1
|
Foka FET, Mufhandu HT. Current ARTs, Virologic Failure, and Implications for AIDS Management: A Systematic Review. Viruses 2023; 15:1732. [PMID: 37632074 PMCID: PMC10458198 DOI: 10.3390/v15081732] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Antiretroviral therapies (ARTs) have revolutionized the management of human immunodeficiency virus (HIV) infection, significantly improved patient outcomes, and reduced the mortality rate and incidence of acquired immunodeficiency syndrome (AIDS). However, despite the remarkable efficacy of ART, virologic failure remains a challenge in the long-term management of HIV-infected individuals. Virologic failure refers to the persistent detectable viral load in patients receiving ART, indicating an incomplete suppression of HIV replication. It can occur due to various factors, including poor medication adherence, drug resistance, suboptimal drug concentrations, drug interactions, and viral factors such as the emergence of drug-resistant strains. In recent years, extensive efforts have been made to understand and address virologic failure in order to optimize treatment outcomes. Strategies to prevent and manage virologic failure include improving treatment adherence through patient education, counselling, and supportive interventions. In addition, the regular monitoring of viral load and resistance testing enables the early detection of treatment failure and facilitates timely adjustments in ART regimens. Thus, the development of novel antiretroviral agents with improved potency, tolerability, and resistance profiles offers new options for patients experiencing virologic failure. However, new treatment options would also face virologic failure if not managed appropriately. A solution to virologic failure requires a comprehensive approach that combines individualized patient care, robust monitoring, and access to a range of antiretroviral drugs.
Collapse
Affiliation(s)
- Frank Eric Tatsing Foka
- Department of Microbiology, Virology Laboratory, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, Private Bag, Mmabatho X2046, South Africa
| | - Hazel Tumelo Mufhandu
- Department of Microbiology, Virology Laboratory, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, Private Bag, Mmabatho X2046, South Africa
| |
Collapse
|
2
|
Quaternary Interaction of the HIV-1 Envelope Trimer with CD4 and Neutralizing Antibodies. Viruses 2021; 13:v13071405. [PMID: 34372611 PMCID: PMC8310203 DOI: 10.3390/v13071405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/25/2022] Open
Abstract
The entry of HIV-1 into host cells is initiated by the interaction of the viral envelope (Env) spike with the CD4 receptor. During this process, the spike undergoes a series of conformational changes that eventually lead to the exposure of the fusion peptide located at the N-terminus of the transmembrane glycoprotein, gp41. Recent structural and functional studies have provided important insights into the interaction of Env with CD4 at various stages. However, a fine elucidation of the earliest events of CD4 contact and its immediate effect on the Env conformation remains a challenge for investigation. Here, we summarize the discovery of the quaternary nature of the CD4-binding site in the HIV-1 Env and the role of quaternary contact in the functional interaction with the CD4 receptor. We propose two models for this initial contact based on the current knowledge and discuss how a better understanding of the quaternary interaction may lead to improved immunogens and antibodies targeting the CD4-binding site.
Collapse
|
3
|
Jette CA, Barnes CO, Kirk SM, Melillo B, Smith AB, Bjorkman PJ. Cryo-EM structures of HIV-1 trimer bound to CD4-mimetics BNM-III-170 and M48U1 adopt a CD4-bound open conformation. Nat Commun 2021; 12:1950. [PMID: 33782388 PMCID: PMC8007822 DOI: 10.1038/s41467-021-21816-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/11/2021] [Indexed: 02/01/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV-1), the causative agent of AIDS, impacts millions of people. Entry into target cells is mediated by the HIV-1 envelope (Env) glycoprotein interacting with host receptor CD4, which triggers conformational changes allowing binding to a coreceptor and subsequent membrane fusion. Small molecule or peptide CD4-mimetic drugs mimic CD4's Phe43 interaction with Env by inserting into the conserved Phe43 pocket on Env subunit gp120. Here, we present single-particle cryo-EM structures of CD4-mimetics BNM-III-170 and M48U1 bound to a BG505 native-like Env trimer plus the CD4-induced antibody 17b at 3.7 Å and 3.9 Å resolution, respectively. CD4-mimetic-bound BG505 exhibits canonical CD4-induced conformational changes including trimer opening, formation of the 4-stranded gp120 bridging sheet, displacement of the V1V2 loop, and formation of a compact and elongated gp41 HR1C helical bundle. We conclude that CD4-induced structural changes on both gp120 and gp41 Env subunits are induced by binding to the gp120 Phe43 pocket.
Collapse
Affiliation(s)
- Claudia A. Jette
- grid.20861.3d0000000107068890Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA USA
| | - Christopher O. Barnes
- grid.20861.3d0000000107068890Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA USA
| | - Sharon M. Kirk
- grid.25879.310000 0004 1936 8972Department of Chemistry, University of Pennsylvania, Philadelphia, PA USA
| | - Bruno Melillo
- grid.25879.310000 0004 1936 8972Department of Chemistry, University of Pennsylvania, Philadelphia, PA USA
| | - Amos B. Smith
- grid.25879.310000 0004 1936 8972Department of Chemistry, University of Pennsylvania, Philadelphia, PA USA
| | - Pamela J. Bjorkman
- grid.20861.3d0000000107068890Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
4
|
On the irrationality of rational design of an HIV vaccine in light of protein intrinsic disorder. Arch Virol 2021; 166:1283-1296. [PMID: 33606110 PMCID: PMC7892713 DOI: 10.1007/s00705-021-04984-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/19/2020] [Indexed: 12/18/2022]
Abstract
The lack of progress in finding an efficient vaccine for a human immunodeficiency virus (HIV) is daunting. In fact, this search has spanned nearly four decades without much success. There are several objective reasons for such a failure, which include the highly glycosylated nature of HIV-1, the presence of neotopes, and high mutation rates. This article argues that the presence of highly flexible and intrinsically disordered regions in both human anti-HIV-1 antibodies and the major HIV-1immunogen, its surface glycoprotein gp120, represent one of the major causes for the lack of success in utilization of structure-based reverse vaccinology.
Collapse
|
5
|
Beretta M, Migraine J, Moreau A, Essat A, Goujard C, Chaix ML, Drouin A, Bouvin-Pley M, Meyer L, Barin F, Braibant M. Common evolutionary features of the envelope glycoprotein of HIV-1 in patients belonging to a transmission chain. Sci Rep 2020; 10:16744. [PMID: 33028961 PMCID: PMC7541522 DOI: 10.1038/s41598-020-73975-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/23/2020] [Indexed: 11/09/2022] Open
Abstract
The diversity of the HIV-1 envelope glycoproteins (Env) is largely a consequence of the pressure exerted by the adaptive immune response to infection. While it was generally assumed that the neutralizing antibody (NAb) response depended mainly on the infected individual, the concept that virus-related factors could be important in inducing this response has recently emerged. Here, we analyzed the influence of the infecting viral strain in shaping NAb responses in four HIV-1 infected subjects belonging to a transmission chain. We also explored the impact of NAb responses on the functional evolution of the viral quasispecies. The four patients developed a strong autologous neutralizing antibody response that drove viral escape and coincided with a parallel evolution of their infecting quasispecies towards increasing infectious properties, increasing susceptibility to T20 and increasing resistance to both CD4 analogs and V3 loop-directed NAbs. This evolution was associated with identical Env sequence changes at several positions in the V3 loop, the fusion peptide and the HR2 domain of gp41. The common evolutionary pattern of Env in different hosts suggests that the capacity of a given Env to adapt to changing environments may be restricted by functional constraints that limit its evolutionary landscape.
Collapse
Affiliation(s)
- Maxime Beretta
- Université de Tours et CHRU de Tours, Inserm U1259, Tours, France.,Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France
| | - Julie Migraine
- Université de Tours et CHRU de Tours, Inserm U1259, Tours, France
| | - Alain Moreau
- Université de Tours et CHRU de Tours, Inserm U1259, Tours, France
| | - Asma Essat
- Université Paris Sud, Université Paris Saclay, CESP Inserm U1018, Le Kremlin-Bicêtre, France
| | - Cécile Goujard
- Université Paris Sud, Université Paris Saclay, CESP Inserm U1018, Le Kremlin-Bicêtre, France.,AP-HP Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Marie-Laure Chaix
- Université de Paris, Inserm U944, Paris, France.,Laboratoire de Virologie, AP-HP, Hôpital Saint Louis, Paris, France
| | - Aurélie Drouin
- Université de Tours et CHRU de Tours, Inserm U1259, Tours, France
| | | | - Laurence Meyer
- Université Paris Sud, Université Paris Saclay, CESP Inserm U1018, Le Kremlin-Bicêtre, France.,AP-HP Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Francis Barin
- Université de Tours et CHRU de Tours, Inserm U1259, Tours, France.,CHRU de Tours, CNR VIH, Tours, France
| | - Martine Braibant
- Université de Tours et CHRU de Tours, Inserm U1259, Tours, France.
| |
Collapse
|
6
|
Opening the HIV envelope: potential of CD4 mimics as multifunctional HIV entry inhibitors. Curr Opin HIV AIDS 2020; 15:300-308. [PMID: 32769632 DOI: 10.1097/coh.0000000000000637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Close to 2 million individuals globally become infected with HIV-1 each year and just over two-thirds will have access to life-prolonging antivirals. However, the rapid development of drug resistance creates challenges, such that generation of more effective therapies is not only warranted but a necessary endeavour. This review discusses a group of HIV-1 entry inhibitors known as CD4 mimics which exploit the highly conserved relationship between the HIV-1 envelope glycoprotein and the receptor, CD4. RECENT FINDINGS We review the structure/function guided evolution of these inhibitors, vital mechanistic insights that underpin broad and potent functional antagonism, recent evidence of utility demonstrated in animal and physiologically relevant in-vitro models, and current progress towards effective new-generation inhibitors. SUMMARY The current review highlights the promising potential of CD4 mimetics as multifunctional therapeutics.
Collapse
|
7
|
Differential Pressures of SERINC5 and IFITM3 on HIV-1 Envelope Glycoprotein over the Course of HIV-1 Infection. J Virol 2020; 94:JVI.00514-20. [PMID: 32493821 DOI: 10.1128/jvi.00514-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/25/2020] [Indexed: 12/23/2022] Open
Abstract
Infection of human immunodeficiency virus type 1 (HIV-1) is subject to restriction by cellular factors. Serine incorporator 5 (SERINC5) and interferon-inducible transmembrane 3 (IFITM3) proteins represent two of these restriction factors, which inhibit HIV-1 entry into target cells. Both proteins impede fusion of the viral membrane with the cellular membrane and the formation of a viral fusion pore, and both are countered by the HIV-1 envelope glycoprotein (Env). Given the immense and lasting pressure which Env endures from host adaptive immune responses, it is important to understand whether and how HIV-1 Env is able to maintain the resistance to SERINC5 and IFITM3 throughout the course of infection. We have thus examined a panel of HIV-1 Env clones that were isolated at different stages of viral infection-transmission, acute, and chronic. While HIV-1 Env clones from the transmission stage are resistant to both SERINC5 and IFITM3, as infection progresses into the acute and chronic stages, the resistance to IFITM3 but not to SERINC5 is gradually lost. We further discovered a significant correlation between the resistance of HIV-1 Env to soluble CD4 inhibition and the resistance to SERINC5 but not to IFITM3. Interestingly, the miniprotein CD4 mimetic M48U1 sensitizes HIV-1 Env to the inhibition by SERINC5 but not IFITM3. Together, these data indicate that SERINC5 and IFITM3 exert differential inhibitory pressures on HIV-1 Env over different stages of HIV-1 infection and that HIV-1 Env uses varied strategies to resist these two restriction factors.IMPORTANCE HIV-1 Env protein is exposed to the inhibition not only by humoral response, but also by host restriction factors, including serine incorporator 5 (SERINC5) and interferon-inducible transmembrane 3 (IFITM3). This study investigates how HIV-1 envelope glycoprotein (Env) manages to overcome the pressures from all these different host inhibition mechanisms over the long course of viral infection. HIV-1 Env preserves the resistance to SERINC5 but becomes sensitive to IFITM3 when infection progresses into the chronic stage. Our study also supports the possibility of using CD4 mimetic compounds to sensitize HIV-1 Env to the inhibition by SERINC5 as a potential therapeutic strategy.
Collapse
|
8
|
Tolbert WD, Sherburn R, Gohain N, Ding S, Flinko R, Orlandi C, Ray K, Finzi A, Lewis GK, Pazgier M. Defining rules governing recognition and Fc-mediated effector functions to the HIV-1 co-receptor binding site. BMC Biol 2020; 18:91. [PMID: 32693837 PMCID: PMC7374964 DOI: 10.1186/s12915-020-00819-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/22/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The binding of HIV-1 Envelope glycoproteins (Env) to host receptor CD4 exposes vulnerable conserved epitopes within the co-receptor binding site (CoRBS) which are required for the engagement of either CCR5 or CXCR4 co-receptor to allow HIV-1 entry. Antibodies against this region have been implicated in the protection against HIV acquisition in non-human primate (NHP) challenge studies and found to act synergistically with antibodies of other specificities to deliver effective Fc-mediated effector function against HIV-1-infected cells. Here, we describe the structure and function of N12-i2, an antibody isolated from an HIV-1-infected individual, and show how the unique structural features of this antibody allow for its effective Env recognition and Fc-mediated effector function. RESULTS N12-i2 binds within the CoRBS utilizing two adjacent sulfo-tyrosines (TYS) for binding, one of which binds to a previously unknown TYS binding pocket formed by gp120 residues of high sequence conservation among HIV-1 strains. Structural alignment with gp120 in complex with the co-receptor CCR5 indicates that the new pocket corresponds to TYS at position 15 of CCR5. In addition, structure-function analysis of N12-i2 and other CoRBS-specific antibodies indicates a link between modes of antibody binding within the CoRBS and Fc-mediated effector activities. The efficiency of antibody-dependent cellular cytotoxicity (ADCC) correlated with both the level of antibody binding and the mode of antibody attachment to the epitope region, specifically with the way the Fc region was oriented relative to the target cell surface. Antibodies with poor Fc access mediated the poorest ADCC whereas those with their Fc region readily accessible for interaction with effector cells mediated the most potent ADCC. CONCLUSION Our data identify a previously unknown binding site for TYS within the assembled CoRBS of the HIV-1 virus. In addition, our combined structural-modeling-functional analyses provide new insights into mechanisms of Fc-effector function of antibodies against HIV-1, in particular, how antibody binding to Env antigen affects the efficiency of ADCC response.
Collapse
Affiliation(s)
- William D Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4712, USA
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Rebekah Sherburn
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4712, USA
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Neelakshi Gohain
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Shilei Ding
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Robin Flinko
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Chiara Orlandi
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Krishanu Ray
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4712, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - George K Lewis
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4712, USA.
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA.
| |
Collapse
|
9
|
Prévost J, Tolbert WD, Medjahed H, Sherburn RT, Madani N, Zoubchenok D, Gendron-Lepage G, Gaffney AE, Grenier MC, Kirk S, Vergara N, Han C, Mann BT, Chénine AL, Ahmed A, Chaiken I, Kirchhoff F, Hahn BH, Haim H, Abrams CF, Smith AB, Sodroski J, Pazgier M, Finzi A. The HIV-1 Env gp120 Inner Domain Shapes the Phe43 Cavity and the CD4 Binding Site. mBio 2020; 11:e00280-20. [PMID: 32457241 PMCID: PMC7251204 DOI: 10.1128/mbio.00280-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 envelope glycoproteins (Env) undergo conformational changes upon interaction of the gp120 exterior glycoprotein with the CD4 receptor. The gp120 inner domain topological layers facilitate the transition of Env to the CD4-bound conformation. CD4 engages gp120 by introducing its phenylalanine 43 (Phe43) in a cavity ("the Phe43 cavity") located at the interface between the inner and outer gp120 domains. Small CD4-mimetic compounds (CD4mc) can bind within the Phe43 cavity and trigger conformational changes similar to those induced by CD4. Crystal structures of CD4mc in complex with a modified CRF01_AE gp120 core revealed the importance of these gp120 inner domain layers in stabilizing the Phe43 cavity and shaping the CD4 binding site. Our studies reveal a complex interplay between the gp120 inner domain and the Phe43 cavity and generate useful information for the development of more-potent CD4mc.IMPORTANCE The Phe43 cavity of HIV-1 envelope glycoproteins (Env) is an attractive druggable target. New promising compounds, including small CD4 mimetics (CD4mc), were shown to insert deeply into this cavity. Here, we identify a new network of residues that helps to shape this highly conserved CD4 binding pocket and characterize the structural determinants responsible for Env sensitivity to small CD4 mimetics.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - William D Tolbert
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, Maryland, USA
| | | | - Rebekah T Sherburn
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, Maryland, USA
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Daria Zoubchenok
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | | | - Althea E Gaffney
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Melissa C Grenier
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sharon Kirk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Natasha Vergara
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Changze Han
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Brendan T Mann
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of the Military Medicine, Bethesda, Maryland, USA
| | - Agnès L Chénine
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of the Military Medicine, Bethesda, Maryland, USA
| | - Adel Ahmed
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hillel Haim
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Cameron F Abrams
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine of Uniformed Services, University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Da LT, Lin M. Opening dynamics of HIV-1 gp120 upon receptor binding is dictated by a key hydrophobic core. Phys Chem Chem Phys 2019; 21:26003-26016. [PMID: 31764922 DOI: 10.1039/c9cp04613e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
HIV-1 entry is mediated firstly by the molecular recognition between the viral glycoprotein gp120 and its receptor CD4 on host T-cells. As a key antigen that can be targeted by neutralizing antibodies, gp120 has been a focus for extensive studies with efforts to understand its structural properties and conformational dynamics upon receptor binding. An atomistic-level revelation of gp120 opening dynamics activated by CD4, however, is still unknown. Here, by constructing a Markov State Model (MSM) based on hundreds of Molecular Dynamics (MD) simulations with an aggregated simulation time of ∼20 microseconds (μs), we identify the key metastable states of gp120 during its opening dynamics upon CD4 binding. The MSM provides a clear dynamic model whereby the identified metastable states coexist and can reach an equilibrium. More importantly, a hydrophobic core flanked by variable loops (V1V2 and V3) and the β20/21 region plays an essential role in triggering the gp120 opening. Any destabilizing effects introduced into the hydrophobic core, therefore, can be expected to promote transition of gp120 to an open state. Moreover, the variable loops demonstrate high flexibilities in fully open gp120. In particular, the V3 region is capable of exploring both closed and open conformations, even with the V1/V2 loops largely adopting an open form. In addition, the bridging sheet formation in gp120 is likely induced by the incoming co-receptor/antibody recognitions, since the V1/V2 structure is highly heterogeneous so that the bridging-sheet formed conformation is not the most populated state. Our studies provide deep insights into the dynamic features of gp120 and its molecular recognitions to the broadly neutralizing antibodies, which guides future attempts to design more effective gp120 immunogens.
Collapse
Affiliation(s)
- Lin-Tai Da
- Key Laboratory of System Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | | |
Collapse
|
11
|
Evolution of the Envelope Glycoprotein of HIV-1 Clade B toward Higher Infectious Properties over the Course of the Epidemic. J Virol 2019; 93:JVI.01171-18. [PMID: 30567994 DOI: 10.1128/jvi.01171-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023] Open
Abstract
We showed previously that during the HIV/AIDS epidemic, the envelope glycoprotein (Env) of HIV-1, and in particular, the gp120 subunit, evolved toward an increased resistance to neutralizing antibodies at a population level. Here, we considered whether the antigenic evolution of the HIV-1 Env is associated with modifications of its functional properties, focusing on cell entry efficacy and interactions with the receptor and coreceptors. We tested the infectivity of a panel of Env-pseudotyped viruses derived from patients infected by subtype B viruses at three periods of the epidemic (1987 to 1991, 1996 to 2000, and 2006 to 2010). Pseudotyped viruses harboring Env from patients infected during the most recent period were approximately 10-fold more infectious in cell culture than those from patients infected at the beginning of the epidemic. This was associated with faster viral entry kinetics: contemporary viruses entered target cells approximately twice as fast as historical viruses. Contemporary viruses were also twice as resistant as historical viruses to the fusion inhibitor enfuvirtide. Resistance to enfuvirtide correlated with a resistance to CCR5 antagonists, suggesting that contemporary viruses expanded their CCR5 usage efficiency. Viruses were equally captured by DC-SIGN, but after binding to DC-SIGN, contemporary viruses infected target cells more efficiently than historical viruses. Thus, we report evidence that the infectious properties of the envelope glycoprotein of HIV-1 increased during the course of the epidemic. It is plausible that these changes affected viral fitness during the transmission process and might have contributed to an increasing virulence of HIV-1.IMPORTANCE Following primary infection by HIV-1, neutralizing antibodies (NAbs) exert selective pressure on the HIV-1 envelope glycoprotein (Env), driving the evolution of the viral population. Previous studies suggested that, as a consequence, Env has evolved at the HIV species level since the start of the epidemic so as to display greater resistance to NAbs. Here, we investigated whether the antigenic evolution of the HIV-1 Env is associated with modifications of its functional properties, focusing on cell entry efficacy and interactions with the receptor and coreceptors. Our data provide evidence that the infectious properties of the HIV-1 Env increased during the course of the epidemic. These changes may have contributed to increasing virulence of HIV-1 and an optimization of transmission between individuals.
Collapse
|
12
|
Phenotypic properties of envelope glycoproteins of transmitted HIV-1 variants from patients belonging to transmission chains. AIDS 2018; 32:1917-1926. [PMID: 29927786 DOI: 10.1097/qad.0000000000001906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Transmission of HIV-1 involves a bottleneck in which generally a single HIV-1 variant from a diverse viral population in the transmitting partner establishes infection in the new host. It is still unclear to what extent this event is driven by specific properties of the transmitted viruses or the result of a stochastic process. Our study aimed to better characterize this phenomenon and define properties shared by transmitted viruses. DESIGN We compared antigenic and functional properties of envelope glycoproteins of viral variants found during primary infection in 27 patients belonging to eight transmission chains. METHODS We generated pseudotyped viruses expressing Env variants of the viral quasispecies infecting each patient and compared their sensitivity to neutralization by eight human monoclonal broadly neutralizing antibodies (HuMoNAbs). We also compared their infectious properties by measuring their infectivity and sensitivity to various entry inhibitors. RESULTS Transmitted viruses from the same transmission chain shared many properties, including similar neutralization profiles, sensitivity to inhibitors, and infectivity, providing evidence that the transmission bottleneck is mainly nonstochastic. Transmitted viruses were CCR5-tropic, sensitive to MVC, and resistant to soluble forms of CD4, irrespective of the cluster to which they belonged. They were also sensitive to HuMoNAbs that target V3, the CD4-binding site, and the MPER region, suggesting that the loss of these epitopes may compromise their capacity to be transmitted. CONCLUSION Our data suggest that the transmission bottleneck is governed by selective forces. How these forces confer an advantage to the transmitted virus has yet to be determined.
Collapse
|
13
|
Increased, Durable B-Cell and ADCC Responses Associated with T-Helper Cell Responses to HIV-1 Envelope in Macaques Vaccinated with gp140 Occluded at the CD4 Receptor Binding Site. J Virol 2017; 91:JVI.00811-17. [PMID: 28701402 PMCID: PMC5599767 DOI: 10.1128/jvi.00811-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023] Open
Abstract
Strategies are needed to improve the immunogenicity of HIV-1 envelope (Env) antigens (Ag) for more long-lived, efficacious HIV-1 vaccine-induced B-cell responses. HIV-1 Env gp140 (native or uncleaved molecules) or gp120 monomeric proteins elicit relatively poor B-cell responses which are short-lived. We hypothesized that Env engagement of the CD4 receptor on T-helper cells results in anergic effects on T-cell recruitment and consequently a lack of strong, robust, and durable B-memory responses. To test this hypothesis, we occluded the CD4 binding site (CD4bs) of gp140 by stable cross-linking with a 3-kDa CD4 miniprotein mimetic, serving to block ligation of gp140 on CD4+ T cells while preserving CD4-inducible (CDi) neutralizing epitopes targeted by antibody-dependent cellular cytotoxicity (ADCC) effector responses. Importantly, immunization of rhesus macaques consistently gave superior B-cell (P < 0.001) response kinetics and superior ADCC (P < 0.014) in a group receiving the CD4bs-occluded vaccine compared to those of animals immunized with gp140. Of the cytokines examined, Ag-specific interleukin-4 (IL-4) T-helper enzyme-linked immunosorbent spot (ELISpot) assays of the CD4bs-occluded group increased earlier (P = 0.025) during the inductive phase. Importantly, CD4bs-occluded gp140 antigen induced superior B-cell and ADCC responses, and the elevated B-cell responses proved to be remarkably durable, lasting more than 60 weeks postimmunization. IMPORTANCE Attempts to develop HIV vaccines capable of inducing potent and durable B-cell responses have been unsuccessful until now. Antigen-specific B-cell development and affinity maturation occurs in germinal centers in lymphoid follicles through a critical interaction between B cells and T follicular helper cells. The HIV envelope binds the CD4 receptor on T cells as soluble shed antigen or as antigen-antibody complexes, causing impairment in the activation of these specialized CD4-positive T cells. We proposed that CD4-binding impairment is partly responsible for the relatively poor B-cell responses to HIV envelope-based vaccines. To test this hypothesis, we blocked the CD4 binding site of the envelope antigen and compared it to currently used unblocked envelope protein. We found superior and durable B-cell responses in macaques vaccinated with an occluded CD4 binding site on the HIV envelope antigen, demonstrating a potentially important new direction in future design of new HIV vaccines.
Collapse
|
14
|
Musumeci G, Bon I, Lembo D, Cagno V, Re MC, Signoretto C, Diani E, Lopalco L, Pastori C, Martin L, Ponchel G, Gibellini D, Bouchemal K. M48U1 and Tenofovir combination synergistically inhibits HIV infection in activated PBMCs and human cervicovaginal histocultures. Sci Rep 2017; 7:41018. [PMID: 28145455 PMCID: PMC5286506 DOI: 10.1038/srep41018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/15/2016] [Indexed: 11/25/2022] Open
Abstract
Microbicides are considered a promising strategy for preventing human immunodeficiency virus (HIV-1) transmission and disease. In this report, we first analyzed the antiviral activity of the miniCD4 M48U1 peptide formulated in hydroxyethylcellulose (HEC) hydrogel in activated peripheral blood mononuclear cells (PBMCs) infected with R5- and X4–tropic HIV-1 strains. The results demonstrate that M48U1 prevented infection by several HIV-1 strains including laboratory strains, and HIV-1 subtype B and C strains isolated from the activated PBMCs of patients. M48U1 also inhibited infection by two HIV-1 transmitted/founder infectious molecular clones (pREJO.c/2864 and pTHRO.c/2626). In addition, M48U1 was administered in association with tenofovir, and these two antiretroviral drugs synergistically inhibited HIV-1 infection. In the next series of experiments, we tested M48U1 alone or in combination with tenofovir in HEC hydrogel with an organ-like structure mimicking human cervicovaginal tissue. We demonstrated a strong antiviral effect in absence of significant tissue toxicity. Together, these results indicate that co-treatment with M48U1 plus tenofovir is an effective antiviral strategy that may be used as a new topical microbicide to prevent HIV-1 transmission.
Collapse
Affiliation(s)
- Giuseppina Musumeci
- Department of Experimental, Diagnostics and Specialty Medicine (DIMES), Microbiology Section, University of Bologna, 40138 Bologna, Italy
| | - Isabella Bon
- Department of Experimental, Diagnostics and Specialty Medicine (DIMES), Microbiology Section, University of Bologna, 40138 Bologna, Italy
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy
| | - Valeria Cagno
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy
| | - Maria Carla Re
- Department of Experimental, Diagnostics and Specialty Medicine (DIMES), Microbiology Section, University of Bologna, 40138 Bologna, Italy
| | - Caterina Signoretto
- Department of Diagnostics and Public Health, Microbiology and Virology Unit, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Erica Diani
- Department of Diagnostics and Public Health, Microbiology and Virology Unit, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudia Pastori
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Loïc Martin
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), Gif sur Yvette, F-91191, France
| | - Gilles Ponchel
- Institut Galien Paris Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris Saclay, 5 rue J-B. Clément, 92296, Châtenay-Malabry cedex, France
| | - Davide Gibellini
- Department of Diagnostics and Public Health, Microbiology and Virology Unit, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Kawthar Bouchemal
- Institut Galien Paris Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris Saclay, 5 rue J-B. Clément, 92296, Châtenay-Malabry cedex, France
| |
Collapse
|
15
|
A Highly Conserved gp120 Inner Domain Residue Modulates Env Conformation and Trimer Stability. J Virol 2016; 90:8395-409. [PMID: 27384653 DOI: 10.1128/jvi.01068-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/27/2016] [Indexed: 12/11/2022] Open
Abstract
Previous studies have shown that highly conserved residues in the inner domain of gp120 are required for HIV-1 envelope glycoprotein (Env) transitions to the CD4-bound conformation (A. Finzi, S. H. Xiang, B. Pacheco, L. Wang, J. Haight, et al., Mol Cell 37:656-667, 2010, http://dx.doi.org/10.1016/j.molcel.2010.02.012; A. Desormeaux, M. Coutu, H. Medjahed, B. Pacheco, A. Herschhorn, et al., J Virol 87:2549-2562, 2013, http://dx.doi.org/10.1128/JVI.03104-12). Moreover, W69, a highly conserved residue located at the interface between layer 1 and layer 2 of the inner domain, was recently shown to be important for efficient Env recognition by CD4-induced (CD4i) antibodies capable of potent antibody-dependent cellular cytotoxicity (W. D. Tolbert, N. Gohain, M. Veillette, J. P. Chapleau, C. Orlandi, et al., 2016, Structure 24:697-709, http://dx.doi.org/10.1016/j.str.2016.03.005; S. Ding, M. Veillette, M. Coutu, J. Prevost, L. Scharf, et al., 2016, J Virol 90:2127-2134, http://dx.doi.org/10.1128/JVI.02779-15). We evaluated the contribution of the hydrophobicity of W69 to conformational changes of Env by replacing it with a series of residues with aliphatic or aromatic side chains of decreasing chain length. We have found that the hydrophobicity of residue 69 is important for Env processing, CD4 binding, and its transition to the CD4-bound conformation. The most deleterious effect was observed when W69 was replaced with alanine or glycine residues. However, the functions lost due to W69 mutations could be progressively restored with amino acids of increasing aliphatic chain length and fully recovered with residues bearing an aromatic ring. Interestingly, poor CD4 binding of W69A could be fully restored by introducing a compensatory mutation within layer 2 (S115W). Structural studies of HIV-1 gp120 coree W69A/S115W mutant bound to the CD4 peptide mimetic M48U1 and Fab of anti-cluster A antibody N60-i3 revealed no perturbations to the overall structure of the double mutant compared to the wild-type protein but identified higher mobility within the interface between layer 1 and layer 2, the bridging sheet region, and the CD4 binding site.IMPORTANCE HIV-1 Env transitions to the CD4-bound conformation are required for viral entry. Previous studies identified a highly conserved residue of the inner domain, W69, as being involved in these conformational transitions (A. Finzi, S. H. Xiang, B. Pacheco, L. Wang, J. Haight, et al., Mol Cell 37:656-667, 2010, http://dx.doi.org/10.1016/j.molcel.2010.02.012). Here, we show that W69, located at the interface between gp120 and gp41 in the PGT151-bound trimer, plays a critical role in the interprotomer signaling induced by CD4 binding. This new information might be useful in immunogen design.
Collapse
|
16
|
A Highly Conserved Residue of the HIV-1 gp120 Inner Domain Is Important for Antibody-Dependent Cellular Cytotoxicity Responses Mediated by Anti-cluster A Antibodies. J Virol 2015; 90:2127-34. [PMID: 26637462 DOI: 10.1128/jvi.02779-15] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/30/2015] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that sera from HIV-1-infected individuals contain antibodies able to mediate antibody-dependent cellular cytotoxicity (ADCC). These antibodies preferentially recognize envelope glycoprotein (Env) epitopes induced upon CD4 binding. Here, we show that a highly conserved tryptophan at position 69 of the gp120 inner domain is important for ADCC mediated by anti-cluster A antibodies and sera from HIV-1-infected individuals.
Collapse
|
17
|
Coevolution Analysis of HIV-1 Envelope Glycoprotein Complex. PLoS One 2015; 10:e0143245. [PMID: 26579711 PMCID: PMC4651434 DOI: 10.1371/journal.pone.0143245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/02/2015] [Indexed: 11/19/2022] Open
Abstract
The HIV-1 Env spike is the main protein complex that facilitates HIV-1 entry into CD4+ host cells. HIV-1 entry is a multistep process that is not yet completely understood. This process involves several protein-protein interactions between HIV-1 Env and a variety of host cell receptors along with many conformational changes within the spike. HIV-1 Env developed due to high mutation rates and plasticity escape strategies from immense immune pressure and entry inhibitors. We applied a coevolution and residue-residue contact detecting method to identify coevolution patterns within HIV-1 Env protein sequences representing all group M subtypes. We identified 424 coevolving residue pairs within HIV-1 Env. The majority of predicted pairs are residue-residue contacts and are proximal in 3D structure. Furthermore, many of the detected pairs have functional implications due to contributions in either CD4 or coreceptor binding, or variable loop, gp120-gp41, and interdomain interactions. This study provides a new dimension of information in HIV research. The identified residue couplings may not only be important in assisting gp120 and gp41 coordinate structure prediction, but also in designing new and effective entry inhibitors that incorporate mutation patterns of HIV-1 Env.
Collapse
|
18
|
Conformational Masking and Receptor-Dependent Unmasking of Highly Conserved Env Epitopes Recognized by Non-Neutralizing Antibodies That Mediate Potent ADCC against HIV-1. Viruses 2015; 7:5115-32. [PMID: 26393642 PMCID: PMC4584300 DOI: 10.3390/v7092856] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 01/11/2023] Open
Abstract
The mechanism of antibody-mediated protection is a major focus of HIV-1 vaccine development and a significant issue in the control of viremia. Virus neutralization, Fc-mediated effector function, or both, are major mechanisms of antibody-mediated protection against HIV-1, although other mechanisms, such as virus aggregation, are known. The interplay between virus neutralization and Fc-mediated effector function in protection against HIV-1 is complex and only partially understood. Passive immunization studies using potent broadly neutralizing antibodies (bnAbs) show that both neutralization and Fc-mediated effector function provides the widest dynamic range of protection; however, a vaccine to elicit these responses remains elusive. By contrast, active immunization studies in both humans and non-human primates using HIV-1 vaccine candidates suggest that weakly neutralizing or non-neutralizing antibodies can protect by Fc-mediated effector function, albeit with a much lower dynamic range seen for passive immunization with bnAbs. HIV-1 has evolved mechanisms to evade each type of antibody-mediated protection that must be countered by a successful AIDS vaccine. Overcoming the hurdles required to elicit bnAbs has become a major focus of HIV-1 vaccine development. Here, we discuss a less studied problem, the structural basis of protection (and its evasion) by antibodies that protect only by potent Fc-mediated effector function.
Collapse
|
19
|
Gohain N, Tolbert WD, Acharya P, Yu L, Liu T, Zhao P, Orlandi C, Visciano ML, Kamin-Lewis R, Sajadi MM, Martin L, Robinson JE, Kwong PD, DeVico AL, Ray K, Lewis GK, Pazgier M. Cocrystal Structures of Antibody N60-i3 and Antibody JR4 in Complex with gp120 Define More Cluster A Epitopes Involved in Effective Antibody-Dependent Effector Function against HIV-1. J Virol 2015; 89:8840-54. [PMID: 26085162 PMCID: PMC4524080 DOI: 10.1128/jvi.01232-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/05/2015] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Accumulating evidence indicates a role for Fc receptor (FcR)-mediated effector functions of antibodies, including antibody-dependent cell-mediated cytotoxicity (ADCC), in prevention of human immunodeficiency virus type 1 (HIV-1) acquisition and in postinfection control of viremia. Consequently, an understanding of the molecular basis for Env epitopes that constitute effective ADCC targets is of fundamental interest for humoral anti-HIV-1 immunity and for HIV-1 vaccine design. A substantial portion of FcR effector function of potentially protective anti-HIV-1 antibodies is directed toward nonneutralizing, transitional, CD4-inducible (CD4i) epitopes associated with the gp41-reactive region of gp120 (cluster A epitopes). Our previous studies defined the A32-like epitope within the cluster A region and mapped it to the highly conserved and mobile layers 1 and 2 of the gp120 inner domain within the C1-C2 regions of gp120. Here, we elucidate additional cluster A epitope structures, including an A32-like epitope, recognized by human monoclonal antibody (MAb) N60-i3, and a hybrid A32-C11-like epitope, recognized by rhesus macaque MAb JR4. These studies define for the first time a hybrid A32-C11-like epitope and map it to elements of both the A32-like subregion and the seven-layered β-sheet of the gp41-interactive region of gp120. These studies provide additional evidence that effective antibody-dependent effector function in the cluster A region depends on precise epitope targeting--a combination of epitope footprint and mode of antibody attachment. All together these findings help further an understanding of how cluster A epitopes are targeted by humoral responses. IMPORTANCE HIV/AIDS has claimed the lives of over 30 million people. Although antiretroviral drugs can control viral replication, no vaccine has yet been developed to prevent the spread of the disease. Studies of natural HIV-1 infection, simian immunodeficiency virus (SIV)- or simian-human immunodeficiency virus (SHIV)-infected nonhuman primates (NHPs), and HIV-1-infected humanized mouse models, passive transfer studies in infants born to HIV-infected mothers, and the RV144 clinical trial have linked FcR-mediated effector functions of anti-HIV-1 antibodies with postinfection control of viremia and/or blocking viral acquisition. With this report we provide additional definition of the molecular determinants for Env antigen engagement which lead to effective antibody-dependent effector function directed to the nonneutralizing CD4-dependent epitopes in the gp41-reactive region of gp120. These findings have important implications for the development of an effective HIV-1 vaccine.
Collapse
Affiliation(s)
- Neelakshi Gohain
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - William D Tolbert
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Priyamvada Acharya
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lei Yu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tongyun Liu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pingsen Zhao
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chiara Orlandi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Maria L Visciano
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Roberta Kamin-Lewis
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mohammad M Sajadi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA Medical Care Clinical Center, VA Maryland Health Care Center, Baltimore, Maryland, USA
| | - Loïc Martin
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette, France
| | - James E Robinson
- Department of Pediatrics, Tulane University Medical Center, New Orleans, Louisiana, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anthony L DeVico
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Krishanu Ray
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - George K Lewis
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marzena Pazgier
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Abstract
HIV-1-infected cells presenting envelope glycoproteins (Env) in the CD4-bound conformation on their surface are preferentially targeted by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 has evolved a sophisticated mechanism to avoid exposure of ADCC-mediating Env epitopes by down-regulating CD4 and by limiting the overall amount of Env at the cell surface. Here we report that small-molecule CD4-mimetic compounds induce the CD4-bound conformation of Env, and thereby sensitize cells infected with primary HIV-1 isolates to ADCC mediated by antibodies present in sera, cervicovaginal lavages, and breast milk from HIV-1-infected individuals. Importantly, we identified one CD4 mimetic with the capacity to sensitize endogenously infected ex vivo-amplified primary CD4 T cells to ADCC killing mediated by autologous sera and effector cells. Thus, CD4 mimetics hold the promise of therapeutic utility in preventing and controlling HIV-1 infection.
Collapse
|
21
|
Acharya P, Lusvarghi S, Bewley CA, Kwong PD. HIV-1 gp120 as a therapeutic target: navigating a moving labyrinth. Expert Opin Ther Targets 2015; 19:765-83. [PMID: 25724219 DOI: 10.1517/14728222.2015.1010513] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The HIV-1 gp120 envelope (Env) glycoprotein mediates attachment of virus to human target cells that display requisite receptors, CD4 and co-receptor, generally CCR5. Despite high-affinity interactions with host receptors and proof-of-principle by the drug maraviroc that interference with CCR5 provides therapeutic benefit, no licensed drug currently targets gp120. AREAS COVERED An overview of the role of gp120 in HIV-1 entry and of sites of potential gp120 vulnerability to therapeutic inhibition is presented. Viral defenses that protect these sites and turn gp120 into a moving labyrinth are discussed together with strategies for circumventing these defenses to allow therapeutic targeting of gp120 sites of vulnerability. EXPERT OPINION The gp120 envelope glycoprotein interacts with host proteins through multiple interfaces and has conserved structural features at these interaction sites. In spite of this, targeting gp120 for therapeutic purposes is challenging. Env mechanisms that have evolved to evade the humoral immune response also shield it from potential therapeutics. Nevertheless, substantial progress has been made in understanding HIV-1 gp120 structure and its interactions with host receptors, and in developing therapeutic leads that potently neutralize diverse HIV-1 strains. Synergies between advances in understanding, needs for therapeutics against novel viral targets and characteristics of breadth and potency for a number of gp120-targetting lead molecules bodes well for gp120 as a HIV-1 therapeutic target.
Collapse
Affiliation(s)
- Priyamvada Acharya
- National Institute of Allergy and Infectious Diseases/National Institutes of Health, Vaccine Research Center, Structural Biology Section , Room 4609B, 40 Convent Drive, Bethesda, MD 20892 , USA
| | | | | | | |
Collapse
|
22
|
Structural definition of an antibody-dependent cellular cytotoxicity response implicated in reduced risk for HIV-1 infection. J Virol 2014; 88:12895-906. [PMID: 25165110 DOI: 10.1128/jvi.02194-14] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The RV144 vaccine trial implicated epitopes in the C1 region of gp120 (A32-like epitopes) as targets of potentially protective antibody-dependent cellular cytotoxicity (ADCC) responses. A32-like epitopes are highly immunogenic, as infected or vaccinated individuals frequently produce antibodies specific for these determinants. Antibody titers, as measured by enzyme-linked immunosorbent assay (ELISA) against these epitopes, however, do not consistently correlate with protection. Here, we report crystal structures of CD4-stabilized gp120 cores complexed with the Fab fragments of two nonneutralizing, A32-like monoclonal antibodies (MAbs), N5-i5 and 2.2c, that compete for antigen binding and have similar antigen-binding affinities yet exhibit a 75-fold difference in ADCC potency. We find that these MAbs recognize overlapping epitopes formed by mobile layers 1 and 2 of the gp120 inner domain, including the C1 and C2 regions, but bind gp120 at different angles via juxtaposed VH and VL contact surfaces. A comparison of structural and immunological data further showed that antibody orientation on bound antigen and the capacity to form multivalent antigen-antibody complexes on target cells were key determinants of ADCC potency, with the latter process having the greater impact. These studies provide atomic-level definition of A32-like epitopes implicated as targets of protective antibodies in RV144. Moreover, these studies establish that epitope structure and mode of antibody binding can dramatically affect the potency of Fc-mediated effector function against HIV-1. These results provide key insights for understanding, refining, and improving the outcome of HIV vaccine trials, in which relevant immune responses are facilitated by A32-like elicited responses. IMPORTANCE HIV-1 Env is a primary target for antibodies elicited during infection. Although a small number of infected individuals elicit broadly neutralizing antibodies, the bulk of the humoral response consists of antibodies that do not neutralize or do so with limited breadth but may effect protection through Fc receptor-dependent processes, such as antibody-dependent cellular cytotoxicity (ADCC). Understanding these nonneutralizing responses is an important aspect of elucidating the complete spectrum of immune response against HIV-1 infection. With this report, we provide the first atomic-level definition of nonneutralizing CD4-induced epitopes in the N-terminal region of the HIV-1 gp120 (A32-like epitopes). Further, our studies point to the dominant role of precise epitope targeting and mode of antibody attachment in ADCC responses even when largely overlapping epitopes are involved. Such information provides key insights into the mechanisms of Fc-mediated function of antibodies to HIV-1 and will help us understand the outcome of vaccine trials based on humoral immunity.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The HIV-1 site of binding for the CD4 receptor has long attracted attention as a potential supersite of vulnerability to antibody-mediated neutralization. We review recent findings related to effective CD4-binding site antibodies isolated from HIV-1-infected individuals and discuss implications for immunogen design. RECENT FINDINGS Highly effective CD4-binding site antibodies such as antibody VRC01 have the ability to neutralize over 90% of circulating HIV-1 strains. Sequence and structural analysis of these antibodies from over half a dozen HIV-1-infected donors reveals remarkable similarity in their ontogenies and their modes of recognition, all of which involve mimicry of CD4 receptor by antibody-heavy chain. Meanwhile, other effective CD4-binding site neutralizers such as antibody CH103 have been shown to utilize a different mode of recognition, with next-generation sequencing of both virus and antibody suggesting co-evolution to drive the development of antibody-neutralization breadth. SUMMARY The nexus of information concerning the CD4-binding site and its recognition by human antibodies capable of effective neutralization has expanded remarkably in the last few years. Although barriers are substantial, new insights from donor-serum responses, atomic-level structures of antibody-Env complexes, and next-generation sequencing of B-cell transcripts are invigorating vaccine-design efforts to elicit effective CD4-binding site antibodies.
Collapse
|
24
|
Kwon YD, LaLonde JM, Yang Y, Elban MA, Sugawara A, Courter JR, Jones DM, Smith AB, Debnath AK, Kwong PD. Crystal structures of HIV-1 gp120 envelope glycoprotein in complex with NBD analogues that target the CD4-binding site. PLoS One 2014; 9:e85940. [PMID: 24489681 PMCID: PMC3904841 DOI: 10.1371/journal.pone.0085940] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/05/2013] [Indexed: 11/19/2022] Open
Abstract
Efforts to develop therapeutic agents that inhibit HIV-1 entry have led to the identification of several small molecule leads. One of the most promising is the NBD series, which binds within a conserved gp120 cavity and possesses para-halogen substituted aromatic rings, a central oxalamide linker, and a tetramethylpiperidine moiety. In this study, we characterized structurally the interactions of four NBD analogues containing meta-fluoro substitution on the aromatic ring and various heterocyclic ring replacements of the tetramethylpiperidine group. The addition of a meta-fluorine to the aromatic ring improved surface complementarity and did not alter the position of the analogue relative to gp120. By contrast, heterocyclic ring replacements of the tetramethylpiperidine moiety exhibited diverse positioning and interactions with the vestibule of the gp120 cavity. Overall, the biological profile of NBD-congeners was modulated by ligand interactions with the gp120-cavity vestibule. Herein, six co-crystal structures of NBD-analogues with gp120 provide a structural framework for continued small molecule-entry inhibitor optimization.
Collapse
Affiliation(s)
- Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Judith M. LaLonde
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania, United States of America
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark A. Elban
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Akihiro Sugawara
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joel R. Courter
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David M. Jones
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Asim K. Debnath
- Laboratory of Molecular Modeling and Drug Design, Lindsey F. Kimball Research Institute of the New York Blood Center, New York, New York, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Abstract
The Phe43 cavity is a mysterious feature in crystallographic structures of HIV-1 gp120-CD4 complexes. In this issue of Structure, Acharya and colleagues provide structural explanations for the potent neutralization by CD4 mimetic miniproteins with chemical extensions that fit into this cavity.
Collapse
Affiliation(s)
- Barna Dey
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
26
|
Exceptionally potent and broadly cross-reactive, bispecific multivalent HIV-1 inhibitors based on single human CD4 and antibody domains. J Virol 2013; 88:1125-39. [PMID: 24198429 DOI: 10.1128/jvi.02566-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Soluble forms of the human immunodeficiency virus type 1 (HIV-1) primary receptor CD4 (soluble CD4 [sCD4]) have been extensively characterized for a quarter of a century as promising HIV-1 inhibitors, but they have not been clinically successful. By combining a protein cavity-filling strategy and the power of library technology, we identified an engineered cavity-altered single-domain sCD4 (mD1.22) with a unique combination of excellent properties, including broad and potent neutralizing activity, high specificity, stability, solubility, and affinity for the HIV-1 envelope glycoprotein gp120, and small molecular size. To further improve its neutralizing potency and breadth, we generated bispecific multivalent fusion proteins of mD1.22 with another potent HIV-1 inhibitor, an antibody domain (m36.4) that targets the coreceptor-binding site on gp120. The fusion proteins neutralized all HIV-1 isolates tested, with potencies about 10-, 50-, and 200-fold higher than those of the broadly neutralizing antibody VRC01, the U.S. FDA-approved peptide inhibitor T20, and the clinically tested sCD4-Fc fusion protein CD4-Ig, respectively. In addition, they exhibited higher stability and specificity and a lower aggregation propensity than CD4-Ig. Therefore, mD1.22 and related fusion proteins could be useful for HIV-1 prevention and therapy, including eradication of the virus.
Collapse
|
27
|
Morellato-Castillo L, Acharya P, Combes O, Michiels J, Descours A, Ramos OHP, Yang Y, Vanham G, Ariën KK, Kwong PD, Martin L, Kessler P. Interfacial cavity filling to optimize CD4-mimetic miniprotein interactions with HIV-1 surface glycoprotein. J Med Chem 2013; 56:5033-47. [PMID: 23710622 DOI: 10.1021/jm4002988] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ligand affinities can be optimized by interfacial cavity filling. A hollow (Phe43 cavity) between HIV-1 surface glycoprotein (gp120) and cluster of differentiation 4 (CD4) receptor extends beyond residue phenylalanine 43 of CD4 and cannot be fully accessed by natural amino acids. To increase HIV-1 gp120 affinity for a family of CD4-mimetic miniproteins (miniCD4s), we targeted the gp120 Phe43 cavity with 11 non-natural phenylalanine derivatives, introduced into a miniCD4 named M48 (1). The best derivative, named M48U12 (13), bound HIV-1 YU2 gp120 with 8 pM affinity and showed potent HIV-1 neutralization. It contained a methylcyclohexyl derivative of 4-aminophenylalanine, and its cocrystal structure with gp120 revealed the cyclohexane ring buried within the gp120 hydrophobic core but able to assume multiple orientations in the binding pocket, and the aniline nitrogen potentially providing a focus for further improvement. Altogether, the results provide a framework for filling the interfacial Phe43 cavity to enhance miniCD4 affinity.
Collapse
|