1
|
Huebert DNG, Ghorbani A, Lam SYB, Larijani M. Coevolution of Lentiviral Vif with Host A3F and A3G: Insights from Computational Modelling and Ancestral Sequence Reconstruction. Viruses 2025; 17:393. [PMID: 40143321 PMCID: PMC11946711 DOI: 10.3390/v17030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The evolutionary arms race between host restriction factors and viral antagonists provides crucial insights into immune system evolution and viral adaptation. This study investigates the structural and evolutionary dynamics of the double-domain restriction factors A3F and A3G and their viral inhibitor, Vif, across diverse primate species. By constructing 3D structural homology models and integrating ancestral sequence reconstruction (ASR), we identified patterns of sequence diversity, structural conservation, and functional adaptation. Inactive CD1 (Catalytic Domain 1) domains displayed greater sequence diversity and more positive surface charges than active CD2 domains, aiding nucleotide chain binding and intersegmental transfer. Despite variability, the CD2 DNA-binding grooves remained structurally consistent with conserved residues maintaining critical functions. A3F and A3G diverged in loop 7' interaction strategies, utilising distinct molecular interactions to facilitate their roles. Vif exhibited charge variation linked to host species, reflecting its coevolution with A3 proteins. These findings illuminate how structural adaptations and charge dynamics enable both restriction factors and their viral antagonists to adapt to selective pressures. Our results emphasize the importance of studying structural evolution in host-virus interactions, with implications for understanding immune defense mechanisms, zoonotic risks, and viral evolution. This work establishes a foundation for further exploration of restriction factor diversity and coevolution across species.
Collapse
Affiliation(s)
- David Nicolas Giuseppe Huebert
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (D.N.G.H.); (A.G.)
- Structural Biology and Immunology Program, Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Atefeh Ghorbani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (D.N.G.H.); (A.G.)
| | - Shaw Yick Brian Lam
- Structural Biology and Immunology Program, Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Mani Larijani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (D.N.G.H.); (A.G.)
- Structural Biology and Immunology Program, Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| |
Collapse
|
2
|
Chelico L, Adolph MB. Purification of enzymatically active APOBEC proteins from an insect cell expression system. Methods Enzymol 2024; 713:31-68. [PMID: 40250960 DOI: 10.1016/bs.mie.2024.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
The APOBEC cytidine/deoxycytidine deaminase family of enzymes has 11 members in humans. These enzymes carry out essential developmental, metabolic, and immunological functions through the deamination of cytosine to form uracil in RNA or single-stranded DNA. The known physiological functions relate to lipid absorption (APOBEC1), immunoglobulin gene diversification (AID), virus restriction (APOBEC3A-H, excluding E), and muscle differentiation (APOBEC2). The ability to characterize in vitro how APOBEC enzymes interact with and catalyze cytidine/deoxycytidine deamination of their substrate has provided key insights and understanding of their physiological functions. Having the most highly active and soluble enzyme to carry out in vitro experiments is essential. For APOBEC enzymes this requires purification from a mammalian or insect cell system. Since mammalian cell expression is lower than robustly engineered recombinant systems such as the Spodoptera frugiperda 9 (Sf9) and baculovirus systems, we have developed recombinant baculovirus expression and purification methods for APOBEC enzymes from Sf9 cells. The yield for all family members is suitable for biochemical assays, with some enzymes yielding milligram amounts (suitable for structural studies). Here we describe the expression and purification of APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3F, APOBEC3G, APOBEC3H (Haplotypes II, V, VII), and APOBEC1 using existing molecular biology reagents. We also describe how to clone a novel gene into the system for expression and purification. Due to different expression levels and solubility, three purification methods are detailed that enable high, medium, and low expressing APOBECs to be purified.
Collapse
Affiliation(s)
- Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Madison B Adolph
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
3
|
Kamba K, Wan L, Unzai S, Morishita R, Takaori-Kondo A, Nagata T, Katahira M. Direct inhibition of human APOBEC3 deaminases by HIV-1 Vif independent of the proteolysis pathway. Biophys J 2024; 123:294-306. [PMID: 38115583 PMCID: PMC10870137 DOI: 10.1016/j.bpj.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
HIV-1 Vif is known to counteract the antiviral activity of human apolipoprotein B mRNA-editing catalytic polypeptide-like (A3), a cytidine deaminase, in various ways. However, the precise mechanism behind this interaction has remained elusive. Within infected cells, Vif forms a complex called VβBCC, comprising CBFβ and the components of E3 ubiquitin ligase, Elongin B, Elongin C, and Cullin5. Together with the ubiquitin-conjugating enzyme, VβBCC induces ubiquitination-mediated proteasomal degradation of A3. However, Vif exhibits additional counteractive effects. In this study, we elucidate that VβBCC inhibits deamination by A3G, A3F, and A3B independently of proteasomal degradation. Surprisingly, we discovered that this inhibition for A3G is directly attributed to the interaction between VβBCC and the C-terminal domain of A3G. Previously, it was believed that Vif did not interact with the C-terminal domain. Our findings suggest that inhibiting the interaction between VβBCC and the C-terminal domain, as well as the N-terminal domain known to be targeted for ubiquitination, of A3G may be needed to prevent counteraction by Vif.
Collapse
Affiliation(s)
- Keisuke Kamba
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan
| | - Li Wan
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan; Graduate School of Energy Science, Kyoto University, Uji, Kyoto, Japan
| | - Satoru Unzai
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Ryo Morishita
- CellFree Sciences Co., Ltd., Matsuyama, Ehime, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan; Graduate School of Energy Science, Kyoto University, Uji, Kyoto, Japan.
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan; Graduate School of Energy Science, Kyoto University, Uji, Kyoto, Japan.
| |
Collapse
|
4
|
Ghorbani A, Khataeipour SJ, Solbakken MH, Huebert DNG, Khoddami M, Eslamloo K, Collins C, Hori T, Jentoft S, Rise ML, Larijani M. Ancestral reconstruction reveals catalytic inactivation of activation-induced cytidine deaminase concomitant with cold water adaption in the Gadiformes bony fish. BMC Biol 2022; 20:293. [PMID: 36575514 PMCID: PMC9795746 DOI: 10.1186/s12915-022-01489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Antibody affinity maturation in vertebrates requires the enzyme activation-induced cytidine deaminase (AID) which initiates secondary antibody diversification by mutating the immunoglobulin loci. AID-driven antibody diversification is conserved across jawed vertebrates since bony and cartilaginous fish. Two exceptions have recently been reported, the Pipefish and Anglerfish, in which the AID-encoding aicda gene has been lost. Both cases are associated with unusual reproductive behavior, including male pregnancy and sexual parasitism. Several cold water fish in the Atlantic cod (Gadinae) family carry an aicda gene that encodes for a full-length enzyme but lack affinity-matured antibodies and rely on antibodies of broad antigenic specificity. Hence, we examined the functionality of their AID. RESULTS By combining genomics, transcriptomics, immune responsiveness, and functional enzymology of AID from 36 extant species, we demonstrate that AID of that Atlantic cod and related fish have extremely lethargic or no catalytic activity. Through ancestral reconstruction and functional enzymology of 71 AID enzymes, we show that this enzymatic inactivation likely took place relatively recently at the emergence of the true cod family (Gadidae) from their ancestral Gadiformes order. We show that this AID inactivation is not only concordant with the previously shown loss of key adaptive immune genes and expansion of innate and cell-based immune genes in the Gadiformes but is further reflected in the genomes of these fish in the form of loss of AID-favored sequence motifs in their immunoglobulin variable region genes. CONCLUSIONS Recent demonstrations of the loss of the aicda gene in two fish species challenge the paradigm that AID-driven secondary antibody diversification is absolutely conserved in jawed vertebrates. These species have unusual reproductive behaviors forming an evolutionary pressure for a certain loss of immunity to avoid tissue rejection. We report here an instance of catalytic inactivation and functional loss of AID rather than gene loss in a conventionally reproducing vertebrate. Our data suggest that an expanded innate immunity, in addition to lower pathogenic pressures in a cold environment relieved the pressure to maintain robust secondary antibody diversification. We suggest that in this unique scenario, the AID-mediated collateral genome-wide damage would form an evolutionary pressure to lose AID function.
Collapse
Affiliation(s)
- Atefeh Ghorbani
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - S. Javad Khataeipour
- grid.25055.370000 0000 9130 6822Department of Computer Science, Faculty of Science, Memorial University of Newfoundland, St. John’s, Canada
| | - Monica H. Solbakken
- grid.5510.10000 0004 1936 8921Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - David N. G. Huebert
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - Minasadat Khoddami
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Khalil Eslamloo
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Cassandra Collins
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Tiago Hori
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Sissel Jentoft
- grid.5510.10000 0004 1936 8921Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Matthew L. Rise
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Mani Larijani
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| |
Collapse
|
5
|
Barzak FM, Ryan TM, Mohammadzadeh N, Harjes S, Kvach MV, Kurup HM, Krause KL, Chelico L, Filichev VV, Harjes E, Jameson GB. Small-Angle X-ray Scattering (SAXS) Measurements of APOBEC3G Provide Structural Basis for Binding of Single-Stranded DNA and Processivity. Viruses 2022; 14:1974. [PMID: 36146779 PMCID: PMC9505750 DOI: 10.3390/v14091974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
APOBEC3 enzymes are polynucleotide deaminases, converting cytosine to uracil on single-stranded DNA (ssDNA) and RNA as part of the innate immune response against viruses and retrotransposons. APOBEC3G is a two-domain protein that restricts HIV. Although X-ray single-crystal structures of individual catalytic domains of APOBEC3G with ssDNA as well as full-length APOBEC3G have been solved recently, there is little structural information available about ssDNA interaction with the full-length APOBEC3G or any other two-domain APOBEC3. Here, we investigated the solution-state structures of full-length APOBEC3G with and without a 40-mer modified ssDNA by small-angle X-ray scattering (SAXS), using size-exclusion chromatography (SEC) immediately prior to irradiation to effect partial separation of multi-component mixtures. To prevent cytosine deamination, the target 2'-deoxycytidine embedded in 40-mer ssDNA was replaced by 2'-deoxyzebularine, which is known to inhibit APOBEC3A, APOBEC3B and APOBEC3G when incorporated into short ssDNA oligomers. Full-length APOBEC3G without ssDNA comprised multiple multimeric species, of which tetramer was the most scattering species. The structure of the tetramer was elucidated. Dimeric interfaces significantly occlude the DNA-binding interface, whereas the tetrameric interface does not. This explains why dimers completely disappeared, and monomeric protein species became dominant, when ssDNA was added. Data analysis of the monomeric species revealed a full-length APOBEC3G-ssDNA complex that gives insight into the observed "jumping" behavior revealed in studies of enzyme processivity. This solution-state SAXS study provides the first structural model of ssDNA binding both domains of APOBEC3G and provides data to guide further structural and enzymatic work on APOBEC3-ssDNA complexes.
Collapse
Affiliation(s)
- Fareeda M. Barzak
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Timothy M. Ryan
- SAXS/WAXS, Australian Synchrotron/ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Nazanin Mohammadzadeh
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Stefan Harjes
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Maksim V. Kvach
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Harikrishnan M. Kurup
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Kurt L. Krause
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| | - Linda Chelico
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Vyacheslav V. Filichev
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| | - Elena Harjes
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| | - Geoffrey B. Jameson
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
6
|
King JJ, Borzooee F, Im J, Asgharpour M, Ghorbani A, Diamond CP, Fifield H, Berghuis L, Larijani M. Structure-Based Design of First-Generation Small Molecule Inhibitors Targeting the Catalytic Pockets of AID, APOBEC3A, and APOBEC3B. ACS Pharmacol Transl Sci 2021; 4:1390-1407. [PMID: 34423273 PMCID: PMC8369683 DOI: 10.1021/acsptsci.1c00091] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/12/2022]
Abstract
![]()
Activation-induced
cytidine deaminase (AID) initiates antibody
diversification by mutating immunoglobulin loci in B lymphocytes.
AID and related APOBEC3 (A3) enzymes also induce genome-wide mutations
and lesions implicated in tumorigenesis and tumor progression. The
most prevalent mutation signatures across diverse tumor genomes are
attributable to the mistargeted mutagenic activities of AID/A3s. Thus,
inhibiting AID/A3s has been suggested to be of therapeutic benefit.
We previously used a computational-biochemical approach to gain insight
into the structure of AID’s catalytic pocket, which resulted
in the discovery of a novel type of regulatory catalytic pocket closure
that regulates AID/A3s that we termed the “Schrodinger’s
CATalytic pocket”. Our findings were subsequently confirmed
by direct structural studies. Here, we describe our search for small
molecules that target the catalytic pocket of AID. We identified small
molecules that inhibit purified AID, AID in cell extracts, and endogenous
AID of lymphoma cells. Analogue expansion yielded derivatives with
improved potencies. These were found to also inhibit A3A and A3B,
the two most tumorigenic siblings of AID. Two compounds exhibit low
micromolar IC50 inhibition of AID and A3A, exhibiting the
strongest potency for A3A. Docking suggests key interactions between
their warheads and residues lining the catalytic pockets of AID, A3A,
and A3B and between the tails and DNA-interacting residues on the
surface proximal to the catalytic pocket opening. Accordingly, mutants
of these residues decreased inhibition potency. The chemistry and
abundance of key stabilizing interactions between the small molecules
and residues within and immediately outside the catalytic pockets
are promising for therapeutic development.
Collapse
Affiliation(s)
- Justin J King
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Faezeh Borzooee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Junbum Im
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada.,BC Cancer Research/Terry Fox Labs, University of British Columbia, Vancouver, British Columbia BC V5Z 1L3, Canada
| | - Mahdi Asgharpour
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Atefeh Ghorbani
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Cody P Diamond
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Heather Fifield
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Lesley Berghuis
- Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| | - Mani Larijani
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Program in immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3 V6, Canada
| |
Collapse
|
7
|
Hou S, Lee JM, Myint W, Matsuo H, Kurt Yilmaz N, Schiffer CA. Structural basis of substrate specificity in human cytidine deaminase family APOBEC3s. J Biol Chem 2021; 297:100909. [PMID: 34171358 PMCID: PMC8313598 DOI: 10.1016/j.jbc.2021.100909] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
The human cytidine deaminase family of APOBEC3s (A3s) plays critical roles in both innate immunity and the development of cancers. A3s comprise seven functionally overlapping but distinct members that can be exploited as nucleotide base editors for treating genetic diseases. Although overall structurally similar, A3s have vastly varying deamination activity and substrate preferences. Recent crystal structures of ssDNA-bound A3s together with experimental studies have provided some insights into distinct substrate specificities among the family members. However, the molecular interactions responsible for their distinct biological functions and how structure regulates substrate specificity are not clear. In this study, we identified the structural basis of substrate specificities in three catalytically active A3 domains whose crystal structures have been previously characterized: A3A, A3B- CTD, and A3G-CTD. Through molecular modeling and dynamic simulations, we found an interdependency between ssDNA substrate binding conformation and nucleotide sequence specificity. In addition to the U-shaped conformation seen in the crystal structure with the CTC0 motif, A3A can accommodate the CCC0 motif when ssDNA is in a more linear (L) conformation. A3B can also bind both U- and L-shaped ssDNA, unlike A3G, which can stably recognize only linear ssDNA. These varied conformations are stabilized by sequence-specific interactions with active site loops 1 and 7, which are highly variable among A3s. Our results explain the molecular basis of previously observed substrate specificities in A3s and have implications for designing A3-specific inhibitors for cancer therapy as well as engineering base-editing systems for gene therapy.
Collapse
Affiliation(s)
- Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jeong Min Lee
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Wazo Myint
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Hiroshi Matsuo
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
8
|
Hu Y, Knecht KM, Shen Q, Xiong Y. Multifaceted HIV-1 Vif interactions with human E3 ubiquitin ligase and APOBEC3s. FEBS J 2021; 288:3407-3417. [PMID: 32893454 PMCID: PMC8172064 DOI: 10.1111/febs.15550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022]
Abstract
APOBEC3 (A3) proteins are a family of host antiviral restriction factors that potently inhibit various retroviral infections, including human immunodeficiency virus (HIV)-1. To overcome this restriction, HIV-1 virion infectivity factor (Vif) recruits the cellular cofactor CBFβ to assist in targeting A3 proteins to a host E3 ligase complex for polyubiquitination and subsequent proteasomal degradation. Intervention of the Vif-A3 interactions could be a promising therapeutic strategy to facilitate A3-mediated suppression of HIV-1 in patients. In this structural snapshot, we review the structural features of the recently determined structure of human A3F in complex with HIV-1 Vif and its cofactor CBFβ, discuss insights into the molecular principles of Vif-A3 interplay during the arms race between the virus and host, and highlight the therapeutic implications.
Collapse
Affiliation(s)
- Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Kirsten M. Knecht
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Qi Shen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
9
|
Uriu K, Kosugi Y, Suzuki N, Ito J, Sato K. Elucidation of the Complicated Scenario of Primate APOBEC3 Gene Evolution. J Virol 2021; 95:e00144-21. [PMID: 33789992 PMCID: PMC8316122 DOI: 10.1128/jvi.00144-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/23/2021] [Indexed: 11/20/2022] Open
Abstract
APOBEC3 proteins play pivotal roles in defenses against retroviruses, including HIV-1, as well as retrotransposons. Presumably due to the evolutionary arms race between the hosts and retroelements, APOBEC3 genes have rapidly evolved in primate lineages through sequence diversification, gene amplification and loss, and gene fusion. Consequently, modern primates possess a unique set or "repertoire" of APOBEC3 genes. The APOBEC3 gene repertoire of humans has been well investigated. There are three types of catalytic domains (Z domain; A3Z1, A3Z2, and A3Z3), 11 Z domains, and 7 independent genes, including 4 genes encoding double Z domains. However, the APOBEC3 gene repertoires of nonhuman primates remain largely unclear. Here, we characterize APOBEC3 gene repertoires among primates and investigated the evolutionary scenario of primate APOBEC3 genes using phylogenetic and comparative genomics approaches. In the 21 primate species investigated, we identified 145 APOBEC3 genes, including 69 double-domain type APOBEC3 genes. We further estimated the ages of the respective APOBEC3 genes and revealed that APOBEC3B, APOBEC3D, and APOBEC3F are the youngest in humans and were generated in the common ancestor of Catarrhini. Notably, invasion of the LINE1 retrotransposon peaked during the same period as the generation of these youngest APOBEC3 genes, implying that LINE1 invasion was one of the driving forces of the generation of these genes. Moreover, we found evidence suggesting that sequence diversification by gene conversions among APOBEC3 paralogs occurred in multiple primate lineages. Together, our analyses reveal the hidden diversity and the complicated evolutionary scenario of APOBEC3 genes in primates.IMPORTANCE In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the nomenclature and genomic architecture of APOBEC3 genes. However, it has been more than 10 years since this publication, and new information, including RefSeq, which we used in this study, is accumulating. Based on accumulating knowledge, APOBEC3 genes, particularly those of primates, should be refined and reannotated. This study updates knowledge of primate APOBEC3 genes and their genomic architectures. We further inferred the evolutionary scenario of primate APOBEC3 genes and the potential driving forces of APOBEC3 gene evolution. This study will be a landmark for the elucidation of the multiple aspects of APOBEC3 family genes in the future.
Collapse
Affiliation(s)
- Keiya Uriu
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yusuke Kosugi
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Narumi Suzuki
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
10
|
Insights into the Structures and Multimeric Status of APOBEC Proteins Involved in Viral Restriction and Other Cellular Functions. Viruses 2021; 13:v13030497. [PMID: 33802945 PMCID: PMC8002816 DOI: 10.3390/v13030497] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) proteins belong to a family of deaminase proteins that can catalyze the deamination of cytosine to uracil on single-stranded DNA or/and RNA. APOBEC proteins are involved in diverse biological functions, including adaptive and innate immunity, which are critical for restricting viral infection and endogenous retroelements. Dysregulation of their functions can cause undesired genomic mutations and RNA modification, leading to various associated diseases, such as hyper-IgM syndrome and cancer. This review focuses on the structural and biochemical data on the multimerization status of individual APOBECs and the associated functional implications. Many APOBECs form various multimeric complexes, and multimerization is an important way to regulate functions for some of these proteins at several levels, such as deaminase activity, protein stability, subcellular localization, protein storage and activation, virion packaging, and antiviral activity. The multimerization of some APOBECs is more complicated than others, due to the associated complex RNA binding modes.
Collapse
|
11
|
Barzak FM, Ryan TM, Kvach MV, Kurup HM, Aihara H, Harris RS, Filichev VV, Harjes E, Jameson GB. Small-Angle X-ray Scattering Models of APOBEC3B Catalytic Domain in a Complex with a Single-Stranded DNA Inhibitor. Viruses 2021; 13:290. [PMID: 33673243 PMCID: PMC7918907 DOI: 10.3390/v13020290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
In normal cells APOBEC3 (A3A-A3H) enzymes as part of the innate immune system deaminate cytosine to uracil on single-stranded DNA (ssDNA) to scramble DNA in order to give protection against a range of exogenous retroviruses, DNA-based parasites, and endogenous retroelements. However, some viruses and cancer cells use these enzymes, especially A3A and A3B, to escape the adaptive immune response and thereby lead to the evolution of drug resistance. We have synthesized first-in-class inhibitors featuring modified ssDNA. We present models based on small-angle X-ray scattering (SAXS) data that (1) confirm that the mode of binding of inhibitor to an active A3B C-terminal domain construct in the solution state is the same as the mode of binding substrate to inactive mutants of A3A and A3B revealed in X-ray crystal structures and (2) give insight into the disulfide-linked inactive dimer formed under the oxidizing conditions of purification.
Collapse
Affiliation(s)
- Fareeda M. Barzak
- School of Fundamental Sciences, Massey University, Private Bag 11 222, New Zealand; (F.M.B.); (M.V.K.); (H.M.K.)
| | - Timothy M. Ryan
- SAXS/WAXS, Australian Synchrotron/ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia;
| | - Maksim V. Kvach
- School of Fundamental Sciences, Massey University, Private Bag 11 222, New Zealand; (F.M.B.); (M.V.K.); (H.M.K.)
| | - Harikrishnan M. Kurup
- School of Fundamental Sciences, Massey University, Private Bag 11 222, New Zealand; (F.M.B.); (M.V.K.); (H.M.K.)
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (H.A.); (R.S.H.)
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (H.A.); (R.S.H.)
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vyacheslav V. Filichev
- School of Fundamental Sciences, Massey University, Private Bag 11 222, New Zealand; (F.M.B.); (M.V.K.); (H.M.K.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Elena Harjes
- School of Fundamental Sciences, Massey University, Private Bag 11 222, New Zealand; (F.M.B.); (M.V.K.); (H.M.K.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Geoffrey B. Jameson
- School of Fundamental Sciences, Massey University, Private Bag 11 222, New Zealand; (F.M.B.); (M.V.K.); (H.M.K.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| |
Collapse
|
12
|
Salamango DJ, Harris RS. Dual Functionality of HIV-1 Vif in APOBEC3 Counteraction and Cell Cycle Arrest. Front Microbiol 2021; 11:622012. [PMID: 33510734 PMCID: PMC7835321 DOI: 10.3389/fmicb.2020.622012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/11/2020] [Indexed: 01/02/2023] Open
Abstract
Accessory proteins are a key feature that distinguishes primate immunodeficiency viruses such as human immunodeficiency virus type I (HIV-1) from other retroviruses. A prime example is the virion infectivity factor, Vif, which hijacks a cellular co-transcription factor (CBF-β) to recruit a ubiquitin ligase complex (CRL5) to bind and degrade antiviral APOBEC3 enzymes including APOBEC3D (A3D), APOBEC3F (A3F), APOBEC3G (A3G), and APOBEC3H (A3H). Although APOBEC3 antagonism is essential for viral pathogenesis, and a more than sufficient functional justification for Vif’s evolution, most viral proteins have evolved multiple functions. Indeed, Vif has long been known to trigger cell cycle arrest and recent studies have shed light on the underlying molecular mechanism. Vif accomplishes this function using the same CBF-β/CRL5 ubiquitin ligase complex to degrade a family of PPP2R5 phospho-regulatory proteins. These advances have helped usher in a new era of accessory protein research and fresh opportunities for drug development.
Collapse
Affiliation(s)
- Daniel J Salamango
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, United States
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, United States.,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
13
|
Delviks-Frankenberry KA, Desimmie BA, Pathak VK. Structural Insights into APOBEC3-Mediated Lentiviral Restriction. Viruses 2020; 12:E587. [PMID: 32471198 PMCID: PMC7354603 DOI: 10.3390/v12060587] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 01/18/2023] Open
Abstract
Mammals have developed clever adaptive and innate immune defense mechanisms to protect against invading bacterial and viral pathogens. Human innate immunity is continuously evolving to expand the repertoire of restriction factors and one such family of intrinsic restriction factors is the APOBEC3 (A3) family of cytidine deaminases. The coordinated expression of seven members of the A3 family of cytidine deaminases provides intrinsic immunity against numerous foreign infectious agents and protects the host from exogenous retroviruses and endogenous retroelements. Four members of the A3 proteins-A3G, A3F, A3H, and A3D-restrict HIV-1 in the absence of virion infectivity factor (Vif); their incorporation into progeny virions is a prerequisite for cytidine deaminase-dependent and -independent activities that inhibit viral replication in the host target cell. HIV-1 encodes Vif, an accessory protein that antagonizes A3 proteins by targeting them for polyubiquitination and subsequent proteasomal degradation in the virus producing cells. In this review, we summarize our current understanding of the role of human A3 proteins as barriers against HIV-1 infection, how Vif overcomes their antiviral activity, and highlight recent structural and functional insights into A3-mediated restriction of lentiviruses.
Collapse
Affiliation(s)
| | | | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; (K.A.D.-F.); (B.A.D.)
| |
Collapse
|
14
|
McDaniel YZ, Wang D, Love RP, Adolph MB, Mohammadzadeh N, Chelico L, Mansky LM. Deamination hotspots among APOBEC3 family members are defined by both target site sequence context and ssDNA secondary structure. Nucleic Acids Res 2020; 48:1353-1371. [PMID: 31943071 PMCID: PMC7026630 DOI: 10.1093/nar/gkz1164] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022] Open
Abstract
The human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3, A3) family member proteins can deaminate cytosines in single-strand (ss) DNA, which restricts human immunodeficiency virus type 1 (HIV-1), retrotransposons, and other viruses such as hepatitis B virus, but can cause a mutator phenotype in many cancers. While structural information exists for several A3 proteins, the precise details regarding deamination target selection are not fully understood. Here, we report the first parallel, comparative analysis of site selection of A3 deamination using six of the seven purified A3 member enzymes, oligonucleotides having 5'TC3' or 5'CT3' dinucleotide target sites, and different flanking bases within diverse DNA secondary structures. A3A, A3F and A3H were observed to have strong preferences toward the TC target flanked by A or T, while all examined A3 proteins did not show a preference for a TC target flanked by a G. We observed that the TC target was strongly preferred in ssDNA regions rather than dsDNA, loop or bulge regions, with flanking bases influencing the degree of preference. CT was also shown to be a potential deamination target. Taken together, our observations provide new insights into A3 enzyme target site selection and how A3 mutagenesis impacts mutation rates.
Collapse
Affiliation(s)
- Yumeng Z McDaniel
- Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Dake Wang
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455 USA
- Pharmacology Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
| | - Robin P Love
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Madison B Adolph
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Nazanin Mohammadzadeh
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Linda Chelico
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Louis M Mansky
- Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455 USA
- Pharmacology Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455 USA
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
15
|
Azimi FC, Lee JE. Structural perspectives on HIV-1 Vif and APOBEC3 restriction factor interactions. Protein Sci 2020; 29:391-406. [PMID: 31518043 PMCID: PMC6954718 DOI: 10.1002/pro.3729] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 11/06/2022]
Abstract
Human immunodeficiency virus (HIV) is a retroviral pathogen that targets human immune cells such as CD4+ T cells, macrophages, and dendritic cells. The human apolipoprotein B mRNA- editing catalytic polypeptide 3 (APOBEC3 or A3) cytidine deaminases are a key class of intrinsic restriction factors that inhibit replication of HIV. When HIV-1 enters the cell, the immune system responds by inducing the activation of the A3 family proteins, which convert cytosines to uracils in single-stranded DNA replication intermediates, neutralizing the virus. HIV counteracts this intrinsic immune response by encoding a protein termed viral infectivity factor (Vif). Vif targets A3 to an E3 ubiquitin ligase complex for poly-ubiquitination and proteasomal degradation. Vif is unique in that it can recognize and counteract multiple A3 restriction factor substrates. Structural biology studies have provided significant insights into the overall architectures and functions of Vif and A3 proteins; however, a structure of the Vif-A3 complex has remained elusive. In this review, we summarize and reanalyze experimental data from recent structural, biochemical, and functional studies to provide key perspectives on the residues involved in Vif-A3 protein-protein interactions.
Collapse
Affiliation(s)
- Farshad C. Azimi
- Department of Laboratory Medicine and Pathobiology, Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Jeffrey E. Lee
- Department of Laboratory Medicine and Pathobiology, Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
16
|
Solomon WC, Myint W, Hou S, Kanai T, Tripathi R, Kurt Yilmaz N, Schiffer CA, Matsuo H. Mechanism for APOBEC3G catalytic exclusion of RNA and non-substrate DNA. Nucleic Acids Res 2019; 47:7676-7689. [PMID: 31424549 PMCID: PMC6698744 DOI: 10.1093/nar/gkz550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
The potent antiretroviral protein APOBEC3G (A3G) specifically targets and deaminates deoxycytidine nucleotides, generating deoxyuridine, in single stranded DNA (ssDNA) intermediates produced during HIV replication. A non-catalytic domain in A3G binds strongly to RNA, an interaction crucial for recruitment of A3G to the virion; yet, A3G displays no deamination activity for cytidines in viral RNA. Here, we report NMR and molecular dynamics (MD) simulation analysis for interactions between A3Gctd and multiple substrate or non-substrate DNA and RNA, in combination with deamination assays. NMR ssDNA-binding experiments revealed that the interaction with residues in helix1 and loop1 (T201-L220) distinguishes the binding mode of substrate ssDNA from non-substrate. Using 2′-deoxy-2′-fluorine substituted cytidines, we show that a 2′-endo sugar conformation of the target deoxycytidine is favored for substrate binding and deamination. Trajectories of the MD simulation indicate that a ribose 2′-hydroxyl group destabilizes the π-π stacking of the target cytosine and H257, resulting in dislocation of the target cytosine base from the catalytic position. Interestingly, APOBEC3A, which can deaminate ribocytidines, retains the ribocytidine in the catalytic position throughout the MD simulation. Our results indicate that A3Gctd catalytic selectivity against RNA is dictated by both the sugar conformation and 2′-hydroxyl group.
Collapse
Affiliation(s)
- William C Solomon
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wazo Myint
- Basic Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Tapan Kanai
- Basic Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.,Department of Chemistry, Banasthali University, Banasthali-304022, Rajasthan, India
| | - Rashmi Tripathi
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali-304022, Rajasthan, India
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Hiroshi Matsuo
- Basic Research Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
17
|
Hu Y, Desimmie BA, Nguyen HC, Ziegler SJ, Cheng TC, Chen J, Wang J, Wang H, Zhang K, Pathak VK, Xiong Y. Structural basis of antagonism of human APOBEC3F by HIV-1 Vif. Nat Struct Mol Biol 2019; 26:1176-1183. [PMID: 31792451 PMCID: PMC6899190 DOI: 10.1038/s41594-019-0343-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/28/2019] [Indexed: 01/15/2023]
Abstract
HIV-1 Vif promotes degradation of the antiviral APOBEC3 (A3) proteins through the host ubiquitin-proteasome pathway to enable viral immune evasion. Disrupting Vif-A3 interactions to reinstate the A3-catalyzed suppression of HIV-1 replication is a potential approach for antiviral therapeutics. However, the molecular mechanisms by which Vif recognizes A3 proteins remain elusive. Here we report a cryo-EM structure of the Vif-targeted C-terminal domain of human A3F in complex with HIV-1 Vif and its cellular cofactor CBFβ, at 3.9 Å resolution. The structure shows that Vif and CBFβ form a platform to recruit A3F, revealing a direct A3F-recruiting role of CBFβ beyond Vif stabilization, and captures multiple independent A3F-Vif interfaces. Together with our biochemical and cellular studies, our structural findings establish the molecular determinants that are critical for Vif-mediated neutralization of A3F and provide a comprehensive framework of how HIV-1 Vif hijacks the host protein degradation machinery to counteract viral restriction by A3F.
Collapse
Affiliation(s)
- Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Belete A Desimmie
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Henry C Nguyen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Samantha J Ziegler
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Tat Cheung Cheng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.,IGBMC, CNRS, Illkirch, France
| | - John Chen
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Jia Wang
- School of Life Sciences, Tsinghua University, Haidian District, Beijing, China
| | - Hongwei Wang
- School of Life Sciences, Tsinghua University, Haidian District, Beijing, China
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
18
|
AID, APOBEC3A and APOBEC3B efficiently deaminate deoxycytidines neighboring DNA damage induced by oxidation or alkylation. Biochim Biophys Acta Gen Subj 2019; 1863:129415. [PMID: 31404619 DOI: 10.1016/j.bbagen.2019.129415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND AID/APOBEC3 (A3) enzymes instigate genomic mutations that are involved in immunity and cancer. Although they can deaminate any deoxycytidine (dC) to deoxyuridine (dU), each family member has a signature preference determined by nucleotides surrounding the target dC. This WRC (W = A/T, R = A/G) and YC (Y = T/C) hotspot preference is established for AID and A3A/A3B, respectively. Base alkylation and oxidation are two of the most common types of DNA damage induced environmentally or by chemotherapy. Here we examined the activity of AID, A3A and A3B on dCs neighboring such damaged bases. METHODS Substrates were designed to contain target dCs either in normal WRC/YC hotspots, or in oxidized/alkylated DNA motifs. AID, A3A and A3B were purified and deamination kinetics of each were compared between substrates containing damaged vs. normal motifs. RESULTS All three enzymes efficiently deaminated dC when common damaged bases were present in the -2 or -1 positions. Strikingly, some damaged motifs supported comparable or higher catalytic efficiencies by AID, A3A and A3B than the WRC/YC motifs which are their most favored normal sequences. Based on the resolved interactions of AID, A3A and A3B with DNA, we modeled interactions with alkylated or oxidized bases. Corroborating the enzyme assay data, the surface regions that recognize normal bases are predicted to also interact robustly with oxidized and alkylated bases. CONCLUSIONS AID, A3A and A3B can efficiently recognize and deaminate dC whose neighbouring nucleotides are damaged. GENERAL SIGNIFICANCE Beyond AID/A3s initiating DNA damage, some forms of pre-existing damaged DNA can constitute favored targets of AID/A3s if encountered.
Collapse
|
19
|
Ball KA, Chan LM, Stanley DJ, Tierney E, Thapa S, Ta HM, Burton L, Binning JM, Jacobson MP, Gross JD. Conformational Dynamics of the HIV-Vif Protein Complex. Biophys J 2019; 116:1432-1445. [PMID: 30961890 PMCID: PMC6486493 DOI: 10.1016/j.bpj.2019.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 12/29/2022] Open
Abstract
Human immunodeficiency virus-1 viral infectivity factor (Vif) is an intrinsically disordered protein responsible for the ubiquitination of the APOBEC3 (A3) antiviral proteins. Vif folds when it binds Cullin-RING E3 ligase 5 and the transcription cofactor CBF-β. A five-protein complex containing the substrate receptor (Vif, CBF-β, Elongin-B, Elongin-C (VCBC)) and Cullin5 (CUL5) has a published crystal structure, but dynamics of this VCBC-CUL5 complex have not been characterized. Here, we use molecular dynamics (MD) simulations and NMR to characterize the dynamics of the VCBC complex with and without CUL5 and an A3 protein bound. Our simulations show that the VCBC complex undergoes global dynamics involving twisting and clamshell opening of the complex, whereas VCBC-CUL5 maintains a more static conformation, similar to the crystal structure. This observation from MD is supported by methyl-transverse relaxation-optimized spectroscopy NMR data, which indicates that the VCBC complex without CUL5 is dynamic on the μs-ms timescale. Our NMR data also show that the VCBC complex is more conformationally restricted when bound to the antiviral APOBEC3F (one of the A3 proteins), consistent with our MD simulations. Vif contains a flexible linker region located at the hinge of the VCBC complex, which changes conformation in conjunction with the global dynamics of the complex. Like other substrate receptors, VCBC can exist alone or in complex with CUL5 and other proteins in cells. Accordingly, the VCBC complex could be a good target for therapeutics that would inhibit full assembly of the ubiquitination complex by stabilizing an alternate VCBC conformation.
Collapse
Affiliation(s)
- K Aurelia Ball
- Department of Chemistry, Skidmore College, Saratoga Springs, New York.
| | - Lieza M Chan
- Department of Chemistry, Skidmore College, Saratoga Springs, New York
| | - David J Stanley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Elise Tierney
- Department of Chemistry, Skidmore College, Saratoga Springs, New York
| | - Sampriti Thapa
- Department of Chemistry, Skidmore College, Saratoga Springs, New York
| | - Hai M Ta
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Lily Burton
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Jennifer M Binning
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
20
|
Wan L, Kamba K, Nagata T, Katahira M. An insight into the dependence of the deamination rate of human APOBEC3F on the length of single-stranded DNA, which is affected by the concentrations of APOBEC3F and single-stranded DNA. Biochim Biophys Acta Gen Subj 2019; 1864:129346. [PMID: 30986508 DOI: 10.1016/j.bbagen.2019.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/20/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND APOBEC3F (A3F), a member of the human APOBEC3 (A3) family of cytidine deaminases, acts as an anti-HIV-1 factor by deaminating deoxycytidine in the complementary DNA of the viral genome. A full understanding of the deamination behavior of A3F awaits further investigation. METHODS The real-time NMR method and uracil-DNA glycosylase assay were used to track the activities of the C-terminal domain (CTD) of A3F at different concentrations of A3F-CTD and ssDNA. The steady-state fluorescence anisotropy measurement was used to examine the binding between A3F-CTD and ssDNA with different lengths. The use of the A3F-CTD N214H mutant, having higher activity than the wild-type, facilitated the tracking of the reactions. RESULTS A3F-CTD was found to efficiently deaminate the target deoxycytidine in long ssDNA in lower ssDNA concentration conditions ([A3F-CTD] ≫ [ssDNA]), while the target deoxycytidine in short ssDNA is deaminated efficiently in higher ssDNA concentration conditions ([A3F-CTD] ≪ [ssDNA]). This property is quite different from that of the previously studied A3 family member, A3B; the concentrations of the proteins and ssDNA had no effect. CONCLUSIONS The concentrations of A3F-CTD and ssDNA substrates affect the ssDNA-length-dependence of deamination rate of the A3F-CTD. This unique property of A3F is rationally interpreted on the basis of its binding characteristics with ssDNA. GENERAL SIGNIFICANCE The discovery of the unique property of A3F regarding the deamination rate deepens the understanding of its counteraction against HIV-1. Our strategy is applicable to investigate the other aspects of the A3 activities, such as those involved in the cancer development.
Collapse
Affiliation(s)
- Li Wan
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, Japan; Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Keisuke Kamba
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, Japan; Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto, Japan.
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, Japan; Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto, Japan.
| |
Collapse
|
21
|
Hou S, Silvas TV, Leidner F, Nalivaika EA, Matsuo H, Kurt Yilmaz N, Schiffer CA. Structural Analysis of the Active Site and DNA Binding of Human Cytidine Deaminase APOBEC3B. J Chem Theory Comput 2018; 15:637-647. [PMID: 30457868 DOI: 10.1021/acs.jctc.8b00545] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
APOBEC3 (A3) proteins, a family of human cytidine deaminases, protect the host from endogenous retro-elements and exogenous viral infections by introducing hypermutations. However, overexpressed A3s can modify genomic DNA to promote tumorigenesis, especially A3B. Despite their overall similarity, A3 proteins have distinct deamination activity. Recently determined A3 structures have revealed the molecular determinants of nucleotide specificity and DNA binding. However, for A3B, the structural basis for regulation of deamination activity and the role of active site loops in coordinating DNA had remained unknown. Using advanced molecular modeling followed by experimental mutational analysis and dynamics simulations, we investigated the molecular mechanism of DNA binding by A3B-CTD. We modeled fully native A3B-DNA structure, and we identified Arg211 in loop 1 as the gatekeeper coordinating DNA and critical residue for nucleotide specificity. We also identified a unique autoinhibited conformation in A3B-CTD that restricts access and binding of DNA to the active site. Our results reveal the structural basis for DNA binding and relatively lower catalytic activity of A3B and provide opportunities for rational design of specific inhibitors to benefit cancer therapeutics.
Collapse
Affiliation(s)
- Shurong Hou
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01655 , United States
| | - Tania V Silvas
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01655 , United States
| | - Florian Leidner
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01655 , United States
| | - Ellen A Nalivaika
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01655 , United States
| | - Hiroshi Matsuo
- Basic Research Laboratory, Leidos Biomedical Research, Inc. , Frederick National Laboratory for Cancer Research , Frederick , Maryland 21702 , United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01655 , United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01655 , United States
| |
Collapse
|
22
|
Mohammadzadeh N, Follack TB, Love RP, Stewart K, Sanche S, Chelico L. Polymorphisms of the cytidine deaminase APOBEC3F have different HIV-1 restriction efficiencies. Virology 2018; 527:21-31. [PMID: 30448640 DOI: 10.1016/j.virol.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/03/2018] [Accepted: 11/04/2018] [Indexed: 12/27/2022]
Abstract
The APOBEC3 enzyme family are host restriction factors that induce mutagenesis of HIV-1 proviral genomes through the deamination of cytosine to form uracil in nascent single-stranded (-)DNA. HIV-1 suppresses APOBEC3 activity through the HIV-1 protein Vif that induces APOBEC3 degradation. Here we compared two common polymorphisms of APOBEC3F. We found that although both polymorphisms have HIV-1 restriction activity, APOBEC3F 108 A/231V can restrict HIV-1 ΔVif up to 4-fold more than APOBEC3F 108 S/231I and is partially protected from Vif-mediated degradation. This resulted from higher levels of steady state expression of APOBEC3F 108 A/231 V. Individuals are commonly heterozygous for the APOBEC3F polymorphisms and these polymorphisms formed in cells, independent of RNA, hetero-oligomers between each other and with APOBEC3G. Hetero-oligomerization with APOBEC3F 108 A/231V resulted in partial stabilization of APOBEC3F 108 S/231I and APOBEC3G in the presence of Vif. These data demonstrate functional outcomes of APOBEC3 polymorphisms and hetero-oligomerization that affect HIV-1 restriction.
Collapse
Affiliation(s)
- Nazanin Mohammadzadeh
- University of Saskatchewan, Biochemistry, Microbiology, and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Tyson B Follack
- University of Saskatchewan, Biochemistry, Microbiology, and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Robin P Love
- University of Saskatchewan, Biochemistry, Microbiology, and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Kris Stewart
- University of Saskatchewan, Department of Medicine, College of Medicine, Saskatoon, Saskatchewan Canada; Saskatchewan Infectious Disease Care Network, Saskatoon, Saskatchewan, Canada; Saskatchewan HIV/AIDS Research Endeavour, Saskatoon, Saskatchewan, Canada
| | - Stephen Sanche
- University of Saskatchewan, Department of Medicine, College of Medicine, Saskatoon, Saskatchewan Canada; Saskatchewan HIV/AIDS Research Endeavour, Saskatoon, Saskatchewan, Canada
| | - Linda Chelico
- University of Saskatchewan, Biochemistry, Microbiology, and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada; Saskatchewan HIV/AIDS Research Endeavour, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
23
|
Crystal Structure of Cytidine Deaminase Human APOBEC3F Chimeric Catalytic Domain in Complex with DNA. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Renner TM, Bélanger K, Goodwin LR, Campbell M, Langlois MA. Characterization of molecular attributes that influence LINE-1 restriction by all seven human APOBEC3 proteins. Virology 2018; 520:127-136. [PMID: 29860216 DOI: 10.1016/j.virol.2018.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022]
Abstract
LINE-1 (L1) is a non-long terminal repeat (LTR) retrotransposon inserted throughout the human genome. APOBEC3 (A3) proteins are part of a network of host intrinsic defenses capable of restricting retroviruses and the replication of L1 retroelements. These enzymes inactivate retroviruses primarily through deamination of single-stranded viral DNA. In contrast, only A3A deaminates L1 DNA, while the other six A3 proteins restrict L1 to varying degrees through yet poorly defined mechanisms. Here we provide further insight into the molecular attributes of L1 restriction by A3 proteins. We specifically investigated the roles of A3 protein oligomerization, interactions with RNA and their binding to the various L1 proteins. Our results show that compromising the ability of A3 proteins to oligomerize or interact with a nucleic acid substrate diminished L1 restriction to varying degrees. However the efficiency of their binding to L1 proteins did not predict restriction or the potency of the restriction.
Collapse
Affiliation(s)
- Tyler Milston Renner
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kasandra Bélanger
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Laura Rose Goodwin
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mark Campbell
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
25
|
Maiti A, Myint W, Kanai T, Delviks-Frankenberry K, Sierra Rodriguez C, Pathak VK, Schiffer CA, Matsuo H. Crystal structure of the catalytic domain of HIV-1 restriction factor APOBEC3G in complex with ssDNA. Nat Commun 2018; 9:2460. [PMID: 29941968 PMCID: PMC6018426 DOI: 10.1038/s41467-018-04872-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/29/2018] [Indexed: 12/03/2022] Open
Abstract
The human APOBEC3G protein is a cytidine deaminase that generates cytidine to deoxy-uridine mutations in single-stranded DNA (ssDNA), and capable of restricting replication of HIV-1 by generating mutations in viral genome. The mechanism by which APOBEC3G specifically deaminates 5′-CC motifs has remained elusive since structural studies have been hampered due to apparently weak ssDNA binding of the catalytic domain of APOBEC3G. We overcame the problem by generating a highly active variant with higher ssDNA affinity. Here, we present the crystal structure of this variant complexed with a ssDNA substrate at 1.86 Å resolution. This structure reveals atomic-level interactions by which APOBEC3G recognizes a functionally-relevant 5′-TCCCA sequence. This complex also reveals a key role of W211 in substrate recognition, implicating a similar recognition in activation-induced cytidine deaminase (AID) with a conserved tryptophan. APOBEC3G (A3G) is a single-stranded DNA (ssDNA) cytidine deaminase that restricts HIV-1. Here the authors provide molecular insights into A3G substrate recognition by determining the 1.86 Å resolution crystal structure of its catalytic domain bound to ssDNA.
Collapse
Affiliation(s)
- Atanu Maiti
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Wazo Myint
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Tapan Kanai
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Krista Delviks-Frankenberry
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Christina Sierra Rodriguez
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Hiroshi Matsuo
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
26
|
Salter JD, Smith HC. Modeling the Embrace of a Mutator: APOBEC Selection of Nucleic Acid Ligands. Trends Biochem Sci 2018; 43:606-622. [PMID: 29803538 PMCID: PMC6073885 DOI: 10.1016/j.tibs.2018.04.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022]
Abstract
The 11-member APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of zinc-dependent cytidine deaminases bind to RNA and single-stranded DNA (ssDNA) and, in specific contexts, modify select (deoxy)cytidines to (deoxy)uridines. In this review, we describe advances made through high-resolution co-crystal structures of APOBECs bound to mono- or oligonucleotides that reveal potential substrate-specific binding sites at the active site and non-sequence-specific nucleic acid binding sites distal to the active site. We also discuss the effect of APOBEC oligomerization on functionality. Future structural studies will need to address how ssDNA binding away from the active site may enhance catalysis and the mechanism by which RNA binding may modulate catalytic activity on ssDNA. APOBEC proteins catalyze deamination of cytidine or deoxycytidine in either a sequence-specific or semi-specific manner on either DNA or RNA. APOBECs each possess the cytidine deaminase core fold, but sequence and structural differences among loops surrounding the zinc-dependent active site impart differences in sequence-dependent target preferences, binding affinity, catalytic rate, and regulation of substrate access to the active site among the 11 family members. APOBECs also regulate the deamination reaction through additional nucleic acid substrate binding sites located within surface grooves or patches of positive electrostatic potential that are distal to the active site but may do so nonspecifically. Binding of nonsubstrate RNA and RNA-mediated oligomerization by APOBECs that deaminate ssDNA downregulates catalytic activity but also controls APOBEC subcellular or virion localization. The presence of a second, though noncatalytic, cytidine deaminase domain for some APOBECs and the ability of some APOBECs to oligomerize add additional molecular surfaces for positive or negative regulation of catalysis through nucleic acid binding.
Collapse
Affiliation(s)
- Jason D Salter
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA.
| | - Harold C Smith
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA; University of Rochester, School of Medicine and Dentistry, Department of Biochemistry and Biophysics, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
27
|
Ito F, Yang H, Xiao X, Li SX, Wolfe A, Zirkle B, Arutiunian V, Chen XS. Understanding the Structure, Multimerization, Subcellular Localization and mC Selectivity of a Genomic Mutator and Anti-HIV Factor APOBEC3H. Sci Rep 2018; 8:3763. [PMID: 29491387 PMCID: PMC5830531 DOI: 10.1038/s41598-018-21955-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 12/27/2022] Open
Abstract
APOBEC3H (A3H) is a member of the APOBEC3 subfamily of DNA cytosine deaminases that are important for innate immune defense and have been implicated in cancer biogenesis. To understand the structural basis for A3H biochemical function, we determined a high-resolution structure of human A3H and performed extensive biochemical analysis. The 2.49 Å crystal structure reveals a uniquely long C-terminal helix 6 (h6), a disrupted β5 strand of the canonical five-stranded β-sheet core, and a long loop 1 around the Zn-active center. Mutation of a loop 7 residue, W115, disrupted the RNA-mediated dimerization of A3H yielding an RNA-free monomeric form that still possessed nucleic acid binding and deaminase activity. A3H expressed in HEK293T cells showed RNA dependent HMW complex formation and RNase A-dependent deaminase activity. A3H has a highly positively charged surface surrounding the Zn-active center, and multiple positively charged residues within this charged surface play an important role in the RNA-mediated HMW formation and deaminase inhibition. Furthermore, these positively charged residues affect subcellular localization of A3H between the nucleus and cytosol. Finally, we have identified multiple residues of loop 1 and 7 that contribute to the overall deaminase activity and the methylcytosine selectivity.
Collapse
Affiliation(s)
- Fumiaki Ito
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xiao Xiao
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.,Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck & Co., Inc, West Point, PA, USA
| | - Shu-Xing Li
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, 90089, USA
| | - Aaron Wolfe
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Brett Zirkle
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Vagan Arutiunian
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.,Department of Internal Medicine, Meharry Medical College, Nashville, TN, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, 90089, USA. .,Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA. .,Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, 90089, USA. .,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
28
|
Fang Y, Xiao X, Li SX, Wolfe A, Chen XS. Molecular Interactions of a DNA Modifying Enzyme APOBEC3F Catalytic Domain with a Single-Stranded DNA. J Mol Biol 2018; 430:87-101. [PMID: 29191651 PMCID: PMC5738261 DOI: 10.1016/j.jmb.2017.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Abstract
The single-stranded DNA (ssDNA) cytidine deaminase APOBEC3F (A3F) deaminates cytosine (C) to uracil (U) and is a known restriction factor of HIV-1. Its C-terminal catalytic domain (CD2) alone is capable of binding single-stranded nucleic acids and is important for deamination. However, little is known about how the CD2 interacts with ssDNA. Here we report a crystal structure of A3F-CD2 in complex with a 10-nucleotide ssDNA composed of poly-thymine, which reveals a novel positively charged nucleic acid binding site distal to the active center that plays a key role in substrate DNA binding and catalytic activity. Lysine and tyrosine residues within this binding site interact with the ssDNA, and mutating these residues dramatically impairs both ssDNA binding and catalytic activity. This binding site is not conserved in APOBEC3G (A3G), which may explain differences in ssDNA-binding characteristics between A3F-CD2 and A3G-CD2. In addition, we observed an alternative Zn-coordination conformation around the active center. These findings reveal the structural relationships between nucleic acid interactions and catalytic activity of A3F.
Collapse
Affiliation(s)
- Yao Fang
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA; 161 Hospital of PLA, Wuhan, 430012, China; Department of Clinical Microbiology and Immunology of Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiao Xiao
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Genetic Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Shu-Xing Li
- Center of Excellence in NanoBiophysics, Los Angeles, CA 90089, USA
| | - Aaron Wolfe
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Genetic Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Genetic Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Center of Excellence in NanoBiophysics, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
29
|
Wan L, Nagata T, Katahira M. Influence of the DNA sequence/length and pH on deaminase activity, as well as the roles of the amino acid residues around the catalytic center of APOBEC3F. Phys Chem Chem Phys 2018; 20:3109-3117. [DOI: 10.1039/c7cp04477a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The roles of the amino acid residues responsible for the deaminase activity of APOBEC3F were identified by mutation analysis.
Collapse
Affiliation(s)
- Li Wan
- Institute of Advanced Energy
- Kyoto University
- Uji
- Japan
- Graduate School of Energy Science
| | - Takashi Nagata
- Institute of Advanced Energy
- Kyoto University
- Uji
- Japan
- Graduate School of Energy Science
| | - Masato Katahira
- Institute of Advanced Energy
- Kyoto University
- Uji
- Japan
- Graduate School of Energy Science
| |
Collapse
|
30
|
Gorle S, Pan Y, Sun Z, Shlyakhtenko LS, Harris RS, Lyubchenko YL, Vuković L. Computational Model and Dynamics of Monomeric Full-Length APOBEC3G. ACS CENTRAL SCIENCE 2017; 3:1180-1188. [PMID: 29202020 PMCID: PMC5704289 DOI: 10.1021/acscentsci.7b00346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Indexed: 05/29/2023]
Abstract
APOBEC3G (A3G) is a restriction factor that provides innate immunity against HIV-1 in the absence of viral infectivity factor (Vif) protein. However, structural information about A3G, which can aid in unraveling the mechanisms that govern its interactions and define its antiviral activity, remains unknown. Here, we built a computer model of a full-length A3G using docking approaches and molecular dynamics simulations, based on the available X-ray and NMR structural data for the two protein domains. The model revealed a large-scale dynamics of the A3G monomer, as the two A3G domains can assume compact forms or extended dumbbell type forms with domains visibly separated from each other. To validate the A3G model, we performed time-lapse high-speed atomic force microscopy (HS-AFM) experiments enabling us to get images of a fully hydrated A3G and to directly visualize its dynamics. HS-AFM confirmed that A3G exists in two forms, a globular form (∼84% of the time) and a dumbbell form (∼16% of the time), and can dynamically switch from one form to the other. The obtained HS-AFM results are in line with the computer modeling, which demonstrates a similar distribution between two forms. Furthermore, our simulations capture the complete process of A3G switching from the DNA-bound state to the closed state. The revealed dynamic nature of monomeric A3G could aid in target recognition including scanning for cytosine locations along the DNA strand and in interactions with viral RNA during packaging into HIV-1 particles.
Collapse
Affiliation(s)
- Suresh Gorle
- Department
of Chemistry, University of Texas at El
Paso, El Paso, Texas 79968, United States
| | - Yangang Pan
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Zhiqiang Sun
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Luda S. Shlyakhtenko
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Reuben S. Harris
- Department
of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular
Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Howard
Hughes Medical Institute, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yuri L. Lyubchenko
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Lela Vuković
- Department
of Chemistry, University of Texas at El
Paso, El Paso, Texas 79968, United States
| |
Collapse
|
31
|
Xiao X, Yang H, Arutiunian V, Fang Y, Besse G, Morimoto C, Zirkle B, Chen XS. Structural determinants of APOBEC3B non-catalytic domain for molecular assembly and catalytic regulation. Nucleic Acids Res 2017; 45:7494-7506. [PMID: 28575276 PMCID: PMC5499559 DOI: 10.1093/nar/gkx362] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/27/2017] [Indexed: 12/26/2022] Open
Abstract
The catalytic activity of human cytidine deaminase APOBEC3B (A3B) has been correlated with kataegic mutational patterns within multiple cancer types. The molecular basis of how the N-terminal non-catalytic CD1 regulates the catalytic activity and consequently, biological function of A3B remains relatively unknown. Here, we report the crystal structure of a soluble human A3B-CD1 variant and delineate several structural elements of CD1 involved in molecular assembly, nucleic acid interactions and catalytic regulation of A3B. We show that (i) A3B expressed in human cells exists in hypoactive high-molecular-weight (HMW) complexes, which can be activated without apparent dissociation into low-molecular-weight (LMW) species after RNase A treatment. (ii) Multiple surface hydrophobic residues of CD1 mediate the HMW complex assembly and affect the catalytic activity, including one tryptophan residue W127 that likely acts through regulating nucleic acid binding. (iii) One of the highly positively charged surfaces on CD1 is involved in RNA-dependent attenuation of A3B catalysis. (iv) Surface hydrophobic residues of CD1 are involved in heterogeneous nuclear ribonucleoproteins (hnRNPs) binding to A3B. The structural and biochemical insights described here suggest that unique structural features on CD1 regulate the molecular assembly and catalytic activity of A3B through distinct mechanisms.
Collapse
Affiliation(s)
- Xiao Xiao
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- These authors contributed equally to this work as first authors
| | - Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- These authors contributed equally to this work as first authors
| | - Vagan Arutiunian
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Yao Fang
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Clinical Microbiology and Immunology of Southwest Hospital, Third Military Medical University, Chongqing 400038, China
- 161 Hospital, Wuhan 430012, China
| | - Guillaume Besse
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Polytech' Clermont-Ferrand, Université Blaise Pascal, Clermont-Ferrand, France
| | - Cherie Morimoto
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Brett Zirkle
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S. Chen
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
- To whom correspondence should be addressed. Tel: +1 213 740 5487; Fax: +1 213 740 4340;
| |
Collapse
|
32
|
Anti-HIV Activities and Mechanism of 12-O-Tricosanoylphorbol-20-acetate, a Novel Phorbol Ester from Ostodes katharinae. Molecules 2017; 22:molecules22091498. [PMID: 28885587 PMCID: PMC6151696 DOI: 10.3390/molecules22091498] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 01/09/2023] Open
Abstract
APOBEC3G is a member of the human cytidine deaminase family that restricts Vif-deficient viruses by being packaged with progeny virions and inducing the G to A mutation during the synthesis of HIV-1 viral DNA when the progeny virus infects new cells. HIV-1 Vif protein resists the activity of A3G by mediating A3G degradation. Phorbol esters are plant-derived organic compounds belonging to the tigliane family of diterpenes and could activate the PKC pathway. In this study, we identified an inhibitor 12-O-tricosanoylphorbol-20-acetate (hop-8), a novel ester of phorbol which was isolated from Ostodes katharinae of the family Euphorbiaceae, that inhibited the replication of wild-type HIV-1 and HIV-2 strains and drug-resistant strains broadly both in C8166 cells and PBMCs with low cytotoxicity and the EC50 values ranged from 0.106 μM to 7.987 μM. One of the main mechanisms of hop-8 is to stimulate A3G expressing in HIV-1 producing cells and upregulate the A3G level in progeny virions, which results in reducing the infectivity of the progeny virus. This novel mechanism of hop-8 inhibition of HIV replication might represents a promising approach for developing new therapeutics for HIV infection.
Collapse
|
33
|
Adolph MB, Ara A, Feng Y, Wittkopp CJ, Emerman M, Fraser JS, Chelico L. Cytidine deaminase efficiency of the lentiviral viral restriction factor APOBEC3C correlates with dimerization. Nucleic Acids Res 2017; 45:3378-3394. [PMID: 28158858 PMCID: PMC5389708 DOI: 10.1093/nar/gkx066] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/24/2017] [Indexed: 01/28/2023] Open
Abstract
The seven APOBEC3 (A3) enzymes in primates restrict HIV/SIV replication to differing degrees by deaminating cytosine in viral (−)DNA, which forms promutagenic uracils that inactivate the virus. A polymorphism in human APOBEC3C (A3C) that encodes an S188I mutation increases the enzymatic activity of the protein and its ability to restrict HIV-1, and correlates with increased propensity to form dimers. However, other hominid A3C proteins only have an S188, suggesting they should be less active like the common form of human A3C. Nonetheless, here we demonstrate that chimpanzee and gorilla A3C have approximately equivalent activity to human A3C I188 and that chimpanzee and gorilla A3C form dimers at the same interface as human A3C S188I, but through different amino acids. For each of these hominid A3C enzymes, dimerization enables processivity on single-stranded DNA and results in higher levels of mutagenesis during reverse transcription in vitro and in cells. For increased mutagenic activity, formation of a dimer was more important than specific amino acids and the dimer interface is unique from other A3 enzymes. We propose that dimerization is a predictor of A3C enzyme activity.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anjuman Ara
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuqing Feng
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cristina J Wittkopp
- Department of Microbiology, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - James S Fraser
- Department of Bioengineering and Therapeutic Science and California Institute for Quantitative Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Linda Chelico
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
34
|
Yang B, Li X, Lei L, Chen J. APOBEC: From mutator to editor. J Genet Genomics 2017; 44:423-437. [PMID: 28964683 DOI: 10.1016/j.jgg.2017.04.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 12/21/2022]
Abstract
APOBECs (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) are a family of cytidine deaminases that prefer single-stranded nucleic acids as substrates. Besides their physiological functions, APOBEC family members have been found to cause hypermutations of cancer genomes, which could be correlated with cancer development and poor prognosis. Recently, APOBEC family members have been combined with the versatile CRISPR/Cas9 system to perform targeted base editing or induce hypermutagenesis. This combination improved the CRISPR/Cas9-mediated gene editing at single-base precision, greatly enhancing its usefulness. Here, we review the physiological functions and structural characteristics of APOBEC family members and their roles as endogenous mutators that contribute to hypermutations during carcinogenesis. We also review the various iterations of the APOBEC-CRISPR/Cas9 gene-editing tools, pointing out their features and limitations as well as the possibilities for future developments.
Collapse
Affiliation(s)
- Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Xiaosa Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Liqun Lei
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jia Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
35
|
Harjes S, Jameson GB, Filichev VV, Edwards P, Harjes E. NMR-based method of small changes reveals how DNA mutator APOBEC3A interacts with its single-stranded DNA substrate. Nucleic Acids Res 2017; 45:5602-5613. [PMID: 28369637 PMCID: PMC5435981 DOI: 10.1093/nar/gkx196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/21/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
Abstract
APOBEC3 proteins are double-edged swords. They deaminate cytosine to uracil in single-stranded DNA and provide protection, as part of our innate immune system, against viruses and retrotransposons, but they are also involved in cancer evolution and development of drug resistance. We report a solution-state model of APOBEC3A interaction with its single-stranded DNA substrate obtained with the 'method of small changes'. This method compares pairwise the 2D 15N-1H NMR spectra of APOBEC3A bearing a deactivating mutation E72A in the presence of 36 slightly different DNA substrates. From changes in chemical shifts of peptide N-H moieties, the positions of each nucleotide relative to the protein can be identified. This provided distance restraints for molecular-dynamic simulations to derive a 3-D molecular model of the APOBEC3A-ssDNA complex. The model reveals that loops 1 and 7 of APOBEC3A move to accommodate substrate binding, indicating an important role for protein-DNA dynamics. Overall, our method may prove useful to study other DNA-protein complexes where crystallographic techniques or full NMR structure calculations are hindered by weak binding or other problems. Subsequent to submission, an APOBEC3A structure with a bound DNA oligomer was published and coordinates released, which has provided an unbiased validation of the 'method of small changes'.
Collapse
Affiliation(s)
- Stefan Harjes
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Geoffrey B. Jameson
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Vyacheslav V. Filichev
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Patrick J. B. Edwards
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Elena Harjes
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
36
|
Ito F, Fu Y, Kao SCA, Yang H, Chen XS. Family-Wide Comparative Analysis of Cytidine and Methylcytidine Deamination by Eleven Human APOBEC Proteins. J Mol Biol 2017; 429:1787-1799. [PMID: 28479091 DOI: 10.1016/j.jmb.2017.04.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 01/17/2023]
Abstract
Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) proteins are a family of cytidine deaminases involved in various important biological processes such as antibody diversification/maturation, restriction of viral infection, and generation of somatic mutations. Catalytically active APOBEC proteins execute their biological functions mostly through deaminating cytosine (C) to uracil on single-stranded DNA/RNA. Activation-induced cytidine deaminase, one of the APOBEC members, was reported to deaminate methylated cytosine (mC) on DNA, and this mC deamination was proposed to be involved in the demethylation of mC for epigenetic regulation. The mC deamination activity is later demonstrated for APOBEC3A (A3A) and more recently for APOBEC3B and APOBEC3H (A3H). Despite extensive studies on APOBEC proteins, questions regarding whether the rest of APOBEC members have any mC deaminase activity and what are the relative deaminase activities for each APOBEC member remain unclear. Here, we performed a family-wide analysis of deaminase activities on C and mC by using purified recombinant proteins for 11 known human APOBEC proteins under similar conditions. Our comprehensive analyses revealed that each APOBEC has unique deaminase activity and selectivity for mC. A3A and A3H showed distinctively high deaminase activities on C and mC with relatively high selectivity for mC, whereas six other APOBEC members showed relatively low deaminase activity and selectivity for mC. Our mutational analysis showed that loop-1 of A3A is responsible for its high deaminase activity and selectivity for mC. These findings extend our understanding of APOBEC family proteins that have important roles in diverse biological functions and in genetic mutations.
Collapse
Affiliation(s)
- Fumiaki Ito
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Yang Fu
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Shen-Chi A Kao
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Hanjing Yang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Center of Excellence in NanoBiophysics, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
37
|
Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity. Nat Commun 2017; 8:15024. [PMID: 28452355 PMCID: PMC5414352 DOI: 10.1038/ncomms15024] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive. Here we present the crystal structure of a complex of a cytidine deaminase with ssDNA bound in the active site at 2.2 Å. This structure not only visualizes the active site poised for catalysis of APOBEC3A, but pinpoints the residues that confer specificity towards CC/TC motifs. The APOBEC3A-ssDNA complex defines the 5'-3' directionality and subtle conformational changes that clench the ssDNA within the binding groove, revealing the architecture and mechanism of ssDNA recognition that is likely conserved among all polynucleotide deaminases, thereby opening the door for the design of mechanistic-based therapeutics.
Collapse
|
38
|
King JJ, Larijani M. A Novel Regulator of Activation-Induced Cytidine Deaminase/APOBECs in Immunity and Cancer: Schrödinger's CATalytic Pocket. Front Immunol 2017; 8:351. [PMID: 28439266 PMCID: PMC5382155 DOI: 10.3389/fimmu.2017.00351] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/10/2017] [Indexed: 12/20/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) and its relative APOBEC3 cytidine deaminases boost immune response by mutating immune or viral genes. Because of their genome-mutating activities, AID/APOBECs are also drivers of tumorigenesis. Due to highly charged surfaces, extensive non-specific protein-protein/nucleic acid interactions, formation of polydisperse oligomers, and general insolubility, structure elucidation of these proteins by X-ray crystallography and NMR has been challenging. Hence, almost all available AID/APOBEC structures are of mutated and/or truncated versions. In 2015, we reported a functional structure for AID using a combined computational-biochemical approach. In so doing, we described a new regulatory mechanism that is a first for human DNA/RNA-editing enzymes. This mechanism involves dynamic closure of the catalytic pocket. Subsequent X-ray and NMR studies confirmed our discovery by showing that other APOBEC3s also close their catalytic pockets. Here, we highlight catalytic pocket closure as an emerging and important regulatory mechanism of AID/APOBEC3s. We focus on three sub-topics: first, we propose that variable pocket closure rates across AID/APOBEC3s underlie differential activity in immunity and cancer and review supporting evidence. Second, we discuss dynamic pocket closure as an ever-present internal regulator, in contrast to other proposed regulatory mechanisms that involve extrinsic binding partners. Third, we compare the merits of classical approaches of X-ray and NMR, with that of emerging computational-biochemical approaches, for structural elucidation specifically for AID/APOBEC3s.
Collapse
Affiliation(s)
- Justin J. King
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Mani Larijani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
39
|
Jaguva Vasudevan AA, Hofmann H, Willbold D, Häussinger D, Koenig BW, Münk C. Enhancing the Catalytic Deamination Activity of APOBEC3C Is Insufficient to Inhibit Vif-Deficient HIV-1. J Mol Biol 2017; 429:1171-1191. [DOI: 10.1016/j.jmb.2017.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 12/17/2022]
|
40
|
Nakashima M, Tsuzuki S, Awazu H, Hamano A, Okada A, Ode H, Maejima M, Hachiya A, Yokomaku Y, Watanabe N, Akari H, Iwatani Y. Mapping Region of Human Restriction Factor APOBEC3H Critical for Interaction with HIV-1 Vif. J Mol Biol 2017; 429:1262-1276. [PMID: 28336404 DOI: 10.1016/j.jmb.2017.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 11/30/2022]
Abstract
The APOBEC3 (A3) family of cellular cytidine deaminases comprises seven members (A, B, C, D, F, G, and H) that potently inhibit retroviral replication. Human immunodeficiency virus type 1 (HIV-1) Vif is a small pleiotropic protein that specifically inactivates these enzymes, targeting them for ubiquitin-mediated proteasomal degradation. A3 Vif-interaction sites are presumed to fall into three distinct types: A3C/D/F, A3G, and A3H. To date, two types of A3G and A3C/D/F sites have been well characterized, whereas the A3H Vif-binding site remains poorly defined. Here, we explore the residues critical for the A3H-type Vif interaction. To avoid technical difficulties in performing experiments with human A3H haplotype II (hapII), which is relatively resistant to HIV-1 Vif, we employed its ortholog chimpanzee A3H (cA3H), which displays high Vif sensitivity, for a comparison of sensitivity with that of A3H hapII. The Vif susceptibility of A3H hapII-cA3H chimeras and their substitution mutants revealed a single residue at position 97 as a major determinant for the difference in their Vif sensitivities. We further surveyed critical residues by structure-guided mutagenesis using an A3H structural model and thus identified eight additional residues important for Vif sensitivity, which mapped to the α3 and α4 helices of A3H. Interestingly, this area is located on a surface adjacent to the A3G and A3C/D/F interfaces and is composed of negatively charged and hydrophobic patches. These findings suggest that HIV-1 Vif has evolved to utilize three dispersed surfaces for recognizing three types of interfaces on A3 proteins under certain structural constraints.
Collapse
Affiliation(s)
- Masaaki Nakashima
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Shinya Tsuzuki
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan; Department of Biotechnology, Nagoya University Graduate School of Engineering, Nagoya, Aichi 464-8603, Japan
| | - Hiroaki Awazu
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan; Department of Biotechnology, Nagoya University Graduate School of Engineering, Nagoya, Aichi 464-8603, Japan
| | - Akiko Hamano
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Ayaka Okada
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Masami Maejima
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Atsuko Hachiya
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Yoshiyuki Yokomaku
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Nobuhisa Watanabe
- Department of Biotechnology, Nagoya University Graduate School of Engineering, Nagoya, Aichi 464-8603, Japan; Synchrotron Radiation Research Center, Nagoya University, Nagoya, Aichi, 489-0965, Japan
| | - Hirofumi Akari
- Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan; Institute for Virus Research, Kyoto University, Kyoto, Kyoto 606-8507, Japan
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan; Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan.
| |
Collapse
|
41
|
Shi K, Carpenter M, Banerjee S, Shaban N, Kurahashi K, Salamango D, McCann J, Starrett G, Duffy J, Demir Ö, Amaro R, Harki D, Harris R, Aihara H. Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nat Struct Mol Biol 2017; 24:131-139. [PMID: 27991903 PMCID: PMC5296220 DOI: 10.1038/nsmb.3344] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/16/2016] [Indexed: 12/17/2022]
Abstract
APOBEC-catalyzed cytosine-to-uracil deamination of single-stranded DNA (ssDNA) has beneficial functions in immunity and detrimental effects in cancer. APOBEC enzymes have intrinsic dinucleotide specificities that impart hallmark mutation signatures. Although numerous structures have been solved, mechanisms for global ssDNA recognition and local target-sequence selection remain unclear. Here we report crystal structures of human APOBEC3A and a chimera of human APOBEC3B and APOBEC3A bound to ssDNA at 3.1-Å and 1.7-Å resolution, respectively. These structures reveal a U-shaped DNA conformation, with the specificity-conferring -1 thymine flipped out and the target cytosine inserted deep into the zinc-coordinating active site pocket. The -1 thymine base fits into a groove between flexible loops and makes direct hydrogen bonds with the protein, accounting for the strong 5'-TC preference. These findings explain both conserved and unique properties among APOBEC family members, and they provide a basis for the rational design of inhibitors to impede the evolvability of viruses and tumors.
Collapse
Affiliation(s)
- K. Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - M.A. Carpenter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - S. Banerjee
- Northeastern Collaborative Access Team, Cornell University, Advanced Photon Source, Lemont, Illinois, USA, 60439
| | - N.M. Shaban
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - K. Kurahashi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - D.J. Salamango
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - J.L. McCann
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - G.J. Starrett
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - J.V. Duffy
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Ö. Demir
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - R.E. Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - D.A. Harki
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - R.S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - H. Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| |
Collapse
|
42
|
Ara A, Love RP, Follack TB, Ahmed KA, Adolph MB, Chelico L. Mechanism of Enhanced HIV Restriction by Virion Coencapsidated Cytidine Deaminases APOBEC3F and APOBEC3G. J Virol 2017; 91:e02230-16. [PMID: 27881650 PMCID: PMC5244329 DOI: 10.1128/jvi.02230-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022] Open
Abstract
The APOBEC3 (A3) enzymes, A3G and A3F, are coordinately expressed in CD4+ T cells and can become coencapsidated into HIV-1 virions, primarily in the absence of the viral infectivity factor (Vif). A3F and A3G are deoxycytidine deaminases that inhibit HIV-1 replication by inducing guanine-to-adenine hypermutation through deamination of cytosine to form uracil in minus-strand DNA. The effect of the simultaneous presence of both A3G and A3F on HIV-1 restriction ability is not clear. Here, we used a single-cycle infectivity assay and biochemical analyses to determine if coencapsidated A3G and A3F differ in their restriction capacity from A3G or A3F alone. Proviral DNA sequencing demonstrated that compared to each A3 enzyme alone, A3G and A3F, when combined, had a coordinate effect on hypermutation. Using size exclusion chromatography, rotational anisotropy, and in vitro deamination assays, we demonstrate that A3F promotes A3G deamination activity by forming an A3F/G hetero-oligomer in the absence of RNA which is more efficient at deaminating cytosines. Further, A3F caused the accumulation of shorter reverse transcripts due to decreasing reverse transcriptase efficiency, which would leave single-stranded minus-strand DNA exposed for longer periods of time, enabling more deamination events to occur. Although A3G and A3F are known to function alongside each other, these data provide evidence for an A3F/G hetero-oligomeric A3 with unique properties compared to each individual counterpart. IMPORTANCE The APOBEC3 enzymes APOBEC3F and APOBEC3G act as a barrier to HIV-1 replication in the absence of the HIV-1 Vif protein. After APOBEC3 enzymes are encapsidated into virions, they deaminate cytosines in minus-strand DNA, which forms promutagenic uracils that induce transition mutations or proviral DNA degradation. Even in the presence of Vif, footprints of APOBEC3-catalyzed deaminations are found, demonstrating that APOBEC3s still have discernible activity against HIV-1 in infected individuals. We undertook a study to better understand the activity of coexpressed APOBEC3F and APOBEC3G. The data demonstrate that an APOBEC3F/APOBEC3G hetero-oligomer can form that has unique properties compared to each APOBEC3 alone. This hetero-oligomer has increased efficiency of virus hypermutation, raising the idea that we still may not fully realize the antiviral mechanisms of endogenous APOBEC3 enzymes. Hetero-oligomerization may be a mechanism to increase their antiviral activity in the presence of Vif.
Collapse
Affiliation(s)
- Anjuman Ara
- University of Saskatchewan, Microbiology and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Robin P Love
- University of Saskatchewan, Microbiology and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Tyson B Follack
- University of Saskatchewan, Microbiology and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Khawaja A Ahmed
- University of Saskatchewan, Microbiology and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Madison B Adolph
- University of Saskatchewan, Microbiology and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Linda Chelico
- University of Saskatchewan, Microbiology and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
43
|
Abstract
Apolipoprotein B mRNA Editing Catalytic Polypeptide-like 1 or APOBEC1 was discovered in 1993 as the zinc-dependent cytidine deaminase responsible for the production of an in frame stop codon in apoB mRNA through modification of cytidine at nucleotide position 6666 to uridine. At the time of this discovery there was much speculation concerning the mechanism of base modification RNA editing which has been rekindled by the discovery of multiple C to U RNA editing events in the 3′ UTRs of mRNAs and the finding that other members of the APOBEC family while able to bind RNA, have the biological function of being DNA mutating enzymes. Current research is addressing the mechanism for these nucleotide modification events that appear not to adhere to the mooring sequence-dependent model for APOBEC1 involving the assembly of a multi protein containing editosome. This review will summarize our current understanding of the structure and function of APOBEC proteins and examine how RNA binding to them may be a regulatory mechanism.
Collapse
Affiliation(s)
- Harold C Smith
- a University of Rochester, School of Medicine and Dentistry , Department of Biochemistry and Biophysics , Rochester , NY , USA
| |
Collapse
|
44
|
Abstract
The AID/APOBEC family enzymes convert cytosines in single-stranded DNA to uracils, causing base substitutions and strand breaks. They are induced by cytokines produced during the body's inflammatory response to infections, and they help combat infections through diverse mechanisms. AID is essential for the maturation of antibodies and causes mutations and deletions in antibody genes through somatic hypermutation (SHM) and class-switch recombination (CSR) processes. One member of the APOBEC family, APOBEC1, edits mRNA for a protein involved in lipid transport. Members of the APOBEC3 subfamily in humans (APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H) inhibit infections of viruses such as HIV-1, HBV, and HCV, and retrotransposition of endogenous retroelements through mutagenic and nonmutagenic mechanisms. There is emerging consensus that these enzymes can cause mutations in the cellular genome at replication forks or within transcription bubbles depending on the physiological state of the cell and the phase of the cell cycle during which they are expressed. We describe here the state of knowledge about the structures of these enzymes, regulation of their expression, and both the advantageous and deleterious consequences of their expression, including carcinogenesis. We highlight similarities among them and present a holistic view of their regulation and function.
Collapse
Affiliation(s)
- Sachini U Siriwardena
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University , Detroit, Michigan 48201, United States
- Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
- Department of Immunology and Microbiology, Wayne State University School of Medicine , Detroit, Michigan 48201, United States
| |
Collapse
|
45
|
Xiao X, Li SX, Yang H, Chen XS. Crystal structures of APOBEC3G N-domain alone and its complex with DNA. Nat Commun 2016; 7:12193. [PMID: 27480941 PMCID: PMC4974639 DOI: 10.1038/ncomms12193] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 06/08/2016] [Indexed: 11/09/2022] Open
Abstract
APOBEC3G (A3G) is a potent restriction factor of HIV-1. The N-terminal domain of A3G (A3G-CD1) is responsible for oligomerization and nucleic acid binding, both of which are essential for anti-HIV activity. As a countermeasure, HIV-1 viral infectivity factor (Vif) binds A3G-CD1 to mediate A3G degradation. The structural basis for the functions of A3G-CD1 remains elusive. Here, we report the crystal structures of a primate A3G-CD1 (rA3G-CD1) alone and in complex with single-stranded DNA (ssDNA). rA3G-CD1 shares a conserved core structure with the previously determined catalytic APOBECs, but displays unique features for surface charge, dimerization and nucleic acid binding. Its co-crystal structure with ssDNA reveals how the conformations of loops and residues surrounding the Zn-coordinated centre (Zn-centre) change upon DNA binding. The dimerization interface of rA3G-CD1 is important for oligomerization, nucleic acid binding and Vif-mediated degradation. These findings elucidate the molecular basis of antiviral mechanism and HIV-Vif targeting of A3G.
Collapse
Affiliation(s)
- Xiao Xiao
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA.,Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Shu-Xing Li
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California 90089, USA.,Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, California 90089, USA
| | - Hanjing Yang
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Xiaojiang S Chen
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA.,Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California 90089, USA.,Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, California 90089, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
46
|
The APOBEC Protein Family: United by Structure, Divergent in Function. Trends Biochem Sci 2016; 41:578-594. [PMID: 27283515 DOI: 10.1016/j.tibs.2016.05.001] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 12/13/2022]
Abstract
The APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of proteins have diverse and important functions in human health and disease. These proteins have an intrinsic ability to bind to both RNA and single-stranded (ss) DNA. Both function and tissue-specific expression varies widely for each APOBEC protein. We are beginning to understand that the activity of APOBEC proteins is regulated through genetic alterations, changes in their transcription and mRNA processing, and through their interactions with other macromolecules in the cell. Loss of cellular control of APOBEC activities leads to DNA hypermutation and promiscuous RNA editing associated with the development of cancer or viral drug resistance, underscoring the importance of understanding how APOBEC proteins are regulated.
Collapse
|
47
|
Shaban NM, Shi K, Li M, Aihara H, Harris RS. 1.92 Angstrom Zinc-Free APOBEC3F Catalytic Domain Crystal Structure. J Mol Biol 2016; 428:2307-2316. [PMID: 27139641 PMCID: PMC5142242 DOI: 10.1016/j.jmb.2016.04.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/13/2016] [Accepted: 04/19/2016] [Indexed: 01/07/2023]
Abstract
The APOBEC3 family of DNA cytosine deaminases is capable of restricting the replication of HIV-1 and other pathogens. Here, we report a 1.92 Å resolution crystal structure of the Vif-binding and catalytic domain of APOBEC3F (A3F). This structure is distinct from the previously published APOBEC and phylogenetically related deaminase structures, as it is the first without zinc in the active site. We determined an additional structure containing zinc in the same crystal form that allows direct comparison with the zinc-free structure. In the absence of zinc, the conserved active site residues that normally participate in zinc coordination show unique conformations, including a 90 degree rotation of His249 and disulfide bond formation between Cys280 and Cys283. We found that zinc coordination is influenced by pH, and treating the protein at low pH in crystallization buffer is sufficient to remove zinc. Zinc coordination and catalytic activity are reconstituted with the addition of zinc only in a reduced environment likely due to the two active site cysteines readily forming a disulfide bond when not coordinating zinc. We show that the enzyme is active in the presence of zinc and cobalt but not with other divalent metals. These results unexpectedly demonstrate that zinc is not required for the structural integrity of A3F and suggest that metal coordination may be a strategy for regulating the activity of A3F and related deaminases.
Collapse
Affiliation(s)
- Nadine M. Shaban
- Department of Biochemistry, Molecular Biology, and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455,Correspondence: ;
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455
| | - Ming Li
- Department of Biochemistry, Molecular Biology, and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455,Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455,Correspondence: ;
| |
Collapse
|
48
|
Byeon IJL, Byeon CH, Wu T, Mitra M, Singer D, Levin JG, Gronenborn AM. Nuclear Magnetic Resonance Structure of the APOBEC3B Catalytic Domain: Structural Basis for Substrate Binding and DNA Deaminase Activity. Biochemistry 2016; 55:2944-59. [PMID: 27163633 DOI: 10.1021/acs.biochem.6b00382] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Human APOBEC3B (A3B) is a member of the APOBEC3 (A3) family of cytidine deaminases, which function as DNA mutators and restrict viral pathogens and endogenous retrotransposons. Recently, A3B was identified as a major source of genetic heterogeneity in several human cancers. Here, we determined the solution nuclear magnetic resonance structure of the catalytically active C-terminal domain (CTD) of A3B and performed detailed analyses of its deaminase activity. The core of the structure comprises a central five-stranded β-sheet with six surrounding helices, common to all A3 proteins. The structural fold is most similar to that of A3A and A3G-CTD, with the most prominent difference being found in loop 1. The catalytic activity of A3B-CTD is ∼15-fold lower than that of A3A, although both exhibit a similar pH dependence. Interestingly, A3B-CTD with an A3A loop 1 substitution had significantly increased deaminase activity, while a single-residue change (H29R) in A3A loop 1 reduced A3A activity to the level seen with A3B-CTD. This establishes that loop 1 plays an important role in A3-catalyzed deamination by precisely positioning the deamination-targeted C into the active site. Overall, our data provide important insights into the determinants of the activities of individual A3 proteins and facilitate understanding of their biological function.
Collapse
Affiliation(s)
| | | | - Tiyun Wu
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Mithun Mitra
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Dustin Singer
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Judith G Levin
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland 20892, United States
| | | |
Collapse
|
49
|
Pham P, Afif SA, Shimoda M, Maeda K, Sakaguchi N, Pedersen LC, Goodman MF. Structural analysis of the activation-induced deoxycytidine deaminase required in immunoglobulin diversification. DNA Repair (Amst) 2016; 43:48-56. [PMID: 27258794 DOI: 10.1016/j.dnarep.2016.05.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 12/18/2022]
Abstract
Activation-induced deoxycytidine deaminase (AID) initiates somatic hypermutation (SHM) and class-switch recombination (CSR) by deaminating C→U during transcription of Ig-variable (V) and Ig-switch (S) region DNA, which is essential to produce high-affinity antibodies. Here we report the crystal structure of a soluble human AID variant at 2.8Å resolution that favors targeting WRC motifs (W=A/T, R=A/G) in vitro, and executes Ig V SHM in Ramos B-cells. A specificity loop extending away from the active site to accommodate two purine bases next to C, differs significantly in sequence, length, and conformation from APOBEC proteins Apo3A and Apo3G, which strongly favor pyrimidines at -1 and -2 positions. Individual amino acid contributions to specificity and processivity were measured in relation to a proposed ssDNA binding cleft. This study provides a structural basis for residue contributions to DNA scanning properties unique to AID, and for disease mutations in human HIGM-2 syndrome.
Collapse
Affiliation(s)
- Phuong Pham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, United States
| | - Samir A Afif
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, United States
| | - Mayuko Shimoda
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan; Laboratory of Host Defence, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, 565-0871, Japan; World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, 565-0871, Japan
| | - Kazuhiko Maeda
- Laboratory of Host Defence, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, 565-0871, Japan; World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, 565-0871, Japan
| | - Nobuo Sakaguchi
- World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, 565-0871, Japan; Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | - Myron F Goodman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, United States; Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States.
| |
Collapse
|
50
|
Glisic S, Sencanski M, Perovic V, Stevanovic S, García-Sosa AT. Arginase Flavonoid Anti-Leishmanial in Silico Inhibitors Flagged against Anti-Targets. Molecules 2016; 21:molecules21050589. [PMID: 27164067 PMCID: PMC6274217 DOI: 10.3390/molecules21050589] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/24/2022] Open
Abstract
Arginase, a drug target for the treatment of leishmaniasis, is involved in the biosynthesis of polyamines. Flavonoids are interesting natural compounds found in many foods and some of them may inhibit this enzyme. The MetIDB database containing 5667 compounds was screened using an EIIP/AQVN filter and 3D QSAR to find the most promising candidate compounds. In addition, these top hits were screened in silico versus human arginase and an anti-target battery consisting of cytochromes P450 2a6, 2c9, 3a4, sulfotransferase, and the pregnane-X-receptor in order to flag their possible interactions with these proteins involved in the metabolism of substances. The resulting compounds may have promise to be further developed for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Sanja Glisic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia.
| | - Milan Sencanski
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia.
| | - Vladimir Perovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia.
| | - Strahinja Stevanovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia.
| | | |
Collapse
|