Szałachowska M. The significance of the properties of water for the working cycle of the kinesin molecular motor. J Chem Phys 2018; 148:235101. [DOI: 10.1063/1.5020208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Anna Kuffel
- Faculty of Chemistry, Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Monika Szałachowska
- Faculty of Chemistry, Department of Physical Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
31
|
Rolls E, Erban R. Multi-resolution polymer Brownian dynamics with hydrodynamic interactions. J Chem Phys 2018; 148:194111. [PMID: 30307198 DOI: 10.1063/1.5018595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A polymer model given in terms of beads, interacting through Hookean springs and hydrodynamic forces, is studied. A Brownian dynamics description of this bead-spring polymer model is extended to multiple resolutions. Using this multiscale approach, a modeller can efficiently look at different regions of the polymer in different spatial and temporal resolutions with scalings given for the number of beads, statistical segment length, and bead radius in order to maintain macro-scale properties of the polymer filament. The Boltzmann distribution of a Gaussian chain for differing statistical segment lengths gives a diffusive displacement equation for the multi-resolution model with a mobility tensor for different bead sizes. Using the pre-averaging approximation, the translational diffusion coefficient is obtained as a function of the inverse of a matrix and then in closed form in the long-chain limit. This is then confirmed with numerical experiments.
Collapse
Affiliation(s)
- Edward Rolls
- Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom
| | - Radek Erban
- Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom
| |
Collapse
|
32
|
Misiura M, Wang Q, Cheung MS, Kolomeisky AB. Theoretical Investigations of the Role of Mutations in Dynamics of Kinesin Motor Proteins. J Phys Chem B 2018; 122:4653-4661. [PMID: 29630822 DOI: 10.1021/acs.jpcb.8b00830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Motor proteins are active enzymatic molecules that are critically important for a variety of biological phenomena. It is known that some neurodegenerative diseases are caused by specific mutations in motor proteins that lead to their malfunctioning. Hereditary spastic paraplegia is one of such diseases, and it is associated with the mutations in the neuronal conventional kinesin gene, producing the decreased speed and processivity of this motor protein. Despite the importance of this problem, there is no clear understanding on the role of mutations in modifying dynamic properties of motor proteins. In this work, we investigate theoretically the molecular basis for negative effects of two specific mutations, N256S and R280S, on the dynamics of kinesin motor proteins. We hypothesize that these mutations might accelerate the adenosine triphosphate (ATP) release by increasing the probability of open conformations for the ATP-binding pocket. Our approach is based on the use of coarse-grained structure-based molecular dynamics simulations to analyze the conformational changes and chemical transitions in the kinesin molecule, which is also supplemented by investigation of a mesoscopic discrete-state stochastic model. Computer simulations suggest that mutations N256S and R280S can decrease the free energy difference between open and closed biochemical states, making the open conformation more stable and the ATP release faster, which is in agreement with our hypothesis. Furthermore, we show that in the case of N256S mutation, this effect is caused by disruption of interactions between α helix and switch I and loop L11 structural elements. Our computational results are qualitatively supported by the explicit analysis of the discrete-state stochastic model.
Collapse
Affiliation(s)
| | | | - Margaret S Cheung
- Department of Physics , University of Houston , Houston , Texas 77204 , United States
| | | |
Collapse
|
33
|
Jiang N, Bailey ME, Burke J, Ross JL, Dima RI. Modeling the effects of lattice defects on microtubule breaking and healing. Cytoskeleton (Hoboken) 2017; 74:3-17. [PMID: 27935245 DOI: 10.1002/cm.21346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 12/19/2022]
Abstract
Microtubule reorganization often results from the loss of polymer induced through breakage or active destruction by energy-using enzymes. Pre-existing defects in the microtubule lattice likely lower structural integrity and aid filament destruction. Using large-scale molecular simulations, we model diverse microtubule fragments under forces generated at specific positions to locally crush the filament. We show that lattices with 2% defects are crushed and severed by forces three times smaller than defect-free ones. We validate our results with direct comparisons of microtubule kinking angles during severing. We find a high statistical correlation between the angle distributions from experiments and simulations indicating that they sample the same population of structures. Our simulations also indicate that the mechanical environment of the filament affects breaking: local mechanical support inhibits healing after severing, especially in the case of filaments with defects. These results recall reports of microtubule healing after flow-induced bending and corroborate prior experimental studies that show severing is more likely at locations where microtubules crossover in networks. Our results shed new light on mechanisms underlying the ability of microtubules to be destroyed and healed in the cell, either by external forces or by severing enzymes wedging dimers apart. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 45221
| | - Megan E Bailey
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts, 01003
| | - Jessica Burke
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 45221
| | - Jennifer L Ross
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts, 01003.,Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts, 01003
| | - Ruxandra I Dima
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 45221
| |
Collapse
|
34
|
Parsing the roles of neck-linker docking and tethered head diffusion in the stepping dynamics of kinesin. Proc Natl Acad Sci U S A 2017; 114:E9838-E9845. [PMID: 29087307 DOI: 10.1073/pnas.1706014114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Kinesin walks processively on microtubules (MTs) in an asymmetric hand-over-hand manner consuming one ATP molecule per 16-nm step. The individual contributions due to docking of the approximately 13-residue neck linker to the leading head (deemed to be the power stroke) and diffusion of the trailing head (TH) that contributes in propelling the motor by 16 nm have not been quantified. We use molecular simulations by creating a coarse-grained model of the MT-kinesin complex, which reproduces the measured stall force as well as the force required to dislodge the motor head from the MT, to show that nearly three-quarters of the step occurs by bidirectional stochastic motion of the TH. However, docking of the neck linker to the leading head constrains the extent of diffusion and minimizes the probability that kinesin takes side steps, implying that both the events are necessary in the motility of kinesin and for the maintenance of processivity. Surprisingly, we find that during a single step, the TH stochastically hops multiple times between the geometrically accessible neighboring sites on the MT before forming a stable interaction with the target binding site with correct orientation between the motor head and the [Formula: see text] tubulin dimer.
Collapse
|
35
|
Molecular origin of the weak susceptibility of kinesin velocity to loads and its relation to the collective behavior of kinesins. Proc Natl Acad Sci U S A 2017; 114:E8611-E8617. [PMID: 28973894 DOI: 10.1073/pnas.1710328114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Motor proteins are active enzymatic molecules that support important cellular processes by transforming chemical energy into mechanical work. Although the structures and chemomechanical cycles of motor proteins have been extensively investigated, the sensitivity of a motor's velocity in response to a force is not well-understood. For kinesin, velocity is weakly influenced by a small to midrange external force (weak susceptibility) but is steeply reduced by a large force. Here, we utilize a structure-based molecular dynamic simulation to study the molecular origin of the weak susceptibility for a single kinesin. We show that the key step in controlling the velocity of a single kinesin under an external force is the ATP release from the microtubule-bound head. Only under large loading forces can the motor head release ATP at a fast rate, which significantly reduces the velocity of kinesin. It underpins the weak susceptibility that the velocity will not change at small to midrange forces. The molecular origin of this velocity reduction is that the neck linker of a kinesin only detaches from the motor head when pulled by a large force. This prompts the ATP binding site to adopt an open state, favoring ATP release and reducing the velocity. Furthermore, we show that two load-bearing kinesins are incapable of equally sharing the load unless they are very close to each other. As a consequence of the weak susceptibility, the trailing kinesin faces the challenge of catching up to the leading one, which accounts for experimentally observed weak cooperativity of kinesins motors.
Collapse
|
36
|
Kubo S, Li W, Takada S. Allosteric conformational change cascade in cytoplasmic dynein revealed by structure-based molecular simulations. PLoS Comput Biol 2017; 13:e1005748. [PMID: 28892477 PMCID: PMC5608440 DOI: 10.1371/journal.pcbi.1005748] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/21/2017] [Accepted: 08/29/2017] [Indexed: 01/27/2023] Open
Abstract
Cytoplasmic dynein is a giant ATP-driven molecular motor that proceeds to the minus end of the microtubule (MT). Dynein hydrolyzes ATP in a ring-like structure, containing 6 AAA+ (ATPases associated with diverse cellular activities) modules, which is ~15 nm away from the MT binding domain (MTBD). This architecture implies that long-distance allosteric couplings exist between the AAA+ ring and the MTBD in order for dynein to move on the MT, although little is known about the mechanisms involved. Here, we have performed comprehensive molecular simulations of the dynein motor domain based on pre- and post- power-stroke structural information and in doing so we address the allosteric conformational changes that occur during the power-stroke and recovery-stroke processes. In the power-stroke process, the N-terminal linker movement was the prerequisite to the nucleotide-dependent AAA1 transition, from which a transition cascade propagated, on average, in a circular manner on the AAA+ ring until it reached the AAA6/C-terminal module. The recovery-stroke process was initiated by the transition of the AAA6/C-terminal, from which the transition cascade split into the two directions of the AAA+ ring, occurring both clockwise and anti-clockwise. In both processes, the MTBD conformational change was regulated by the AAA4 module and the AAA5/Strut module. The linear molecular motor dynein is an intriguing allosteric model protein. ATP hydrolysis, catalyzed by modules in the AAA+ ring, regulates the binding to the rail molecule, microtubule, which is ~15 nm away from the AAA+ ring. The molecular mechanisms underpinning this long-distance communication are unclear. Based on recently solved pre- and post- power-stroke crystal structure information, we performed, for the first time to our knowledge, molecular simulations of complete conformational changes between the two structures. The simulation revealed that module-by-module allosteric conformational changes occur. Interestingly, the transition cascade from the pre- to the post-power-stroke states propagated in a circular manner around the AAA+ ring, while that of the recovery transitions propagated in a bi-directional manner around the ring.
Collapse
Affiliation(s)
- Shintaroh Kubo
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Wenfei Li
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing, China
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
37
|
Abstract
Myosin VI (MVI) is the only known member of the myosin superfamily that, upon dimerization, walks processively toward the pointed end of the actin filament. The leading head of the dimer directs the trailing head forward with a power stroke, a conformational change of the motor domain exaggerated by the lever arm. Using a unique coarse-grained model for the power stroke of a single MVI, we provide the molecular basis for its motility. We show that the power stroke occurs in two major steps. First, the motor domain attains the poststroke conformation without directing the lever arm forward; and second, the lever arm reaches the poststroke orientation by undergoing a rotational diffusion. From the analysis of the trajectories, we discover that the potential that directs the rotating lever arm toward the poststroke conformation is almost flat, implying that the lever arm rotation is mostly uncoupled from the motor domain. Because a backward load comparable to the largest interhead tension in a MVI dimer prevents the rotation of the lever arm, our model suggests that the leading-head lever arm of a MVI dimer is uncoupled, in accord with the inference drawn from polarized total internal reflection fluorescence (polTIRF) experiments. Without any adjustable parameter, our simulations lead to quantitative agreement with polTIRF experiments, which validates the structural insights. Finally, in addition to making testable predictions, we also discuss the implications of our model in explaining the broad step-size distribution of the MVI stepping pattern.
Collapse
Affiliation(s)
- Mauro L Mugnai
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742;
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - D Thirumalai
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742;
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| |
Collapse
|
38
|
Anchor Effect of Interactions Between Kinesin's Nucleotide-Binding Pocket and Microtubule. Cell Mol Bioeng 2017; 10:162-173. [PMID: 31719858 DOI: 10.1007/s12195-017-0477-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/17/2017] [Indexed: 10/20/2022] Open
Abstract
Microtubule not only provides the track for kinesin but also modulates kinesin's mechanochemical cycle. Microtubule binding greatly increases the rates of two chemical steps occurring inside the nucleotide-binding pocket (NBP) of kinesin, i.e., ATP hydrolysis and ADP release. Kinesin neck linker docking (the key force-generation step) is initiated by the motor head rotation induced by ATP binding which needs an anchor provided by microtubule. These functions of microtubule can only be accomplished through interactions with kinesin. Based on the newly obtained crystal structures of kinesin-microtubule complexes, we investigate the interactions between kinesin's NBP and microtubule using molecular dynamics simulations. We find that the N-3 motif of NBP has direct interactions with a group of negatively charged residues on α-tubulin through Ser235 and Lys237. These specific long-range interactions induce binding of NBP to microtubule at the right position and assist the formation of the indirect interaction between NBP and microtubule. These interactions between N-3 and microtubule have an important anchor effect for kinesin's motor domain during its rotation with Ser235 as the rotation center, and also play a crucial role in stabilizing the ATP-hydrolysis environment.
Collapse
|
39
|
Hwang W, Hyeon C. Quantifying the Heat Dissipation from a Molecular Motor's Transport Properties in Nonequilibrium Steady States. J Phys Chem Lett 2017; 8:250-256. [PMID: 27983853 DOI: 10.1021/acs.jpclett.6b02657] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Theoretical analysis, which maps single-molecule time trajectories of a molecular motor onto unicyclic Markov processes, allows us to evaluate the heat dissipated from the motor and to elucidate its dependence on the mean velocity and diffusivity. Unlike passive Brownian particles in equilibrium, the velocity and diffusion constant of molecular motors are closely inter-related. In particular, our study makes it clear that the increase of diffusivity with the heat production is a natural outcome of active particles, which is reminiscent of the recent experimental premise that the diffusion of an exothermic enzyme is enhanced by the heat released from its own catalytic turnover. Compared with freely diffusing exothermic enzymes, kinesin-1, whose dynamics is confined on one-dimensional tracks, is highly efficient in transforming conformational fluctuations into a locally directed motion, thus displaying a significantly higher enhancement in diffusivity with its turnover rate. Putting molecular motors and freely diffusing enzymes on an equal footing, our study offers a thermodynamic basis to understand the heat-enhanced self-diffusion of exothermic enzymes.
Collapse
Affiliation(s)
- Wonseok Hwang
- Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| |
Collapse
|
40
|
Li L, Alper J, Alexov E. Cytoplasmic dynein binding, run length, and velocity are guided by long-range electrostatic interactions. Sci Rep 2016; 6:31523. [PMID: 27531742 PMCID: PMC4987762 DOI: 10.1038/srep31523] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/21/2016] [Indexed: 12/23/2022] Open
Abstract
Dyneins are important molecular motors involved in many essential biological processes, including cargo transport along microtubules, mitosis, and in cilia. Dynein motility involves the coupling of microtubule binding and unbinding to a change in the configuration of the linker domain induced by ATP hydrolysis, which occur some 25 nm apart. This leaves the accuracy of dynein stepping relatively inaccurate and susceptible to thermal noise. Using multi-scale modeling with a computational focusing technique, we demonstrate that the microtubule forms an electrostatic funnel that guides the dynein's microtubule binding domain (MTBD) as it finally docks to the precise, keyed binding location on the microtubule. Furthermore, we demonstrate that electrostatic component of the MTBD's binding free energy is linearly correlated with the velocity and run length of dynein, and we use this linearity to predict the effect of mutating each glutamic and aspartic acid located in MTBD domain to alanine. Lastly, we show that the binding of dynein to the microtubule is associated with conformational changes involving several helices, and we localize flexible hinge points within the stalk helices. Taken all together, we demonstrate that long range electrostatic interactions bring a level of precision to an otherwise noisy dynein stepping process.
Collapse
Affiliation(s)
- Lin Li
- Department of Physics, Clemson University, Clemson, SC 29634, USA
| | - Joshua Alper
- Department of Physics, Clemson University, Clemson, SC 29634, USA
| | - Emil Alexov
- Department of Physics, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
41
|
Jana B, Onuchic JN. Strain Mediated Adaptation Is Key for Myosin Mechanochemistry: Discovering General Rules for Motor Activity. PLoS Comput Biol 2016; 12:e1005035. [PMID: 27494025 PMCID: PMC4975490 DOI: 10.1371/journal.pcbi.1005035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 06/25/2016] [Indexed: 11/18/2022] Open
Abstract
A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities. Molecular motors are perhaps the most important proteins present in the cell. The importance specifically lies with the fact that these proteins use the chemical energy source (such as ATP) of the cell to generate mechanical work and perform a wide range of functionalities. In this article, we generalize the idea of using structure-based models to explore the mechanochemistry of myosin molecular motors in structural terms. We find that a structural adaptation of the motor head domain in post-powerstroke state signals faster ADP release from the trailing head to maintain its processivity while directionality arises from a careful design of peripheral structural elements. These results along with our earlier results on other motors provide a general rule for motor activity.
Collapse
Affiliation(s)
- Biman Jana
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
- * E-mail: (BJ); (JNO)
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
- * E-mail: (BJ); (JNO)
| |
Collapse
|
42
|
Wagoner JA, Dill KA. Molecular Motors: Power Strokes Outperform Brownian Ratchets. J Phys Chem B 2016; 120:6327-36. [DOI: 10.1021/acs.jpcb.6b02776] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jason A. Wagoner
- Laufer
Center for Physical and Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Ken A. Dill
- Laufer
Center for Physical and Quantitative Biology, and Departments of Physics
and Astronomy and Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
43
|
Multiscale method for modeling binding phenomena involving large objects: application to kinesin motor domains motion along microtubules. Sci Rep 2016; 6:23249. [PMID: 26988596 PMCID: PMC4796874 DOI: 10.1038/srep23249] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/03/2016] [Indexed: 11/30/2022] Open
Abstract
Many biological phenomena involve the binding of proteins to a large object. Because the electrostatic forces that guide binding act over large distances, truncating the size of the system to facilitate computational modeling frequently yields inaccurate results. Our multiscale approach implements a computational focusing method that permits computation of large systems without truncating the electrostatic potential and achieves the high resolution required for modeling macromolecular interactions, all while keeping the computational time reasonable. We tested our approach on the motility of various kinesin motor domains. We found that electrostatics help guide kinesins as they walk: N-kinesins towards the plus-end, and C-kinesins towards the minus-end of microtubules. Our methodology enables computation in similar, large systems including protein binding to DNA, viruses, and membranes.
Collapse
|
44
|
Bodmer NK, Theisen KE, Dima RI. Molecular investigations into the mechanics of a muscle anchoring complex. Biophys J 2016; 108:2322-32. [PMID: 25954889 DOI: 10.1016/j.bpj.2015.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/16/2015] [Accepted: 03/13/2015] [Indexed: 11/15/2022] Open
Abstract
The titin-telethonin complex, essential for anchoring filaments in the Z-disk of the sarcomere, is composed of immunoglobulin domains. Surprisingly, atomic force microscopy experiments showed that it resists forces much higher than the typical immunoglobulin domain and that the force distribution is unusually broad. To investigate the origin of this behavior, we developed a multiscale simulation approach, combining minimalist and atomistic models (SOP-AT). By following the mechanical response of the complex on experimental timescales, we found that the mechanical stability of titin-telethonin is modulated primarily by the strength of contacts between telethonin and the two titin chains, and secondarily by the timescales of conformational excursions inside telethonin and the pulled titin domains. Importantly, the conformational transitions executed by telethonin in simulations support its proposed role in mechanosensing. Our SOP-AT computational approach thus provides a powerful tool for the exploration of the link between conformational diversity and the broadness of the mechanical response, which can be applied to other multidomain complexes.
Collapse
Affiliation(s)
| | - Kelly E Theisen
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio
| | - Ruxandra I Dima
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
45
|
Nam W, Epureanu BI. Effects of Obstacles on the Dynamics of Kinesins, Including Velocity and Run Length, Predicted by a Model of Two Dimensional Motion. PLoS One 2016; 11:e0147676. [PMID: 26808534 PMCID: PMC4726810 DOI: 10.1371/journal.pone.0147676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/06/2016] [Indexed: 02/07/2023] Open
Abstract
Kinesins are molecular motors which walk along microtubules by moving their heads to different binding sites. The motion of kinesin is realized by a conformational change in the structure of the kinesin molecule and by a diffusion of one of its two heads. In this study, a novel model is developed to account for the 2D diffusion of kinesin heads to several neighboring binding sites (near the surface of microtubules). To determine the direction of the next step of a kinesin molecule, this model considers the extension in the neck linkers of kinesin and the dynamic behavior of the coiled-coil structure of the kinesin neck. Also, the mechanical interference between kinesins and obstacles anchored on the microtubules is characterized. The model predicts that both the kinesin velocity and run length (i.e., the walking distance before detaching from the microtubule) are reduced by static obstacles. The run length is decreased more significantly by static obstacles than the velocity. Moreover, our model is able to predict the motion of kinesin when other (several) motors also move along the same microtubule. Furthermore, it suggests that the effect of mechanical interaction/interference between motors is much weaker than the effect of static obstacles. Our newly developed model can be used to address unanswered questions regarding degraded transport caused by the presence of excessive tau proteins on microtubules.
Collapse
Affiliation(s)
- Woochul Nam
- University of Michigan, Ann Arbor, Michigan 48109-2125, United States of America
| | - Bogdan I Epureanu
- University of Michigan, Ann Arbor, Michigan 48109-2125, United States of America
| |
Collapse
|
46
|
Goldtzvik Y, Zhang Z, Thirumalai D. Importance of Hydrodynamic Interactions in the Stepping Kinetics of Kinesin. J Phys Chem B 2016; 120:2071-5. [DOI: 10.1021/acs.jpcb.5b11153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yonathan Goldtzvik
- Biophysics Program, Institute for Physical Science
and Technology and ‡Department of
Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Zhechun Zhang
- Biophysics Program, Institute for Physical Science
and Technology and ‡Department of
Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - D. Thirumalai
- Biophysics Program, Institute for Physical Science
and Technology and ‡Department of
Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
47
|
Chakraborty S, Zheng W. Decrypting the structural, dynamic, and energetic basis of a monomeric kinesin interacting with a tubulin dimer in three ATPase states by all-atom molecular dynamics simulation. Biochemistry 2015; 54:859-69. [PMID: 25537000 DOI: 10.1021/bi501056h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have employed molecular dynamics (MD) simulation to investigate, with atomic details, the structural dynamics and energetics of three major ATPase states (ADP, APO, and ATP state) of a human kinesin-1 monomer in complex with a tubulin dimer. Starting from a recently solved crystal structure of ATP-like kinesin-tubulin complex by the Knossow lab, we have used flexible fitting of cryo-electron-microscopy maps to construct new structural models of the kinesin-tubulin complex in APO and ATP state, and then conducted extensive MD simulations (total 400 ns for each state), followed by flexibility analysis, principal component analysis, hydrogen bond analysis, and binding free energy analysis. Our modeling and simulation have revealed key nucleotide-dependent changes in the structure and flexibility of the nucleotide-binding pocket (featuring a highly flexible and open switch I in APO state) and the tubulin-binding site, and allosterically coupled motions driving the APO to ATP transition. In addition, our binding free energy analysis has identified a set of key residues involved in kinesin-tubulin binding. On the basis of our simulation, we have attempted to address several outstanding issues in kinesin study, including the possible roles of β-sheet twist and neck linker docking in regulating nucleotide release and binding, the structural mechanism of ADP release, and possible extension and shortening of α4 helix during the ATPase cycle. This study has provided a comprehensive structural and dynamic picture of kinesin's major ATPase states, and offered promising targets for future mutational and functional studies to investigate the molecular mechanism of kinesin motors.
Collapse
Affiliation(s)
- Srirupa Chakraborty
- Physics Department, University at Buffalo , Buffalo, New York 14260, United States
| | | |
Collapse
|
48
|
Kononova O, Kholodov Y, Theisen KE, Marx KA, Dima RI, Ataullakhanov FI, Grishchuk EL, Barsegov V. Tubulin bond energies and microtubule biomechanics determined from nanoindentation in silico. J Am Chem Soc 2014; 136:17036-45. [PMID: 25389565 PMCID: PMC4277772 DOI: 10.1021/ja506385p] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Microtubules,
the primary components of the chromosome segregation
machinery, are stabilized by longitudinal and lateral noncovalent
bonds between the tubulin subunits. However, the thermodynamics of
these bonds and the microtubule physicochemical properties are poorly
understood. Here, we explore the biomechanics of microtubule polymers
using multiscale computational modeling and nanoindentations in silico of a contiguous microtubule fragment. A close
match between the simulated and experimental force–deformation
spectra enabled us to correlate the microtubule biomechanics with
dynamic structural transitions at the nanoscale. Our mechanical testing
revealed that the compressed MT behaves as a system of rigid elements
interconnected through a network of lateral and longitudinal elastic
bonds. The initial regime of continuous elastic deformation of the
microtubule is followed by the transition regime, during which the
microtubule lattice undergoes discrete structural changes, which include
first the reversible dissociation of lateral bonds followed by irreversible
dissociation of the longitudinal bonds. We have determined the free
energies of dissociation of the lateral (6.9 ± 0.4 kcal/mol)
and longitudinal (14.9 ± 1.5 kcal/mol) tubulin–tubulin
bonds. These values in conjunction with the large flexural rigidity
of tubulin protofilaments obtained (18,000–26,000 pN·nm2) support the idea that the disassembling microtubule is capable
of generating a large mechanical force to move chromosomes during
cell division. Our computational modeling offers a comprehensive quantitative
platform to link molecular tubulin characteristics with the physiological
behavior of microtubules. The developed in silico nanoindentation method provides a powerful tool for the exploration
of biomechanical properties of other cytoskeletal and multiprotein
assemblies.
Collapse
Affiliation(s)
- Olga Kononova
- Department of Chemistry, University of Massachusetts , Lowell, Massachusetts 01854, United States
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Modular aspects of kinesin force generation machinery. Biophys J 2013; 104:1969-78. [PMID: 23663840 DOI: 10.1016/j.bpj.2013.03.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/04/2013] [Accepted: 03/07/2013] [Indexed: 11/21/2022] Open
Abstract
The motor head of kinesin carries out microtubule binding, ATP hydrolysis, and force generation. Despite a high level of sequence and structural conservation, subtle variations in subdomains of the motor head determine family-specific properties. In particular, both Kinesin-1 (Kin-1) and Kinesin-5 (Kin-5) walk processively to the microtubule plus-end, yet show distinct motility characteristics suitable for their functions. We studied chimeric Kin-1/Kin-5 constructs with a combination of single molecule motility assays and molecular dynamics simulations to demonstrate that Kin-5 possesses a force-generating element similar to Kin-1, i.e., the cover-neck bundle. Furthermore, the Kin-5 neck linker makes additional contacts with the core of the motor head via loop L13, which putatively compensates for the shorter cover-neck bundle of Kin-5. Our results indicate that Kin-1 is mechanically optimized for individual cargo transport, whereas Kin-5 does not necessarily maximize its mechanical performance. Its biochemical rates and enhanced force sensitivity may instead be beneficial for operation in a group of motors. Such variations in subdomains would be a strategy for achieving diversity in motility with the conserved motor head.
Collapse
|
50
|
Kolomeisky AB. Motor proteins and molecular motors: how to operate machines at the nanoscale. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:463101. [PMID: 24100357 PMCID: PMC3858839 DOI: 10.1088/0953-8984/25/46/463101] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Several classes of biological molecules that transform chemical energy into mechanical work are known as motor proteins or molecular motors. These nanometer-sized machines operate in noisy stochastic isothermal environments, strongly supporting fundamental cellular processes such as the transfer of genetic information, transport, organization and functioning. In the past two decades motor proteins have become a subject of intense research efforts, aimed at uncovering the fundamental principles and mechanisms of molecular motor dynamics. In this review, we critically discuss recent progress in experimental and theoretical studies on motor proteins. Our focus is on analyzing fundamental concepts and ideas that have been utilized to explain the non-equilibrium nature and mechanisms of molecular motors.
Collapse
Affiliation(s)
- Anatoly B. Kolomeisky
- Rice University, Department of Chemistry, 6100 Main Street, Houston, TX 77005-1892, USA
| |
Collapse
|