1
|
Cui R, Li J, Hong Y, Guo L, Wang YH, Bai YF, Li DF. Insights into Chemoreceptor MCP2201-Sensing D-Malate. Int J Mol Sci 2025; 26:4902. [PMID: 40430039 PMCID: PMC12112095 DOI: 10.3390/ijms26104902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2025] [Revised: 05/13/2025] [Accepted: 05/18/2025] [Indexed: 05/29/2025] Open
Abstract
Bacterial chemoreceptors sense extracellular stimuli and drive bacteria toward a beneficial environment or away from harm. Their ligand-binding domains (LBDs) are highly diverse in terms of sequence and structure, and their ligands cover various chemical molecules that could serve as nitrogen, carbon, and energy sources. The mechanism of how this diverse range of LBDs senses different ligands is essential to signal transduction. Previously, we reported that the chemoreceptor MCP2201 from Comamonas testosteroni CNB-1 sensed citrate and L-malate, altered the ligand-free monomer-dimer equilibrium of LBD to citrate-bound monomer (with limited monomer) and L-malate-bound dimer, and triggered positive and negative chemotactic responses. Here, we present our findings, showing that D-malate binds to MCP2201, induces LBD dimerization, and triggers the chemorepellent response exactly as L-malate did. A single site mutation, T105A, can alter the D-malate-bound LBD dimer into a monomer-dimer equilibrium and switch the negative chemotactic response to D-malate to a positive one. Differences in attractant-bound LBD oligomerization, such as citrate-bound wildtype LBD monomer and D-malate-bound T105A dimer, indicated that LBD oligomerization is a consequence of signal transduction instead of a trigger. Our study expands our knowledge of chemoreceptor-sensing ligands and provides insight into the evolution of bacterial chemoreceptors.
Collapse
Affiliation(s)
- Rui Cui
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (R.C.); (J.L.); (L.G.); (Y.-F.B.)
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (R.C.); (J.L.); (L.G.); (Y.-F.B.)
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Hong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Lu Guo
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (R.C.); (J.L.); (L.G.); (Y.-F.B.)
| | - Yun-Hao Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, School of Life Sciences, Central China Normal University, Wuhan 430079, China;
| | - Yi-Fei Bai
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (R.C.); (J.L.); (L.G.); (Y.-F.B.)
| | - De-Feng Li
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (R.C.); (J.L.); (L.G.); (Y.-F.B.)
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Shaji A, Subrahmaniyan P, Mukhopadhyay S, Shin R, Santhoshkumar H, Lele PP. Low pH amplifies chemotaxis toward urea in Helicobacter pylori. Biophys J 2025:S0006-3495(25)00272-3. [PMID: 40312911 DOI: 10.1016/j.bpj.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025] Open
Abstract
Helicobacter pylori infections increase the risk of noncardia gastric adenocarcinoma, and chemotaxis toward metabolites such as urea plays a key role in modulating infection. Chemotaxis studies are more insightful in strains of H. pylori that are amenable to genetic modification, such as the G27 strain. However, motility in G27 cells can be inconsistent and varies with growth conditions, raising questions about its chemotaxis abilities. Here, we quantitatively compared motility and urea chemotaxis between the G27 strain and the highly motile premouse SS1 (PMSS1) strain. We observed that G27 cells swim ∼40% slower than the PMSS1 cells, likely because the former possessed one flagellum on average, whereas the latter had multiple flagella. Despite its slow swimming, G27 exhibited a strong chemotactic response to urea with optimal output under physiological temperature (37°C). Significantly, low pH conditions amplified the urea response, and comparisons of the experiments with a mathematical model suggested that low pH increases chemoreceptor sensitivity toward the metabolite. These results are consistent with the possibility that the harsh acidic environment of the stomach enhances migration toward urea, which the cells degrade to neutralize the local pH and facilitate their survival.
Collapse
Affiliation(s)
- Aakansha Shaji
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Pravin Subrahmaniyan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Sayak Mukhopadhyay
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Rachel Shin
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Harini Santhoshkumar
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas; Biomedical Engineering, Texas A&M University, College Station, Texas.
| |
Collapse
|
3
|
Omori F, Tajima H, Asaoka S, Nishiyama SI, Sowa Y, Kawagishi I. Chemotaxis and Related Signaling Systems in Vibrio cholerae. Biomolecules 2025; 15:434. [PMID: 40149970 PMCID: PMC11940527 DOI: 10.3390/biom15030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
The motility and chemotaxis of Vibrio cholerae, the bacterial pathogen responsible for cholera, play crucial roles in both environmental survival and infection. Understanding their molecular mechanisms is therefore essential not only for fundamental biology but also for infection control and therapeutic development. The bacterium's sheathed, polar flagellum-its motility organelle-is powered by a sodium-driven motor. This motor's rotation is regulated by the chemotaxis (Che) signaling system, with a histidine kinase, CheA, and a response regulator, CheY, serving as the central processing unit. However, V. cholerae possesses two additional, parallel Che signaling systems whose physiological functions remain unclear. Furthermore, the bacterium harbors over 40 receptors/transducers that interact with CheA homologs, forming a complex regulatory network likely adapted to diverse environmental cues. Despite significant progress, many aspects of these systems remain to be elucidated. Here, we summarize the current understanding to facilitate future research.
Collapse
Affiliation(s)
- Fuga Omori
- Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei City, Tokyo 184-8584, Japan; (F.O.); (H.T.); (S.A.); (Y.S.)
| | - Hirotaka Tajima
- Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei City, Tokyo 184-8584, Japan; (F.O.); (H.T.); (S.A.); (Y.S.)
- Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Koganei City, Tokyo 184-0003, Japan
| | - Sotaro Asaoka
- Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei City, Tokyo 184-8584, Japan; (F.O.); (H.T.); (S.A.); (Y.S.)
| | - So-ichiro Nishiyama
- Faculty of Applied Life Science, Niigata University of Pharmacy and Medical and Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata City, Niigata 956-8603, Japan;
| | - Yoshiyuki Sowa
- Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei City, Tokyo 184-8584, Japan; (F.O.); (H.T.); (S.A.); (Y.S.)
- Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Koganei City, Tokyo 184-0003, Japan
| | - Ikuro Kawagishi
- Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei City, Tokyo 184-8584, Japan; (F.O.); (H.T.); (S.A.); (Y.S.)
- Research Center for Micro-Nano Technology, Hosei University, 3-11-15 Midori-cho, Koganei City, Tokyo 184-0003, Japan
| |
Collapse
|
4
|
Shanmughan P, Subrahmaniyan P, Bhatnagar D, Ranganathan S, Lele PP. Urea-Loaded PLGA Microspheres as Chemotaxis Stimulants for Helicobacter pylori. Biotechnol Bioeng 2025; 122:405-414. [PMID: 39491522 PMCID: PMC11723804 DOI: 10.1002/bit.28870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
Helicobacter pylori cells undergo chemotaxis toward several small molecules, called chemo-attractants, including urea produced by the epithelial cells of the stomach. The biophysical mechanisms of chemotaxis are not well understood in H. pylori. Here, we developed point sources of urea by encapsulating it in Poly(lactic-co-glycolic acid) or PLGA microbeads for H. pylori chemotaxis studies. Microscopy and Dynamic Light Scattering characterization indicated that the PLGA particles had an average diameter of < 0.8 μm. The particles were relatively stable and had a net negative surface charge. Absorbance measurements indicated that the beads released ~70% of the urea over a 2-week period, with most of the release occurring within the first 24-h period. Varying pH (2.0-7.0) had little effect on the rate of urea release. A diffusion model predicted that such beads could generate sufficient urea gradients to chemotactically attract H. pylori cells. Single-bead single-cell chemotaxis assays confirmed the predictions, revealing that H. pylori continued to be attracted to beads even after most of the urea had been released in the first 24 h. Our work highlights a novel use of PLGA microbeads as delivery vehicles for stimulating a chemotaxis response in H. pylori, with potential applications in bacterial eradication strategies.
Collapse
Affiliation(s)
- Prasanth Shanmughan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Pravin Subrahmaniyan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Dhruv Bhatnagar
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, Wisconsin, USA
| | | | - Pushkar P. Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
5
|
Liu X, Lertsethtakarn P, Mariscal VT, Yildiz F, Ottemann KM. Counterclockwise rotation of the flagellum promotes biofilm initiation in Helicobacter pylori. mBio 2024; 15:e0044024. [PMID: 38700325 PMCID: PMC11237671 DOI: 10.1128/mbio.00440-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Motility promotes biofilm initiation during the early steps of this process: microbial surface association and attachment. Motility is controlled in part by chemotaxis signaling, so it seems reasonable that chemotaxis may also affect biofilm formation. There is a gap, however, in our understanding of the interactions between chemotaxis and biofilm formation, partly because most studies analyzed the phenotype of only a single chemotaxis signaling mutant, e.g., cheA. Here, we addressed the role of chemotaxis in biofilm formation using a full set of chemotaxis signaling mutants in Helicobacter pylori, a class I carcinogen that infects more than half the world's population and forms biofilms. Using mutants that lack each chemotaxis signaling protein, we found that chemotaxis signaling affected the biofilm initiation stage, but not mature biofilm formation. Surprisingly, some chemotaxis mutants elevated biofilm initiation, while others inhibited it in a manner that was not tied to chemotaxis ability or ligand input. Instead, the biofilm phenotype correlated with flagellar rotational bias. Specifically, mutants with a counterclockwise bias promoted biofilm initiation, e.g., ∆cheA, ∆cheW, or ∆cheV1; in contrast, those with a clockwise bias inhibited it, e.g., ∆cheZ, ∆chePep, or ∆cheV3. We tested this correlation using a counterclockwise bias-locked flagellum, which induced biofilm formation independent of the chemotaxis system. These CCW flagella, however, were not sufficient to induce biofilm formation, suggesting there are downstream players. Overall, our work highlights the new finding that flagellar rotational direction promotes biofilm initiation, with the chemotaxis signaling system operating as one mechanism to control flagellar rotation. IMPORTANCE Chemotaxis signaling systems have been reported to contribute to biofilm formation in many bacteria; however, how they regulate biofilm formation remains largely unknown. Chemotaxis systems are composed of many distinct kinds of proteins, but most previous work analyzed the biofilm effect of loss of only a few. Here, we explored chemotaxis' role during biofilm formation in the human-associated pathogenic bacterium Helicobacter pylori. We found that chemotaxis proteins are involved in biofilm initiation in a manner that correlated with how they affected flagellar rotation. Biofilm initiation was high in mutants with counterclockwise (CCW) flagellar bias and low in those with clockwise bias. We supported the idea that a major driver of biofilm formation is flagellar rotational direction using a CCW-locked flagellar mutant, which stays CCW independent of chemotaxis input and showed elevated biofilm initiation. Our data suggest that CCW-rotating flagella, independent of chemotaxis inputs, are a biofilm-promoting signal.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Paphavee Lertsethtakarn
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Vanessa T. Mariscal
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Fitnat Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Karen M. Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| |
Collapse
|
6
|
Monteagudo-Cascales E, Gavira JA, Xing J, Velando F, Matilla MA, Zhulin IB, Krell T. Bacterial sensor evolved by decreasing complexity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594639. [PMID: 38798610 PMCID: PMC11118575 DOI: 10.1101/2024.05.17.594639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Bacterial receptors feed into multiple signal transduction pathways that regulate a variety of cellular processes including gene expression, second messenger levels and motility. Receptors are typically activated by signal binding to ligand binding domains (LBD). Cache domains are omnipresent LBDs found in bacteria, archaea, and eukaryotes, including humans. They form the predominant family of extracytosolic bacterial LBDs and were identified in all major receptor types. Cache domains are composed of either a single (sCache) or a double (dCache) structural module. The functional relevance of bimodular LBDs remains poorly understood. Here, we identify the PacF chemoreceptor in the phytopathogen Pectobacterium atrosepticum that recognizes formate at the membrane distal module of its dCache domain, triggering chemoattraction. We further demonstrate that a family of formate-specific sCache domains has evolved from a dCache domain, exemplified by PacF, by losing the membrane proximal module. By solving high-resolution structures of two family members in complex with formate, we show that the molecular basis for formate binding at sCache and dCache domains is highly similar, despite their low sequence identity. The apparent loss of the membrane proximal module may be related to the observation that dCache domains bind ligands typically at the membrane distal module, whereas the membrane proximal module is not involved in signal sensing. This work advances our understanding of signal sensing in bacterial receptors and suggests that evolution by reducing complexity may be a common trend shaping their diversity. Significance Many bacterial receptors contain multi-modular sensing domains indicative of complex sensory processes. The presence of more than one sensing module likely permits the integration of multiple signals, although, the molecular detail and functional relevance for these complex sensors remain poorly understood. Bimodular sensory domains are likely to have arisen from the fusion or duplication of monomodular domains. Evolution by increasing complexity is generally believed to be a dominant force. Here we reveal the opposite - how a monomodular sensing domain has evolved from a bimodular one. Our findings will thus motivate research to establish whether evolution by decreasing complexity is typical of other sensory domains.
Collapse
|
7
|
Huang Z, Zou J, Guo M, Zhang G, Gao J, Zhao H, Yan F, Niu Y, Wang GL. An aerotaxis receptor influences invasion of Agrobacterium tumefaciens into its host. PeerJ 2024; 12:e16898. [PMID: 38332807 PMCID: PMC10851874 DOI: 10.7717/peerj.16898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
Agrobacterium tumefaciens is a soil-borne pathogenic bacterium that causes crown gall disease in many plants. Chemotaxis offers A. tumefaciens the ability to find its host and establish infection. Being an aerobic bacterium, A. tumefaciens possesses one chemotaxis system with multiple potential chemoreceptors. Chemoreceptors play an important role in perceiving and responding to environmental signals. However, the studies of chemoreceptors in A. tumefaciens remain relatively restricted. Here, we characterized a cytoplasmic chemoreceptor of A. tumefaciens C58 that contains an N-terminal globin domain. The chemoreceptor was designated as Atu1027. The deletion of Atu1027 not only eliminated the aerotactic response of A. tumefaciens to atmospheric air but also resulted in a weakened chemotactic response to multiple carbon sources. Subsequent site-directed mutagenesis and phenotypic analysis showed that the conserved residue His100 in Atu1027 is essential for the globin domain's function in both chemotaxis and aerotaxis. Furthermore, deleting Atu1027 impaired the biofilm formation and pathogenicity of A. tumefaciens. Collectively, our findings demonstrated that Atu1027 functions as an aerotaxis receptor that affects agrobacterial chemotaxis and the invasion of A. tumefaciens into its host.
Collapse
Affiliation(s)
- Zhiwei Huang
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Junnan Zou
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Minliang Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Guoliang Zhang
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Jun Gao
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Hongliang Zhao
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Feiyu Yan
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Yuan Niu
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| | - Guang-Long Wang
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu Province, China
| |
Collapse
|
8
|
Liu X, Tachiyama S, Zhou X, Mathias RA, Bonny SQ, Khan MF, Xin Y, Roujeinikova A, Liu J, Ottemann KM. Bacterial flagella hijack type IV pili proteins to control motility. Proc Natl Acad Sci U S A 2024; 121:e2317452121. [PMID: 38236729 PMCID: PMC10823254 DOI: 10.1073/pnas.2317452121] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/27/2023] [Indexed: 01/23/2024] Open
Abstract
Bacterial flagella and type IV pili (TFP) are surface appendages that enable motility and mechanosensing through distinct mechanisms. These structures were previously thought to have no components in common. Here, we report that TFP and some flagella share proteins PilO, PilN, and PilM, which we identified as part of the Helicobacter pylori flagellar motor. H. pylori mutants lacking PilO or PilN migrated better than wild type in semisolid agar because they continued swimming rather than aggregated into microcolonies, mimicking the TFP-regulated surface response. Like their TFP homologs, flagellar PilO/PilN heterodimers formed a peripheral cage that encircled the flagellar motor. These results indicate that PilO and PilN act similarly in flagella and TFP by differentially regulating motility and microcolony formation when bacteria encounter surfaces.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA95064
| | - Shoichi Tachiyama
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Xiaotian Zhou
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Rommel A. Mathias
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC3800, Australia
| | - Sharmin Q. Bonny
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Mohammad F. Khan
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Yue Xin
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Anna Roujeinikova
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC3800, Australia
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Karen M. Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA95064
| |
Collapse
|
9
|
Güven O, Menteşe E, Emirik M, Sökmen BB, Akyüz G. Benzimidazolone-piperazine/triazole/thiadiazole/furan/thiophene conjugates: Synthesis, in vitro urease inhibition, and in silico molecular docking studies. Arch Pharm (Weinheim) 2023; 356:e2300336. [PMID: 37612782 DOI: 10.1002/ardp.202300336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
This study describes the synthesis, in vitro urease inhibition, and molecular docking studies of benzimidazolone derivatives incorporating the piperazine, triazole, thiadiazole, furan, thiophene, and thiosemicarbazide moieties. All newly synthesized compounds demonstrated varying degrees of urease inhibitory activity, with IC50 values ranging between 0.64 ± 0.099 and 0.11 ± 0.017 µM, when compared with the standard drug thiourea (IC50 value of 0.51 ± 0.028 µM). To confirm the experimental urease inhibition results and elucidate the mode of interaction of the synthesized compounds with the binding site of the urease enzyme, molecular docking studies were performed using the Schrödinger Suite package. Molecular docking studies showed that compounds with high in vitro urease inhibition interacted with key residues of the urease active site such as His221, Glu222, Asp223, His322, Arg338, and Ni2+ cations via hydrogen bonding, metal coordination, salt bridge, π-π stacking, and π-cation interactions.
Collapse
Affiliation(s)
- Okan Güven
- Department of Chemistry, Art and Science Faculty, Recep Tayyip Erdogan University, Rize, Turkey
| | - Emre Menteşe
- Department of Chemistry, Art and Science Faculty, Recep Tayyip Erdogan University, Rize, Turkey
| | - Mustafa Emirik
- Department of Chemistry, Art and Science Faculty, Recep Tayyip Erdogan University, Rize, Turkey
| | - Bahar Bilgin Sökmen
- Department of Chemistry, Faculty of Arts and Sciences, Giresun University, Giresun, Turkey
| | - Gülay Akyüz
- Department of Chemistry, Art and Science Faculty, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
10
|
Suzuki S, Yokota K, Igimi S, Kajikawa A. Negative chemotaxis of Ligilactobacillus agilis BKN88 against gut-derived substances. Sci Rep 2023; 13:15632. [PMID: 37730901 PMCID: PMC10511705 DOI: 10.1038/s41598-023-42840-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023] Open
Abstract
Ligilactobacillus agilis is a motile lactic acid bacterium found in the gastrointestinal tracts of animals. The findings of our previous study suggest that the motility of L. agilis BKN88 enables gut colonization in murine models. However, the chemotactic abilities of motile lactobacilli remain unknown. This study aimed to identify the gut-derived chemoeffectors and their corresponding chemoreceptors in L. agilis BKN88. Chemotaxis assays with chemotactic and non-chemotactic (ΔcheA) L. agilis strains revealed that low pH, organic acids, and bile salts served as repellents. L. agilis BKN88 was more sensitive to bile and acid than the gut-derived non-motile lactobacilli, implying that L. agilis might utilize motility and chemotaxis instead of exhibiting stress tolerance/resistance. L. agilis BKN88 contains five putative chemoreceptor genes (mcp1-mcp5). Chemotaxis assays using a series of chemoreceptor mutants revealed that each of the five chemoreceptors could sense multiple chemoeffectors and that these chemoreceptors were functionally redundant. Mcp2 and Mcp3 sensed all tested chemoeffectors. This study provides further insights into the interactions between chemoreceptors and ligands of motile lactobacilli and the unique ecological and evolutionary features of motile lactobacilli, which may be distinct from those of non-motile lactobacilli.
Collapse
Affiliation(s)
- Shunya Suzuki
- Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Kenji Yokota
- Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Shizunobu Igimi
- Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Akinobu Kajikawa
- Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan.
| |
Collapse
|
11
|
Yu Z, Zhang W, Yang H, Chou SH, Galperin MY, He J. Gas and light: triggers of c-di-GMP-mediated regulation. FEMS Microbiol Rev 2023; 47:fuad034. [PMID: 37339911 PMCID: PMC10505747 DOI: 10.1093/femsre/fuad034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 06/22/2023] Open
Abstract
The widespread bacterial second messenger c-di-GMP is responsible for regulating many important physiological functions such as biofilm formation, motility, cell differentiation, and virulence. The synthesis and degradation of c-di-GMP in bacterial cells depend, respectively, on diguanylate cyclases and c-di-GMP-specific phosphodiesterases. Since c-di-GMP metabolic enzymes (CMEs) are often fused to sensory domains, their activities are likely controlled by environmental signals, thereby altering cellular c-di-GMP levels and regulating bacterial adaptive behaviors. Previous studies on c-di-GMP-mediated regulation mainly focused on downstream signaling pathways, including the identification of CMEs, cellular c-di-GMP receptors, and c-di-GMP-regulated processes. The mechanisms of CME regulation by upstream signaling modules received less attention, resulting in a limited understanding of the c-di-GMP regulatory networks. We review here the diversity of sensory domains related to bacterial CME regulation. We specifically discuss those domains that are capable of sensing gaseous or light signals and the mechanisms they use for regulating cellular c-di-GMP levels. It is hoped that this review would help refine the complete c-di-GMP regulatory networks and improve our understanding of bacterial behaviors in changing environments. In practical terms, this may eventually provide a way to control c-di-GMP-mediated bacterial biofilm formation and pathogenesis in general.
Collapse
Affiliation(s)
- Zhaoqing Yu
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, Jiangsu 210014, PR China
| | - Wei Zhang
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - He Yang
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - Shan-Ho Chou
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Jin He
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| |
Collapse
|
12
|
Gupta N, Kumar A, Verma VK. Strategies adopted by gastric pathogen Helicobacter pylori for a mature biofilm formation: Antimicrobial peptides as a visionary treatment. Microbiol Res 2023; 273:127417. [PMID: 37267815 DOI: 10.1016/j.micres.2023.127417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
Enormous efforts in recent past two decades to eradicate the pathogen that has been prevalent in half of the world's population have been problematic. The biofilm formed by Helicobacter pylori provides resistance towards innate immune cells, various combinatorial antibiotics, and human antimicrobial peptides, despite the fact that these all are potent enough to eradicate it in vitro. Biofilm provides the opportunity to secrete various virulence factors that strengthen the interaction between host and pathogen helping in evading the innate immune system and ultimately leading to persistence. To our knowledge, this review is the first of its kind to explain briefly the journey of H. pylori starting with the chemotaxis, the mechanism for selecting the site for colonization, the stress faced by the pathogen, and various adaptations to evade these stress conditions by forming biofilm and the morphological changes acquired by the pathogen in mature biofilm. Furthermore, we have explained the human GI tract antimicrobial peptides and the reason behind the failure of these AMPs, and how encapsulation of Pexiganan-A(MSI-78A) in a chitosan microsphere increases the efficiency of eradication.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| | - Atul Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Vijay Kumar Verma
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India.
| |
Collapse
|
13
|
Zhou B, Szymanski CM, Baylink A. Bacterial chemotaxis in human diseases. Trends Microbiol 2023; 31:453-467. [PMID: 36411201 PMCID: PMC11238666 DOI: 10.1016/j.tim.2022.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
Abstract
To infect and cause disease, bacterial pathogens must localize to specific regions of the host where they possess the metabolic and defensive acumen for survival. Motile flagellated pathogens exercise control over their localization through chemotaxis to direct motility based on the landscape of exogenous nutrients, toxins, and molecular cues sensed within the host. Here, we review advances in understanding the roles chemotaxis plays in human diseases. Chemotaxis drives pathogen colonization to sites of inflammation and injury and mediates fitness advantages through accessing host-derived nutrients from damaged tissue. Injury tropism may worsen clinical outcomes through instigating chronic inflammation and subsequent cancer development. Inhibiting bacterial chemotactic systems could act synergistically with antibacterial medicines for more effective and specific eradication.
Collapse
Affiliation(s)
- Bibi Zhou
- University of Georgia, Department of Microbiology and Complex Carbohydrate Research Center, Athens, GA 30602, USA
| | - Christine M Szymanski
- University of Georgia, Department of Microbiology and Complex Carbohydrate Research Center, Athens, GA 30602, USA
| | - Arden Baylink
- Washington State University, Department of Veterinary Microbiology and Pathology, Pullman, WA 99164, USA.
| |
Collapse
|
14
|
Yang H, Wang L, Zhang M, Hu B. The Role of Adhesion in Helicobacter pylori Persistent Colonization. Curr Microbiol 2023; 80:185. [PMID: 37071212 DOI: 10.1007/s00284-023-03264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/10/2023] [Indexed: 04/19/2023]
Abstract
Helicobacter pylori (H. pylori) has coevolved with its human host for more than 100 000 years. It can safely colonize around the epithelium of gastric glands via their specific microstructures and proteins. Unless patients receive eradication treatment, H. pylori infection is always lifelong. However, few studies have discussed the reasons. This review will focus on the adhesion of H. pylori from the oral cavity to gastric mucosa and summarize the possible binding and translocation characteristics. Adhesion is the first step for persistent colonization after the directional motility, and factors related to adhesion are necessary. Outer membrane proteins, such as the blood group antigen binding adhesin (BabA) and the sialic acid binding adhesin (SabA), play pivotal roles in binding to human mucins and cellular surfaces. And this may offer different perspectives on eradication.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, No.37, Guo Xue Alley, Wu Hou District, Chengdu City, 610041, Sichuan Province, China
| | - Lixia Wang
- The Second Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Miao Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, No.37, Guo Xue Alley, Wu Hou District, Chengdu City, 610041, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, No.37, Guo Xue Alley, Wu Hou District, Chengdu City, 610041, Sichuan Province, China.
| |
Collapse
|
15
|
Yang H, Mou Y, Hu B. Discussion on the common controversies of Helicobacter pylori infection. Helicobacter 2023; 28:e12938. [PMID: 36436202 DOI: 10.1111/hel.12938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Helicobacter pylori ( H. pylori ) can persistently colonize on the gastric mucosa after infection and cause gastritis, atrophy, metaplasia, and even gastric cancer (GC). METHODS Therefore, the detection and eradication of H. pylori are the prerequisite. RESULTS Clinically, there are some controversial issues, such as why H. pylori infection is persistent, why it translocases along with the lesser curvature of the stomach, why there is oxyntic antralization, what the immunological characteristic of gastric chronic inflammation caused by H. pylori is, whether H. pylori infection is associated with extra-gastric diseases, whether chronic atrophic gastritis (CAG) is reversible, and what the potential problems are after H. pylori eradication. What are the possible answers? CONCLUSION In the review, we will discuss these issues from the attachment to eradication in detail.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Mou
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Song L, Song M, Rabkin CS, Chung Y, Williams S, Torres J, Corvalan AH, Gonzalez R, Bellolio E, Shome M, LaBaer J, Qiu J, Camargo MC. Identification of anti-Helicobacter pylori antibody signatures in gastric intestinal metaplasia. J Gastroenterol 2023; 58:112-124. [PMID: 36301365 PMCID: PMC9610335 DOI: 10.1007/s00535-022-01933-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Chronic Helicobacter pylori infection may induce gastric intestinal metaplasia (IM). We compared anti-H. pylori antibody profiles between IM cases and non-atrophic gastritis (NAG) controls. METHODS We evaluated humoral responses to 1528 H. pylori proteins among a discovery set of 50 IM and 50 NAG using H. pylori protein arrays. Antibodies with ≥ 20% sensitivity at 90% specificity for either group were selected and further validated in an independent set of 100 IM and 100 NAG using odds ratios (OR). A validated multi-signature was evaluated using the area under the receiver operating characteristics curve (AUC) and net reclassification improvement (NRI). RESULTS Sixty-two immunoglobulin (Ig) G and 11 IgA antibodies were detected in > 10%. Among them, 22 IgG and 6 IgA antibodies were different between IM and NAG in the discovery set. Validated antibodies included 11 IgG (anti-HP1177/Omp27/HopQ [OR = 8.1, p < 0.001], anti-HP0547/CagA [4.6, p < 0.001], anti-HP0596/Tipα [4.0, p = 0.002], anti-HP0103/TlpB [3.8, p = 0.001], anti-HP1125/PalA/Omp18 [3.1, p = 0.001], anti-HP0153/RecA [0.48, p = 0.03], anti-HP0385 [0.41, p = 0.006], anti-HP0243/TlpB [0.39, p = 0.016], anti-HP0371/FabE [0.37, p = 0.017], anti-HP0900/HypB/AccB [0.35, p = 0.048], and anti-HP0709 [0.30, p = 0.003]), and 2 IgA (anti-HP1125/PalA/Omp18 [2.7, p = 0.03] and anti-HP0596/Tipα [2.5, p = 0.027]). A model including all 11 IgG antibodies (AUC = 0.81) had better discriminated IM and NAG compared with an anti-CagA only (AUC = 0.77) model (NRI = 0.44; p = 0.001). CONCLUSIONS Our study represents the most comprehensive assessment of anti-H. pylori antibody profiles in IM. The target antigens for these novel antibodies may act together with CagA in the progression to IM. Along with other biomarkers, specific H. pylori antibodies may identify IM patients, who would benefit from surveillance.
Collapse
Affiliation(s)
- Lusheng Song
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, PO Box 876401, Tempe, AZ, USA
| | - Minkyo Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Yunro Chung
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, PO Box 876401, Tempe, AZ, USA
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Stacy Williams
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, PO Box 876401, Tempe, AZ, USA
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, UMAE Pediatría, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Alejandro H Corvalan
- Faculty of Medicine and Advanced Center for Chronic Disease, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Robinson Gonzalez
- Faculty of Medicine and Advanced Center for Chronic Disease, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Bellolio
- Hospital Dr. Hernán Henríquez Aravena, Temuco, Chile
- Departamento de Anatomía Patológica, Universidad de La Frontera, Temuco, Chile
| | - Mahasish Shome
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, PO Box 876401, Tempe, AZ, USA
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, PO Box 876401, Tempe, AZ, USA
| | - Ji Qiu
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, PO Box 876401, Tempe, AZ, USA.
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
17
|
A Structure-Based Mechanism for the Denaturing Action of Urea, Guanidinium Ion and Thiocyanate Ion. BIOLOGY 2022; 11:biology11121764. [PMID: 36552273 PMCID: PMC9775367 DOI: 10.3390/biology11121764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
An exhaustive analysis of all the protein structures deposited in the Protein Data Bank, here performed, has allowed the identification of hundredths of protein-bound urea molecules and the structural characterization of such binding sites. It emerged that, even though urea molecules are largely involved in hydrogen bonds with both backbone and side chains, they are also able to make van der Waals contacts with nonpolar moieties. As similar findings have also been previously reported for guanidinium and thiocyanate, this observation suggests that promiscuity is a general property of protein denaturants. Present data provide strong support for a mechanism based on the protein-denaturant direct interactions with a denaturant binding model to equal and independent sites. In this general framework, our investigations also highlight some interesting insights into the different denaturing power of urea compared to guanidinium/thiocyanate.
Collapse
|
18
|
Telocytes’ Role in Modulating Gut Motility Function and Development: Medical Hypotheses and Literature Review. Int J Mol Sci 2022; 23:ijms23137017. [PMID: 35806023 PMCID: PMC9267102 DOI: 10.3390/ijms23137017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
This review article explores the telocytes’ roles in inflammatory bowel diseases (IBD), presenting the mechanisms and hypotheses related to epithelial regeneration, progressive fibrosis, and dysmotility as a consequence of TCs’ reduced or absent number. Based on the presented mechanisms and hypotheses, we aim to provide a functional model to illustrate TCs’ possible roles in the normal and pathological functioning of the digestive tract. TCs are influenced by the compression of nearby blood vessels and the degree of fibrosis of the surrounding tissues and mediate these processes in response. The changes in intestinal tube vascularization induced by the movement of the food bowl, and the consequent pH changes that show an anisotropy in the thickness of the intestinal tube wall, have led to the identification of a pattern of intestinal tube development based on telocytes’ ability to communicate and modulate surrounding cell functions. In the construction of the theoretical model, given the predictable occurrence of colic in the infant, the two-layer arrangement of the nerve plexuses associated with the intestinal tube was considered to be incompletely adapted to the motility required with a diversified diet. There is resulting evidence of possible therapeutic targets for diseases associated with changes in local nerve tissue development.
Collapse
|
19
|
Yang H, Hu B. Immunological Perspective: Helicobacter pylori Infection and Gastritis. Mediators Inflamm 2022; 2022:2944156. [PMID: 35300405 PMCID: PMC8923794 DOI: 10.1155/2022/2944156] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is a spiral-shaped gram-negative bacterium. Its infection is mainly transmitted via oral-oral and fecal-oral routes usually during early childhood. It can achieve persistent colonization by manipulating the host immune responses, which also causes mucosal damage and inflammation. H. pylori gastritis is an infectious disease and results in chronic gastritis of different severity in near all patients with infection. It may develop from acute/chronic inflammation, chronic atrophic gastritis, intestinal metaplasia, dysplasia, and intraepithelial neoplasia, eventually to gastric cancer. This review attempts to cover recent studies which provide important insights into how H. pylori causes chronic inflammation and what the characteristic is, which will immunologically explain H. pylori gastritis.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Liu J, Zhang J, Zhang Y, Wang Y, Wang M, Li Z, Wang G, Su X. A pH-responsive fluorometric and colorimetric system based on silicon quantum dots and 4-nitrophenol for urease activity detection. Talanta 2022; 237:122956. [PMID: 34736681 DOI: 10.1016/j.talanta.2021.122956] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
In this paper, we proposed a dual-signal fluorometric and colorimetric system based on silicon quantum dots (SiQDs) and 4-nitrophenol (4-NP) for pH and urease sensing. SiQDs with fluorescence emission of 460 nm were prepared via aqueous-phase synthesis. As the pH of the system gradually increased, the absorption band of 4-NP at 400 nm increased and a color reaction from colorless to yellow occurred. The absorption of 4-NP overlapped quiet well with the fluorescence excitation spectrum of SiQDs, which can effectively quench the fluorescence of SiQDs. Therefore, the change of fluorescence and absorption intensities could be used to quantify pH value. The fluorometric and colorimetric pH-sensing systems both exhibited a linear respond to pH ranging from 6.0 to 7.8 with an interval of 0.2 pH unit. Urease could specifically hydrolyze urea to generate carbon dioxide and ammonia, causing an obvious increase of the pH value. Thus, urease could also be detected quantitatively by the above dual-signal pH sensing system. The linear ranges of the fluorometric and colorimetric methods for urease detection were both 2-40 U L-1. The limits of detection were 1.67 and 1.07 U L-1, respectively. More importantly, this established dual-signal system has been successfully exploited in the detection of urease in real samples with satisfactory recoveries. Compared with other traditional single-signal assay strategies, the results obtained by dual-signal methods are more accurate and reliable.
Collapse
Affiliation(s)
- Jinying Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jiabao Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yue Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Mengke Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ziwen Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Guannan Wang
- College of Medical Engineering, Jining Medical University, Jining, 272067, PR China.
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
21
|
Phylogenetic Analysis with Prediction of Cofactor or Ligand Binding for Pseudomonas aeruginosa PAS and Cache Domains. Microbiol Spectr 2021; 9:e0102621. [PMID: 34937179 PMCID: PMC8694187 DOI: 10.1128/spectrum.01026-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PAS domains are omnipresent building blocks of multidomain proteins in all domains of life. Bacteria possess a variety of PAS domains in intracellular proteins and the related Cache domains in periplasmic or extracellular proteins. PAS and Cache domains are predominant in sensory systems, often carry cofactors or bind ligands, and serve as dimerization domains in protein association. To aid our understanding of the wide distribution of these domains, we analyzed the proteome of the opportunistic human pathogen Pseudomonas aeruginosa PAO1 in silico. The ability of this bacterium to survive under different environmental conditions, to switch between planktonic and sessile/biofilm lifestyle, or to evade stresses, notably involves c-di-GMP regulatory proteins or depends on sensory pathways involving multidomain proteins that possess PAS or Cache domains. Maximum likelihood phylogeny was used to group PAS and Cache domains on the basis of amino acid sequence. Conservation of cofactor- or ligand-coordinating amino acids aided by structure-based comparison was used to inform function. The resulting classification presented here includes PAS domains that are candidate binders of carboxylic acids, amino acids, fatty acids, flavin adenine dinucleotide (FAD), 4-hydroxycinnamic acid, and heme. These predictions are put in context to previously described phenotypic data, often generated from deletion mutants. The analysis predicts novel functions for sensory proteins and sheds light on functional diversification in a large set of proteins with similar architecture. IMPORTANCE To adjust to a variety of life conditions, bacteria typically use multidomain proteins, where the modular structure allows functional differentiation. Proteins responding to environmental cues and regulating physiological responses are found in chemotaxis pathways that respond to a wide range of stimuli to affect movement. Environmental cues also regulate intracellular levels of cyclic-di-GMP, a universal bacterial secondary messenger that is a key determinant of bacterial lifestyle and virulence. We study Pseudomonas aeruginosa, an organism known to colonize a broad range of environments that can switch lifestyle between the sessile biofilm and the planktonic swimming form. We have investigated the PAS and Cache domains, of which we identified 101 in 70 Pseudomonas aeruginosa PAO1 proteins, and have grouped these by phylogeny with domains of known structure. The resulting data set integrates sequence analysis and structure prediction to infer ligand or cofactor binding. With this data set, functional predictions for PAS and Cache domain-containing proteins are made.
Collapse
|
22
|
Wang H, Zhang M, Xu Y, Zong R, Xu N, Guo M. Agrobacterium fabrum atu0526-Encoding Protein Is the Only Chemoreceptor That Regulates Chemoattraction toward the Broad Antibacterial Agent Formic Acid. BIOLOGY 2021; 10:biology10121345. [PMID: 34943260 PMCID: PMC8698456 DOI: 10.3390/biology10121345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/25/2022]
Abstract
Soil-born plant pathogens, especially Agrobacterium, generally navigate their way to hosts through recognition of the root exudates by chemoreceptors. However, there is still a lack of appropriate identification of chemoreceptors and their ligands in Agrobacterium. Here, Atu0526, a sCache-type chemoreceptor from Agrobacterium fabrum C58, was confirmed as the receptor of a broad antibacterial agent, formic acid. The binding of formic acid to Atu0526 was screened using a thermo shift assay and verified using isothermal titration calorimetry. Inconsistent with the previously reported antimicrobial properties, formic acid was confirmed to be a chemoattractant to A. fabrum and could promote its growth. The chemotaxis of A. fabrum C58 toward formic acid was completely lost with the knock-out of atu0526, and regained with the complementation of the gene, indicating that Atu0526 is the only chemoreceptor for formic acid in A. fabrum C58. The affinity of formic acid to Atu0526LBD significantly increased after the arginine at position 115 was replaced by alanine. However, in vivo experiments showed that the R115A mutation fully abolished the chemotaxis of A. fabrum toward formic acid. Molecular docking based on a predicted 3D structure of Atu0526 suggested that the arginine may provide "an anchorage" for formic acid to pull the minor loop, thereby forming a conformational change that generates the ligand-binding signal. Collectively, our findings will promote an understanding of sCache-type chemoreceptors and their signal transduction mechanism.
Collapse
|
23
|
Cytokinin Perception in Ancient Plants beyond Angiospermae. Int J Mol Sci 2021; 22:ijms222313077. [PMID: 34884882 PMCID: PMC8657898 DOI: 10.3390/ijms222313077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Cytokinins (CKs) control many plant developmental processes and responses to environmental cues. Although the CK signaling is well understood, we are only beginning to decipher its evolution. Here, we investigated the CK perception apparatus in early-divergent plant species such as bryophyte Physcomitrium patens, lycophyte Selaginella moellendorffii, and gymnosperm Picea abies. Of the eight CHASE-domain containing histidine kinases (CHKs) examined, two CHKs, PpCHK3 and PpCHK4, did not bind CKs. All other CHK receptors showed high-affinity CK binding (KD of nM range), with a strong preference for isopentenyladenine over other CK nucleobases in the moss and for trans-zeatin over cis-zeatin in the gymnosperm. The pH dependences of CK binding for these six CHKs showed a wide range, which may indicate different subcellular localization of these receptors at either the plasma- or endoplasmic reticulum membrane. Thus, the properties of the whole CK perception apparatuses in early-divergent lineages were demonstrated. Data show that during land plant evolution there was a diversification of the ligand specificity of various CHKs, in particular, the rise in preference for trans-zeatin over cis-zeatin, which indicates a steadily increasing specialization of receptors to various CKs. Finally, this distinct preference of individual receptors to different CK versions culminated in vascular plants, especially angiosperms.
Collapse
|
24
|
Abstract
Chemosensory pathways are among the most abundant prokaryotic signal transduction systems, allowing bacteria to sense and respond to environmental stimuli. Signaling is typically initiated by the binding of specific molecules to the ligand binding domain (LBD) of chemoreceptor proteins (CRs). Although CRs play a central role in plant-microbiome interactions such as colonization and infection, little is known about their phylogenetic and ecological specificity. Here, we analyzed 82,277 CR sequences from 11,806 representative microbial species covering the whole prokaryotic phylogeny, and we classified them according to their LBD type using a de novo homology clustering method. Through phylogenomic analysis, we identified hundreds of LBDs that are found predominantly in plant-associated bacteria, including several LBDs specific to phytopathogens and plant symbionts. Functional annotation of our catalogue showed that many of the LBD clusters identified might constitute unknown types of LBDs. Moreover, we found that the taxonomic distribution of most LBD types that are specific to plant-associated bacteria is only partially explained by phylogeny, suggesting that lifestyle and niche adaptation are important factors in their selection. Finally, our results show that the profile of LBD types in a given genome is related to the lifestyle specialization, with plant symbionts and phytopathogens showing the highest number of niche-specific LBDs. The LBD catalogue and information on how to profile novel genomes are available at https://github.com/compgenomicslab/CRs. IMPORTANCE Considering the enormous variety of LBDs at sensor proteins, an important question resides in establishing the forces that have driven their evolution and selection. We present here the first clear demonstration that environmental factors play an important role in the selection and evolution of LBDs. We were able to demonstrate the existence of LBD families that are highly enriched in plant-associated bacteria but show a wide phylogenetic spread. These findings offer a number of research opportunities in the field of single transduction, such as the exploration of similar relationships in chemoreceptors of bacteria with a different lifestyle, like those inhabiting or infecting the human intestine. Similarly, our results raise the question whether similar LBD types might be shared by members of different sensor protein families. Lastly, we provide a comprehensive catalogue of CRs classified by their LBD region that includes a large number of putative new LBD types.
Collapse
|
25
|
|
26
|
Matilla MA, Velando F, Martín-Mora D, Monteagudo-Cascales E, Krell T. A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators. FEMS Microbiol Rev 2021; 46:6356564. [PMID: 34424339 DOI: 10.1093/femsre/fuab043] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria have evolved many different signal transduction systems that sense signals and generate a variety of responses. Generally, most abundant are transcriptional regulators, sensor histidine kinases and chemoreceptors. Typically, these systems recognize their signal molecules with dedicated ligand-binding domains (LBDs), which, in turn, generate a molecular stimulus that modulates the activity of the output module. There are an enormous number of different LBDs that recognize a similarly diverse set of signals. To give a global perspective of the signals that interact with transcriptional regulators, sensor kinases and chemoreceptors, we manually retrieved information on the protein-ligand interaction from about 1,200 publications and 3D structures. The resulting 811 proteins were classified according to the Pfam family into 127 groups. These data permit a delineation of the signal profiles of individual LBD families as well as distinguishing between families that recognize signals in a promiscuous manner and those that possess a well-defined ligand range. A major bottleneck in the field is the fact that the signal input of many signaling systems is unknown. The signal repertoire reported here will help the scientific community design experimental strategies to identify the signaling molecules for uncharacterised sensor proteins.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| |
Collapse
|
27
|
The dCache Chemoreceptor TlpA of Helicobacter pylori Binds Multiple Attractant and Antagonistic Ligands via Distinct Sites. mBio 2021; 12:e0181921. [PMID: 34340539 PMCID: PMC8406319 DOI: 10.1128/mbio.01819-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Helicobacter pylori chemoreceptor TlpA plays a role in dampening host inflammation during chronic stomach colonization. TlpA has a periplasmic dCache_1 domain, a structure that is capable of sensing many ligands; however, the only characterized TlpA signals are arginine, bicarbonate, and acid. To increase our understanding of TlpA’s sensing profile, we screened for diverse TlpA ligands using ligand binding arrays. TlpA bound seven ligands with affinities in the low- to middle-micromolar ranges. Three of these ligands, arginine, fumarate, and cysteine, were TlpA-dependent chemoattractants, while the others elicited no response. Molecular docking experiments, site-directed point mutants, and competition surface plasmon resonance binding assays suggested that TlpA binds ligands via both the membrane-distal and -proximal dCache_1 binding pockets. Surprisingly, one of the nonactive ligands, glucosamine, acted as a chemotaxis antagonist, preventing the chemotaxis response to chemoattractant ligands, and acted to block the binding of ligands irrespective of whether they bound the membrane-distal or -proximal dCache_1 subdomains. In total, these results suggest that TlpA senses multiple attractant ligands as well as antagonist ones, an emerging theme in chemotaxis systems.
Collapse
|
28
|
Quinn JD, Weening EH, Miller VL. PsaF Is a Membrane-Localized pH Sensor That Regulates psaA Expression in Yersinia pestis. J Bacteriol 2021; 203:e0016521. [PMID: 34060904 PMCID: PMC8407435 DOI: 10.1128/jb.00165-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/21/2021] [Indexed: 12/30/2022] Open
Abstract
The Yersinia pestis pH 6 antigen (PsaA) forms fimbria-like structures and is required for full virulence during bubonic plague. High temperature and low pH regulate PsaA production, and while recent work has uncovered the molecular aspects of temperature control, the mechanisms underlying this unusual regulation by pH are poorly understood. Using defined growth conditions, we recently showed that high levels of PsaE and PsaF (two regulatory proteins required for expression of psaA) are present at mildly acidic pH, but these levels are greatly reduced at neutral pH, resulting in low psaA expression. In prior work, the use of translational reporters suggested that pH had no impact on translation of psaE and psaF, but rather affected protein stability of PsaE and/or PsaF. Here, we investigated the pH-dependent posttranslational mechanisms predicted to regulate PsaE and PsaF stability. Using antibodies that recognize the endogenous proteins, we showed that the amount of PsaE and PsaF is defined by a distinct pH threshold. Analysis of histidine residues in the periplasmic domain of PsaF suggested that it functions as a pH sensor and indicated that the presence of PsaF is important for PsaE stability. At neutral pH, when PsaF is absent, PsaE appears to be targeted for proteolytic degradation by regulated intramembrane proteolysis. Together, our work shows that Y. pestis utilizes PsaF as a pH sensor to control psaA expression by enhancing the stability of PsaE, an essential psaA regulatory protein. IMPORTANCE Yersinia pestis is a bacterial pathogen that causes bubonic plague in humans. As Y. pestis cycles between fleas and mammals, it senses the environment within each host to appropriately control gene expression. PsaA is a protein that forms fimbria-like structures and is required for virulence. High temperature and low pH together stimulate psaA transcription by increasing the levels of two essential integral membrane regulators, PsaE and PsaF. Histidine residues in the PsaF periplasmic domain enable it to function as a pH sensor. In the absence of PsaF, PsaE (a DNA-binding protein) appears to be targeted for proteolytic degradation, thus preventing expression of psaA. This work offers insight into the mechanisms that bacteria use to sense pH and control virulence gene expression.
Collapse
Affiliation(s)
- Joshua D. Quinn
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eric H. Weening
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Virginia L. Miller
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
29
|
Lyon P, Kuchling F. Valuing what happens: a biogenic approach to valence and (potentially) affect. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190752. [PMID: 33487109 DOI: 10.1098/rstb.2019.0752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Valence is half of the pair of properties that constitute core affect, the foundation of emotion. But what is valence, and where is it found in the natural world? Currently, this question cannot be answered. The idea that emotion is the body's way of driving the organism to secure its survival, thriving and reproduction runs like a leitmotif from the pathfinding work of Antonio Damasio through four book-length neuroscientific accounts of emotion recently published by the field's leading practitioners. Yet while Damasio concluded 20 years ago that the homeostasis-affect linkage is rooted in unicellular life, no agreement exists about whether even non-human animals with brains experience emotions. Simple neural animals-those less brainy than bees, fruit flies and other charismatic invertebrates-are not even on the radar of contemporary affective research, to say nothing of aneural organisms. This near-sightedness has effectively denied the most productive method available for getting a grip on highly complex biological processes to a scientific domain whose importance for understanding biological decision-making cannot be underestimated. Valence arguably is the fulcrum around which the dance of life revolves. Without the ability to discriminate advantage from harm, life very quickly comes to an end. In this paper, we review the concept of valence, where it came from, the work it does in current leading theories of emotion, and some of the odd features revealed via experiment. We present a biologically grounded framework for investigating valence in any organism and sketch a preliminary pathway to a computational model. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Pamela Lyon
- Southgate Institute for Health, Society and Equity, Flinders University of South Australia, Adelaide, South Australia, Australia
| | - Franz Kuchling
- Allen Discovery Center, Tufts University, Medford, MA, USA
| |
Collapse
|
30
|
Antani JD, Sumali AX, Lele TP, Lele PP. Asymmetric random walks reveal that the chemotaxis network modulates flagellar rotational bias in Helicobacter pylori. eLife 2021; 10:63936. [PMID: 33493107 PMCID: PMC7834020 DOI: 10.7554/elife.63936] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
The canonical chemotaxis network modulates the bias for a particular direction of rotation in the bacterial flagellar motor to help the cell migrate toward favorable chemical environments. How the chemotaxis network in Helicobacter pylori modulates flagellar functions is unknown, which limits our understanding of chemotaxis in this species. Here, we determined that H. pylori swim faster (slower) whenever their flagella rotate counterclockwise (clockwise) by analyzing their hydrodynamic interactions with bounding surfaces. This asymmetry in swimming helped quantify the rotational bias. Upon exposure to a chemo-attractant, the bias decreased and the cells tended to swim exclusively in the faster mode. In the absence of a key chemotaxis protein, CheY, the bias was zero. The relationship between the reversal frequency and the rotational bias was unimodal. Thus, H. pylori’s chemotaxis network appears to modulate the probability of clockwise rotation in otherwise counterclockwise-rotating flagella, similar to the canonical network.
Collapse
Affiliation(s)
- Jyot D Antani
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Anita X Sumali
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77840, College Station, TX 77840, United States.,Department of Translational Medical Sciences, Texas A&M University, Houston, TX 77030, United States
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
31
|
Kasmi H, Doukani K, Ali A, Tabak S, Bouhenni H. Epidemiological Profile of Helicobacter pylori Infection in Patients with Digestive Symptoms in Algeria. J Epidemiol Glob Health 2020; 10:293-297. [PMID: 32959615 PMCID: PMC7758841 DOI: 10.2991/jegh.k.200527.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 05/18/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The purpose of this study was to assess the prevalence of Helicobacter pylori infection in Algerian patients with peptic disorders and evaluate the impact of different epidemiological factors (age, sex, sampling site, presence or absence of H. pylori, and type of pathology related to this bacterium). METHODS We undertook a retrospective and descriptive study on a series of 735 symptomatic patients identified in the laboratory of pathological anatomy at Hassani Abdelkader University Hospital Center of Sidi Bel Abbes, Algeria, over a period of 16 years from January 2002 to December 2017. All patients had benefited from a high gastroscopic fibroscopy and the diagnosis was made by histological examination (hematoxylin-eosin staining). The epidemiological factors, as well as the main gastric diseases related to this bacterium, were studied. RESULTS The prevalence of H. pylori infection was 66.12%. The infection was more important in the age group 60-69 years (71.43%). The prevalence of H. pylori infection was statistically higher in women than in men (69.3% vs. 60.7%, p < 0.01).The antral region was most colonized by H. pylori (71.73%). In addition, the infection was associated mainly with atrophic gastritis (69.65%). CONCLUSION In this context, the identification of epidemiological data would be of great value in guiding strategies to control the spread of this bacterium.
Collapse
Affiliation(s)
- Houria Kasmi
- Department of Nature and Life Sciences, University of Ibn Khadoun, Tiaret, Algeria
| | - Koula Doukani
- Department of Nature and Life Sciences, University of Ibn Khadoun, Tiaret, Algeria
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Mumbai, India
| | - Souhila Tabak
- Department of Nature and Life Sciences, University of Ibn Khadoun, Tiaret, Algeria
| | - Hasna Bouhenni
- Department of Nature and Life Sciences, University of Ibn Khadoun, Tiaret, Algeria
| |
Collapse
|
32
|
Abstract
pH is one of the most fundamental properties of the environments in which microorganisms live. It is, therefore, not surprising that bacteria have evolved mechanisms to sense and respond to pH. One aspect of this response for motile bacteria is to migrate to areas of optimal pH. The paper by P. Tohidifar, M. J. Plutz, G. W. Ordal, and C. V. Rao (J Bacteriol 202:e00491-19, 2020, https://doi.org/10.1128/JB.00491-19) describes how Bacillus subtilis uses bidirectional chemotaxis mediated by four closely related dCACHE_1 chemoreceptors to migrate to regions of neutral pH.
Collapse
|
33
|
The Mechanism of Bidirectional pH Taxis in Bacillus subtilis. J Bacteriol 2020; 202:JB.00491-19. [PMID: 31685537 DOI: 10.1128/jb.00491-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/30/2019] [Indexed: 01/19/2023] Open
Abstract
We investigated pH taxis in Bacillus subtilis This bacterium was found to perform bidirectional taxis in response to external pH gradients, enabling it to preferentially migrate to neutral environments. We next investigated the chemoreceptors involved in sensing pH gradients. We identified four chemoreceptors involved in sensing pH: McpA and TlpA for sensing acidic environments and McpB and TlpB for sensing alkaline ones. In addition, TlpA was found to also weakly sense alkaline environments. By analyzing chimeras between McpA and TlpB, the principal acid- and base-sensing chemoreceptors, we identified four critical amino acid residues-Thr199, Gln200, His273, and Glu274 on McpA and Lys199, Glu200, Gln273, and Asp274 on TlpB-involved in sensing pH. Swapping these four residues between McpA and TlpB converted the former into a base receptor and the latter into an acid receptor. Based on the results, we propose that disruption of hydrogen bonding between the adjacent residues upon pH changes induces signaling. Collectively, our results further our understanding of chemotaxis in B. subtilis and provide a new model for pH sensing in bacteria.IMPORTANCE Many bacteria can sense the pH in their environment and then use this information to direct their movement toward more favorable locations. In this study, we investigated the pH sensing mechanism in Bacillus subtilis This bacterium preferentially migrates to neutral environments. It employs four chemoreceptors to sense pH. Two are involved in sensing acidic environments, and two are involved in sensing alkaline ones. To identify the mechanism for pH sensing, we constructed receptor chimeras of acid- and base-sensing chemoreceptors. By analyzing the responses of these chimeric receptors, we were able to identify four critical amino acid residues involved in pH sensing and propose a model for the pH sensing mechanism in B. subtilis.
Collapse
|
34
|
Keikha M, Eslami M, Yousefi B, Ghasemian A, Karbalaei M. Potential antigen candidates for subunit vaccine development against Helicobacter pylori infection. J Cell Physiol 2019; 234:21460-21470. [PMID: 31188484 DOI: 10.1002/jcp.28870] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 02/05/2023]
Abstract
Helicobacter pylori (H. pylori) is a resident bacterium in the stomach that accounts for 75% cases of gastric cancer. In this review, we comprehensively studied published papers on H. pylori vaccines using Google Scholar and NCBI databases to gather information about vaccines against H. pylori. Considering the pivotal roles of the enzyme urease (in production of NH3 and neutralization of the acidic medium of the stomach), cytotoxin-associated gene A, and vacuolating cytotoxin A proteins in H. pylori infection, they could be the best candidates for the construction of recombinant vaccines. The outer membrane porins (Hop), blood group antigen-binding adhesin (BabA), sialic acid-binding adhesin (SabA), and outer inflammatory protein A, play significant roles in binding of bacterium to human gastric tissues, and because binding is the first step in bacterial fixation and colonization, these antigens also can be considered as suitable candidates for designing vaccines. Likely, other significant bacterial antigens, such as NapA (chemotactic factor for recruitment of human neutrophils and monocytes to the site of infection), duodenal ulcer promoting protein A (to promote duodenal ulcer), and Hsp60 (as a molecular chaperon for activation of urease enzyme), can be used in the construction of subunit vaccines. New vaccines in use currently, such as DNA vaccines and subunit vaccines, can efficiently replace the dead and attenuated vaccines. Nonetheless, the results show that urease enzyme is most used compared with bacterial components in the designing and construction of recombinant vaccines. The BabA and SabA antigens belong to the outer membrane porins family in H. pylori and are required for binding and fixation of the bacterium to the human gastric tissues.
Collapse
Affiliation(s)
- Masoud Keikha
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abdolmajid Ghasemian
- Department of Biology, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
35
|
Ahmad AA, Kasim KF, Ma’Radzi AH, Gopinath SC. Peptic ulcer: Current prospects of diagnostic and nanobiotechnological trends on pathogenicity. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Suzuki R, Satou K, Shiroma A, Shimoji M, Teruya K, Matsumoto T, Akada J, Hirano T, Yamaoka Y. Genome-wide mutation analysis of Helicobacter pylori after inoculation to Mongolian gerbils. Gut Pathog 2019; 11:45. [PMID: 31558915 PMCID: PMC6754630 DOI: 10.1186/s13099-019-0326-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/12/2019] [Indexed: 12/23/2022] Open
Abstract
Background Helicobacter pylori is a pathogenic bacterium that causes various gastrointestinal diseases in the human stomach. H. pylori is well adapted to the human stomach but does not easily infect other animals. As a model animal, Mongolian gerbils are often used, however, the genome of the inoculated H. pylori may accumulate mutations to adapt to the new host. To investigate mutations occurring in H. pylori after infection in Mongolian gerbils, we compared the whole genome sequence of TN2 wild type strain (TN2wt) and next generation sequencing data of retrieved strains from the animals after different lengths of infection. Results We identified mutations in 21 loci of 17 genes of the post-inoculation strains. Of the 17 genes, five were outer membrane proteins that potentially influence on the colonization and inflammation. Missense and nonsense mutations were observed in 15 and 6 loci, respectively. Multiple mutations were observed in three genes. Mutated genes included babA, tlpB, and gltS, which are known to be associated with adaptation to murine. Other mutations were involved with chemoreceptor, pH regulator, and outer membrane proteins, which also have potential to influence on the adaptation to the new host. Conclusions We confirmed mutations in genes previously reported to be associated with adaptation to Mongolian gerbils. We also listed up genes that mutated during the infection to the gerbils, though it needs experiments to prove the influence on adaptation.
Collapse
Affiliation(s)
- Rumiko Suzuki
- 1Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Kazuhito Satou
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Akino Shiroma
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Makiko Shimoji
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Kuniko Teruya
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Takashi Matsumoto
- 1Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Junko Akada
- 1Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Takashi Hirano
- Okinawa Institute of Advanced Sciences, 5-1 Suzaki, Uruma, Okinawa 904-2234 Japan
| | - Yoshio Yamaoka
- 1Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan.,3Department of Medicine-Gastroenterology, Baylor College of Medicine, 2002 Holcombe Blvd., Houston, TX 77030 USA.,Global Oita Medical Advanced Research Center for Health, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| |
Collapse
|
37
|
Hong Y, Huang Z, Guo L, Ni B, Jiang CY, Li XJ, Hou YJ, Yang WS, Wang DC, Zhulin IB, Liu SJ, Li DF. The ligand-binding domain of a chemoreceptor from Comamonas testosteroni has a previously unknown homotrimeric structure. Mol Microbiol 2019; 112:906-917. [PMID: 31177588 PMCID: PMC6736725 DOI: 10.1111/mmi.14326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
Abstract
Transmembrane chemoreceptors are widely present in Bacteria and Archaea. They play a critical role in sensing various signals outside and transmitting to the cell interior. Here, we report the structure of the periplasmic ligand-binding domain (LBD) of the transmembrane chemoreceptor MCP2201, which governs chemotaxis to citrate and other organic compounds in Comamonas testosteroni. The apo-form LBD crystal revealed a typical four-helix bundle homodimer, similar to previously well-studied chemoreceptors such as Tar and Tsr of Escherichia coli. However, the citrate-bound LBD revealed a four-helix bundle homotrimer that had not been observed in bacterial chemoreceptor LBDs. This homotrimer was further confirmed with size-exclusion chromatography, analytical ultracentrifugation and cross-linking experiments. The physiological importance of the homotrimer for chemotaxis was demonstrated with site-directed mutations of key amino acid residues in C. testosteroni mutants.
Collapse
Affiliation(s)
- Yuan Hong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhou Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Bin Ni
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Xiao-Jing Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yan-Jie Hou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Si Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Da-Cheng Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Igor B. Zhulin
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China,For correspondence. (D.-F.L.); (S.-J.L.); Tel. (+86) 10 64807423; Fax (+86) 10 64807421
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China,For correspondence. (D.-F.L.); (S.-J.L.); Tel. (+86) 10 64807423; Fax (+86) 10 64807421
| |
Collapse
|
38
|
Perkins A, Tudorica DA, Amieva MR, Remington SJ, Guillemin K. Helicobacter pylori senses bleach (HOCl) as a chemoattractant using a cytosolic chemoreceptor. PLoS Biol 2019; 17:e3000395. [PMID: 31465435 PMCID: PMC6715182 DOI: 10.1371/journal.pbio.3000395] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
The gastric pathogen Helicobacter pylori requires a noncanonical cytosolic chemoreceptor transducer-like protein D (TlpD) for efficient colonization of the mammalian stomach. Here, we reconstituted a complete chemotransduction signaling complex in vitro with TlpD and the chemotaxis (Che) proteins CheW and CheA, enabling quantitative assays for potential chemotaxis ligands. We found that TlpD is selectively sensitive at micromolar concentrations to bleach (hypochlorous acid, HOCl), a potent antimicrobial produced by neutrophil myeloperoxidase during inflammation. HOCl acts as a chemoattractant by reversibly oxidizing a conserved cysteine within a 3His/1Cys Zn-binding motif in TlpD that inactivates the chemotransduction signaling complex. We found that H. pylori is resistant to killing by millimolar concentrations of HOCl and responds to HOCl in the micromolar range by increasing its smooth-swimming behavior, leading to chemoattraction to HOCl sources. We show related protein domains from Salmonella enterica and Escherichia coli possess similar reactivity toward HOCl. We propose that this family of proteins enables host-associated bacteria to sense sites of tissue inflammation, a strategy that H. pylori uses to aid in colonizing and persisting in inflamed gastric tissue.
Collapse
Affiliation(s)
- Arden Perkins
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Dan A. Tudorica
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Manuel R. Amieva
- Departments of Pediatrics and of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - S. James Remington
- Department of Physics, University of Oregon, Eugene, Oregon, United States of America
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- Humans and the Microbiome Program, CIFAR, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Do H, Makthal N, VanderWal AR, Saavedra MO, Olsen RJ, Musser JM, Kumaraswami M. Environmental pH and peptide signaling control virulence of Streptococcus pyogenes via a quorum-sensing pathway. Nat Commun 2019; 10:2586. [PMID: 31197146 PMCID: PMC6565748 DOI: 10.1038/s41467-019-10556-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
Bacteria control gene expression in concert with their population density by a process called quorum sensing, which is modulated by bacterial chemical signals and environmental factors. In the human pathogen Streptococcus pyogenes, production of secreted virulence factor SpeB is controlled by a quorum-sensing pathway and environmental pH. The quorum-sensing pathway consists of a secreted leaderless peptide signal (SIP), and its cognate receptor RopB. Here, we report that the SIP quorum-sensing pathway has a pH-sensing mechanism operative through a pH-sensitive histidine switch located at the base of the SIP-binding pocket of RopB. Environmental acidification induces protonation of His144 and reorganization of hydrogen bonding networks in RopB, which facilitates SIP recognition. The convergence of two disparate signals in the SIP signaling pathway results in induction of SpeB production and increased bacterial virulence. Our findings provide a model for investigating analogous crosstalk in other microorganisms.
Collapse
Affiliation(s)
- Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Arica R VanderWal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10021, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10021, USA
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
40
|
Chen SC, Weng CY, Lai MC, Tamaki H, Narihiro T. Comparative genomic analyses reveal trehalose synthase genes as the signature in genus Methanoculleus. Mar Genomics 2019; 47:100673. [PMID: 30935830 DOI: 10.1016/j.margen.2019.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/19/2019] [Accepted: 03/24/2019] [Indexed: 11/25/2022]
Abstract
To date, the only methanoarchaea isolated directly from methane hydrate bearing sediments were Methanoculleus submarinus Nankai-1T and Methanoculleus sp. MH98A. Here, we provide the genome of Methanoculleus taiwanensis CYW4T isolated from the deep-sea subseafloor sediment at the Deformation Front offshore southwestern Taiwan, where methane hydrate deposits are likely located. Through comparative genomics analyses of nine Methanoculleus strains from various habitats, 2-3 coding genes for trehalose synthases were found in all nine Methanoculleus genomes, which were not detected in other methanogens and are therefore suggested as a signature of genus Methanoculleus among methane-producing archaea. In addition, the structural genes adjacent to trehalose synthase genes are comprised of the signaling module of Per-Arnt-Sim (PAS) domain-containing proteins, Hsp20 family proteins, arabinose efflux permeases and multiple surface proteins with fasciclin-like (FAS) repeat. This indicates that trehalose synthase gene clusters in Methanoculleus might play roles in the response to various stresses and regulate carbon storage and modification of surface proteins through accumulation of trehalose. The non-gas hydrate-associated Methanoculleus strains harbor carbon-monoxide dehydrogenase (cooS/acsA) genes, which are important for the conversion of acetate to methane at the step of CO oxidation/CO2 reduction in acetoclastic methanogens and further implies that these strains may be able to utilize CO for methanogenesis in their natural habitats. In addition, both genomes of M. bourgensis strains MS2T and MAB1 harbor highly abundant transposase genes, which may be disseminated from microbial communities in their habitats, sewage treatment plants and biogas reactors, which are breeding grounds for antibiotic resistance. Through comparative genomic analyses, we gained insight into understanding the life of strictly anaerobic methane-producing archaea in various habitats, especially in methane-based deep-sea ecosystems.
Collapse
Affiliation(s)
- Sheng-Chung Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chieh-Yin Weng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Chin Lai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
41
|
Yang C, Ottemann KM. Control of bacterial colonization in the glands and crypts. Curr Opin Microbiol 2018; 47:38-44. [PMID: 30502720 DOI: 10.1016/j.mib.2018.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 12/31/2022]
Abstract
The epithelial cell layer of the major organs of the mammalian gastrointestinal (GI) tract is extensively invaginated into thousands of gland and crypt structures. These are lined by distinct sets of epithelial cells and may comprise discrete niches. The host maximizes the distance between the epithelial cell layer and GI-inhabiting microbes to limit inflammation, and these strategies also likely keep bacteria out of the glands and crypts. We discuss here the specific host processes that have been shown to restrict bacterial presence in the glands and crypts, specifically the immune system, acid, mucin, oxygen, and reactive oxygen species. Not surprisingly, microbes have evolved sophisticated strategies to overcome these host factors and reside close to the epithelium in the glands and crypts. Bacterial properties important for gland and crypt colonization include bacterial immunomodulatory molecules, chemotaxis, and the use of certain metabolites. Overall, these as-yet limited studies suggest there are specific host and bacterial properties that control gland and crypt colonization, contributing to the overall microbial spatial organization of the GI tract. However, there remains much to be discovered in this area.
Collapse
Affiliation(s)
- Christina Yang
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064 USA
| | - Karen M Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064 USA.
| |
Collapse
|
42
|
Matilla MA, Krell T. The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol Rev 2018; 42:4563582. [PMID: 29069367 DOI: 10.1093/femsre/fux052] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022] Open
Abstract
Chemotaxis enables microorganisms to move according to chemical gradients. Although this process requires substantial cellular energy, it also affords key physiological benefits, including enhanced access to growth substrates. Another important implication of chemotaxis is that it also plays an important role in infection and disease, as chemotaxis signalling pathways are broadly distributed across a variety of pathogenic bacteria. Furthermore, current research indicates that chemotaxis is essential for the initial stages of infection in different human, animal and plant pathogens. This review focuses on recent findings that have identified specific bacterial chemoreceptors and corresponding chemoeffectors associated with pathogenicity. Pathogenicity-related chemoeffectors are either host and niche-specific signals or intermediates of the host general metabolism. Plant pathogens were found to contain an elevated number of chemotaxis signalling genes and functional studies demonstrate that these genes are critical for their ability to enter the host. The expanding body of knowledge of the mechanisms underlying chemotaxis in pathogens provides a foundation for the development of new therapeutic strategies capable of blocking infection and preventing disease by interfering with chemotactic signalling pathways.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| |
Collapse
|
43
|
Sweeney EG, Perkins A, Kallio K, James Remington S, Guillemin K. Structures of the ligand-binding domain of Helicobacter pylori chemoreceptor TlpA. Protein Sci 2018; 27:1961-1968. [PMID: 30171638 PMCID: PMC6201720 DOI: 10.1002/pro.3503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
Bacteria use chemoreceptor proteins to sense and navigate their chemical environments. The most common class of chemoreceptors are transmembrane proteins that sense chemical cues through binding of a small-molecule ligand to a periplasmic domain, which modulates the receptor's ability to stimulate reversal of the cell's flagella motors. The prevalent gastric pathogen Helicobacter pylori uses such membrane-bound chemoreceptors, called transducer-like proteins (Tlp), to colonize and persist within the stomach. TlpA has been implicated in sensing arginine, bicarbonate, and acid, but no experimentally determined protein structures of TlpA were available to better understand ligand binding and signal transduction. Here, we report three crystal structures of the periplasmic portion of TlpA, which contains tandem PAS/Cache domains, similar to a recently published structure of the lactate-sensing chemoreceptor TlpC from H. pylori. These structures are the first to show a tandem PAS/Cache-form chemoreceptor in its native homo dimer oligomer, and we identify residues that are key contributers to the dimer interface. We performed sequence analyses to identify TlpA and TlpC homologs and used residue conservation among these homologs to implicate regions important for the general tandem PAS/Cache fold, and residues specific to TlpA function. Comparisons with TlpC show that despite high similarity across the general structure, TlpA lacks the residues required to bind lactate, and instead contains a pocket almost entirely hydrophobic in nature.
Collapse
Affiliation(s)
- Emily G. Sweeney
- Institute of Molecular Biology, University of OregonEugeneOregon97403
| | - Arden Perkins
- Institute of Molecular Biology, University of OregonEugeneOregon97403
| | - Karen Kallio
- Institute of Molecular Biology, University of OregonEugeneOregon97403
| | | | - Karen Guillemin
- Institute of Molecular Biology, University of OregonEugeneOregon97403
| |
Collapse
|
44
|
Fernández M, Ortega Á, Rico-Jiménez M, Martín-Mora D, Daddaoua A, Matilla MA, Krell T. High-Throughput Screening to Identify Chemoreceptor Ligands. Methods Mol Biol 2018; 1729:291-301. [PMID: 29429099 DOI: 10.1007/978-1-4939-7577-8_23] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The majority of bacterial chemoreceptors remain functionally un-annotated. The knowledge of chemoreceptor function, however, is indispensable to understanding the evolution of the chemotaxis system in bacteria with different lifestyles. Significant progress in the annotation of chemoreceptor function has been made using experimental strategies that are based on the individual, genetically engineered ligand binding domain (LBD) of chemoreceptors. There is now evidence that all major classes of LBDs can be produced as individual domains that retain their ligand binding activity. Here, we provide a protocol for the combined use of high-throughput ligand screening using Differential Scanning Fluorimetry followed by Isothermal Titration Calorimetry to identify and characterize ligands that bind to recombinant chemoreceptor LBDs. This approach has been shown to be very efficient for determining the function of novel chemoreceptors.
Collapse
Affiliation(s)
- Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Álvaro Ortega
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Miriam Rico-Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Abdelali Daddaoua
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
45
|
Gushchin I, Gordeliy V. Transmembrane Signal Transduction in Two-Component Systems: Piston, Scissoring, or Helical Rotation? Bioessays 2017; 40. [PMID: 29280502 DOI: 10.1002/bies.201700197] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/30/2017] [Indexed: 11/10/2022]
Abstract
Allosteric and transmembrane (TM) signaling are among the major questions of structural biology. Here, we review and discuss signal transduction in four-helical TM bundles, focusing on histidine kinases and chemoreceptors found in two-component systems. Previously, piston, scissors, and helical rotation have been proposed as the mechanisms of TM signaling. We discuss theoretically possible conformational changes and examine the available experimental data, including the recent crystallographic structures of nitrate/nitrite sensor histidine kinase NarQ and phototaxis system NpSRII:NpHtrII. We show that TM helices can flex at multiple points and argue that the various conformational changes are not mutually exclusive, and often are observed concomitantly, throughout the TM domain or in its part. The piston and scissoring motions are the most prominent motions in the structures, but more research is needed for definitive conclusions.
Collapse
Affiliation(s)
- Ivan Gushchin
- Moscow Institute of Physics and Technology, 141700, Dolgoprudniy, Russia
| | - Valentin Gordeliy
- Moscow Institute of Physics and Technology, 141700, Dolgoprudniy, Russia.,Université Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France.,Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Research Centre Jülich, 52425, Jülich, Germany
| |
Collapse
|
46
|
Johnson KS, Ottemann KM. Colonization, localization, and inflammation: the roles of H. pylori chemotaxis in vivo. Curr Opin Microbiol 2017; 41:51-57. [PMID: 29202336 DOI: 10.1016/j.mib.2017.11.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/27/2017] [Accepted: 11/16/2017] [Indexed: 12/18/2022]
Abstract
Helicobacter pylori is a Gram-negative bacterium that infects half of the world's population, causing gastritis, peptic ulcers, and gastric cancer. To establish chronic stomach infection, H. pylori utilizes chemotaxis, driven by a conserved signal transduction system. Chemotaxis allows H. pylori to sense an array of environmental and bacterial signals within the stomach, guiding its motility towards its preferred niche within the gastric mucosa and glands. Fine-tuned localization, regulated by the chemotaxis system, enables robust colonization during the acute stage of infection. During chronic infection, chemotaxis helps maintain bacterial populations and modulates the host immune response. Given its importance in host colonization and disease, chemotaxis is an attractive target for future treatments against H. pylori infections.
Collapse
Affiliation(s)
- Kevin S Johnson
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Karen M Ottemann
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
47
|
Machuca MA, Johnson KS, Liu YC, Steer DL, Ottemann KM, Roujeinikova A. Helicobacter pylori chemoreceptor TlpC mediates chemotaxis to lactate. Sci Rep 2017; 7:14089. [PMID: 29075010 PMCID: PMC5658362 DOI: 10.1038/s41598-017-14372-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/06/2017] [Indexed: 12/13/2022] Open
Abstract
It is recently appreciated that many bacterial chemoreceptors have ligand-binding domains (LBD) of the dCACHE family, a structure with two PAS-like subdomains, one membrane-proximal and the other membrane-distal. Previous studies had implicated only the membrane-distal subdomain in ligand recognition. Here, we report the 2.2 Å resolution crystal structure of dCACHE LBD of the Helicobacter pylori chemoreceptor TlpC. H. pylori tlpC mutants are outcompeted by wild type during stomach colonisation, but no ligands had been mapped to this receptor. The TlpC dCACHE LBD has two PAS-like subdomains, as predicted. The membrane-distal one possesses a long groove instead of a small, well-defined pocket. The membrane-proximal subdomain, in contrast, had a well-delineated pocket with a small molecule that we identified as lactate. We confirmed that amino acid residues making contact with the ligand in the crystal structure-N213, I218 and Y285 and Y249-were required for lactate binding. We determined that lactate is an H. pylori chemoattractant that is sensed via TlpC with a K D = 155 µM. Lactate is utilised by H. pylori, and our work suggests that this pathogen seeks out lactate using chemotaxis. Furthermore, our work suggests that dCACHE domain proteins can utilise both subdomains for ligand recognition.
Collapse
Affiliation(s)
- Mayra A Machuca
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Kevin S Johnson
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Yu C Liu
- Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - David L Steer
- Monash Biomedical Proteomics Facility, Monash University, Clayton, Victoria, 3800, Australia
| | - Karen M Ottemann
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
- Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
48
|
Abstract
Chemoreceptors in bacteria detect a variety of signals and feed this information into chemosensory pathways that represent a major mode of signal transduction. The five chemoreceptors from Escherichia coli have served as traditional models in the study of this protein family. Genome analyses revealed that many bacteria contain much larger numbers of chemoreceptors with broader sensory capabilities. Chemoreceptors differ in topology, sensing mode, cellular location, and, above all, the type of ligand binding domain (LBD). Here, we highlight LBD diversity using well-established and emerging model organisms as well as genomic surveys. Nearly a hundred different types of protein domains that are found in chemoreceptor sequences are known or predicted LBDs, but only a few of them are ubiquitous. LBDs of the same class recognize different ligands, and conversely, the same ligand can be recognized by structurally different LBDs; however, recent studies began to reveal common characteristics in signal-LBD relationships. Although signals can stimulate chemoreceptors in a variety of different ways, diverse LBDs appear to employ a universal transmembrane signaling mechanism. Current and future studies aim to establish relationships between LBD types, the nature of signals that they recognize, and the mechanisms of signal recognition and transduction.
Collapse
|
49
|
Webb CT, Chandrapala D, Oslan SN, Bamert RS, Grinter RD, Dunstan RA, Gorrell RJ, Song J, Strugnell RA, Lithgow T, Kwok T. Reductive evolution in outer membrane protein biogenesis has not compromised cell surface complexity in Helicobacter pylori. Microbiologyopen 2017; 6. [PMID: 29055967 PMCID: PMC5727368 DOI: 10.1002/mbo3.513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022] Open
Abstract
Helicobacter pylori is a gram‐negative bacterial pathogen that chronically inhabits the human stomach. To survive and maintain advantage, it has evolved unique host–pathogen interactions mediated by Helicobacter‐specific proteins in the bacterial outer membrane. These outer membrane proteins (OMPs) are anchored to the cell surface via a C‐terminal β‐barrel domain, which requires their assembly by the β‐barrel assembly machinery (BAM). Here we have assessed the complexity of the OMP C‐terminal β‐barrel domains employed by H. pylori, and characterized the H. pyloriBAM complex. Around 50 Helicobacter‐specific OMPs were assessed with predictive structural algorithms. The data suggest that H. pylori utilizes a unique β‐barrel architecture that might constitute H. pylori‐specific Type V secretions system. The structural and functional diversity in these proteins is encompassed by their extramembrane domains. Bioinformatic and biochemical characterization suggests that the low β‐barrel‐complexity requires only minimalist assembly machinery. The H. pylori proteins BamA and BamD associate to form a BAM complex, with features of BamA enabling an oligomerization that might represent a mechanism by which a minimalist BAM complex forms a larger, sophisticated machinery capable of servicing the outer membrane proteome of H. pylori.
Collapse
Affiliation(s)
- Chaille T. Webb
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Dilini Chandrapala
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | - Siti Nurbaya Oslan
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Department of BiochemistryFaculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSerdangSelangorMalaysia
- Enzyme and Microbial Technology Research CenterUniversiti Putra MalaysiaSerdangSelangorMalaysia
| | - Rebecca S. Bamert
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rhys D. Grinter
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rhys A. Dunstan
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rebecca J. Gorrell
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | - Jiangning Song
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
- Monash Centre for Data ScienceFaculty of Information TechnologyMonash UniversityMelbourneAustralia
| | - Richard A. Strugnell
- Department of Microbiology & ImmunologyUniversity of MelbourneParkvilleAustralia
| | - Trevor Lithgow
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Terry Kwok
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| |
Collapse
|
50
|
Salah Ud-Din AIM, Roujeinikova A. Methyl-accepting chemotaxis proteins: a core sensing element in prokaryotes and archaea. Cell Mol Life Sci 2017; 74:3293-3303. [PMID: 28409190 PMCID: PMC11107704 DOI: 10.1007/s00018-017-2514-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/06/2017] [Accepted: 03/24/2017] [Indexed: 11/29/2022]
Abstract
Chemotaxis is the directed motility by means of which microbes sense chemical cues and relocate towards more favorable environments. Methyl-accepting chemotaxis proteins (MCPs) are the most common receptors in bacteria and archaea. They are arranged as trimers of dimers that, in turn, form hexagonal arrays in the cytoplasmic membrane or in the cytoplasm. Several different classes of MCPs have been identified according to their ligand binding region and membrane topology. MCPs have been further classified based on the length and sequence conservation of their cytoplasmic domains. Clusters of membrane-embedded MCPs often localize to the poles of the cell, whereas cytoplasmic MCPs can be targeted to the poles or distributed throughout the cell body. MCPs play an important role in cell survival, pathogenesis, and biodegradation. Bacterial adaptation to diverse environmental conditions promotes diversity among the MCPs. This review summarizes structure, classification, and structure-activity relationship of the known MCP receptors, with a brief overview of the signal transduction mechanisms in bacteria and archaea.
Collapse
Affiliation(s)
- Abu Iftiaf Md Salah Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|