1
|
Kudryashev M. The big chill: Growth of in situ structural biology with cryo-electron tomography. QRB DISCOVERY 2024; 5:e10. [PMID: 39687233 PMCID: PMC11649376 DOI: 10.1017/qrd.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 12/18/2024] Open
Abstract
In situ structural biology with cryo-electron tomography (cryo-ET) and subtomogram averaging (StA) is evolving as a major method to understand the structure, function, and interactions of biological molecules in cells in a single experiment. Since its inception, the method has matured with some stellar highlights and with further opportunities to broaden its applications. In this short review, I want to provide a personal perspective on the developments in cryo-ET as I have seen it for the last ~20 years and outline the major steps that led to its success. This perspective highlights cryo-ET with my eyes as a junior researcher and my view on the present and past developments in hardware and software for in situ structural biology with cryo-ET.
Collapse
Affiliation(s)
- Mikhail Kudryashev
- In situ Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Medical Physics and Biophysics, Charite–Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin and Humboldt Universitat zu Berlin, Institute for Medical Physics and Biophysics, Berlin, Germany
| |
Collapse
|
2
|
Burt A, Toader B, Warshamanage R, von Kügelgen A, Pyle E, Zivanov J, Kimanius D, Bharat TAM, Scheres SHW. An image processing pipeline for electron cryo-tomography in RELION-5. FEBS Open Bio 2024; 14:1788-1804. [PMID: 39147729 PMCID: PMC11532982 DOI: 10.1002/2211-5463.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Electron tomography of frozen, hydrated samples allows structure determination of macromolecular complexes that are embedded in complex environments. Provided that the target complexes may be localised in noisy, three-dimensional tomographic reconstructions, averaging images of multiple instances of these molecules can lead to structures with sufficient resolution for de novo atomic modelling. Although many research groups have contributed image processing tools for these tasks, a lack of standardisation and interoperability represents a barrier for newcomers to the field. Here, we present an image processing pipeline for electron tomography data in RELION-5, with functionality ranging from the import of unprocessed movies to the automated building of atomic models in the final maps. Our explicit definition of metadata items that describe the steps of our pipeline has been designed for interoperability with other software tools and provides a framework for further standardisation.
Collapse
Affiliation(s)
- Alister Burt
- MRC Laboratory of Molecular Biology, Cambridge Biomedical CampusCambridgeUK
- Department of Structural BiologyGenentechSouth San FranciscoCAUSA
| | - Bogdan Toader
- MRC Laboratory of Molecular Biology, Cambridge Biomedical CampusCambridgeUK
| | - Rangana Warshamanage
- CCP‐EM, Scientific Computing DepartmentUKRI Science and Technology Facilities Council, Harwell CampusDidcotUK
- Department of PsychiatryUniversity of PittsburghPittsburghPAUSA
| | | | - Euan Pyle
- Institute of Structural and Molecular Biology, Birkbeck CollegeLondonUK
- The Francis Crick InstituteLondonUK
- Present address:
European Molecular Biology LaboratoryHeidelbergGermany
| | - Jasenko Zivanov
- MRC Laboratory of Molecular Biology, Cambridge Biomedical CampusCambridgeUK
| | - Dari Kimanius
- MRC Laboratory of Molecular Biology, Cambridge Biomedical CampusCambridgeUK
- Present address:
CZ Imaging InstituteRedwood CityCAUSA
| | | | | |
Collapse
|
3
|
Huang Q, Zhou Y, Bartesaghi A. MiLoPYP: self-supervised molecular pattern mining and particle localization in situ. Nat Methods 2024; 21:1863-1872. [PMID: 39251798 PMCID: PMC11468773 DOI: 10.1038/s41592-024-02403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
Cryo-electron tomography allows the routine visualization of cellular landscapes in three dimensions at nanometer-range resolutions. When combined with single-particle tomography, it is possible to obtain near-atomic resolution structures of frequently occurring macromolecules within their native environment. Two outstanding challenges associated with cryo-electron tomography/single-particle tomography are the automatic identification and localization of proteins, tasks that are hindered by the molecular crowding inside cells, imaging distortions characteristic of cryo-electron tomography tomograms and the sheer size of tomographic datasets. Current methods suffer from low accuracy, demand extensive and time-consuming manual labeling or are limited to the detection of specific types of proteins. Here, we present MiLoPYP, a two-step dataset-specific contrastive learning-based framework that enables fast molecular pattern mining followed by accurate protein localization. MiLoPYP's ability to effectively detect and localize a wide range of targets including globular and tubular complexes as well as large membrane proteins, will contribute to streamline and broaden the applicability of high-resolution workflows for in situ structure determination.
Collapse
Affiliation(s)
- Qinwen Huang
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Alberto Bartesaghi
- Department of Computer Science, Duke University, Durham, NC, USA.
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
4
|
Rangan R, Feathers R, Khavnekar S, Lerer A, Johnston JD, Kelley R, Obr M, Kotecha A, Zhong ED. CryoDRGN-ET: deep reconstructing generative networks for visualizing dynamic biomolecules inside cells. Nat Methods 2024; 21:1537-1545. [PMID: 39025970 DOI: 10.1038/s41592-024-02340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 06/06/2024] [Indexed: 07/20/2024]
Abstract
Advances in cryo-electron tomography (cryo-ET) have produced new opportunities to visualize the structures of dynamic macromolecules in native cellular environments. While cryo-ET can reveal structures at molecular resolution, image processing algorithms remain a bottleneck in resolving the heterogeneity of biomolecular structures in situ. Here, we introduce cryoDRGN-ET for heterogeneous reconstruction of cryo-ET subtomograms. CryoDRGN-ET learns a deep generative model of three-dimensional density maps directly from subtomogram tilt-series images and can capture states diverse in both composition and conformation. We validate this approach by recovering the known translational states in Mycoplasma pneumoniae ribosomes in situ. We then perform cryo-ET on cryogenic focused ion beam-milled Saccharomyces cerevisiae cells. CryoDRGN-ET reveals the structural landscape of S. cerevisiae ribosomes during translation and captures continuous motions of fatty acid synthase complexes inside cells. This method is openly available in the cryoDRGN software.
Collapse
Affiliation(s)
- Ramya Rangan
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Ryan Feathers
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | | | | | - Jake D Johnston
- Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Ron Kelley
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, the Netherlands
| | - Martin Obr
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, the Netherlands
| | - Abhay Kotecha
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, the Netherlands.
| | - Ellen D Zhong
- Department of Computer Science, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
5
|
Powell BM, Davis JH. Learning structural heterogeneity from cryo-electron sub-tomograms with tomoDRGN. Nat Methods 2024; 21:1525-1536. [PMID: 38459385 PMCID: PMC11655136 DOI: 10.1038/s41592-024-02210-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/13/2024] [Indexed: 03/10/2024]
Abstract
Cryo-electron tomography (cryo-ET) enables observation of macromolecular complexes in their native, spatially contextualized cellular environment. Cryo-ET processing software to visualize such complexes at nanometer resolution via iterative alignment and averaging are well developed but rely upon assumptions of structural homogeneity among the complexes of interest. Recently developed tools allow for some assessment of structural diversity but have limited capacity to represent highly heterogeneous structures, including those undergoing continuous conformational changes. Here we extend the highly expressive cryoDRGN (Deep Reconstructing Generative Networks) deep learning architecture, originally created for single-particle cryo-electron microscopy analysis, to cryo-ET. Our new tool, tomoDRGN, learns a continuous low-dimensional representation of structural heterogeneity in cryo-ET datasets while also learning to reconstruct heterogeneous structural ensembles supported by the underlying data. Using simulated and experimental data, we describe and benchmark architectural choices within tomoDRGN that are uniquely necessitated and enabled by cryo-ET. We additionally illustrate tomoDRGN's efficacy in analyzing diverse datasets, using it to reveal high-level organization of human immunodeficiency virus (HIV) capsid complexes assembled in virus-like particles and to resolve extensive structural heterogeneity among ribosomes imaged in situ.
Collapse
Affiliation(s)
- Barrett M Powell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Joseph H Davis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Mastronarde DN. Accurate, automatic determination of astigmatism and phase with Ctfplotter in IMOD. J Struct Biol 2024; 216:108057. [PMID: 38182035 PMCID: PMC10939802 DOI: 10.1016/j.jsb.2023.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Ctfplotter in the IMOD software package is a flexible program for determination of CTF parameters in tilt series images. It uses a novel approach to find astigmatism by measuring defocus in one-dimensional power spectra rotationally averaged over a series of restricted angular ranges. Comparisons with Ctffind, Gctf, and Warp show that Ctfplotter's estimated astigmatism is generally more reliable than that found by these programs that fit CTF parameters to two-dimensional power spectra, especially at higher tilt angles. In addition to that intrinsic advantage, Ctfplotter can reduce the variability in astigmatism estimates further by summing results over multiple tilt angles (typically 5), while still finding defocus for each individual image. Its fitting strategy also produces better phase estimates. The program now includes features for tuning the sampling of the power spectrum so that it is well-represented for analysis, and for determining an appropriate fitting range that can vary with tilt angle. It can thus be used automatically in a variety of situations, not just for fitting tilt series, and has been integrated into the SerialEM acquisition software for real-time determination of focus and astigmatism.
Collapse
Affiliation(s)
- David N Mastronarde
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, 347 UCB, Boulder, CO 80309, United States.
| |
Collapse
|
7
|
Liu HF, Zhou Y, Huang Q, Piland J, Jin W, Mandel J, Du X, Martin J, Bartesaghi A. nextPYP: a comprehensive and scalable platform for characterizing protein variability in situ using single-particle cryo-electron tomography. Nat Methods 2023; 20:1909-1919. [PMID: 37884796 PMCID: PMC10703682 DOI: 10.1038/s41592-023-02045-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023]
Abstract
Single-particle cryo-electron tomography is an emerging technique capable of determining the structure of proteins imaged within the native context of cells at molecular resolution. While high-throughput techniques for sample preparation and tilt-series acquisition are beginning to provide sufficient data to allow structural studies of proteins at physiological concentrations, the complex data analysis pipeline and the demanding storage and computational requirements pose major barriers for the development and broader adoption of this technology. Here, we present a scalable, end-to-end framework for single-particle cryo-electron tomography data analysis from on-the-fly pre-processing of tilt series to high-resolution refinement and classification, which allows efficient analysis and visualization of datasets with hundreds of tilt series and hundreds of thousands of particles. We validate our approach using in vitro and cellular datasets, demonstrating its effectiveness at achieving high-resolution and revealing conformational heterogeneity in situ. The framework is made available through an intuitive and easy-to-use computer application, nextPYP ( http://nextpyp.app ).
Collapse
Affiliation(s)
- Hsuan-Fu Liu
- Department of Biochemistry, Duke University, Durham, NC, USA
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Qinwen Huang
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Jonathan Piland
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Weisheng Jin
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Justin Mandel
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Xiaochen Du
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey Martin
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Alberto Bartesaghi
- Department of Biochemistry, Duke University, Durham, NC, USA.
- Department of Computer Science, Duke University, Durham, NC, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
8
|
Krebs AS, Liu HF, Zhou Y, Rey JS, Levintov L, Shen J, Howe A, Perilla JR, Bartesaghi A, Zhang P. Molecular architecture and conservation of an immature human endogenous retrovirus. Nat Commun 2023; 14:5149. [PMID: 37620323 PMCID: PMC10449913 DOI: 10.1038/s41467-023-40786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
The human endogenous retrovirus K (HERV-K) is the most recently acquired endogenous retrovirus in the human genome and is activated and expressed in many cancers and amyotrophic lateral sclerosis. We present the immature HERV-K capsid structure at 3.2 Å resolution determined from native virus-like particles using cryo-electron tomography and subtomogram averaging. The structure shows a hexamer unit oligomerized through a 6-helix bundle, which is stabilized by a small molecule analogous to IP6 in immature HIV-1 capsid. The HERV-K immature lattice is assembled via highly conserved dimer and trimer interfaces, as detailed through all-atom molecular dynamics simulations and supported by mutational studies. A large conformational change mediated by the linker between the N-terminal and the C-terminal domains of CA occurs during HERV-K maturation. Comparison between HERV-K and other retroviral immature capsid structures reveals a highly conserved mechanism for the assembly and maturation of retroviruses across genera and evolutionary time.
Collapse
Affiliation(s)
- Anna-Sophia Krebs
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Hsuan-Fu Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC, 27708, USA
| | - Juan S Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Lev Levintov
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Juan Shen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Andrew Howe
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| | - Alberto Bartesaghi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Computer Science, Duke University, Durham, NC, 27708, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA.
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
9
|
Krebs AS, Liu HF, Zhou Y, Rey JS, Levintov L, Shen J, Howe A, Perilla JR, Bartesaghi A, Zhang P. Molecular architecture and conservation of an immature human endogenous retrovirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544027. [PMID: 37333227 PMCID: PMC10274761 DOI: 10.1101/2023.06.07.544027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
A significant part of the human genome consists of endogenous retroviruses sequences. Human endogenous retrovirus K (HERV-K) is the most recently acquired endogenous retrovirus, is activated and expressed in many cancers and amyotrophic lateral sclerosis and possibly contributes to the aging process. To understand the molecular architecture of endogenous retroviruses, we determined the structure of immature HERV-K from native virus-like particles (VLPs) using cryo-electron tomography and subtomogram averaging (cryoET STA). The HERV-K VLPs show a greater distance between the viral membrane and immature capsid lattice, correlating with the presence of additional peptides, SP1 and p15, between the capsid (CA) and matrix (MA) proteins compared to the other retroviruses. The resulting cryoET STA map of the immature HERV-K capsid at 3.2 Å resolution shows a hexamer unit oligomerized through a 6-helix bundle which is further stabilized by a small molecule in the same way as the IP6 in immature HIV-1 capsid. The HERV-K immature CA hexamer assembles into the immature lattice via highly conserved dimmer and trimer interfaces, whose interactions were further detailed through all-atom molecular dynamics simulations and supported by mutational studies. A large conformational change mediated by the flexible linker between the N-terminal and the C-terminal domains of CA occurs between the immature and the mature HERV-K capsid protein, analogous to HIV-1. Comparison between HERV-K and other retroviral immature capsid structures reveals a highly conserved mechanism for the assembly and maturation of retroviruses across genera and evolutionary time.
Collapse
Affiliation(s)
- Anna-Sophia Krebs
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Hsuan-Fu Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Juan S. Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Lev Levintov
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Juan Shen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Andrew Howe
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Alberto Bartesaghi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Computer Science, Duke University, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
10
|
Abstract
Recent advances in cryo-electron microscopy have marked only the beginning of the potential of this technique. To bring structure into cell biology, the modality of cryo-electron tomography has fast developed into a bona fide in situ structural biology technique where structures are determined in their native environment, the cell. Nearly every step of the cryo-focused ion beam-assisted electron tomography (cryo-FIB-ET) workflow has been improved upon in the past decade, since the first windows were carved into cells, unveiling macromolecular networks in near-native conditions. By bridging structural and cell biology, cryo-FIB-ET is advancing our understanding of structure-function relationships in their native environment and becoming a tool for discovering new biology.
Collapse
Affiliation(s)
- Lindsey N Young
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA;
| | - Elizabeth Villa
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA;
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Liu HF, Zhou Y, Bartesaghi A. High-resolution structure determination using high-throughput electron cryo-tomography. Acta Crystallogr D Struct Biol 2022; 78:817-824. [PMID: 35775981 PMCID: PMC9248845 DOI: 10.1107/s2059798322005010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022] Open
Abstract
Tomographic reconstruction of frozen-hydrated specimens followed by extraction and averaging of sub-tomograms has successfully been used to determine the structure of macromolecules in their native environment at resolutions that are high enough to reveal molecular level interactions. The low throughput characteristic of tomographic data acquisition combined with the complex data-analysis pipeline that is required to obtain high-resolution maps, however, has limited the applicability of this technique to favorable samples or to resolutions that are too low to provide useful mechanistic information. Recently, beam image-shift electron cryo-tomography (BISECT), a strategy to significantly accelerate the acquisition of tilt series without sacrificing image quality, was introduced. The ability to produce thousands of high-quality tilt series during a single microscope session, however, introduces significant bottlenecks in the downstream data analysis, which has so far relied on specialized pipelines. Here, recent advances in accurate estimation of the contrast transfer function and self-tuning exposure-weighting routines that contribute to improving the resolution and streamlining the structure-determination process using sub-volume averaging are reviewed. Ultimately, the combination of automated data-driven techniques for image analysis together with high-throughput strategies for tilt-series acquisition will pave the way for tomography to become the technique of choice for in situ structure determination.
Collapse
Affiliation(s)
- Hsuan-Fu Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27708, USA
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Alberto Bartesaghi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27708, USA
- Department of Computer Science, Duke University, Durham, NC 27708, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
12
|
Calcraft T, Rosenthal PB. Cryogenic electron microscopy approaches that combine images and tilt series. Microscopy (Oxf) 2022; 71:i15-i22. [PMID: 35275182 PMCID: PMC8855521 DOI: 10.1093/jmicro/dfab053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 01/28/2022] [Indexed: 11/12/2022] Open
Abstract
Cryogenic electron microscopy can be widely applied to biological specimens from the molecular to the cellular scale. In single-particle analysis, 3D structures may be obtained in high resolution by averaging 2D images of single particles in random orientations. For pleomorphic specimens, structures may be obtained by recording the tilt series of a single example of the specimen and calculating tomograms. Where many copies of a single structure such as a protein or nucleic acid assembly are present within the tomogram, averaging of the sub-volumes (subtomogram averaging) has been successfully applied. The choice of data collection method for any given specimen may depend on the structural question of interest and is determined by the radiation sensitivity of the specimen. Here, we survey some recent developments on the use of hybrid methods for recording and analysing data from radiation-sensitive biological specimens. These include single-particle reconstruction from 2D images where additional views are recorded at a single tilt angle of the specimen and methods where image tilt series, initially used for tomogram reconstruction, are processed as individual single-particle images. There is a continuum of approaches now available to maximize structural information obtained from the specimen.
Collapse
Affiliation(s)
- Thomas Calcraft
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | |
Collapse
|
13
|
In silico reconstitution of DNA replication. Lessons from single-molecule imaging and cryo-tomography applied to single-particle cryo-EM. Curr Opin Struct Biol 2022; 72:279-286. [PMID: 35026552 PMCID: PMC8869182 DOI: 10.1016/j.sbi.2021.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/11/2021] [Accepted: 11/28/2021] [Indexed: 11/26/2022]
Abstract
DNA replication has been reconstituted in vitro with yeast proteins, and the minimal system requires the coordinated assembly of 16 distinct replication factors, consisting of 42 polypeptides. To understand the molecular interplay between these factors at the single residue level, new structural biology tools are being developed. Inspired by advances in single-molecule fluorescence imaging and cryo-tomography, novel single-particle cryo-EM experiments have been used to characterise the structural mechanism for the loading of the replicative helicase. Here, we discuss how in silico reconstitution of single-particle cryo-EM data can help describe dynamic systems that are difficult to approach with conventional three-dimensional classification tools.
Collapse
|
14
|
Zivanov J, Otón J, Ke Z, von Kügelgen A, Pyle E, Qu K, Morado D, Castaño-Díez D, Zanetti G, Bharat TAM, Briggs JAG, Scheres SHW. A Bayesian approach to single-particle electron cryo-tomography in RELION-4.0. eLife 2022; 11:83724. [PMID: 36468689 PMCID: PMC9815803 DOI: 10.7554/elife.83724] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
We present a new approach for macromolecular structure determination from multiple particles in electron cryo-tomography (cryo-ET) data sets. Whereas existing subtomogram averaging approaches are based on 3D data models, we propose to optimise a regularised likelihood target that approximates a function of the 2D experimental images. In addition, analogous to Bayesian polishing and contrast transfer function (CTF) refinement in single-particle analysis, we describe the approaches that exploit the increased signal-to-noise ratio in the averaged structure to optimise tilt-series alignments, beam-induced motions of the particles throughout the tilt-series acquisition, defoci of the individual particles, as well as higher-order optical aberrations of the microscope. Implementation of our approaches in the open-source software package RELION aims to facilitate their general use, particularly for those researchers who are already familiar with its single-particle analysis tools. We illustrate for three applications that our approaches allow structure determination from cryo-ET data to resolutions sufficient for de novo atomic modelling.
Collapse
Affiliation(s)
- Jasenko Zivanov
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom,Laboratory of Biomedical Imaging (LIB)LausanneSwitzerland,BioEM lab, Biozentrum, University of BaselBaselSwitzerland
| | - Joaquín Otón
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom,ALBA SynchrotronBarcelonaSpain
| | - Zunlong Ke
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom,Max Planck Institute of BiochemistryMartinsriedGermany
| | - Andriko von Kügelgen
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom,Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Euan Pyle
- Institute of Structural and Molecular Biology, Birkbeck CollegeLondonUnited Kingdom
| | - Kun Qu
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Dustin Morado
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom,Max Planck Institute of BiochemistryMartinsriedGermany
| | - Daniel Castaño-Díez
- BioEM lab, Biozentrum, University of BaselBaselSwitzerland,Instituto BiofisikaLeioaSpain
| | - Giulia Zanetti
- Institute of Structural and Molecular Biology, Birkbeck CollegeLondonUnited Kingdom
| | - Tanmay AM Bharat
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom,Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - John AG Briggs
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom,Max Planck Institute of BiochemistryMartinsriedGermany
| | | |
Collapse
|
15
|
Perspective: Emerging strategies for determining atomic-resolution structures of macromolecular complexes within cells. J Struct Biol 2021; 214:107827. [PMID: 34915129 PMCID: PMC8978977 DOI: 10.1016/j.jsb.2021.107827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 11/28/2022]
Abstract
In principle, electron cryo-tomography (cryo-ET) of thin portions of cells provides high-resolution images of the three-dimensional spatial arrangement of all members of the proteome. In practice, however, radiation damage creates a tension between recording images at many different tilt angles, but at correspondingly reduced exposure levels, versus limiting the number of tilt angles in order to improve the signal-to-noise ratio (SNR). Either way, it is challenging to read the available information out at the level of atomic structure. Here, we first review work that explores the optimal strategy for data collection, which currently seems to favor the use of a limited angular range for tilting the sample or even the use of a single image to record the high-resolution information. Looking then to the future, we point to the alternative of so-called “deconvolution microscopy”, which may be applied to tilt-series or optically-sectioned, focal series data. Recording data as a focal series has the advantage that little or no translational alignment of frames might be needed, and a three-dimensional reconstruction might require only 2/3 the number of images as does standard tomography. We also point to the unexploited potential of phase plates to increase the contrast, and thus to reduce the electron exposure levels while retaining the ability align and merge the data. In turn, using much lower exposures per image could have the advantage that high-resolution information is retained throughout the full data-set, whether recorded as a tilt series or a focal series of images.
Collapse
|
16
|
TomoAlign: A novel approach to correcting sample motion and 3D CTF in CryoET. J Struct Biol 2021; 213:107778. [PMID: 34416376 DOI: 10.1016/j.jsb.2021.107778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/16/2021] [Accepted: 08/08/2021] [Indexed: 11/23/2022]
Abstract
TomoAlign is a software package that integrates tools to mitigate two important resolution limiting factors in cryoET, namely the beam-induced sample motion and the contrast transfer function (CTF) of the microscope. The package is especially focused on cryoET of thick specimens where fiducial markers are required for accurate tilt-series alignment and sample motion estimation. TomoAlign models the beam-induced sample motion undergone during the tilt-series acquisition. The motion models are used to produce motion-corrected subtilt-series centered on the particles of interest. In addition, the defocus of each particle at each tilt image is determined and can be corrected, resulting in motion-corrected and CTF-corrected subtilt-series from which the subtomograms can be computed. Alternatively, the CTF information can be passed on so that CTF correction can be carried out entirely within external packages like Relion. TomoAlign serves as a versatile tool that can streamline the cryoET workflow from initial alignment of tilt-series to final subtomogram averaging during in situ structure determination.
Collapse
|
17
|
Burt A, Gaifas L, Dendooven T, Gutsche I. A flexible framework for multi-particle refinement in cryo-electron tomography. PLoS Biol 2021; 19:e3001319. [PMID: 34437530 PMCID: PMC8389456 DOI: 10.1371/journal.pbio.3001319] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/09/2021] [Indexed: 11/19/2022] Open
Abstract
Cryo-electron tomography (cryo-ET) and subtomogram averaging (STA) are increasingly used for macromolecular structure determination in situ. Here, we introduce a set of computational tools and resources designed to enable flexible approaches to STA through increased automation and simplified metadata handling. We create a bidirectional interface between the Dynamo software package and the Warp-Relion-M pipeline, providing a framework for ab initio and geometrical approaches to multiparticle refinement in M. We illustrate the power of working within this framework by applying it to EMPIAR-10164, a publicly available dataset containing immature HIV-1 virus-like particles (VLPs), and a challenging in situ dataset containing chemosensory arrays in bacterial minicells. Additionally, we provide a comprehensive, step-by-step guide to obtaining a 3.4-Å reconstruction from EMPIAR-10164. The guide is hosted on https://teamtomo.org/, a collaborative online platform we establish for sharing knowledge about cryo-ET.
Collapse
Affiliation(s)
- Alister Burt
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Lorenzo Gaifas
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Tom Dendooven
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Irina Gutsche
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| |
Collapse
|
18
|
Han R, Li L, Yang P, Zhang F, Gao X. A novel constrained reconstruction model towards high-resolution subtomogram averaging. Bioinformatics 2021; 37:1616-1626. [PMID: 31617571 DOI: 10.1093/bioinformatics/btz787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/12/2019] [Accepted: 10/14/2019] [Indexed: 11/15/2022] Open
Abstract
MOTIVATION Electron tomography (ET) offers a unique capacity to image biological structures in situ. However, the resolution of ET reconstructed tomograms is not comparable to that of the single-particle cryo-EM. If many copies of the object of interest are present in the tomograms, their structures can be reconstructed in the tomogram, picked, aligned and averaged to increase the signal-to-noise ratio and improve the resolution, which is known as the subtomogram averaging. To date, the resolution improvement of the subtomogram averaging is still limited because each reconstructed subtomogram is of low reconstruction quality due to the missing wedge issue. RESULTS In this article, we propose a novel computational model, the constrained reconstruction model (CRM), to better recover the information from the multiple subtomograms and compensate for the missing wedge issue in each of them. CRM is supposed to produce a refined reconstruction in the final turn of subtomogram averaging after alignment, instead of directly taking the average. We first formulate the averaging method and our CRM as linear systems, and prove that the solution space of CRM is no larger, and in practice much smaller, than that of the averaging method. We then propose a sparse Kaczmarz algorithm to solve the formulated CRM, and further extend the solution to the simultaneous algebraic reconstruction technique (SART). Experimental results demonstrate that CRM can significantly alleviate the missing wedge issue and improve the final reconstruction quality. In addition, our model is robust to the number of images in each tilt series, the tilt range and the noise level. AVAILABILITY AND IMPLEMENTATION The codes of CRM-SIRT and CRM-SART are available at https://github.com/icthrm/CRM. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Renmin Han
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lun Li
- High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, 100190 Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Yang
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Fa Zhang
- High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, 100190 Beijing, China
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
19
|
Lucas BA, Himes BA, Xue L, Grant T, Mahamid J, Grigorieff N. Locating macromolecular assemblies in cells by 2D template matching with cisTEM. eLife 2021; 10:e68946. [PMID: 34114559 PMCID: PMC8219381 DOI: 10.7554/elife.68946] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022] Open
Abstract
For a more complete understanding of molecular mechanisms, it is important to study macromolecules and their assemblies in the broader context of the cell. This context can be visualized at nanometer resolution in three dimensions (3D) using electron cryo-tomography, which requires tilt series to be recorded and computationally aligned, currently limiting throughput. Additionally, the high-resolution signal preserved in the raw tomograms is currently limited by a number of technical difficulties, leading to an increased false-positive detection rate when using 3D template matching to find molecular complexes in tomograms. We have recently described a 2D template matching approach that addresses these issues by including high-resolution signal preserved in single-tilt images. A current limitation of this approach is the high computational cost that limits throughput. We describe here a GPU-accelerated implementation of 2D template matching in the image processing software cisTEM that allows for easy scaling and improves the accessibility of this approach. We apply 2D template matching to identify ribosomes in images of frozen-hydrated Mycoplasma pneumoniae cells with high precision and sensitivity, demonstrating that this is a versatile tool for in situ visual proteomics and in situ structure determination. We benchmark the results with 3D template matching of tomograms acquired on identical sample locations and identify strengths and weaknesses of both techniques, which offer complementary information about target localization and identity.
Collapse
Affiliation(s)
- Bronwyn A Lucas
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Benjamin A Himes
- Howard Hughes Medical Institute, RNA Therapeutics Institute, The University of Massachusetts Medical SchoolWorcesterUnited States
| | - Liang Xue
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of BiosciencesHeidelbergGermany
| | - Timothy Grant
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Nikolaus Grigorieff
- Howard Hughes Medical Institute, RNA Therapeutics Institute, The University of Massachusetts Medical SchoolWorcesterUnited States
| |
Collapse
|
20
|
Pyle E, Zanetti G. Current data processing strategies for cryo-electron tomography and subtomogram averaging. Biochem J 2021; 478:1827-1845. [PMID: 34003255 PMCID: PMC8133831 DOI: 10.1042/bcj20200715] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022]
Abstract
Cryo-electron tomography (cryo-ET) can be used to reconstruct three-dimensional (3D) volumes, or tomograms, from a series of tilted two-dimensional images of biological objects in their near-native states in situ or in vitro. 3D subvolumes, or subtomograms, containing particles of interest can be extracted from tomograms, aligned, and averaged in a process called subtomogram averaging (STA). STA overcomes the low signal to noise ratio within the individual subtomograms to generate structures of the particle(s) of interest. In recent years, cryo-ET with STA has increasingly been capable of reaching subnanometer resolution due to improvements in microscope hardware and data processing strategies. There has also been an increase in the number and quality of software packages available to process cryo-ET data with STA. In this review, we describe and assess the data processing strategies available for cryo-ET data and highlight the recent software developments which have enabled the extraction of high-resolution information from cryo-ET datasets.
Collapse
Affiliation(s)
- Euan Pyle
- Institute of Structural and Molecular Biology, Birkbeck College, Malet St., London WC1E 7HX, U.K
| | - Giulia Zanetti
- Institute of Structural and Molecular Biology, Birkbeck College, Malet St., London WC1E 7HX, U.K
| |
Collapse
|
21
|
A streamlined workflow for automated cryo focused ion beam milling. J Struct Biol 2021; 213:107743. [PMID: 33971286 DOI: 10.1016/j.jsb.2021.107743] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/23/2021] [Accepted: 05/05/2021] [Indexed: 11/21/2022]
Abstract
Cryo-electron tomography (cryo-ET) is an emerging technique to study the cellular architecture and the structure of proteins at high resolution in situ. Most biological specimens are too thick to be directly investigated and are therefore thinned by milling with a focused ion beam under cryogenic conditions (cryo-FIB). This procedure is prone to contaminations, which makes it a tedious process, often leading to suboptimal results. Here, we present new hardware that overcomes the current limitations. We developed a new glove box and a high vacuum cryo transfer system and installed a stage heater, a cryo-shield and a cryo-shutter in the FIB milling microscope. This reduces the ice contamination during the transfer and milling process and simplifies the handling of the sample. In addition, we tested a new software application that automates the key milling steps. Together, these improvements allow for high-quality, high-throughput cryo-FIB milling. This paves the way for new types of experiments, which have been previously considered infeasible.
Collapse
|
22
|
Bouvette J, Liu HF, Du X, Zhou Y, Sikkema AP, da Fonseca Rezende E Mello J, Klemm BP, Huang R, Schaaper RM, Borgnia MJ, Bartesaghi A. Beam image-shift accelerated data acquisition for near-atomic resolution single-particle cryo-electron tomography. Nat Commun 2021; 12:1957. [PMID: 33785757 PMCID: PMC8009872 DOI: 10.1038/s41467-021-22251-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/08/2021] [Indexed: 11/19/2022] Open
Abstract
Tomographic reconstruction of cryopreserved specimens imaged in an electron microscope followed by extraction and averaging of sub-volumes has been successfully used to derive atomic models of macromolecules in their biological environment. Eliminating biochemical isolation steps required by other techniques, this method opens up the cell to in-situ structural studies. However, the need to compensate for errors in targeting introduced during mechanical navigation of the specimen significantly slows down tomographic data collection thus limiting its practical value. Here, we introduce protocols for tilt-series acquisition and processing that accelerate data collection speed by up to an order of magnitude and improve map resolution compared to existing approaches. We achieve this by using beam-image shift to multiply the number of areas imaged at each stage position, by integrating geometrical constraints during imaging to achieve high precision targeting, and by performing per-tilt astigmatic CTF estimation and data-driven exposure weighting to improve final map resolution. We validated our beam image-shift electron cryo-tomography (BISECT) approach by determining the structure of a low molecular weight target (~300 kDa) at 3.6 Å resolution where density for individual side chains is clearly resolved. Tomographic reconstructions of cryopreserved specimens enable in-situ structural studies. Here, the authors present the beam image-shift electron cryo-tomography (BISECT) approach that accelerates data collection speed and improves the map resolution compared to earlier approaches and present the in vitro structure of a 300 kDa protein complex that was solved at 3.6 Å resolution as a test case.
Collapse
Affiliation(s)
- Jonathan Bouvette
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Hsuan-Fu Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Xiaochen Du
- Department of Computer Science, Duke University, Durham, NC, USA.,Department of Chemistry, Duke University, Durham, NC, USA
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Andrew P Sikkema
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Juliana da Fonseca Rezende E Mello
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Bradley P Klemm
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Rick Huang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Roel M Schaaper
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA.
| | - Alberto Bartesaghi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA. .,Department of Computer Science, Duke University, Durham, NC, USA. .,Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
23
|
Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells. Nat Methods 2021; 18:186-193. [PMID: 33542511 PMCID: PMC7611018 DOI: 10.1038/s41592-020-01054-7] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023]
Abstract
Cryo-electron microscopy (cryo-EM) enables macromolecular structure determination in vitro and inside cells. In addition to aligning individual particles, accurate registration of sample motion and three-dimensional deformation during exposures are crucial for achieving high-resolution reconstructions. Here we describe M, a software tool that establishes a reference-based, multi-particle refinement framework for cryo-EM data and couples a comprehensive spatial deformation model to in silico correction of electron-optical aberrations. M provides a unified optimization framework for both frame-series and tomographic tilt-series data. We show that tilt-series data can provide the same resolution as frame-series data on a purified protein specimen, indicating that the alignment step no longer limits the resolution obtainable from tomographic data. In combination with Warp and RELION, M resolves to residue level a 70S ribosome bound to an antibiotic inside intact bacterial cells. Our work provides a computational tool that facilitates structural biology in cells.
Collapse
|
24
|
O'Reilly FJ, Xue L, Graziadei A, Sinn L, Lenz S, Tegunov D, Blötz C, Singh N, Hagen WJH, Cramer P, Stülke J, Mahamid J, Rappsilber J. In-cell architecture of an actively transcribing-translating expressome. Science 2020; 369:554-557. [PMID: 32732422 DOI: 10.1126/science.abb3758] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
Abstract
Structural biology studies performed inside cells can capture molecular machines in action within their native context. In this work, we developed an integrative in-cell structural approach using the genome-reduced human pathogen Mycoplasma pneumoniae We combined whole-cell cross-linking mass spectrometry, cellular cryo-electron tomography, and integrative modeling to determine an in-cell architecture of a transcribing and translating expressome at subnanometer resolution. The expressome comprises RNA polymerase (RNAP), the ribosome, and the transcription elongation factors NusG and NusA. We pinpointed NusA at the interface between a NusG-bound elongating RNAP and the ribosome and propose that it can mediate transcription-translation coupling. Translation inhibition dissociated the expressome, whereas transcription inhibition stalled and rearranged it. Thus, the active expressome architecture requires both translation and transcription elongation within the cell.
Collapse
Affiliation(s)
- Francis J O'Reilly
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Liang Xue
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Andrea Graziadei
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Ludwig Sinn
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Swantje Lenz
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Dimitry Tegunov
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Cedric Blötz
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Neil Singh
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Wim J H Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, GZMB, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany.
| | - Juri Rappsilber
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany. .,Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
25
|
Zhang B, Zhang X, Pearce R, Shen HB, Zhang Y. A New Protocol for Atomic-Level Protein Structure Modeling and Refinement Using Low-to-Medium Resolution Cryo-EM Density Maps. J Mol Biol 2020; 432:5365-5377. [PMID: 32771523 DOI: 10.1016/j.jmb.2020.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022]
Abstract
The rapid progress of cryo-electron microscopy (cryo-EM) in structural biology has raised an urgent need for robust methods to create and refine atomic-level structural models using low-resolution EM density maps. We propose a new protocol to create initial models using I-TASSER protein structure prediction, followed by EM density map-based rigid-body structure fitting, flexible fragment adjustment and atomic-level structure refinement simulations. The protocol was tested on a large set of 285 non-homologous proteins and generated structural models with correct folds for 260 proteins, where 28% had RMSDs below 2 Å. Compared to other state-of-the-art methods, the major advantage of the proposed pipeline lies in the uniform structure prediction and refinement protocol, as well as the extensive structural re-assembly simulations, which allow for low-to-medium resolution EM density map-guided structure modeling starting from amino acid sequences. Interestingly, the quality of both the image fitting and subsequent structure refinement was found to be strongly correlated with the correctness of the initial I-TASSER models; this is mainly due to the different correlation patterns observed between force field and structural quality for the models with template modeling score (or TM-score, a metric quantifying the similarity of models to the native) above and below a threshold of 0.5. Overall, the results demonstrate a new avenue that is ready to use for large-scale cryo-EM-based structure modeling and atomic-level density map-guided structure refinement.
Collapse
Affiliation(s)
- Biao Zhang
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xi Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robin Pearce
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China.
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
26
|
Sanchez RM, Zhang Y, Chen W, Dietrich L, Kudryashev M. Subnanometer-resolution structure determination in situ by hybrid subtomogram averaging - single particle cryo-EM. Nat Commun 2020; 11:3709. [PMID: 32709843 PMCID: PMC7381653 DOI: 10.1038/s41467-020-17466-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/30/2020] [Indexed: 11/09/2022] Open
Abstract
Cryo-electron tomography combined with subtomogram averaging (StA) has yielded high-resolution structures of macromolecules in their native context. However, high-resolution StA is not commonplace due to beam-induced sample drift, images with poor signal-to-noise ratios (SNR), challenges in CTF correction, and limited particle number. Here we address these issues by collecting tilt series with a higher electron dose at the zero-degree tilt. Particles of interest are then located within reconstructed tomograms, processed by conventional StA, and then re-extracted from the high-dose images in 2D. Single particle analysis tools are then applied to refine the 2D particle alignment and generate a reconstruction. Use of our hybrid StA (hStA) workflow improved the resolution for tobacco mosaic virus from 7.2 to 4.4 Å and for the ion channel RyR1 in crowded native membranes from 12.9 to 9.1 Å. These resolution gains make hStA a promising approach for other StA projects aimed at achieving subnanometer resolution.
Collapse
Affiliation(s)
- Ricardo M Sanchez
- Max Planck Institute for Biophysics, Max-von-Laue Strasse, 3, 60348, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt am Main, Max-von-Laue Strasse, 15, 60348, Frankfurt am Main, Germany
| | - Yingyi Zhang
- Max Planck Institute for Biophysics, Max-von-Laue Strasse, 3, 60348, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt am Main, Max-von-Laue Strasse, 15, 60348, Frankfurt am Main, Germany
| | - Wenbo Chen
- Max Planck Institute for Biophysics, Max-von-Laue Strasse, 3, 60348, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt am Main, Max-von-Laue Strasse, 15, 60348, Frankfurt am Main, Germany
| | - Lea Dietrich
- Department of Structural Biology, Max Planck Institute for Biophysics, Max-von-Laue Strasse, 3, 60348, Frankfurt am Main, Germany
| | - Mikhail Kudryashev
- Max Planck Institute for Biophysics, Max-von-Laue Strasse, 3, 60348, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt am Main, Max-von-Laue Strasse, 15, 60348, Frankfurt am Main, Germany.
| |
Collapse
|
27
|
Chen Q, Dwyer C, Sheng G, Zhu C, Li X, Zheng C, Zhu Y. Imaging Beam-Sensitive Materials by Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907619. [PMID: 32108394 DOI: 10.1002/adma.201907619] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/20/2019] [Indexed: 05/15/2023]
Abstract
Electron microscopy allows the extraction of multidimensional spatiotemporally correlated structural information of diverse materials down to atomic resolution, which is essential for figuring out their structure-property relationships. Unfortunately, the high-energy electrons that carry this important information can cause damage by modulating the structures of the materials. This has become a significant problem concerning the recent boost in materials science applications of a wide range of beam-sensitive materials, including metal-organic frameworks, covalent-organic frameworks, organic-inorganic hybrid materials, 2D materials, and zeolites. To this end, developing electron microscopy techniques that minimize the electron beam damage for the extraction of intrinsic structural information turns out to be a compelling but challenging need. This article provides a comprehensive review on the revolutionary strategies toward the electron microscopic imaging of beam-sensitive materials and associated materials science discoveries, based on the principles of electron-matter interaction and mechanisms of electron beam damage. Finally, perspectives and future trends in this field are put forward.
Collapse
Affiliation(s)
- Qiaoli Chen
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Christian Dwyer
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Guan Sheng
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Chongzhi Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaonian Li
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Changlin Zheng
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200438, China
| | - Yihan Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
28
|
Song K, Shang Z, Fu X, Lou X, Grigorieff N, Nicastro D. In situ structure determination at nanometer resolution using TYGRESS. Nat Methods 2020; 17:201-208. [PMID: 31768058 PMCID: PMC7004880 DOI: 10.1038/s41592-019-0651-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/20/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
Abstract
The resolution of subtomogram averages calculated from cryo-electron tomograms (cryo-ET) of crowded cellular environments is often limited owing to signal loss in, and misalignment of, the subtomograms. By contrast, single-particle cryo-electron microscopy (SP-cryo-EM) routinely reaches near-atomic resolution of isolated complexes. We report a method called 'tomography-guided 3D reconstruction of subcellular structures' (TYGRESS) that is a hybrid of cryo-ET and SP-cryo-EM, and is able to achieve close-to-nanometer resolution of complexes inside crowded cellular environments. TYGRESS combines the advantages of SP-cryo-EM (images with good signal-to-noise ratio and contrast, as well as minimal radiation damage) and subtomogram averaging (three-dimensional alignment of macromolecules in a complex sample). Using TYGRESS, we determined the structure of the intact ciliary axoneme with up to resolution of 12 Å. These results reveal many structural details that were not visible by cryo-ET alone. TYGRESS is generally applicable to cellular complexes that are amenable to subtomogram averaging.
Collapse
Affiliation(s)
- Kangkang Song
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cryo-EM Core Facility, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zhiguo Shang
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaofeng Fu
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Biological Science Imaging Resource, Florida State University, Tallahassee, FL, USA
| | - Xiaochu Lou
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nikolaus Grigorieff
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
29
|
Dearnaley WJ, Schleupner B, Varano AC, Alden NA, Gonzalez F, Casasanta MA, Scharf BE, Dukes MJ, Kelly DF. Liquid-Cell Electron Tomography of Biological Systems. NANO LETTERS 2019; 19:6734-6741. [PMID: 31244227 PMCID: PMC6786937 DOI: 10.1021/acs.nanolett.9b01309] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Liquid-cell electron microscopy is a rapidly growing field in the imaging domain. While real-time observations are readily available to analyze materials and biological systems, these measurementshave been limited to the two-dimensional (2-D) image plane. Here, we introduce an exciting technical advance to image materials in 3-D while enclosed in liquid. The development of liquid-cell electron tomography permitted us to observe and quantify host-pathogen interactions in solution while contained in the vacuum system of the electron microscope. In doing so, we demonstrate new insights for the rules of engagement involving a unique bacteriophage and its host bacterium. A deeper analysis of the genetic content of the phage pathogens revealed structural features of the infectious units while introducing a new paradigm for host interactions. Overall, we demonstrate a technological opportunity to elevate research efforts for in situ imaging while providing a new level of dimensionality beyond the current state of the field.
Collapse
Affiliation(s)
- William J. Dearnaley
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Structural Oncology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia 24016, United States
| | - Beatrice Schleupner
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia 24016, United States
| | - A. Cameron Varano
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Structural Oncology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia 24016, United States
| | - Nick A. Alden
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia 24016, United States
| | - Floricel Gonzalez
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael A. Casasanta
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Structural Oncology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Birgit E. Scharf
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Madeline J. Dukes
- Applications Science, Protochips Inc., Morrisville, North Carolina 27560, United States
| | - Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Structural Oncology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, Virginia 24016, United States
| |
Collapse
|
30
|
Obr M, Schur FKM. Structural analysis of pleomorphic and asymmetric viruses using cryo-electron tomography and subtomogram averaging. Adv Virus Res 2019; 105:117-159. [PMID: 31522703 DOI: 10.1016/bs.aivir.2019.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Describing the protein interactions that form pleomorphic and asymmetric viruses represents a considerable challenge to most structural biology techniques, including X-ray crystallography and single particle cryo-electron microscopy. Obtaining a detailed understanding of these interactions is nevertheless important, considering the number of relevant human pathogens that do not follow strict icosahedral or helical symmetry. Cryo-electron tomography and subtomogram averaging methods provide structural insights into complex biological environments and are well suited to go beyond structures of perfectly symmetric viruses. This chapter discusses recent developments showing that cryo-ET and subtomogram averaging can provide high-resolution insights into hitherto unknown structural features of pleomorphic and asymmetric virus particles. It also describes how these methods have significantly added to our understanding of retrovirus capsid assemblies in immature and mature viruses. Additional examples of irregular viruses and their associated proteins, whose structures have been studied via cryo-ET and subtomogram averaging, further support the versatility of these methods.
Collapse
Affiliation(s)
- Martin Obr
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Florian K M Schur
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.
| |
Collapse
|
31
|
Abstract
Cryo-electron tomography (cryo-ET) allows three-dimensional (3D) visualization of frozen-hydrated biological samples, such as protein complexes and cell organelles, in near-native environments at nanometer scale. Protein complexes that are present in multiple copies in a set of tomograms can be extracted, mutually aligned, and averaged to yield a signal-enhanced 3D structure up to sub-nanometer or even near-atomic resolution. This technique, called subtomogram averaging (StA), is powered by improvements in EM hardware and image processing software. Importantly, StA provides unique biological insights into the structure and function of cellular machinery in close-to-native contexts. In this chapter, we describe the principles and key steps of StA. We briefly cover sample preparation and data collection with an emphasis on image processing procedures related to tomographic reconstruction, subtomogram alignment, averaging, and classification. We conclude by summarizing current limitations and future directions of this technique with a focus on high-resolution StA.
Collapse
|
32
|
Schur FK. Toward high-resolution in situ structural biology with cryo-electron tomography and subtomogram averaging. Curr Opin Struct Biol 2019; 58:1-9. [PMID: 31005754 DOI: 10.1016/j.sbi.2019.03.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 01/03/2023]
Abstract
Cryo-electron tomography (cryo-ET) provides unprecedented insights into the molecular constituents of biological environments. In combination with an image processing method called subtomogram averaging (STA), detailed 3D structures of biological molecules can be obtained in large, irregular macromolecular assemblies or in situ, without the need for purification. The contextual meta-information these methods also provide, such as a protein's location within its native environment, can then be combined with functional data. This allows the derivation of a detailed view on the physiological or pathological roles of proteins from the molecular to cellular level. Despite their tremendous potential in in situ structural biology, cryo-ET and STA have been restricted by methodological limitations, such as the low obtainable resolution. Exciting progress now allows one to reach unprecedented resolutions in situ, ranging in optimal cases beyond the nanometer barrier. Here, I review current frontiers and future challenges in routinely determining high-resolution structures in in situ environments using cryo-ET and STA.
Collapse
Affiliation(s)
- Florian Km Schur
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria.
| |
Collapse
|
33
|
Zhao H, Wu Y, Xu Z, Ma R, Ding Y, Bai X, Rong Q, Zhang Y, Li B, Ji X. Mechanistic Insight Into the Interaction Between Helicobacter pylori Urease Subunit α and Its Molecular Chaperone Hsp60. Front Microbiol 2019; 10:153. [PMID: 30804917 PMCID: PMC6370633 DOI: 10.3389/fmicb.2019.00153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/22/2019] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is the etiologic agent in a variety of gastroduodenal diseases. As its key pathogenic factors, both urease and Hsp60 play important roles in the pathogenesis of H. pylori. Previous studies have suggested that there is close relationship between urease and Hsp60, which implied that Hsp60 may act as a chaperone in urease stabilization and assembly. However, how these two proteins interact remains unclear. In this study, the impact of Hsp60 on urease activity of H. pylori lysate was first detected to confirm the interaction between urease and Hsp60. Pull-down assays further indicated that Hsp60 could bind to UreA subunit but not UreB. Then, the 3D structure of Hsp60 was modeled using I-TASSER to simulate the binding complex with UreA by molecular docking. The results showed that UreA is a perfect fit for the cavity of Hsp60. Analysis of the resulting model demonstrated that at least seven residues of UreA, located on two interfaces, participate in the interaction. Site-directed mutagenesis of these potential residues showed reduced affinity with Hsp60 than the wild type UreA through surface plasmon resonance (SPR) experiments, and D68 appears to have an important role in the affinity. Further analysis also showed that mutation of E25 and K26 caused a more rapid association and dissociation than with wild UreA, implying that they have roles in stabilizing the interaction complex. These affinity comparisons suggested that the interfaces predicted by molecular docking are credible. Our study indicated a direct interaction between Hsp60 and urease and revealed the binding interfaces and key residues involved in the interaction. These results provide further evidence for the chaperone activity of Hsp60 toward urease and lay a foundation to better understand the maturation mechanism of urease in H. pylori.
Collapse
Affiliation(s)
- Huilin Zhao
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Yulong Wu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Zheng Xu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Ran Ma
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yunfei Ding
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Xuelian Bai
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, China
| | - Qianyu Rong
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Ying Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Boqing Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Xiaofei Ji
- Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
34
|
Melia CE, Bharat TAM. Locating macromolecules and determining structures inside bacterial cells using electron cryotomography. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:973-981. [PMID: 29908328 PMCID: PMC6052677 DOI: 10.1016/j.bbapap.2018.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 01/01/2023]
Abstract
Electron cryotomography (cryo-ET) is an imaging technique uniquely suited to the study of bacterial ultrastructure and cell biology. Recent years have seen a surge in structural and cell biology research on bacteria using cryo-ET. This research has driven major technical developments in the field, with applications emerging to address a wide range of biological questions. In this review, we explore the diversity of cryo-ET approaches used for structural and cellular microbiology, with a focus on in situ localization and structure determination of macromolecules. The first section describes strategies employed to locate target macromolecules within large cellular volumes. Next, we explore methods to study thick specimens by sample thinning. Finally, we review examples of macromolecular structure determination in a cellular context using cryo-ET. The examples outlined serve as powerful demonstrations of how the cellular location, structure, and function of any bacterial macromolecule of interest can be investigated using cryo-ET.
Collapse
Affiliation(s)
- Charlotte E Melia
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; Central Oxford Structural and Molecular Imaging Centre, University of Oxford, Oxford OX1 3RE, United Kingdom.
| |
Collapse
|
35
|
O'Neil PT, Machen AJ, Deatherage BC, Trecazzi C, Tischer A, Machha VR, Auton MT, Baldwin MR, White TA, Fisher MT. The Chaperonin GroEL: A Versatile Tool for Applied Biotechnology Platforms. Front Mol Biosci 2018; 5:46. [PMID: 29868607 PMCID: PMC5962814 DOI: 10.3389/fmolb.2018.00046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/23/2018] [Indexed: 01/06/2023] Open
Abstract
The nucleotide-free chaperonin GroEL is capable of capturing transient unfolded or partially unfolded states that flicker in and out of existence due to large-scale protein dynamic vibrational modes. In this work, three short vignettes are presented to highlight our continuing advances in the application of GroEL biosensor biolayer interferometry (BLI) technologies and includes expanded uses of GroEL as a molecular scaffold for electron microscopy determination. The first example presents an extension of the ability to detect dynamic pre-aggregate transients in therapeutic protein solutions where the assessment of the kinetic stability of any folded protein or, as shown herein, quantitative detection of mutant-type protein when mixed with wild-type native counterparts. Secondly, using a BLI denaturation pulse assay with GroEL, the comparison of kinetically controlled denaturation isotherms of various von Willebrand factor (vWF) triple A domain mutant-types is shown. These mutant-types are single point mutations that locally disorder the A1 platelet binding domain resulting in one gain of function and one loss of function phenotype. Clear, separate, and reproducible kinetic deviations in the mutant-type isotherms exist when compared with the wild-type curve. Finally, expanding on previous electron microscopy (EM) advances using GroEL as both a protein scaffold surface and a release platform, examples are presented where GroEL-protein complexes can be imaged using electron microscopy tilt series and the low-resolution structures of aggregation-prone proteins that have interacted with GroEL. The ability of GroEL to bind hydrophobic regions and transient partially folded states allows one to employ this unique molecular chaperone both as a versatile structural scaffold and as a sensor of a protein's folded states.
Collapse
Affiliation(s)
- Pierce T O'Neil
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Alexandra J Machen
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Benjamin C Deatherage
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Caleb Trecazzi
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Alexander Tischer
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Venkata R Machha
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Matthew T Auton
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Michael R Baldwin
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Tommi A White
- Department of Biochemistry, University of Missouri, Columbia, MO, United States.,Electron Microscopy Core Facility, University of Missouri, Columbia, MO, United States
| | - Mark T Fisher
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
36
|
IgG Antibody 3D Structures and Dynamics. Antibodies (Basel) 2018; 7:antib7020018. [PMID: 31544870 PMCID: PMC6698877 DOI: 10.3390/antib7020018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
Antibodies are vital for human health because of their ability to function as nature's drugs by protecting the body from infection. In recent decades, antibodies have been used as pharmaceutics for targeted therapy in patients with cancer, autoimmune diseases, and cardiovascular diseases. Capturing the dynamic structure of antibodies and characterizing antibody fluctuation is critical for gaining a deeper understanding of their structural characteristics and for improving drug development. Current techniques for studying three-dimensional (3D) structural heterogeneity and variability of proteins have limitations in ascertaining the dynamic structural behavior of antibodies and antibody-antigen complexes. Here, we review current techniques used to study antibody structures with a focus on the recently developed individual-particle electron tomography (IPET) technique. IPET, as a particle-by-particle methodology for 3D structural characterization, has shown advantages in studying structural variety and conformational changes of antibodies, providing direct imaging data for biomolecular engineering to improve development and clinical application of synthetic antibodies.
Collapse
|
37
|
Popp D, Koh F, Scipion CPM, Ghoshdastider U, Narita A, Holmes KC, Robinson RC. Advances in Structural Biology and the Application to Biological Filament Systems. Bioessays 2018; 40:e1700213. [PMID: 29484695 DOI: 10.1002/bies.201700213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/10/2018] [Indexed: 11/10/2022]
Abstract
Structural biology has experienced several transformative technological advances in recent years. These include: development of extremely bright X-ray sources (microfocus synchrotron beamlines and free electron lasers) and the use of electrons to extend protein crystallography to ever decreasing crystal sizes; and an increase in the resolution attainable by cryo-electron microscopy. Here we discuss the use of these techniques in general terms and highlight their application for biological filament systems, an area that is severely underrepresented in atomic resolution structures. We assemble a model of a capped tropomyosin-actin minifilament to demonstrate the utility of combining structures determined by different techniques. Finally, we survey the methods that attempt to transform high resolution structural biology into more physiological environments, such as the cell. Together these techniques promise a compelling decade for structural biology and, more importantly, they will provide exciting discoveries in understanding the designs and purposes of biological machines.
Collapse
Affiliation(s)
- David Popp
- Institute of Molecular and Cell Biology A*STAR (Agency for Science, Technology and Research) Biopolis, Singapore 138673, Singapore
| | - Fujiet Koh
- Institute of Molecular and Cell Biology A*STAR (Agency for Science, Technology and Research) Biopolis, Singapore 138673, Singapore
| | - Clement P M Scipion
- Institute of Molecular and Cell Biology A*STAR (Agency for Science, Technology and Research) Biopolis, Singapore 138673, Singapore.,Department of Biochemistry Yong Loo Lin School of Medicine National University of Singapore, Singapore 117597, Singapore
| | - Umesh Ghoshdastider
- Institute of Molecular and Cell Biology A*STAR (Agency for Science, Technology and Research) Biopolis, Singapore 138673, Singapore
| | - Akihiro Narita
- Nagoya University Graduate School of Science Structural Biology Research Center and Division of Biological Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kenneth C Holmes
- Max Planck Institute for Medical Research, D69120 Heidelberg, Germany
| | - Robert C Robinson
- Institute of Molecular and Cell Biology A*STAR (Agency for Science, Technology and Research) Biopolis, Singapore 138673, Singapore.,Department of Biochemistry Yong Loo Lin School of Medicine National University of Singapore, Singapore 117597, Singapore.,Research Institute for Interdisciplinary Science Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
38
|
Fernandez JJ, Li S, Bharat TAM, Agard DA. Cryo-tomography tilt-series alignment with consideration of the beam-induced sample motion. J Struct Biol 2018; 202:200-209. [PMID: 29410148 PMCID: PMC5949096 DOI: 10.1016/j.jsb.2018.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/18/2022]
Abstract
Recent evidence suggests that the beam-induced motion of the sample during tilt-series acquisition is a major resolution-limiting factor in electron cryo-tomography (cryoET). It causes suboptimal tilt-series alignment and thus deterioration of the reconstruction quality. Here we present a novel approach to tilt-series alignment and tomographic reconstruction that considers the beam-induced sample motion through the tilt-series. It extends the standard fiducial-based alignment approach in cryoET by introducing quadratic polynomials to model the sample motion. The model can be used during reconstruction to yield a motion-compensated tomogram. We evaluated our method on various datasets with different sample sizes. The results demonstrate that our method could be a useful tool to improve the quality of tomograms and the resolution in cryoET.
Collapse
Affiliation(s)
| | - Sam Li
- Dept. Biochemistry and Biophysics, University of California, San Francisco, USA
| | - Tanmay A M Bharat
- MRC Laboratory of Molecular Biology, Francis Crick Avenue Cambridge CB2 0QH, UK; Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - David A Agard
- Dept. Biochemistry and Biophysics, University of California, San Francisco, USA
| |
Collapse
|
39
|
|
40
|
|
41
|
Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat Methods 2017; 14:793-796. [PMID: 28671674 DOI: 10.1038/nmeth.4347] [Citation(s) in RCA: 668] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022]
Abstract
We present a strategy for tackling preferred specimen orientation in single-particle cryogenic electron microscopy by employing tilts during data collection. We also describe a tool to quantify the resulting directional resolution using 3D Fourier shell correlation volumes. We applied these methods to determine the structures at near-atomic resolution of the influenza hemagglutinin trimer, which adopts a highly preferred specimen orientation, and of ribosomal biogenesis intermediates, which adopt moderately preferred orientations.
Collapse
|
42
|
Galaz-Montoya JG, Ludtke SJ. The advent of structural biology in situ by single particle cryo-electron tomography. BIOPHYSICS REPORTS 2017; 3:17-35. [PMID: 28781998 PMCID: PMC5516000 DOI: 10.1007/s41048-017-0040-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/30/2017] [Indexed: 01/06/2023] Open
Abstract
Single particle tomography (SPT), also known as subtomogram averaging, is a powerful technique uniquely poised to address questions in structural biology that are not amenable to more traditional approaches like X-ray crystallography, nuclear magnetic resonance, and conventional cryoEM single particle analysis. Owing to its potential for in situ structural biology at subnanometer resolution, SPT has been gaining enormous momentum in the last five years and is becoming a prominent, widely used technique. This method can be applied to unambiguously determine the structures of macromolecular complexes that exhibit compositional and conformational heterogeneity, both in vitro and in situ. Here we review the development of SPT, highlighting its applications and identifying areas of ongoing development.
Collapse
Affiliation(s)
- Jesús G. Galaz-Montoya
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Steven J. Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
43
|
Liu Y, Wu X, Hou W, Li P, Sha W, Tian Y. Structure and function of seed storage proteins in faba bean (Vicia faba L.). 3 Biotech 2017; 7:74. [PMID: 28452019 DOI: 10.1007/s13205-017-0691-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/10/2017] [Indexed: 02/07/2023] Open
Abstract
The protein subunit is the most important basic unit of protein, and its study can unravel the structure and function of seed storage proteins in faba bean. In this study, we identified six specific protein subunits in Faba bean (cv. Qinghai 13) combining liquid chromatography (LC), liquid chromatography-electronic spray ionization mass (LC-ESI-MS/MS) and bio-information technology. The results suggested a diversity of seed storage proteins in faba bean, and a total of 16 proteins (four GroEL molecular chaperones and 12 plant-specific proteins) were identified from 97-, 96-, 64-, 47-, 42-, and 38-kD-specific protein subunits in faba bean based on the peptide sequence. We also analyzed the composition and abundance of the amino acids, the physicochemical characteristics, secondary structure, three-dimensional structure, transmembrane domain, and possible subcellular localization of these identified proteins in faba bean seed, and finally predicted function and structure. The three-dimensional structures were generated based on homologous modeling, and the protein function was analyzed based on the annotation from the non-redundant protein database (NR database, NCBI) and function analysis of optimal modeling. The objective of this study was to identify the seed storage proteins in faba bean and confirm the structure and function of these proteins. Our results can be useful for the study of protein nutrition and achieve breeding goals for optimal protein quality in faba bean.
Collapse
Affiliation(s)
- Yujiao Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai Academy of Agricultural and Forestry Science, Xining, Qinghai, 810016, People's Republic of China.
| | - Xuexia Wu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai Academy of Agricultural and Forestry Science, Xining, Qinghai, 810016, People's Republic of China
| | - Wanwei Hou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai Academy of Agricultural and Forestry Science, Xining, Qinghai, 810016, People's Republic of China
| | - Ping Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai Academy of Agricultural and Forestry Science, Xining, Qinghai, 810016, People's Republic of China
| | - Weichao Sha
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai Academy of Agricultural and Forestry Science, Xining, Qinghai, 810016, People's Republic of China
| | - Yingying Tian
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Qinghai Academy of Agricultural and Forestry Science, Xining, Qinghai, 810016, People's Republic of China
| |
Collapse
|
44
|
Grange M, Vasishtan D, Grünewald K. Cellular electron cryo tomography and in situ sub-volume averaging reveal the context of microtubule-based processes. J Struct Biol 2017; 197:181-190. [PMID: 27374320 PMCID: PMC5287354 DOI: 10.1016/j.jsb.2016.06.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 11/27/2022]
Abstract
Electron cryo-tomography (cryoET) is currently the only technique that allows the direct observation of proteins in their native cellular environment. Sub-volume averaging of electron tomograms offers a route to increase the signal-to-noise of repetitive biological structures, such improving the information content and interpretability of tomograms. We discuss the potential for sub-volume averaging in highlighting and investigating specific processes in situ, focusing on microtubule structure and viral infection. We show that (i) in situ sub-volume averaging from single tomograms can guide and complement segmentation of biological features, (ii) the in situ determination of the structure of individual viruses is possible as they infect a cell, and (iii) novel, transient processes can be imaged with high levels of detail.
Collapse
Affiliation(s)
- Michael Grange
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Daven Vasishtan
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Kay Grünewald
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom.
| |
Collapse
|
45
|
Castaño-Díez D, Kudryashev M, Stahlberg H. Dynamo Catalogue: Geometrical tools and data management for particle picking in subtomogram averaging of cryo-electron tomograms. J Struct Biol 2017; 197:135-144. [DOI: 10.1016/j.jsb.2016.06.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 01/04/2023]
|
46
|
Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION. Nat Protoc 2016; 11:2054-65. [PMID: 27685097 DOI: 10.1038/nprot.2016.124] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electron cryo-tomography (cryo-ET) is a technique that is used to produce 3D pictures (tomograms) of complex objects such as asymmetric viruses, cellular organelles or whole cells from a series of tilted electron cryo-microscopy (cryo-EM) images. Averaging of macromolecular complexes found within tomograms is known as subtomogram averaging, and this technique allows structure determination of macromolecular complexes in situ. Subtomogram averaging is also gaining in popularity for the calculation of initial models for single-particle analysis. We describe herein a protocol for subtomogram averaging from cryo-ET data using the RELION software (http://www2.mrc-lmb.cam.ac.uk/relion). RELION was originally developed for cryo-EM single-particle analysis, and the subtomogram averaging approach presented in this protocol has been implemented in the existing workflow for single-particle analysis so that users may conveniently tap into existing capabilities of the RELION software. We describe how to calculate 3D models for the contrast transfer function (CTF) that describe the transfer of information in the imaging process, and we illustrate the results of classification and subtomogram averaging refinement for cryo-ET data of purified hepatitis B capsid particles and Saccharomyces cerevisiae 80S ribosomes. Using the steps described in this protocol, along with the troubleshooting and optimization guidelines, high-resolution maps can be obtained in which secondary structure elements are resolved subtomogram.
Collapse
|
47
|
Use of evolutionary information in the fitting of atomic level protein models in low resolution cryo-EM map of a protein assembly improves the accuracy of the fitting. J Struct Biol 2016; 195:294-305. [PMID: 27444391 DOI: 10.1016/j.jsb.2016.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 11/22/2022]
Abstract
Protein-protein interface residues, especially those at the core of the interface, exhibit higher conservation than residues in solvent exposed regions. Here, we explore the ability of this differential conservation to evaluate fittings of atomic models in low-resolution cryo-EM maps and select models from the ensemble of solutions that are often proposed by different model fitting techniques. As a prelude, using a non-redundant and high-resolution structural dataset involving 125 permanent and 95 transient complexes, we confirm that core interface residues are conserved significantly better than nearby non-interface residues and this result is used in the cryo-EM map analysis. From the analysis of inter-component interfaces in a set of fitted models associated with low-resolution cryo-EM maps of ribosomes, chaperones and proteasomes we note that a few poorly conserved residues occur at interfaces. Interestingly a few conserved residues are not in the interface, though they are close to the interface. These observations raise the potential requirement of refitting the models in the cryo-EM maps. We show that sampling an ensemble of models and selection of models with high residue conservation at the interface and in good agreement with the density helps in improving the accuracy of the fit. This study indicates that evolutionary information can serve as an additional input to improve and validate fitting of atomic models in cryo-EM density maps.
Collapse
|
48
|
Abstract
Cryo-electron tomography (cryo-ET) allows 3D volumes to be reconstructed from a set of 2D projection images of a tilted biological sample. It allows densities to be resolved in 3D that would otherwise overlap in 2D projection images. Cryo-ET can be applied to resolve structural features in complex native environments, such as within the cell. Analogous to single-particle reconstruction in cryo-electron microscopy, structures present in multiple copies within tomograms can be extracted, aligned, and averaged, thus increasing the signal-to-noise ratio and resolution. This reconstruction approach, termed subtomogram averaging, can be used to determine protein structures in situ. It can also be applied to facilitate more conventional 2D image analysis approaches. In this chapter, we provide an introduction to cryo-ET and subtomogram averaging. We describe the overall workflow, including tomographic data collection, preprocessing, tomogram reconstruction, subtomogram alignment and averaging, classification, and postprocessing. We consider theoretical issues and practical considerations for each step in the workflow, along with descriptions of recent methodological advances and remaining limitations.
Collapse
Affiliation(s)
- W Wan
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - J A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
49
|
ICON: 3D reconstruction with 'missing-information' restoration in biological electron tomography. J Struct Biol 2016; 195:100-12. [PMID: 27079261 DOI: 10.1016/j.jsb.2016.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/09/2016] [Accepted: 04/10/2016] [Indexed: 11/20/2022]
Abstract
Electron tomography (ET) plays an important role in revealing biological structures, ranging from macromolecular to subcellular scale. Due to limited tilt angles, ET reconstruction always suffers from the 'missing wedge' artifacts, thus severely weakens the further biological interpretation. In this work, we developed an algorithm called Iterative Compressed-sensing Optimized Non-uniform fast Fourier transform reconstruction (ICON) based on the theory of compressed-sensing and the assumption of sparsity of biological specimens. ICON can significantly restore the missing information in comparison with other reconstruction algorithms. More importantly, we used the leave-one-out method to verify the validity of restored information for both simulated and experimental data. The significant improvement in sub-tomogram averaging by ICON indicates its great potential in the future application of high-resolution structural determination of macromolecules in situ.
Collapse
|
50
|
Turoňová B, Marsalek L, Slusallek P. On geometric artifacts in cryo electron tomography. Ultramicroscopy 2016; 163:48-61. [DOI: 10.1016/j.ultramic.2016.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/29/2015] [Accepted: 01/23/2016] [Indexed: 11/26/2022]
|