1
|
Harel T, Spicher C, Scheer E, Buchan JG, Cech J, Folland C, Frey T, Holtz AM, Innes AM, Keren B, Macken WL, Marcelis C, Otten CE, Paolucci SA, Petit F, Pfundt R, Pitceathly RDS, Rauch A, Ravenscroft G, Sanchev R, Steindl K, Tammer F, Tyndall A, Devys D, Vincent SD, Elpeleg O, Tora L. De novo variants in ATXN7L3 lead to developmental delay, hypotonia and distinctive facial features. Brain 2024; 147:2732-2744. [PMID: 38753057 DOI: 10.1093/brain/awae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/02/2024] [Accepted: 04/08/2024] [Indexed: 08/02/2024] Open
Abstract
Deubiquitination is crucial for the proper functioning of numerous biological pathways, such as DNA repair, cell cycle progression, transcription, signal transduction and autophagy. Accordingly, pathogenic variants in deubiquitinating enzymes (DUBs) have been implicated in neurodevelopmental disorders and congenital abnormalities. ATXN7L3 is a component of the DUB module of the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex and two other related DUB modules, and it serves as an obligate adaptor protein of three ubiquitin-specific proteases (USP22, USP27X or USP51). Through exome sequencing and by using GeneMatcher, we identified nine individuals with heterozygous variants in ATXN7L3. The core phenotype included global motor and language developmental delay, hypotonia and distinctive facial characteristics, including hypertelorism, epicanthal folds, blepharoptosis, a small nose and mouth, and low-set, posteriorly rotated ears. To assess pathogenicity, we investigated the effects of a recurrent nonsense variant [c.340C>T; p.(Arg114Ter)] in fibroblasts of an affected individual. ATXN7L3 protein levels were reduced, and deubiquitylation was impaired, as indicated by an increase in histone H2Bub1 levels. This is consistent with the previous observation of increased H2Bub1 levels in Atxn7l3-null mouse embryos, which have developmental delay and embryonic lethality. In conclusion, we present clinical information and biochemical characterization supporting ATXN7L3 variants in the pathogenesis of a rare syndromic neurodevelopmental disorder.
Collapse
Affiliation(s)
- Tamar Harel
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel, 9112001
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel, 9112001
| | - Camille Spicher
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Jillian G Buchan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195-7110, USA
| | - Jennifer Cech
- University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Chiara Folland
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Tanja Frey
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Alexander M Holtz
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Boris Keren
- Department of Genetics and Referral Center for Intellectual Disabilities of Rare Causes, AP-HP, Sorbonne Université, Assistance Publique-Hopitaux de Paris, Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - William L Macken
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Carlo Marcelis
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 HR, Nijmegen, The Netherlands
| | - Catherine E Otten
- University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Sarah A Paolucci
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195-7110, USA
| | - Florence Petit
- CHU Lille, Clinique de génétique Guy Fontaine, F-59000 Lille, France
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 HR, Nijmegen, The Netherlands
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Anita Rauch
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
- University Children's Hospital Zurich, 8032 Zurich, Switzerland
- University of Zurich Research Priority Program ITINERARE: Innovative Therapies in Rare Diseases, 8032 Zurich, Switzerland
- University of Zurich Research Priority Program AdaBD: Adaptive Brain Circuits in Development and Learning, 8057 Zurich, Switzerland
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Rani Sanchev
- Centre for Clinical Genetics, Sydney Children's Hospitals Network-Randwick, Sydney, NSW 2031, Australia
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zürich, Schlieren-Zurich, 8952, Switzerland
| | - Femke Tammer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 HR, Nijmegen, The Netherlands
| | - Amanda Tyndall
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Didier Devys
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Stéphane D Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel, 9112001
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel, 9112001
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
2
|
Salomonsson J, Wallner B, Sjöstrand L, D'Arcy P, Sunnerhagen M, Ahlner A. Transient interdomain interactions in free USP14 shape its conformational ensemble. Protein Sci 2024; 33:e4975. [PMID: 38588275 PMCID: PMC11001199 DOI: 10.1002/pro.4975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024]
Abstract
The deubiquitinase (DUB) ubiquitin-specific protease 14 (USP14) is a dual domain protein that plays a regulatory role in proteasomal degradation and has been identified as a promising therapeutic target. USP14 comprises a conserved USP domain and a ubiquitin-like (Ubl) domain separated by a 25-residue linker. The enzyme activity of USP14 is autoinhibited in solution, but is enhanced when bound to the proteasome, where the Ubl and USP domains of USP14 bind to the Rpn1 and Rpt1/Rpt2 units, respectively. No structure of full-length USP14 in the absence of proteasome has yet been presented, however, earlier work has described how transient interactions between Ubl and USP domains in USP4 and USP7 regulate DUB activity. To better understand the roles of the Ubl and USP domains in USP14, we studied the Ubl domain alone and in full-length USP14 by nuclear magnetic resonance spectroscopy and used small angle x-ray scattering and molecular modeling to visualize the entire USP14 protein ensemble. Jointly, our results show how transient interdomain interactions between the Ubl and USP domains of USP14 predispose its conformational ensemble for proteasome binding, which may have functional implications for proteasome regulation and may be exploited in the design of future USP14 inhibitors.
Collapse
Affiliation(s)
- Johannes Salomonsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Björn Wallner
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Linda Sjöstrand
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Pádraig D'Arcy
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Alexandra Ahlner
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Barman P, Chakraborty P, Bhaumik R, Bhaumik SR. UPS writes a new saga of SAGA. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194981. [PMID: 37657588 PMCID: PMC10843445 DOI: 10.1016/j.bbagrm.2023.194981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
SAGA (Spt-Ada-Gcn5-Acetyltransferase), an evolutionarily conserved transcriptional co-activator among eukaryotes, is a large multi-subunit protein complex with two distinct enzymatic activities, namely HAT (Histone acetyltransferase) and DUB (De-ubiquitinase), and is targeted to the promoter by the gene-specific activator proteins for histone covalent modifications and PIC (Pre-initiation complex) formation in enhancing transcription (or gene activation). Targeting of SAGA to the gene promoter is further facilitated by the 19S RP (Regulatory particle) of the 26S proteasome (that is involved in targeted degradation of protein via ubiquitylation) in a proteolysis-independent manner. Moreover, SAGA is also recently found to be regulated by the 26S proteasome in a proteolysis-dependent manner via the ubiquitylation of its Sgf73/ataxin-7 component that is required for SAGA's integrity and DUB activity (and hence transcription), and is linked to various diseases including neurodegenerative disorders and cancer. Thus, SAGA itself and its targeting to the active gene are regulated by the UPS (Ubiquitin-proteasome system) with implications in diseases.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Pritam Chakraborty
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Rhea Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA.
| |
Collapse
|
4
|
Barman P, Kaja A, Chakraborty P, Guha S, Roy A, Ferdoush J, Bhaumik SR. A novel ubiquitin-proteasome system regulation of Sgf73/ataxin-7 that maintains the integrity of the coactivator SAGA in orchestrating transcription. Genetics 2023; 224:iyad071. [PMID: 37075097 PMCID: PMC10324951 DOI: 10.1093/genetics/iyad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 04/20/2023] Open
Abstract
Ataxin-7 maintains the integrity of Spt-Ada-Gcn5-Acetyltransferase (SAGA), an evolutionarily conserved coactivator in stimulating preinitiation complex (PIC) formation for transcription initiation, and thus, its upregulation or downregulation is associated with various diseases. However, it remains unknown how ataxin-7 is regulated that could provide new insights into disease pathogenesis and therapeutic interventions. Here, we show that ataxin-7's yeast homologue, Sgf73, undergoes ubiquitylation and proteasomal degradation. Impairment of such regulation increases Sgf73's abundance, which enhances recruitment of TATA box-binding protein (TBP) (that nucleates PIC formation) to the promoter but impairs transcription elongation. Further, decreased Sgf73 level reduces PIC formation and transcription. Thus, Sgf73 is fine-tuned by ubiquitin-proteasome system (UPS) in orchestrating transcription. Likewise, ataxin-7 undergoes ubiquitylation and proteasomal degradation, alteration of which changes ataxin-7's abundance that is associated with altered transcription and cellular pathologies/diseases. Collectively, our results unveil a novel UPS regulation of Sgf73/ataxin-7 for normal cellular health and implicate alteration of such regulation in diseases.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Amala Kaja
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX-77030, USA
| | - Pritam Chakraborty
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Arpan Roy
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Jannatul Ferdoush
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| |
Collapse
|
5
|
Morgan M, Ikenoue T, Suga H, Wolberger C. Potent macrocycle inhibitors of the human SAGA deubiquitinating module. Cell Chem Biol 2022; 29:544-554.e4. [PMID: 34936860 PMCID: PMC9035043 DOI: 10.1016/j.chembiol.2021.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/08/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022]
Abstract
The Spt-Ada-Gcn5 acetyltransferase (SAGA) transcriptional coactivator contains a four-protein subcomplex called the deubiquitinating enzyme (DUB) module that removes ubiquitin from histone H2B-K120. The human DUB module contains the catalytic subunit ubiquitin-specific protease 22 (USP22), which is overexpressed in a number of cancers that are resistant to available therapies. We screened a massive combinatorial library of cyclic peptides and identified potent inhibitors of USP22. The top hit was highly specific for USP22 compared with a panel of 44 other human DUBs. Cells treated with peptide had increased levels of H2B monoubiquitination, demonstrating the ability of the cyclic peptides to enter human cells and inhibit H2B deubiquitination. These macrocycle inhibitors are, to our knowledge, the first reported inhibitors of USP22/SAGA DUB module and show promise for development.
Collapse
Affiliation(s)
- Michael Morgan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tatsuya Ikenoue
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Adamus K, Reboul C, Voss J, Huang C, Schittenhelm RB, Le SN, Ellisdon AM, Elmlund H, Boudes M, Elmlund D. SAGA and SAGA-like SLIK transcriptional coactivators are structurally and biochemically equivalent. J Biol Chem 2021; 296:100671. [PMID: 33864814 PMCID: PMC8131915 DOI: 10.1016/j.jbc.2021.100671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/03/2022] Open
Abstract
The SAGA-like complex SLIK is a modified version of the Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex. SLIK is formed through C-terminal truncation of the Spt7 SAGA subunit, causing loss of Spt8, one of the subunits that interacts with the TATA-binding protein (TBP). SLIK and SAGA are both coactivators of RNA polymerase II transcription in yeast, and both SAGA and SLIK perform chromatin modifications. The two complexes have been speculated to uniquely contribute to transcriptional regulation, but their respective contributions are not clear. To investigate, we assayed the chromatin modifying functions of SAGA and SLIK, revealing identical kinetics on minimal substrates in vitro. We also examined the binding of SAGA and SLIK to TBP and concluded that interestingly, both protein complexes have similar affinity for TBP. Additionally, despite the loss of Spt8 and C-terminus of Spt7 in SLIK, TBP prebound to SLIK is not released in the presence of TATA-box DNA, just like TBP prebound to SAGA. Furthermore, we determined a low-resolution cryo-EM structure of SLIK, revealing a modular architecture identical to SAGA. Finally, we performed a comprehensive study of DNA-binding properties of both coactivators. Purified SAGA and SLIK both associate with ssDNA and dsDNA with high affinity (KD = 10–17 nM), and the binding is sequence-independent. In conclusion, our study shows that the cleavage of Spt7 and the absence of the Spt8 subunit in SLIK neither drive any major conformational differences in its structure compared with SAGA, nor significantly affect HAT, DUB, or DNA-binding activities in vitro.
Collapse
Affiliation(s)
- Klaudia Adamus
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Cyril Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jarrod Voss
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Cheng Huang
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sarah N Le
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Andrew M Ellisdon
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Hans Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Marion Boudes
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| | - Dominika Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
7
|
Molecular Mechanisms of DUBs Regulation in Signaling and Disease. Int J Mol Sci 2021; 22:ijms22030986. [PMID: 33498168 PMCID: PMC7863924 DOI: 10.3390/ijms22030986] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The large family of deubiquitinating enzymes (DUBs) are involved in the regulation of a plethora of processes carried out inside the cell by protein ubiquitination. Ubiquitination is a basic pathway responsible for the correct protein homeostasis in the cell, which could regulate the fate of proteins through the ubiquitin–proteasome system (UPS). In this review we will focus on recent advances on the molecular mechanisms and specificities found for some types of DUBs enzymes, highlighting illustrative examples in which the regulatory mechanism for DUBs has been understood in depth at the molecular level by structural biology. DUB proteases are responsible for cleavage and regulation of the multiple types of ubiquitin linkages that can be synthesized inside the cell, known as the ubiquitin-code, which are tightly connected to specific substrate functions. We will display some strategies carried out by members of different DUB families to provide specificity on the cleavage of particular ubiquitin linkages. Finally, we will also discuss recent progress made for the development of drug compounds targeting DUB proteases, which are usually correlated to the progress of many pathologies such as cancer and neurodegenerative diseases.
Collapse
|
8
|
What do the structures of GCN5-containing complexes teach us about their function? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194614. [PMID: 32739556 DOI: 10.1016/j.bbagrm.2020.194614] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Transcription initiation is a major regulatory step in eukaryotic gene expression. It involves the assembly of general transcription factors and RNA polymerase II into a functional pre-initiation complex at core promoters. The degree of chromatin compaction controls the accessibility of the transcription machinery to template DNA. Co-activators have critical roles in this process by actively regulating chromatin accessibility. Many transcriptional coactivators are multisubunit complexes, organized into distinct structural and functional modules and carrying multiple regulatory activities. The first nuclear histone acetyltransferase (HAT) characterized was General Control Non-derepressible 5 (Gcn5). Gcn5 was subsequently identified as a subunit of the HAT module of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, which is an experimental paradigm for multifunctional co-activators. We know today that Gcn5 is the catalytic subunit of multiple distinct co-activator complexes with specific functions. In this review, we summarize recent advances in the structure of Gcn5-containing co-activator complexes, most notably SAGA, and discuss how these new structural insights contribute to better understand their functions.
Collapse
|
9
|
Meriesh HA, Lerner AM, Chandrasekharan MB, Strahl BD. The histone H4 basic patch regulates SAGA-mediated H2B deubiquitination and histone acetylation. J Biol Chem 2020; 295:6561-6569. [PMID: 32245891 DOI: 10.1074/jbc.ra120.013196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Indexed: 01/18/2023] Open
Abstract
Histone H2B monoubiquitylation (H2Bub1) has central functions in multiple DNA-templated processes, including gene transcription, DNA repair, and replication. H2Bub1 also is required for the trans-histone regulation of H3K4 and H3K79 methylation. Although previous studies have elucidated the basic mechanisms that establish and remove H2Bub1, we have only an incomplete understanding of how H2Bub1 is regulated. We report here that the histone H4 basic patch regulates H2Bub1. Yeast cells with arginine-to-alanine mutations in the H4 basic patch (H42RA) exhibited a significant loss of global H2Bub1. H42RA mutant yeast strains also displayed chemotoxin sensitivities similar to, but less severe than, strains containing a complete loss of H2Bub1. We found that the H4 basic patch regulates H2Bub1 levels independently of interactions with chromatin remodelers and separately from its regulation of H3K79 methylation. To measure H2B ubiquitylation and deubiquitination kinetics in vivo, we used a rapid and reversible optogenetic tool, the light-inducible nuclear exporter, to control the subcellular location of the H2Bub1 E3 ligase, Bre1. The ability of Bre1 to ubiquitylate H2B was unaffected in the H42RA mutant. In contrast, H2Bub1 deubiquitination by SAGA-associated Ubp8, but not by Ubp10, increased in the H42RA mutant. Consistent with a function for the H4 basic patch in regulating SAGA deubiquitinase activity, we also detected increased SAGA-mediated histone acetylation in H4 basic patch mutants. Our findings uncover that the H4 basic patch has a regulatory function in SAGA-mediated histone modifications.
Collapse
Affiliation(s)
- Hashem A Meriesh
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Andrew M Lerner
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| |
Collapse
|
10
|
Nassrallah A, Rougée M, Bourbousse C, Drevensek S, Fonseca S, Iniesto E, Ait-Mohamed O, Deton-Cabanillas AF, Zabulon G, Ahmed I, Stroebel D, Masson V, Lombard B, Eeckhout D, Gevaert K, Loew D, Genovesio A, Breyton C, De Jaeger G, Bowler C, Rubio V, Barneche F. DET1-mediated degradation of a SAGA-like deubiquitination module controls H2Bub homeostasis. eLife 2018; 7:37892. [PMID: 30192741 PMCID: PMC6128693 DOI: 10.7554/elife.37892] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Abstract
DE-ETIOLATED 1 (DET1) is an evolutionarily conserved component of the ubiquitination machinery that mediates the destabilization of key regulators of cell differentiation and proliferation in multicellular organisms. In this study, we provide evidence from Arabidopsis that DET1 is essential for the regulation of histone H2B monoubiquitination (H2Bub) over most genes by controlling the stability of a deubiquitination module (DUBm). In contrast with yeast and metazoan DUB modules that are associated with the large SAGA complex, the Arabidopsis DUBm only comprises three proteins (hereafter named SGF11, ENY2 and UBP22) and appears to act independently as a major H2Bub deubiquitinase activity. Our study further unveils that DET1-DDB1-Associated-1 (DDA1) protein interacts with SGF11 in vivo, linking the DET1 complex to light-dependent ubiquitin-mediated proteolytic degradation of the DUBm. Collectively, these findings uncover a signaling path controlling DUBm availability, potentially adjusting H2Bub turnover capacity to the cell transcriptional status.
Collapse
Affiliation(s)
- Amr Nassrallah
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Martin Rougée
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Université Paris-Sud, Orsay, France
| | - Clara Bourbousse
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France.,Université Paris-Sud, Orsay, France
| | - Stephanie Drevensek
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Sandra Fonseca
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Elisa Iniesto
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Ouardia Ait-Mohamed
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Anne-Flore Deton-Cabanillas
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Gerald Zabulon
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Ikhlak Ahmed
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - David Stroebel
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Vanessa Masson
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie PSL Research University, 75005 Paris, France
| | - Berangere Lombard
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie PSL Research University, 75005 Paris, France
| | - Dominique Eeckhout
- Department of Plant Systems Biology, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium.,VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Damarys Loew
- Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie PSL Research University, 75005 Paris, France
| | - Auguste Genovesio
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Cecile Breyton
- Université Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France
| | - Geert De Jaeger
- Department of Plant Systems Biology, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Chris Bowler
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Vicente Rubio
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - Fredy Barneche
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
11
|
Morrow ME, Morgan MT, Clerici M, Growkova K, Yan M, Komander D, Sixma TK, Simicek M, Wolberger C. Active site alanine mutations convert deubiquitinases into high-affinity ubiquitin-binding proteins. EMBO Rep 2018; 19:embr.201745680. [PMID: 30150323 PMCID: PMC6172466 DOI: 10.15252/embr.201745680] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022] Open
Abstract
A common strategy for exploring the biological roles of deubiquitinating enzymes (DUBs) in different pathways is to study the effects of replacing the wild‐type DUB with a catalytically inactive mutant in cells. We report here that a commonly studied DUB mutation, in which the catalytic cysteine is replaced with alanine, can dramatically increase the affinity of some DUBs for ubiquitin. Overexpression of these tight‐binding mutants thus has the potential to sequester cellular pools of monoubiquitin and ubiquitin chains. As a result, cells expressing these mutants may display unpredictable dominant negative physiological effects that are not related to loss of DUB activity. The structure of the SAGA DUB module bound to free ubiquitin reveals the structural basis for the 30‐fold higher affinity of Ubp8C146A for ubiquitin. We show that an alternative option, substituting the active site cysteine with arginine, can inactivate DUBs while also decreasing the affinity for ubiquitin.
Collapse
Affiliation(s)
- Marie E Morrow
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael T Morgan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marcello Clerici
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Ming Yan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Titia K Sixma
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michal Simicek
- Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Whole-Genome Sequencing of Suppressor DNA Mixtures Identifies Pathways That Compensate for Chromosome Segregation Defects in Schizosaccharomyces pombe. G3-GENES GENOMES GENETICS 2018; 8:1031-1038. [PMID: 29352077 PMCID: PMC5844291 DOI: 10.1534/g3.118.200048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Suppressor screening is a powerful method to identify genes that, when mutated, rescue the temperature sensitivity of the original mutation. Previously, however, identification of suppressor mutations has been technically difficult. Due to the small genome size of Schizosaccharomyces pombe, we developed a spontaneous suppressor screening technique, followed by a cost-effective sequencing method. Genomic DNAs of 10 revertants that survived at the restrictive temperature of the original temperature sensitive (ts) mutant were mixed together as one sample before constructing a library for sequencing. Responsible suppressor mutations were identified bioinformatically based on allele frequency. Then, we isolated a large number of spontaneous extragenic suppressors for three ts mutants that exhibited defects in chromosome segregation at their restrictive temperature. Screening provided new insight into mechanisms of chromosome segregation: loss of Ufd2 E4 multi-ubiquitination activity suppresses defects of an AAA ATPase, Cdc48. Loss of Wpl1, a releaser of cohesin, compensates for the Eso1 mutation, which may destabilize sister chromatid cohesion. The segregation defect of a ts histone H2B mutant is rescued if it fails to be deubiquitinated by the SAGA complex, because H2B is stabilized by monoubiquitination.
Collapse
|
13
|
Helmlinger D, Tora L. Sharing the SAGA. Trends Biochem Sci 2017; 42:850-861. [PMID: 28964624 PMCID: PMC5660625 DOI: 10.1016/j.tibs.2017.09.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
Transcription initiation is a major regulatory step in eukaryotic gene expression. Co-activators establish transcriptionally competent promoter architectures and chromatin signatures to allow the formation of the pre-initiation complex (PIC), comprising RNA polymerase II (Pol II) and general transcription factors (GTFs). Many GTFs and co-activators are multisubunit complexes, in which individual components are organized into functional modules carrying specific activities. Recent advances in affinity purification and mass spectrometry analyses have revealed that these complexes often share functional modules, rather than containing unique components. This observation appears remarkably prevalent for chromatin-modifying and remodeling complexes. Here, we use the modular organization of the evolutionary conserved Spt-Ada-Gcn5 acetyltransferase (SAGA) complex as a paradigm to illustrate how co-activators share and combine a relatively limited set of functional tools.
Collapse
Affiliation(s)
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
14
|
Wu Y, Wang Y, Lin Y, Liu Y, Wang Y, Jia J, Singh P, Chi YI, Wang C, Dong C, Li W, Tao M, Napier D, Shi Q, Deng J, Mark Evers B, Zhou BP. Dub3 inhibition suppresses breast cancer invasion and metastasis by promoting Snail1 degradation. Nat Commun 2017; 8:14228. [PMID: 28198361 PMCID: PMC5316870 DOI: 10.1038/ncomms14228] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 11/30/2016] [Indexed: 12/27/2022] Open
Abstract
Snail1, a key transcription factor of epithelial-mesenchymal transition (EMT), is subjected to ubiquitination and degradation, but the mechanism by which Snail1 is stabilized in tumours remains unclear. We identify Dub3 as a bona fide Snail1 deubiquitinase, which interacts with and stabilizes Snail1. Dub3 is overexpressed in breast cancer; knockdown of Dub3 resulted in Snail1 destabilization, suppressed EMT and decreased tumour cell migration, invasion, and metastasis. These effects are rescued by ectopic Snail1 expression. IL-6 also stabilizes Snail1 by inducing Dub3 expression, the specific inhibitor WP1130 binds to Dub3 and inhibits the Dub3-mediating Snail1 stabilization in vitro and in vivo. Our study reveals a critical Dub3-Snail1 signalling axis in EMT and metastasis, and provides an effective therapeutic approach against breast cancer.
Collapse
Affiliation(s)
- Yadi Wu
- Department of Pharmacology & Nutritional Sciences, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
| | - Yu Wang
- Department of Pharmacology & Nutritional Sciences, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
| | - Yiwei Lin
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
| | - Yajuan Liu
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
| | - Yifan Wang
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
| | - Jianhang Jia
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
| | - Puja Singh
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Young-In Chi
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Chi Wang
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Department of Biostatistics, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
| | - Chenfang Dong
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Zhejiang 310058, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou 215006, China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou 215006, China
| | - Dana Napier
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Department of Pathology, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
| | - Qiuying Shi
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Department of Pathology, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
| | - Jiong Deng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - B Mark Evers
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Department of Surgery, the University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
| | - Binhua P. Zhou
- Markey Cancer Center, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- Department of Molecular and Cellular Biochemistry, The University of Kentucky, College of Medicine, Lexington, Kentucky 40506, USA
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
15
|
Morgan MT, Wolberger C. Recognition of ubiquitinated nucleosomes. Curr Opin Struct Biol 2016; 42:75-82. [PMID: 27923209 DOI: 10.1016/j.sbi.2016.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/03/2016] [Accepted: 11/15/2016] [Indexed: 11/26/2022]
Abstract
Histone ubiquitination plays a non-degradative role in regulating transcription and the DNA damage response. A mechanistic understanding of this chromatin modification has lagged that of small histone modifications because of the technical challenges in preparing ubiquitinated nucleosomes. The recent structure of the DUB module of the SAGA coactivator complex bound to a nucleosome containing monoubiquitinated H2B has provided the first view of how specialized subunits target this enzyme to its substrate. Single particle electron microscopy of the intact SAGA coactivator suggests how the DUB module and histone acetyltransferase module engage a nucleosomal substrate. A cryo EM study of 53BP1 bound to nucleosomes containing ubiquitinated H2A and H4 methylated at K20 extends our understanding of recognition of biologically distinct combinations of chromatin marks through multivalent interactions.
Collapse
Affiliation(s)
- Michael T Morgan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Touw WG, van Beusekom B, Evers JMG, Vriend G, Joosten RP. Validation and correction of Zn-Cys xHis y complexes. Acta Crystallogr D Struct Biol 2016; 72:1110-1118. [PMID: 27710932 PMCID: PMC5053137 DOI: 10.1107/s2059798316013036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/12/2016] [Indexed: 11/10/2022] Open
Abstract
Many crystal structures in the Protein Data Bank contain zinc ions in a geometrically distorted tetrahedral complex with four Cys and/or His ligands. A method is presented to automatically validate and correct these zinc complexes. Analysis of the corrected zinc complexes shows that the average Zn-Cys distances and Cys-Zn-Cys angles are a function of the number of cysteines and histidines involved. The observed trends can be used to develop more context-sensitive targets for model validation and refinement.
Collapse
Affiliation(s)
- Wouter G. Touw
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Geert Grooteplein-Zuid 26-28, 6525 GA Nijmegen, The Netherlands
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Bart van Beusekom
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jochem M. G. Evers
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Geert Grooteplein-Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Gert Vriend
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Geert Grooteplein-Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Robbie P. Joosten
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
17
|
Morgan MT, Haj-Yahya M, Ringel AE, Bandi P, Brik A, Wolberger C. Structural basis for histone H2B deubiquitination by the SAGA DUB module. Science 2016; 351:725-8. [PMID: 26912860 PMCID: PMC4863942 DOI: 10.1126/science.aac5681] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Monoubiquitinated histone H2B plays multiple roles in transcription activation. H2B is deubiquitinated by the Spt-Ada-Gcn5 acetyltransferase (SAGA) coactivator, which contains a four-protein subcomplex known as the deubiquitinating (DUB) module. The crystal structure of the Ubp8/Sgf11/Sus1/Sgf73 DUB module bound to a ubiquitinated nucleosome reveals that the DUB module primarily contacts H2A/H2B, with an arginine cluster on the Sgf11 zinc finger domain docking on the conserved H2A/H2B acidic patch. The Ubp8 catalytic domain mediates additional contacts with H2B, as well as with the conjugated ubiquitin. We find that the DUB module deubiquitinates H2B both in the context of the nucleosome and in H2A/H2B dimers complexed with the histone chaperone, FACT, suggesting that SAGA could target H2B at multiple stages of nucleosome disassembly and reassembly during transcription.
Collapse
Affiliation(s)
- Michael T Morgan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mahmood Haj-Yahya
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Alison E Ringel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Prasanthi Bandi
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Chen YJ, Yang CN. Molecular modeling of structural and functional variance in the SAGA deubiquitinating module caused by Sgf73 Y57A mutation. RSC Adv 2016. [DOI: 10.1039/c6ra12647b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Summary of the structural and dynamic impact caused by Sgf73 Y57A mutation.
Collapse
Affiliation(s)
- Ya-Jyun Chen
- Department of Life Sciences
- National University of Kaohsiung
- Kaohsiung
- Taiwan
| | - Chia-Ning Yang
- Department of Life Sciences
- National University of Kaohsiung
- Kaohsiung
- Taiwan
| |
Collapse
|
19
|
Abstract
Deubiquitinases (DUBs) play important roles and therefore are potential drug targets in various diseases including cancer and neurodegeneration. In this review, we recapitulate structure-function studies of the most studied DUBs including USP7, USP22, CYLD, UCHL1, BAP1, A20, as well as ataxin 3 and connect them to regulatory mechanisms and their growing protein interaction networks. We then describe DUBs that have been associated with endocrine carcinogenesis with a focus on prostate, ovarian, and thyroid cancer, pheochromocytoma, and adrenocortical carcinoma. The goal is enhancing our understanding of the connection between dysregulated DUBs and cancer to permit the design of therapeutics and to establish biomarkers that could be used in diagnosis and prognosis.
Collapse
Affiliation(s)
- Roland Pfoh
- Department of BiologyYork University, 4700 Keele Street, Toronto, Ontario, Canada, M3J1P3
| | - Ira Kay Lacdao
- Department of BiologyYork University, 4700 Keele Street, Toronto, Ontario, Canada, M3J1P3
| | - Vivian Saridakis
- Department of BiologyYork University, 4700 Keele Street, Toronto, Ontario, Canada, M3J1P3
| |
Collapse
|
20
|
Yan M, Wolberger C. Uncovering the role of Sgf73 in maintaining SAGA deubiquitinating module structure and activity. J Mol Biol 2014; 427:1765-78. [PMID: 25526805 DOI: 10.1016/j.jmb.2014.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
The SAGA (Spt-Ada-Gcn5 acetyltransferase) complex performs multiple functions in transcription activation including deubiquitinating histone H2B, which is mediated by a subcomplex called the deubiquitinating module (DUBm). The yeast DUBm comprises a catalytic subunit, Ubp8, and three additional subunits, Sgf11, Sus1 and Sgf73, all of which are required for DUBm activity. A portion of the non-globular Sgf73 subunit lies between the Ubp8 catalytic domain and the ZnF-UBP domain and has been proposed to contribute to deubiquitinating activity by maintaining the catalytic domain in an active conformation. We report structural and solution studies of the DUBm containing two different Sgf73 point mutations that disrupt deubiquitinating activity. We find that the Sgf73 mutations abrogate deubiquitinating activity by impacting the Ubp8 ubiquitin-binding fingers region and they have an unexpected effect on the overall folding and stability of the DUBm complex. Taken together, our data suggest a role for Sgf73 in maintaining both the organization and the ubiquitin-binding conformation of Ubp8, thereby contributing to overall DUBm activity.
Collapse
Affiliation(s)
- Ming Yan
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Pal A, Young MA, Donato NJ. Emerging potential of therapeutic targeting of ubiquitin-specific proteases in the treatment of cancer. Cancer Res 2014; 74:4955-66. [PMID: 25172841 DOI: 10.1158/0008-5472.can-14-1211] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ubiquitin-proteasome system (UPS) has emerged as a therapeutic focus and target for the treatment of cancer. The most clinically successful UPS-active agents (bortezomib and lenalidomide) are limited in application to hematologic malignancies, with only marginal efficacy in solid tumors. Inhibition of specific ubiquitin E3 ligases has also emerged as a valid therapeutic strategy, and many targets are currently being investigated. Another emerging and promising approach in regulation of the UPS involves targeting deubiquitinases (DUB). The DUBs comprise a relatively small group of proteins, most with cysteine protease activity that target several key proteins involved in regulation of tumorigenesis, apoptosis, senescence, and autophagy. Through their multiple contacts with ubiquitinated protein substrates involved in these pathways, DUBs provide an untapped means of modulating many important regulatory proteins that support oncogenic transformation and progression. Ubiquitin-specific proteases (USP) are one class of DUBs that have drawn special attention as cancer targets, as many are differentially expressed or activated in tumors or their microenvironment, making them ideal candidates for drug development. This review attempts to summarize the USPs implicated in different cancers, the current status of USP inhibitor-mediated pharmacologic intervention, and future prospects for USP inhibitors to treat diverse cancers.
Collapse
Affiliation(s)
- Anupama Pal
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Matthew A Young
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Nicholas J Donato
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan School of Medicine and Comprehensive Cancer Center, Ann Arbor, Michigan.
| |
Collapse
|
22
|
Durairaj G, Sen R, Uprety B, Shukla A, Bhaumik SR. Sus1p facilitates pre-initiation complex formation at the SAGA-regulated genes independently of histone H2B de-ubiquitylation. J Mol Biol 2014; 426:2928-2941. [PMID: 24911582 DOI: 10.1016/j.jmb.2014.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/29/2014] [Accepted: 05/31/2014] [Indexed: 12/23/2022]
Abstract
Sus1p is a common component of transcriptional co-activator, SAGA (Spt-Ada-Gcn5-Acetyltransferase), and mRNA export complex, TREX-2 (Transcription-export 2), and is involved in promoting transcription and mRNA export. However, it is not clearly understood how Sus1p promotes transcription. Here, we show that Sus1p is predominantly recruited to the upstream activating sequence of a SAGA-dependent gene, GAL1, under transcriptionally active conditions as a component of SAGA to promote the formation of pre-initiation complex (PIC) at the core promoter and, consequently, transcriptional initiation. Likewise, Sus1p promotes the PIC formation at other SAGA-dependent genes and hence transcriptional initiation. Such function of Sus1p in promoting PIC formation and transcriptional initiation is not mediated via its role in regulation of SAGA's histone H2B de-ubiquitylation activity. However, Sus1p's function in regulation of histone H2B ubiquitylation is associated with transcriptional elongation, DNA repair and replication. Collectively, our results support that Sus1p promotes PIC formation (and hence transcriptional initiation) at the SAGA-regulated genes independently of histone H2B de-ubiquitylation and further controls transcriptional elongation, DNA repair and replication via orchestration of histone H2B ubiquitylation, thus providing distinct functional insights of Sus1p in regulation of DNA transacting processes.
Collapse
Affiliation(s)
- Geetha Durairaj
- Department of Biochemistry and Molecular Biology Southern Illinois University School of Medicine Carbondale, IL-62901 USA
| | - Rwik Sen
- Department of Biochemistry and Molecular Biology Southern Illinois University School of Medicine Carbondale, IL-62901 USA
| | - Bhawana Uprety
- Department of Biochemistry and Molecular Biology Southern Illinois University School of Medicine Carbondale, IL-62901 USA
| | - Abhijit Shukla
- Department of Biochemistry and Molecular Biology Southern Illinois University School of Medicine Carbondale, IL-62901 USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology Southern Illinois University School of Medicine Carbondale, IL-62901 USA
| |
Collapse
|
23
|
Hadjivassiliou H, Rosenberg OS, Guthrie C. The crystal structure of S. cerevisiae Sad1, a catalytically inactive deubiquitinase that is broadly required for pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2014; 20:656-69. [PMID: 24681967 PMCID: PMC3988567 DOI: 10.1261/rna.042838.113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/03/2014] [Indexed: 05/27/2023]
Abstract
Sad1 is an essential splicing factor initially identified in a genetic screen in Saccharomyces cerevisiae for snRNP assembly defects. Based on sequence homology, Sad1, or USP39 in humans, is predicted to comprise two domains: a zinc finger ubiquitin binding domain (ZnF-UBP) and an inactive ubiquitin-specific protease (iUSP) domain, both of which are well conserved. The role of these domains in splicing and their interaction with ubiquitin are unknown. We first used splicing microarrays to analyze Sad1 function in vivo and found that Sad1 is critical for the splicing of nearly all yeast intron-containing genes. By using in vitro assays, we then showed that it is required for the assembly of the active spliceosome. To gain structural insights into Sad1 function, we determined the crystal structure of the full-length protein at 1.8 Å resolution. In the structure, the iUSP domain forms the characteristic ubiquitin binding pocket, though with an amino acid substitution in the active site that results in complete inactivation of the enzymatic activity of the domain. The ZnF-UBP domain of Sad1 shares high structural similarly to other ZnF-UBPs; however, Sad1's ZnF-UBP does not possess the canonical ubiquitin binding motif. Given the precedents for ZnF-UBP domains to function as activators for their neighboring USP domains, we propose that Sad1's ZnF-UBP acts in a ubiquitin-independent capacity to recruit and/or activate Sad1's iUSP domain to interact with the spliceosome.
Collapse
Affiliation(s)
- Haralambos Hadjivassiliou
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | - Oren S. Rosenberg
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, California 94143-0414, USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| |
Collapse
|
24
|
Wolberger C. Mechanisms for regulating deubiquitinating enzymes. Protein Sci 2014; 23:344-53. [PMID: 24403057 DOI: 10.1002/pro.2415] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 12/26/2022]
Abstract
Ubiquitination is a reversible post-translational modification that plays a dynamic role in regulating most eukaryotic processes. Deubiquitinating enzymes (DUBs), which hydrolyze the isopeptide or peptide linkages joining ubiquitin to substrate lysines or N-termini, therefore play a key role in ubiquitin signaling. Cells employ multiple mechanisms to regulate DUB activity and thus ensure the appropriate biological response. Recent structural studies have shed light on several different mechanisms by which DUB activity and specificity is regulated.
Collapse
Affiliation(s)
- Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry and the Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| |
Collapse
|
25
|
Koehler C, Bonnet J, Stierle M, Romier C, Devys D, Kieffer B. DNA binding by Sgf11 protein affects histone H2B deubiquitination by Spt-Ada-Gcn5-acetyltransferase (SAGA). J Biol Chem 2014; 289:8989-99. [PMID: 24509845 DOI: 10.1074/jbc.m113.500868] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The yeast Spt-Ada-Gcn5-acetyltransferase (SAGA) complex is a transcription coactivator that contains a histone H2B deubiquitination activity mediated by its Ubp8 subunit. Full enzymatic activity requires the formation of a quaternary complex, the deubiquitination module (DUBm) of SAGA, which is composed of Ubp8, Sus1, Sgf11, and Sgf73. The crystal structures of the DUBm have shed light on the structure/function relationship of this complex. Specifically, both Sgf11 and Sgf73 contain zinc finger domains (ZnF) that appear essential for the DUBm activity. Whereas Sgf73 N-terminal ZnF is important for DUBm stability, Sgf11 C-terminal ZnF appears to be involved in DUBm function. To further characterize the role of these two zinc fingers, we have solved their structure by NMR. We show that, contrary to the previously reported structures, Sgf73 ZnF adopts a C2H2 coordination with unusual tautomeric forms for the coordinating histidines. We further report that the Sgf11 ZnF, but not the Sgf73 ZnF, binds to nucleosomal DNA with a binding interface composed of arginine residues located within the ZnF α-helix. Mutational analyses both in vitro and in vivo provide evidence for the functional relevance of our structural observations. The combined interpretation of our results leads to an uncommon ZnF-DNA interaction between the SAGA DUBm and nucleosomes, thus providing further functional insights into SAGA's epigenetic modulation of the chromatin structure.
Collapse
|