1
|
Prichard A, Sy A, Meyer J, Villa E, Pogliano J. Erwinia phage Asesino is a nucleus-forming phage that lacks PhuZ. Sci Rep 2025; 15:1692. [PMID: 39799172 PMCID: PMC11724907 DOI: 10.1038/s41598-024-64095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/05/2024] [Indexed: 01/15/2025] Open
Abstract
As nucleus-forming phages become better characterized, understanding their unifying similarities and unique differences will help us understand how they occupy varied niches and infect diverse hosts. All identified nucleus-forming phages fall within the Chimalliviridae family and share a core genome of 68 unique genes including chimallin, the major nuclear shell protein. A well-studied but non-essential protein encoded by many nucleus-forming phages is PhuZ, a tubulin homolog which aids in capsid migration, nucleus rotation, and nucleus positioning. One clade that represents 24% of all currently known chimalliviruses lacks a PhuZ homolog. Here we show that Erwinia phage Asesino, one member of this PhuZ-less clade, shares a common overall replication mechanism with other characterized nucleus-forming phages despite lacking PhuZ. We show that Asesino replicates via a phage nucleus that encloses phage DNA and partitions proteins in the nuclear compartment and cytoplasm in a manner similar to previously characterized nucleus-forming phages. Consistent with a lack of PhuZ, however, we did not observe active positioning or rotation of the phage nucleus within infected cells. These data show that some nucleus-forming phages have evolved to replicate efficiently without PhuZ, providing an example of a unique variation in the nucleus-based replication pathway.
Collapse
Affiliation(s)
- Amy Prichard
- School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Annika Sy
- School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Justin Meyer
- School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Prichard A, Pogliano J. The intricate organizational strategy of nucleus-forming phages. Curr Opin Microbiol 2024; 79:102457. [PMID: 38581914 DOI: 10.1016/j.mib.2024.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 04/08/2024]
Abstract
Nucleus-forming phages (chimalliviruses) encode numerous genes responsible for creating intricate structures for viral replication. Research on this newly appreciated family of phages has begun to reveal the mechanisms underlying the subcellular organization of the nucleus-based phage replication cycle. These discoveries include the structure of the phage nuclear shell, the identification of a membrane-bound early phage infection intermediate, the dynamic localization of phage RNA polymerases, the phylogeny and core genome of chimalliviruses, and the variation in replication mechanisms across diverse nucleus-forming phages. This research is being propelled forward through the application of fluorescence microscopy and cryo-electron microscopy and the innovative use of new tools such as proximity labeling and RNA-targeting Clustered Regularly Interspaced Short Palindromic Repeats-Cas systems.
Collapse
Affiliation(s)
- Amy Prichard
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Prichard A, Sy A, Meyer J, Villa E, Pogliano J. Asesino: a nucleus-forming phage that lacks PhuZ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593592. [PMID: 38766163 PMCID: PMC11100802 DOI: 10.1101/2024.05.10.593592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
As nucleus-forming phages become better characterized, understanding their unifying similarities and unique differences will help us understand how they occupy varied niches and infect diverse hosts. All identified nucleus-forming phages fall within the proposed Chimalliviridae family and share a core genome of 68 unique genes including chimallin, the major nuclear shell protein. A well-studied but non-essential protein encoded by many nucleus-forming phages is PhuZ, a tubulin homolog which aids in capsid migration, nucleus rotation, and nucleus positioning. One clade that represents 24% of all currently known chimalliviruses lacks a PhuZ homolog. Here we show that Erwinia phage Asesino, one member of this PhuZ-less clade, shares a common overall replication mechanism with other characterized nucleus-forming phages despite lacking PhuZ. We show that Asesino replicates via a phage nucleus that encloses phage DNA and partitions proteins in the nuclear compartment and cytoplasm in a manner similar to previously characterized nucleus-forming phages. Consistent with a lack of PhuZ, however, we did not observe active positioning or rotation of the phage nucleus within infected cells. These data show that some nucleus-forming phages have evolved to replicate efficiently without PhuZ, providing an example of a unique variation in the nucleus-based replication pathway.
Collapse
Affiliation(s)
- Amy Prichard
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Annika Sy
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Justin Meyer
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Nichiporenko A, Antonova D, Kurdyumova I, Khodorkovskii M, Yakunina MV. Assembly of phiKZ bacteriophage Inner Body during infection. Biochem Biophys Res Commun 2024; 693:149372. [PMID: 38128246 DOI: 10.1016/j.bbrc.2023.149372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
The giant myovirus phiKZ is characterised by an Inner Body (IB) structure within its capsid, crucial for orderly DNA packaging. The IB is composed of six phiKZ-specific proteins. Notably, four of these IB proteins are co-injected with DNA into the host cell, where they potentially play a role in attacking the bacterial cell. The dynamics of IB assembling within the phiKZ capsid during infection remain poorly understood. In this study, we used fluorescent microscopy to track the localisation of IB proteins fused to fluorescent proteins within the cell throughout the infection process. Our findings reveal that the proteins Gp97 and Gp162 are incorporated into new virion heads during phage head maturation. In contrast, proteins Gp90, Gp93, and Gp95 are likely integrated into the virion shortly before the DNA packaging.
Collapse
Affiliation(s)
- Anna Nichiporenko
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Daria Antonova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Inna Kurdyumova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Mikhail Khodorkovskii
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Maria V Yakunina
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia.
| |
Collapse
|
5
|
Sabsay KR, te Velthuis AJW. Negative and ambisense RNA virus ribonucleocapsids: more than protective armor. Microbiol Mol Biol Rev 2023; 87:e0008223. [PMID: 37750733 PMCID: PMC10732063 DOI: 10.1128/mmbr.00082-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
SUMMARYNegative and ambisense RNA viruses are the causative agents of important human diseases such as influenza, measles, Lassa fever, and Ebola hemorrhagic fever. The viral genome of these RNA viruses consists of one or more single-stranded RNA molecules that are encapsidated by viral nucleocapsid proteins to form a ribonucleoprotein complex (RNP). This RNP acts as protection, as a scaffold for RNA folding, and as the context for viral replication and transcription by a viral RNA polymerase. However, the roles of the viral nucleoproteins extend beyond these functions during the viral infection cycle. Recent advances in structural biology techniques and analysis methods have provided new insights into the formation, function, dynamics, and evolution of negative sense virus nucleocapsid proteins, as well as the role that they play in host innate immune responses against viral infection. In this review, we discuss the various roles of nucleocapsid proteins, both in the context of RNPs and in RNA-free states, as well as the open questions that remain.
Collapse
Affiliation(s)
- Kimberly R. Sabsay
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Aartjan J. W. te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
6
|
Prichard A, Lee J, Laughlin TG, Lee A, Thomas KP, Sy AE, Spencer T, Asavavimol A, Cafferata A, Cameron M, Chiu N, Davydov D, Desai I, Diaz G, Guereca M, Hearst K, Huang L, Jacobs E, Johnson A, Kahn S, Koch R, Martinez A, Norquist M, Pau T, Prasad G, Saam K, Sandhu M, Sarabia AJ, Schumaker S, Sonin A, Uyeno A, Zhao A, Corbett KD, Pogliano K, Meyer J, Grose JH, Villa E, Dutton R, Pogliano J. Identifying the core genome of the nucleus-forming bacteriophage family and characterization of Erwinia phage RAY. Cell Rep 2023; 42:112432. [PMID: 37120812 PMCID: PMC10299810 DOI: 10.1016/j.celrep.2023.112432] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/28/2023] [Accepted: 04/08/2023] [Indexed: 05/01/2023] Open
Abstract
We recently discovered that some bacteriophages establish a nucleus-like replication compartment (phage nucleus), but the core genes that define nucleus-based phage replication and their phylogenetic distribution were still to be determined. Here, we show that phages encoding the major phage nucleus protein chimallin share 72 conserved genes encoded within seven gene blocks. Of these, 21 core genes are unique to nucleus-forming phage, and all but one of these genes encode proteins of unknown function. We propose that these phages comprise a novel viral family we term Chimalliviridae. Fluorescence microscopy and cryoelectron tomography studies of Erwinia phage vB_EamM_RAY confirm that many of the key steps of nucleus-based replication are conserved among diverse chimalliviruses and reveal variations on this replication mechanism. This work expands our understanding of phage nucleus and PhuZ spindle diversity and function, providing a roadmap for identifying key mechanisms underlying nucleus-based phage replication.
Collapse
Affiliation(s)
- Amy Prichard
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jina Lee
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Thomas G Laughlin
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Amber Lee
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kyle P Thomas
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Annika E Sy
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tara Spencer
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Aileen Asavavimol
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Allison Cafferata
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Mia Cameron
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas Chiu
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Demyan Davydov
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Isha Desai
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Gabriel Diaz
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Melissa Guereca
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kiley Hearst
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Leyi Huang
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Emily Jacobs
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Annika Johnson
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Samuel Kahn
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ryan Koch
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Adamari Martinez
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Meliné Norquist
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tyler Pau
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Gino Prasad
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Katrina Saam
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Milan Sandhu
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Angel Jose Sarabia
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Siena Schumaker
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Aaron Sonin
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ariya Uyeno
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Alison Zhao
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kit Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Justin Meyer
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Julianne H Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Rachel Dutton
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
Prichard A, Lee J, Laughlin TG, Lee A, Thomas KP, Sy A, Spencer T, Asavavimol A, Cafferata A, Cameron M, Chiu N, Davydov D, Desai I, Diaz G, Guereca M, Hearst K, Huang L, Jacobs E, Johnson A, Kahn S, Koch R, Martinez A, Norquist M, Pau T, Prasad G, Saam K, Sandhu M, Sarabia AJ, Schumaker S, Sonin A, Uyeno A, Zhao A, Corbett K, Pogliano K, Meyer J, Grose JH, Villa E, Dutton R, Pogliano J. Identifying the core genome of the nucleus-forming bacteriophage family and characterization of Erwinia phage RAY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529968. [PMID: 36865095 PMCID: PMC9980170 DOI: 10.1101/2023.02.24.529968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
We recently discovered that some bacteriophages establish a nucleus-like replication compartment (phage nucleus), but the core genes that define nucleus-based phage replication and their phylogenetic distribution were unknown. By studying phages that encode the major phage nucleus protein chimallin, including previously sequenced yet uncharacterized phages, we discovered that chimallin-encoding phages share a set of 72 highly conserved genes encoded within seven distinct gene blocks. Of these, 21 core genes are unique to this group, and all but one of these unique genes encode proteins of unknown function. We propose that phages with this core genome comprise a novel viral family we term Chimalliviridae. Fluorescence microscopy and cryo-electron tomography studies of Erwinia phage vB_EamM_RAY confirm that many of the key steps of nucleus-based replication encoded in the core genome are conserved among diverse chimalliviruses, and reveal that non-core components can confer intriguing variations on this replication mechanism. For instance, unlike previously studied nucleus-forming phages, RAY doesn't degrade the host genome, and its PhuZ homolog appears to form a five-stranded filament with a lumen. This work expands our understanding of phage nucleus and PhuZ spindle diversity and function, providing a roadmap for identifying key mechanisms underlying nucleus-based phage replication.
Collapse
|
8
|
Nieweglowska ES, Brilot AF, Méndez-Moran M, Kokontis C, Baek M, Li J, Cheng Y, Baker D, Bondy-Denomy J, Agard DA. The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice. Nat Commun 2023; 14:927. [PMID: 36807264 PMCID: PMC9938867 DOI: 10.1038/s41467-023-36526-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 02/03/2023] [Indexed: 02/20/2023] Open
Abstract
To protect themselves from host attack, numerous jumbo bacteriophages establish a phage nucleus-a micron-scale, proteinaceous structure encompassing the replicating phage DNA. Bacteriophage and host proteins associated with replication and transcription are concentrated inside the phage nucleus while other phage and host proteins are excluded, including CRISPR-Cas and restriction endonuclease host defense systems. Here, we show that nucleus fragments isolated from ϕPA3 infected Pseudomonas aeruginosa form a 2-dimensional lattice, having p2 or p4 symmetry. We further demonstrate that recombinantly purified primary Phage Nuclear Enclosure (PhuN) protein spontaneously assembles into similar 2D sheets with p2 and p4 symmetry. We resolve the dominant p2 symmetric state to 3.9 Å by cryo-EM. Our structure reveals a two-domain core, organized into quasi-symmetric tetramers. Flexible loops and termini mediate adaptable inter-tetramer contacts that drive subunit assembly into a lattice and enable the adoption of different symmetric states. While the interfaces between subunits are mostly well packed, two are open, forming channels that likely have functional implications for the transport of proteins, mRNA, and small molecules.
Collapse
Affiliation(s)
- Eliza S Nieweglowska
- Department of Biochemistry, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Axel F Brilot
- Department of Biochemistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Sauer Structural Biology Laboratory, Center for Biomedical Research Support, University of Texas at Austin, Austin, TX, USA
| | - Melissa Méndez-Moran
- Department of Biochemistry, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Claire Kokontis
- Department of Microbiology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Minkyung Baek
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Junrui Li
- Howard Hughes Medical Institute, University of California, San Francisco, CA, 94143, USA
| | - Yifan Cheng
- Department of Biochemistry, University of California San Francisco, San Francisco, CA, 94143, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, 94143, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - David A Agard
- Department of Biochemistry, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
9
|
Knipe DM, Prichard A, Sharma S, Pogliano J. Replication Compartments of Eukaryotic and Bacterial DNA Viruses: Common Themes Between Different Domains of Host Cells. Annu Rev Virol 2022; 9:307-327. [PMID: 36173697 PMCID: PMC10311714 DOI: 10.1146/annurev-virology-012822-125828] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Subcellular organization is essential for life. Cells organize their functions into organelles to concentrate their machinery and supplies for optimal efficiency. Likewise, viruses organize their replication machinery into compartments or factories within their host cells for optimal replicative efficiency. In this review, we discuss how DNA viruses that infect both eukaryotic cells and bacteria assemble replication compartments for synthesis of progeny viral DNA and transcription of the viral genome. Eukaryotic DNA viruses assemble replication compartments in the nucleus of the host cell while DNA bacteriophages assemble compartments called phage nuclei in the bacterial cytoplasm. Thus, DNA viruses infecting host cells from different domains of life share common replication strategies.
Collapse
Affiliation(s)
- David M Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | - Amy Prichard
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Surendra Sharma
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
10
|
A cytoskeletal vortex drives phage nucleus rotation during jumbo phage replication in E. coli. Cell Rep 2022; 40:111179. [PMID: 35977483 PMCID: PMC9891218 DOI: 10.1016/j.celrep.2022.111179] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/29/2022] [Accepted: 07/19/2022] [Indexed: 02/03/2023] Open
Abstract
Nucleus-forming jumbo phages establish an intricate subcellular organization, enclosing phage genomes within a proteinaceous shell called the phage nucleus. During infection in Pseudomonas, some jumbo phages assemble a bipolar spindle of tubulin-like PhuZ filaments that positions the phage nucleus at midcell and drives its intracellular rotation. This facilitates the distribution of capsids on its surface for genome packaging. Here we show that the Escherichia coli jumbo phage Goslar assembles a phage nucleus surrounded by an array of PhuZ filaments resembling a vortex instead of a bipolar spindle. Expression of a mutant PhuZ protein strongly reduces Goslar phage nucleus rotation, demonstrating that the PhuZ cytoskeletal vortex is necessary for rotating the phage nucleus. While vortex-like cytoskeletal arrays are important in eukaryotes for cytoplasmic streaming and nucleus alignment, this work identifies a coherent assembly of filaments into a vortex-like structure driving intracellular rotation within the prokaryotic cytoplasm.
Collapse
|
11
|
Mishra D, Srinivasan R. Catching a Walker in the Act-DNA Partitioning by ParA Family of Proteins. Front Microbiol 2022; 13:856547. [PMID: 35694299 PMCID: PMC9178275 DOI: 10.3389/fmicb.2022.856547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Partitioning the replicated genetic material is a crucial process in the cell cycle program of any life form. In bacteria, many plasmids utilize cytoskeletal proteins that include ParM and TubZ, the ancestors of the eukaryotic actin and tubulin, respectively, to segregate the plasmids into the daughter cells. Another distinct class of cytoskeletal proteins, known as the Walker A type Cytoskeletal ATPases (WACA), is unique to Bacteria and Archaea. ParA, a WACA family protein, is involved in DNA partitioning and is more widespread. A centromere-like sequence parS, in the DNA is bound by ParB, an adaptor protein with CTPase activity to form the segregation complex. The ParA ATPase, interacts with the segregation complex and partitions the DNA into the daughter cells. Furthermore, the Walker A motif-containing ParA superfamily of proteins is associated with a diverse set of functions ranging from DNA segregation to cell division, cell polarity, chemotaxis cluster assembly, cellulose biosynthesis and carboxysome maintenance. Unifying principles underlying the varied range of cellular roles in which the ParA superfamily of proteins function are outlined. Here, we provide an overview of the recent findings on the structure and function of the ParB adaptor protein and review the current models and mechanisms by which the ParA family of proteins function in the partitioning of the replicated DNA into the newly born daughter cells.
Collapse
Affiliation(s)
- Dipika Mishra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| |
Collapse
|
12
|
Chaikeeratisak V, Birkholz EA, Pogliano J. The Phage Nucleus and PhuZ Spindle: Defining Features of the Subcellular Organization and Speciation of Nucleus-Forming Jumbo Phages. Front Microbiol 2021; 12:641317. [PMID: 34326818 PMCID: PMC8314001 DOI: 10.3389/fmicb.2021.641317] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/16/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages and their bacterial hosts are ancient organisms that have been co-evolving for billions of years. Some jumbo phages, those with a genome size larger than 200 kilobases, have recently been discovered to establish complex subcellular organization during replication. Here, we review our current understanding of jumbo phages that form a nucleus-like structure, or “Phage Nucleus,” during replication. The phage nucleus is made of a proteinaceous shell that surrounds replicating phage DNA and imparts a unique subcellular organization that is temporally and spatially controlled within bacterial host cells by a phage-encoded tubulin (PhuZ)-based spindle. This subcellular architecture serves as a replication factory for jumbo Pseudomonas phages and provides a selective advantage when these replicate in some host strains. Throughout the lytic cycle, the phage nucleus compartmentalizes proteins according to function and protects the phage genome from host defense mechanisms. Early during infection, the PhuZ spindle positions the newly formed phage nucleus at midcell and, later in the infection cycle, the spindle rotates the nucleus while delivering capsids and distributing them uniformly on the nuclear surface, where they dock for DNA packaging. During the co-infection of two different nucleus-forming jumbo phages in a bacterial cell, the phage nucleus establishes Subcellular Genetic Isolation that limits the potential for viral genetic exchange by physically separating co-infection genomes, and the PhuZ spindle causes Virogenesis Incompatibility, whereby interacting components from two diverging phages negatively affect phage reproduction. Thus, the phage nucleus and PhuZ spindle are defining cell biological structures that serve roles in both the life cycle of nucleus-forming jumbo phages and phage speciation.
Collapse
Affiliation(s)
- Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States.,Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Erica A Birkholz
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
13
|
Nguyen KT, Sugie J, Khanna K, Egan ME, Birkholz EA, Lee J, Beierschmitt C, Villa E, Pogliano J. Selective transport of fluorescent proteins into the phage nucleus. PLoS One 2021; 16:e0251429. [PMID: 34111132 PMCID: PMC8191949 DOI: 10.1371/journal.pone.0251429] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/26/2021] [Indexed: 11/18/2022] Open
Abstract
Upon infection of Pseudomonas cells, jumbo phages 201Φ2-1, ΦPA3, and ΦKZ assemble a phage nucleus. Viral DNA is enclosed within the phage-encoded proteinaceous shell along with proteins associated with DNA replication, recombination and transcription. Ribosomes and proteins involved in metabolic processes are excluded from the nucleus. RNA synthesis occurs inside the phage nucleus and messenger RNA is presumably transported into the cytoplasm to be translated. Newly synthesized proteins either remain in the cytoplasm or specifically translocate into the nucleus. The molecular mechanisms governing selective protein sorting and nuclear import in these phage infection systems are currently unclear. To gain insight into this process, we studied the localization of five reporter fluorescent proteins (GFP+, sfGFP, GFPmut1, mCherry, CFP). During infection with ΦPA3 or 201Φ2-1, all five fluorescent proteins were excluded from the nucleus as expected; however, we have discovered an anomaly with the ΦKZ nuclear transport system. The fluorescent protein GFPmut1, expressed by itself, was transported into the ΦKZ phage nucleus. We identified the amino acid residues on the surface of GFPmut1 required for nuclear targeting. Fusing GFPmut1 to any protein, including proteins that normally reside in the cytoplasm, resulted in transport of the fusion into the nucleus. Although the mechanism of transport is still unknown, we demonstrate that GFPmut1 is a useful tool that can be used for fluorescent labelling and targeting of proteins into the ΦKZ phage nucleus.
Collapse
Affiliation(s)
- Katrina T. Nguyen
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Joseph Sugie
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Kanika Khanna
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - MacKennon E. Egan
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Erica A. Birkholz
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Jina Lee
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Christopher Beierschmitt
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Elizabeth Villa
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
14
|
Viral speciation through subcellular genetic isolation and virogenesis incompatibility. Nat Commun 2021; 12:342. [PMID: 33436625 PMCID: PMC7804931 DOI: 10.1038/s41467-020-20575-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding how biological species arise is critical for understanding the evolution of life on Earth. Bioinformatic analyses have recently revealed that viruses, like multicellular life, form reproductively isolated biological species. Viruses are known to share high rates of genetic exchange, so how do they evolve genetic isolation? Here, we evaluate two related bacteriophages and describe three factors that limit genetic exchange between them: 1) A nucleus-like compartment that physically separates replicating phage genomes, thereby limiting inter-phage recombination during co-infection; 2) A tubulin-based spindle that orchestrates phage replication and forms nonfunctional hybrid polymers; and 3) A nuclear incompatibility factor that reduces phage fitness. Together, these traits maintain species differences through Subcellular Genetic Isolation where viral genomes are physically separated during co-infection, and Virogenesis Incompatibility in which the interaction of cross-species components interferes with viral production. Virus speciation cannot be fully explained by the evolution of different host specificities. Here, Chaikeeratisak et al. identify ways viruses can remain genetically isolated despite co-infecting the same cell, providing insight into how new virus species evolve.
Collapse
|
15
|
Abstract
Since their discovery more than 100 years ago, the viruses that infect bacteria (bacteriophages) have been widely studied as model systems. Largely overlooked, however, have been "jumbo phages," with genome sizes ranging from 200 to 500 kbp. Jumbo phages generally have large virions with complex structures and a broad host spectrum. While the majority of jumbo phage genes are poorly functionally characterized, recent work has discovered many unique biological features, including a conserved tubulin homolog that coordinates a proteinaceous nucleus-like compartment that houses and segregates phage DNA. The tubulin spindle displays dynamic instability and centers the phage nucleus within the bacterial host during phage infection for optimal reproduction. The shell provides robust physical protection for the enclosed phage genomes against attack from DNA-targeting bacterial immune systems, thereby endowing jumbo phages with broad resistance. In this review, we focus on the current knowledge of the cytoskeletal elements and the specialized nuclear compartment derived from jumbo phages, and we highlight their importance in facilitating spatial and temporal organization over the viral life cycle. Additionally, we discuss the evolutionary relationships between jumbo phages and eukaryotic viruses, as well as the therapeutic potential and drawbacks of jumbo phages as antimicrobial agents in phage therapy.
Collapse
|
16
|
Mendoza SD, Nieweglowska ES, Govindarajan S, Leon LM, Berry JD, Tiwari A, Chaikeeratisak V, Pogliano J, Agard DA, Bondy-Denomy J. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. Nature 2019; 577:244-248. [PMID: 31819262 PMCID: PMC6949375 DOI: 10.1038/s41586-019-1786-y] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/11/2019] [Indexed: 11/09/2022]
Abstract
All viruses require strategies to inhibit or evade the immunity pathways of cells they infect. The viruses that infect bacteria, bacteriophages (phages), must avoid nucleic-acid targeting immune pathways such as CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated genes) and restriction-modification (R-M) systems to replicate efficiently1. Here, we show that jumbo phage ΦKZ, infecting Pseudomonas aeruginosa, segregates its DNA from immunity nucleases by constructing a proteinaceous nucleus-like compartment. ΦKZ resists many DNA-targeting immune systems in vivo, including two CRISPR-Cas3 subtypes, Cas9, Cas12a, and the restriction enzymes HsdRMS and EcoRI. Cas and restriction enzymes are unable to access the phage DNA throughout the infection, but engineered re-localization of EcoRI inside the compartment enables phage targeting and cell protection. Moreover, ΦKZ is sensitive to the RNA targeting CRISPR-Cas enzyme, Cas13a, likely due to phage mRNA localizing to the cytoplasm. Collectively, we propose that Pseudomonas jumbo phages evade a broad spectrum of DNA-targeting nucleases through the assembly of a protein barrier around their genome.
Collapse
Affiliation(s)
- Senén D Mendoza
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Eliza S Nieweglowska
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Sutharsan Govindarajan
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA.,Department of Biology, SRM University AP, Amaravati, India
| | - Lina M Leon
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Joel D Berry
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Anika Tiwari
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.,Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - David A Agard
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA. .,Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
Song X, Shan H, Zhu Y, Hu S, Xue L, Chen Y, Ding W, Niu T, Gu J, Ouyang S, Shen QT, Liu ZJ. Self-capping of nucleoprotein filaments protects the Newcastle disease virus genome. eLife 2019; 8:45057. [PMID: 31290740 PMCID: PMC6675542 DOI: 10.7554/elife.45057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/09/2019] [Indexed: 12/02/2022] Open
Abstract
Non-segmented negative-strand RNA viruses, such as measles, ebola and Newcastle disease viruses (NDV), encapsidate viral genomic RNAs into helical nucleocapsids, which serve as the template for viral replication and transcription. Here, the clam-shaped nucleocapsid structure, where the NDV viral genome is sequestered, was determined at 4.8 Å resolution by cryo-electron microscopy. The clam-shaped structure is composed of two single-turn spirals packed in a back-to-back mode. This tightly packed structure functions as a seed for the assembly of a nucleocapsid from both directions, facilitating the growth of double-headed filaments with two separate RNA strings inside. Disruption of this structure by mutations in its loop interface yielded a single-headed unfunctional filament.
Collapse
Affiliation(s)
- Xiyong Song
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Shan
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Yanping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shunlin Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ling Xue
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yong Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Ding
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tongxin Niu
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jian Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.,Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Qing-Tao Shen
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Zhi-Jie Liu
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,iHuman Institute, ShanghaiTech University, Shanghai, China
| |
Collapse
|
18
|
Chaikeeratisak V, Khanna K, Nguyen KT, Sugie J, Egan ME, Erb ML, Vavilina A, Nonejuie P, Nieweglowska E, Pogliano K, Agard DA, Villa E, Pogliano J. Viral Capsid Trafficking along Treadmilling Tubulin Filaments in Bacteria. Cell 2019; 177:1771-1780.e12. [PMID: 31199917 PMCID: PMC7301877 DOI: 10.1016/j.cell.2019.05.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/24/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022]
Abstract
Cargo trafficking along microtubules is exploited by eukaryotic viruses, but no such examples have been reported in bacteria. Several large Pseudomonas phages assemble a dynamic, tubulin-based (PhuZ) spindle that centers replicating phage DNA sequestered within a nucleus-like structure. Here, we show that capsids assemble on the membrane and then move rapidly along PhuZ filaments toward the phage nucleus for DNA packaging. The spindle rotates the phage nucleus, distributing capsids around its surface. PhuZ filaments treadmill toward the nucleus at a constant rate similar to the rate of capsid movement and the linear velocity of nucleus rotation. Capsids become trapped along mutant static PhuZ filaments that are defective in GTP hydrolysis. Our results suggest a transport and distribution mechanism in which capsids attached to the sides of filaments are trafficked to the nucleus by PhuZ polymerization at the poles, demonstrating that the phage cytoskeleton evolved cargo-trafficking capabilities in bacteria.
Collapse
Affiliation(s)
- Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA; Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kanika Khanna
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Katrina T Nguyen
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Joseph Sugie
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - MacKennon E Egan
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Marcella L Erb
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Anastasia Vavilina
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Eliza Nieweglowska
- Department of Biochemistry and Biophysics and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - David A Agard
- Department of Biochemistry and Biophysics and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elizabeth Villa
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA.
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
19
|
Chaikeeratisak V, Nguyen K, Egan ME, Erb ML, Vavilina A, Pogliano J. The Phage Nucleus and Tubulin Spindle Are Conserved among Large Pseudomonas Phages. Cell Rep 2018; 20:1563-1571. [PMID: 28813669 DOI: 10.1016/j.celrep.2017.07.064] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 01/27/2023] Open
Abstract
We recently demonstrated that the large Pseudomonas chlororaphis bacteriophage 201φ2-1 assembles a nucleus-like structure that encloses phage DNA and segregates proteins according to function, with DNA processing proteins inside and metabolic enzymes and ribosomes outside the nucleus. Here, we investigate the replication pathway of the Pseudomonas aeruginosa bacteriophages φKZ and φPA3. Bacteriophages φKZ and φPA3 encode a proteinaceous shell that assembles a nucleus-like structure that compartmentalizes proteins and DNA during viral infection. We show that the tubulin-like protein PhuZ encoded by each phage assembles a bipolar spindle that displays dynamic instability and positions the nucleus at midcell. Our results suggest that the phage spindle and nucleus play the same functional role in all three phages, 201φ2-1, φKZ, and φPA3, demonstrating that these key structures are conserved among large Pseudomonas phages.
Collapse
Affiliation(s)
- Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katrina Nguyen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - MacKennon E Egan
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marcella L Erb
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anastasia Vavilina
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
20
|
Wagstaff J, Löwe J. Prokaryotic cytoskeletons: protein filaments organizing small cells. Nat Rev Microbiol 2018; 16:187-201. [PMID: 29355854 DOI: 10.1038/nrmicro.2017.153] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Most, if not all, bacterial and archaeal cells contain at least one protein filament system. Although these filament systems in some cases form structures that are very similar to eukaryotic cytoskeletons, the term 'prokaryotic cytoskeletons' is used to refer to many different kinds of protein filaments. Cytoskeletons achieve their functions through polymerization of protein monomers and the resulting ability to access length scales larger than the size of the monomer. Prokaryotic cytoskeletons are involved in many fundamental aspects of prokaryotic cell biology and have important roles in cell shape determination, cell division and nonchromosomal DNA segregation. Some of the filament-forming proteins have been classified into a small number of conserved protein families, for example, the almost ubiquitous tubulin and actin superfamilies. To understand what makes filaments special and how the cytoskeletons they form enable cells to perform essential functions, the structure and function of cytoskeletal molecules and their filaments have been investigated in diverse bacteria and archaea. In this Review, we bring these data together to highlight the diverse ways that linear protein polymers can be used to organize other molecules and structures in bacteria and archaea.
Collapse
Affiliation(s)
- James Wagstaff
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jan Löwe
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
21
|
Ali B, Desmond MI, Mallory SA, Benítez AD, Buckley LJ, Weintraub ST, Osier MV, Black LW, Thomas JA. To Be or Not To Be T4: Evidence of a Complex Evolutionary Pathway of Head Structure and Assembly in Giant Salmonella Virus SPN3US. Front Microbiol 2017; 8:2251. [PMID: 29187846 PMCID: PMC5694885 DOI: 10.3389/fmicb.2017.02251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022] Open
Abstract
Giant Salmonella phage SPN3US has a 240-kb dsDNA genome and a large complex virion composed of many proteins for which the functions of most are undefined. We recently determined that SPN3US shares a core set of genes with related giant phages and sequenced and characterized 18 amber mutants to facilitate its use as a genetic model system. Notably, SPN3US and related giant phages contain a bolus of ejection proteins within their heads, including a multi-subunit virion RNA polymerase (vRNAP), that enter the host cell with the DNA during infection. In this study, we characterized the SPN3US virion using mass spectrometry to gain insight into its head composition and the features that its head shares with those of related giant phages and with T4 phage. SPN3US has only homologs to the T4 proteins critical for prohead shell formation, the portal and major capsid proteins, as well as to the major enzymes essential for head maturation, the prohead protease and large terminase subunit. Eight of ~50 SPN3US head proteins were found to undergo proteolytic processing at a cleavage motif by the prohead protease gp245. Gp245 undergoes auto-cleavage of its C-terminus, suggesting this is a conserved activation and/or maturation feature of related phage proteases. Analyses of essential head gene mutants showed that the five subunits of the vRNAP must be assembled for any subunit to be incorporated into the prohead, although the assembled vRNAP must then undergo subsequent major conformational rearrangements in the DNA packed capsid to allow ejection through the ~30 Å diameter tail tube for transcription from the injected DNA. In addition, ejection protein candidate gp243 was found to play a critical role in head assembly. Our analyses of the vRNAP and gp243 mutants highlighted an unexpected dichotomy in giant phage head maturation: while all analyzed giant phages have a homologous protease that processes major capsid and portal proteins, processing of ejection proteins is not always a stable/defining feature. Our identification in SPN3US, and related phages, of a diverged paralog to the prohead protease further hints toward a complicated evolutionary pathway for giant phage head structure and assembly.
Collapse
Affiliation(s)
- Bazla Ali
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Maxim I Desmond
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Sara A Mallory
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Andrea D Benítez
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Larry J Buckley
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Susan T Weintraub
- Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Michael V Osier
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Lindsay W Black
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Julie A Thomas
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
22
|
TubZ filament assembly dynamics requires the flexible C-terminal tail. Sci Rep 2017; 7:43342. [PMID: 28230082 PMCID: PMC5322520 DOI: 10.1038/srep43342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/24/2017] [Indexed: 11/12/2022] Open
Abstract
Cytomotive filaments are essential for the spatial organization in cells, showing a dynamic behavior based on nucleotide hydrolysis. TubZ is a tubulin-like protein that functions in extrachromosomal DNA movement within bacteria. TubZ filaments grow in a helical fashion following treadmilling or dynamic instability, although the underlying mechanism is unclear. We have unraveled the molecular basis for filament assembly and dynamics combining electron and atomic force microscopy and biochemical analyses. Our findings suggest that GTP caps retain the filament helical structure and hydrolysis triggers filament stiffening upon disassembly. We show that the TubZ C-terminal tail is an unstructured domain that fulfills multiple functions contributing to the filament helical arrangement, the polymer remodeling into tubulin-like rings and the full disassembly process. This C-terminal tail displays the binding site for partner proteins and we report how it modulates the interaction of the regulator protein TubY.
Collapse
|
23
|
Chaikeeratisak V, Nguyen K, Khanna K, Brilot AF, Erb ML, Coker JKC, Vavilina A, Newton GL, Buschauer R, Pogliano K, Villa E, Agard DA, Pogliano J. Assembly of a nucleus-like structure during viral replication in bacteria. Science 2017; 355:194-197. [PMID: 28082593 PMCID: PMC6028185 DOI: 10.1126/science.aal2130] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/15/2016] [Indexed: 01/01/2023]
Abstract
We observed the assembly of a nucleus-like structure in bacteria during viral infection. Using fluorescence microscopy and cryo-electron tomography, we showed that Pseudomonas chlororaphis phage 201φ2-1 assembled a compartment that separated viral DNA from the cytoplasm. The phage compartment was centered by a bipolar tubulin-based spindle, and it segregated phage and bacterial proteins according to function. Proteins involved in DNA replication and transcription localized inside the compartment, whereas proteins involved in translation and nucleotide synthesis localized outside. Later during infection, viral capsids assembled on the cytoplasmic membrane and moved to the surface of the compartment for DNA packaging. Ultimately, viral particles were released from the compartment and the cell lysed. These results demonstrate that phages have evolved a specialized structure to compartmentalize viral replication.
Collapse
Affiliation(s)
- Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Katrina Nguyen
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kanika Khanna
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Axel F Brilot
- Howard Hughes Medical Institute (HHMI) and the Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Marcella L Erb
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joanna K C Coker
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Anastasia Vavilina
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Gerald L Newton
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert Buschauer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Elizabeth Villa
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - David A Agard
- Howard Hughes Medical Institute (HHMI) and the Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
24
|
Abstract
As discovered over the past 25 years, the cytoskeletons of bacteria and archaea are complex systems of proteins whose central components are dynamic cytomotive filaments. They perform roles in cell division, DNA partitioning, cell shape determination and the organisation of intracellular components. The protofilament structures and polymerisation activities of various actin-like, tubulin-like and ESCRT-like proteins of prokaryotes closely resemble their eukaryotic counterparts but show greater diversity. Their activities are modulated by a wide range of accessory proteins but these do not include homologues of the motor proteins that supplement filament dynamics to aid eukaryotic cell motility. Numerous other filamentous proteins, some related to eukaryotic IF-proteins/lamins and dynamins etc, seem to perform structural roles similar to those in eukaryotes.
Collapse
Affiliation(s)
- Linda A Amos
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
25
|
Abstract
A family of tubulin-related proteins (TubZs) has been identified in prokaryotes as being important for the inheritance of virulence plasmids of several pathogenic Bacilli and also being implicated in the lysogenic life cycle of several bacteriophages. Cell biological studies and reconstitution experiments revealed that TubZs function as prokaryotic cytomotive filaments, providing one-dimensional motive forces. Plasmid-borne TubZ filaments most likely transport plasmid centromeric complexes by depolymerisation, pulling on the plasmid DNA, in vitro. In contrast, phage-borne TubZ (PhuZ) pushes bacteriophage particles (virions) to mid cell by filament growth. Structural studies by both crystallography and electron cryo-microscopy of multiple proteins, both from the plasmid partitioning sub-group and the bacteriophage virion centring group of TubZ homologues, allow a detailed consideration of the structural phylogeny of the group as a whole, while complete structures of both crystallographic protofilaments at high resolution and fully polymerised filaments at intermediate resolution by cryo-EM have revealed details of the polymerisation behaviour of both TubZ sub-groups.
Collapse
|
26
|
Busiek KK, Margolin W. Bacterial actin and tubulin homologs in cell growth and division. Curr Biol 2016; 25:R243-R254. [PMID: 25784047 DOI: 10.1016/j.cub.2015.01.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review.
Collapse
Affiliation(s)
- Kimberly K Busiek
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX 77030, USA.
| |
Collapse
|
27
|
TerBush AD, Porzondek CA, Osteryoung KW. Functional Analysis of the Chloroplast Division Complex Using Schizosaccharomyces pombe as a Heterologous Expression System. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:275-289. [PMID: 26917361 DOI: 10.1017/s1431927616000143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chloroplast division is driven by a macromolecular complex that assembles at the midplastid. The FtsZ ring (Z ring) is the central structure in this complex, and is composed of the functionally distinct cytoskeletal proteins FtsZ1 and FtsZ2. Recent studies in the heterologous Schizosaccharomyces pombe system showed that Arabidopsis FtsZ1 and FtsZ2 filaments have distinct assembly and turnover characteristics. To further analyze these FtsZs, we employed this system to compare the assembly and dynamic properties of FtsZ1 and FtsZ2 lacking their N- and/or C-termini with those of their full-length counterparts. Our data provide evidence that the N-terminus of FtsZ2 is critical for its structural dominance over FtsZ1, and that the N- and C-termini promote polymer bundling and turnover of both FtsZs and contribute to their distinct behaviors. We also assessed how ARC6 affects FtsZ2 filament dynamics, and found that it interacts with and stabilizes FtsZ2 filaments in S. pombe independent of its presumed Z-ring tethering function in planta. Finally, we generated FtsZ1-FtsZ2 coexpression constructs to facilitate reconstitution of more complex interaction networks. Our experiments yield new insight into factors influencing FtsZ behavior and highlight the utility of S. pombe for analyzing chloroplast FtsZs and their assembly regulators.
Collapse
Affiliation(s)
- Allan D TerBush
- 1Biochemistry and Molecular Biology Graduate Program,Michigan State University,East Lansing,MI 48824,USA
| | - Chris A Porzondek
- 3Biochemistry and Molecular Biology Undergraduate Program,Michigan State University,East Lansing,MI 48824,USA
| | | |
Collapse
|
28
|
Eun YJ, Kapoor M, Hussain S, Garner EC. Bacterial Filament Systems: Toward Understanding Their Emergent Behavior and Cellular Functions. J Biol Chem 2015; 290:17181-9. [PMID: 25957405 DOI: 10.1074/jbc.r115.637876] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteria use homologs of eukaryotic cytoskeletal filaments to conduct many different tasks, controlling cell shape, division, and DNA segregation. These filaments, combined with factors that regulate their polymerization, create emergent self-organizing machines. Here, we summarize the current understanding of the assembly of these polymers and their spatial regulation by accessory factors, framing them in the context of being dynamical systems. We highlight how comparing the in vivo dynamics of the filaments with those measured in vitro has provided insight into the regulation, emergent behavior, and cellular functions of these polymeric systems.
Collapse
Affiliation(s)
- Ye-Jin Eun
- From the Molecular and Cellular Biology Department and Faculty of Arts and Sciences (FAS) Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Mrinal Kapoor
- From the Molecular and Cellular Biology Department and Faculty of Arts and Sciences (FAS) Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Saman Hussain
- From the Molecular and Cellular Biology Department and Faculty of Arts and Sciences (FAS) Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Ethan C Garner
- From the Molecular and Cellular Biology Department and Faculty of Arts and Sciences (FAS) Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
29
|
Erb ML, Kraemer JA, Coker JKC, Chaikeeratisak V, Nonejuie P, Agard DA, Pogliano J. A bacteriophage tubulin harnesses dynamic instability to center DNA in infected cells. eLife 2014; 3. [PMID: 25429514 PMCID: PMC4244570 DOI: 10.7554/elife.03197] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 10/22/2014] [Indexed: 11/13/2022] Open
Abstract
Dynamic instability, polarity, and spatiotemporal organization are hallmarks of the microtubule cytoskeleton that allow formation of complex structures such as the eukaryotic spindle. No similar structure has been identified in prokaryotes. The bacteriophage-encoded tubulin PhuZ is required to position DNA at mid-cell, without which infectivity is compromised. Here, we show that PhuZ filaments, like microtubules, stochastically switch from growing in a distinctly polar manner to catastrophic depolymerization (dynamic instability) both in vitro and in vivo. One end of each PhuZ filament is stably anchored near the cell pole to form a spindle-like array that orients the growing ends toward the phage nucleoid so as to position it near mid-cell. Our results demonstrate how a bacteriophage can harness the properties of a tubulin-like cytoskeleton for efficient propagation. This represents the first identification of a prokaryotic tubulin with the dynamic instability of microtubules and the ability to form a simplified bipolar spindle.
Collapse
Affiliation(s)
- Marcella L Erb
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - James A Kraemer
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Joanna K C Coker
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Poochit Nonejuie
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - David A Agard
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| |
Collapse
|
30
|
Sui H. Inside out: tubulin cytomotive filaments versus microtubules. Structure 2014; 22:509-10. [PMID: 24717557 DOI: 10.1016/j.str.2014.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this issue of Structure, Zehr and colleagues describe a structure of a three-stranded PhuZ tubulin cytomotive filament determined at 8.6 Å resolution. This reveals an assembly mechanism different from that of microtubules, leading to a hypothesis explaining cytomotive-filament dynamics.
Collapse
Affiliation(s)
- Haixin Sui
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY 12201, USA.
| |
Collapse
|
31
|
Buske PJ, Mittal A, Pappu RV, Levin PA. An intrinsically disordered linker plays a critical role in bacterial cell division. Semin Cell Dev Biol 2014; 37:3-10. [PMID: 25305578 DOI: 10.1016/j.semcdb.2014.09.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/13/2014] [Indexed: 02/07/2023]
Abstract
In bacteria, animals, fungi, and many single celled eukaryotes, division is initiated by the formation of a ring of cytoskeletal protein at the nascent division site. In bacteria, the tubulin-like GTPase FtsZ serves as the foundation for the cytokinetic ring. A conserved feature of FtsZ is an intrinsically disordered peptide known as the C-terminal linker. Chimeric experiments suggest the linker acts as a flexible boom allowing FtsZ to associate with the membrane through a conserved C-terminal domain and also modulates interactions both between FtsZ subunits and between FtsZ and modulatory proteins in the cytoplasm.
Collapse
Affiliation(s)
- P J Buske
- Department of Cellular and Molecular Pharmacology and The Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Anuradha Mittal
- Department of Biomedical Engineering & Center for Biological Systems Engineering, Saint Louis, MO 63130, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering & Center for Biological Systems Engineering, Saint Louis, MO 63130, USA
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|