1
|
Berner B, Daoutsali G, Melén E, Remper N, Weszelovszká E, Rothnie A, Hedfalk K. Successful strategies for expression and purification of ABC transporters. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184401. [PMID: 39537006 DOI: 10.1016/j.bbamem.2024.184401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ATP-binding cassette (ABC) transporters are proteins responsible for active transport of various compounds, from small ions to macromolecules, across membranes. Proteins from this superfamily also pump drugs out of the cell resulting in multidrug resistance. Based on the cellular functions of ABC-transporters they are commonly associated with diseases like cancer and cystic fibrosis. To understand the molecular mechanism of this critical family of integral membrane proteins, structural characterization is a powerful tool which in turn requires successful recombinant production of stable and functional protein in good yields. In this review we have used high resolution structures of ABC transporters as a measure of successful protein production and summarized strategies for prokaryotic and eukaryotic proteins, respectively. In general, Escherichia coli is the most frequently used host for production of prokaryotic ABC transporters while human embryonic kidney 293 (HEK293) cells are the preferred host system for eukaryotic proteins. Independent of origin, at least two-steps of purification were required after solubilization in the most used detergent DDM. The purification tag was frequently cleaved off before structural characterization using cryogenic electron microscopy, or crystallization and X-ray analysis for prokaryotic proteins.
Collapse
Affiliation(s)
- Bea Berner
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Georgia Daoutsali
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emilia Melén
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Natália Remper
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emma Weszelovszká
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Alice Rothnie
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Kristina Hedfalk
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden.
| |
Collapse
|
2
|
Qiao Z, Do PH, Yeo JY, Ero R, Li Z, Zhan L, Basak S, Gao YG. Structural insights into polyamine spermidine uptake by the ABC transporter PotD-PotABC. SCIENCE ADVANCES 2024; 10:eado8107. [PMID: 39303029 DOI: 10.1126/sciadv.ado8107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/15/2024] [Indexed: 09/22/2024]
Abstract
Polyamines, characterized by their polycationic nature, are ubiquitously present in all organisms and play numerous cellular functions. Among polyamines, spermidine stands out as the predominant type in both prokaryotic and eukaryotic cells. The PotD-PotABC protein complex in Escherichia coli, belonging to the adenosine triphosphate-binding cassette transporter family, is a spermidine-preferential uptake system. Here, we report structural details of the polyamine uptake system PotD-PotABC in various states. Our analyses reveal distinct "inward-facing" and "outward-facing" conformations of the PotD-PotABC transporter, as well as conformational changes in the "gating" residues (F222, Y223, D226, and K241 in PotB; Y219 and K223 in PotC) controlling spermidine uptake. Therefore, our structural analysis provides insights into how the PotD-PotABC importer recognizes the substrate-binding protein PotD and elucidates molecular insights into the spermidine uptake mechanism of bacteria.
Collapse
Affiliation(s)
- Zhu Qiao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Phong Hoa Do
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Joshua Yi Yeo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Rya Ero
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Zhuowen Li
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sandip Basak
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
3
|
Peng Y, Gu X, Zhang M, Yan P, Sun S, He S. Simultaneously enhanced autotrophic-heterotrophic denitrification in iron-based ecological floating bed by plant biomass: Metagenomics insights into microbial communities, functional genes and nitrogen metabolic pathways. WATER RESEARCH 2024; 248:120868. [PMID: 37979568 DOI: 10.1016/j.watres.2023.120868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
In this study, the ecological floating bed supporting with zero-valent iron (ZVI) and plant biomass (EFB-IB) was constructed to improve nitrogen removal from low-polluted water. The effects of ZVI coupling with plant biomass on microbial community structure, metabolic pathways and functional genes were analyzed by metagenomic sequencing, and the mechanism for nitrogen removal was revealed. Results showed that compared with mono-ZVI system (EFB-C), the denitrification efficiencies of EFB-IB were effectively enhanced, with the higher average NO3--N removal efficiencies of 22.60-59.19%. Simultaneously, the average NH4+-N removal efficiencies were 73.08-91.10%. Metagenomic analyses showed that EFB-IB enriched microbes that involved in iron cycle, lignocellulosic degradation and nitrogen metabolism. Plant biomass addition simultaneously increased the relative abundances of autotrophic and heterotrophic denitrifying bacteria. Network analysis showed the cooperation between autotrophic and heterotrophic denitrifying bacteria in EFB-IB. Moreover, compared with EFB-C, plant biomass addition increased the relative abundances of genes related to iron cycle, lignocellulose degradation and glycolysis processes, ensuring the production of autotrophic and heterotrophic electron donors. Therefore, the relative abundances of key enzymes and functional genes related to denitrification were higher in EFB-IB, being beneficial to the NO3--N removal. Additionally, the correlation analysis of nitrogen removal and functional genes verified the synergistic mechanism of iron-based autotrophic denitrification and plant biomass-mediated heterotrophic denitrification in EFB-IB. In summary, plant biomass has excellent potential to improve the nitrogen removal of iron-based EFB from low-polluted water.
Collapse
Affiliation(s)
- Yuanyuan Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Guo H, Zhangsun X, Li N, Liu X, Zhang H, Huang T. Enhanced nitrogen removal of micropolluted source waterbodies using an iron activated carbon system with siliceous materials: Insights into metabolic activity, biodiversity, interactions of core genus and co-existence. BIORESOURCE TECHNOLOGY 2023; 387:129656. [PMID: 37595809 DOI: 10.1016/j.biortech.2023.129656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
Aerobic denitrification technology can effectively abate the nitrogen pollution of water source reservoirs. In this study, 40% siliceous material was used as the carrier to replace the activated carbon in Fe/C material to enhance denitrification and purify water. The removal efficiency of new material for target pollutants were nitrate nitrogen (95.68%), total phosphorus (68.23%) and chemical oxygen demand (46.20%). Aerobic denitrification of water samples and anaerobic denitrification of sediments in three systems jointly assisted nitrogen removal. In a reactor with new material, diversity and richness of denitrifying bacterial communities were enhanced, and the symbiotic structure of aerobic denitrifying bacteria was more complex (Bacillus and Mycobacteria as the dominant bacteria); the microbial distribution better matched the Zif and Mandelbrot models. This system significantly increased the abundance of key enzymes in water samples. The new material effectively removed pollutants and represents a promising and innovative in-situ remediation method for reservoirs.
Collapse
Affiliation(s)
- Honghong Guo
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuanzi Zhangsun
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Na Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
5
|
Substrate size-dependent conformational changes of bacterial pectin-binding protein crucial for chemotaxis and assimilation. Sci Rep 2022; 12:12653. [PMID: 35879323 PMCID: PMC9314435 DOI: 10.1038/s41598-022-16540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/12/2022] [Indexed: 11/08/2022] Open
Abstract
Gram-negative Sphingomonas sp. strain A1 exhibits positive chemotaxis toward acidic polysaccharide pectin. SPH1118 has been identified as a pectin-binding protein involved in both pectin chemotaxis and assimilation. Here we show tertiary structures of SPH1118 with six different conformations as determined by X-ray crystallography. SPH1118 consisted of two domains with a large cleft between the domains and substrates bound to positively charged and aromatic residues in the cleft through hydrogen bond and stacking interactions. Substrate-free SPH1118 adopted three different conformations in the open form. On the other hand, the two domains were closed in substrate-bound form and the domain closure ratio was changed in response to the substrate size, suggesting that the conformational change upon binding to the substrate triggered the expression of pectin chemotaxis and assimilation. This study first clarified that the solute-binding protein with dual functions recognized the substrate through flexible conformational changes in response to the substrate size.
Collapse
|
6
|
Li Z, Huang X, Guo Y, Zhang C, Yang L, Du X, Ni H, Wang X, Zhu Y. Toward Understanding the Alginate Catabolism in Microbulbifer sp. ALW1 by Proteomics Profiling. Front Bioeng Biotechnol 2022; 10:829428. [PMID: 35372316 PMCID: PMC8967155 DOI: 10.3389/fbioe.2022.829428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 11/18/2022] Open
Abstract
The bacterial strain of Microbulbifer sp. ALW1 has demonstrated visible ability of degrading the cell wall of Laminaria japonica, and biochemical characterization has been performed on some individual enzymes to elucidate its genetic basis. However, it still remains elusive how strain ALW1 successfully breaks down the major cell wall component alginate polysaccharide and colonizes on its marine host. In this study, a mass spectrometry-based quantitative analysis of the extracellular and intracellular proteomes was introduced to elucidate the alginate degradation pathway in ALW1 strain. Mass spectrometry and biochemical assays indicated that strain ALW1 could effectively degrade alginate polysaccharide into disaccharides and trisaccharides within 12 h. Proteome analysis identified 156 and 1,047 proteins exclusively localized in extracellular and intracellular compartments, respectively, with 1,086 protein identities of dual localization. Functional annotation of the identified proteins suggested the involvement of diverse catalytic enzymes and non-catalytic molecules for the cleavage and metabolism of alginate polysaccharide. A simplified pathway was constructed to demonstrate the extracellular digestion, active transport, and intracellular conversion of alginate polysaccharide and its fragmented oligosaccharides, casting a picture of genetic loci controlling alginate catabolism by ALW1 strain. This study aims to provide a guide for utilization and genetic manipulation of the bacterial strain ALW1 for efficient alginate oligosaccharides production by fermentation.
Collapse
Affiliation(s)
- Zhipeng Li
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Xiaoyi Huang
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
| | - Yuxi Guo
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
| | - Chenghao Zhang
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
| | - Liang Yang
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
| | - Xiping Du
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Hui Ni
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Xuchu Wang
- Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Ministry of Education, Hainan Normal University, Haikou, China
- *Correspondence: Xuchu Wang, ; Yanbing Zhu,
| | - Yanbing Zhu
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
- *Correspondence: Xuchu Wang, ; Yanbing Zhu,
| |
Collapse
|
7
|
Huang Y, Zhang H, Liu X, Ma B, Huang T. Iron-Activated Carbon Systems to Enhance Aboriginal Aerobic Denitrifying Bacterial Consortium for Improved Treatment of Micro-Polluted Reservoir Water: Performances, Mechanisms, and Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3407-3418. [PMID: 35239323 DOI: 10.1021/acs.est.1c05254] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Although many source waterbodies face nitrogen pollution problems, the lack of organic electron donors causes difficulties when aerobic denitrifying bacteria are used to treat micro-polluted water. Different forms of iron with granular activated carbon (AC) as carriers were used to stimulate aboriginal microorganisms for the purification of micro-polluted source water. Compared with the iron-absent AC system, targeted pollutants were significantly removed (75.76% for nitrate nitrogen, 95.90% for total phosphorus, and 80.59% for chemical oxygen demand) in the sponge-iron-modified AC system, which indicated that iron promoted the physical and chemical removal of pollutants. In addition, high-throughput sequencing showed that bacterial distribution and interaction were changed by ion dosage, which was beneficial for pollutant transformation and reduction. Microbial functions, such as pollutant removal and expression of functional enzymes that were responsible for the transformation of nitrate nitrogen to ammonia, were highly efficient in iron-applied systems. This study provides an innovative strategy to strengthen in situ remediation of micro-pollution in waterbodies.
Collapse
Affiliation(s)
- Yuwei Huang
- Xi'an Weiyuan Environmental Protection and Technology Co., Ltd., Xi'an 710054, China
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
8
|
Ping Q, Zhang J, Tang R, Liao S, Zhang Z, Li Y. Effect of surfactants on phosphorus release and acidogenic fermentation of waste activated sludge containing different aluminium phosphate forms. CHEMOSPHERE 2022; 287:132213. [PMID: 34560494 DOI: 10.1016/j.chemosphere.2021.132213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The effects of different surfactants (rhamnolipid, trehalolipid and citrate) on phosphorus (P) release and acidogenic fermentation of waste activated sludge (WAS) containing different aluminium phosphate forms (AlPO4, Al(PO3)3) were investigated. Results showed that rhamnolipid was the most effective surfactant to release P from aluminum phosphates (AlPs)-rich sludge. Al(PO3)3 was easier to release P than AlPO4 in WAS due to their different crystal structures. Different surfactants promoted the production of different types of protein. The addition of rhamnolipid was conducive to produce propionate from WAS, while trehalolipid and citrate increased the production of n-butyrate and acetate, respectively. Citrobacter played an important role in producing phosphatase continuously for P release with rhamnolipid addition. Predictive functional profiling indicates that rhamnolipid greatly facilitated adenosine triphosphate (ATP)-binding cassette transporter and quorum sensing. These important discoveries help to enrich P recovery paths from sludge produced with Al-based coagulants in wastewater treatment plants.
Collapse
Affiliation(s)
- Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Jingyi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Ruijie Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Shuting Liao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Zhipeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
9
|
MURATA K, KAWAI S, HASHIMOTO W. Bacteria with a mouth: Discovery and new insights into cell surface structure and macromolecule transport. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:529-552. [PMID: 36504195 PMCID: PMC9751261 DOI: 10.2183/pjab.98.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
A bacterium with a "mouth"-like pit structure isolated for the first time in the history of microbiology was a Gram-negative rod, containing glycosphingolipids in the cell envelope, and named Sphingomonas sp. strain A1. The pit was dynamic, with repetitive opening and closing during growth on alginate, and directly included alginate concentrated around the pit, particularly by flagellins, an alginate-binding protein localized on the cell surface. Alginate incorporated into the periplasm was subsequently transferred to the cytoplasm by cooperative interactions of periplasmic solute-binding proteins and an ATP-binding cassette transporter in the cytoplasmic membrane. The mechanisms of assembly, functions, and interactions between the above-mentioned molecules were clarified using structural biology. The pit was transplanted into other strains of sphingomonads, and the pitted recombinant cells were effectively applied to the production of bioethanol, bioremediation for dioxin removal, and other tasks. Studies of the function of the pit shed light on the biological significance of cell surface structures and macromolecule transport in bacteria.
Collapse
Affiliation(s)
| | - Shigeyuki KAWAI
- Research Institute for Bioresource and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Wataru HASHIMOTO
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
10
|
Okumura K, Maruyama Y, Takase R, Mikami B, Murata K, Hashimoto W. The role of calcium binding to the EF-hand-like motif in bacterial solute-binding protein for alginate import. Biosci Biotechnol Biochem 2021; 85:2410-2419. [PMID: 34610097 DOI: 10.1093/bbb/zbab170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/23/2021] [Indexed: 11/14/2022]
Abstract
Gram-negative Sphingomonas sp. A1 incorporates acidic polysaccharide alginate into the cytoplasm via a cell-surface alginate-binding protein (AlgQ2)-dependent ATP-binding cassette transporter (AlgM1M2SS). We investigated the function of calcium bound to the EF-hand-like motif in AlgQ2 by introducing mutations at the calcium-binding site. The X-ray crystallography of the AlgQ2 mutant (D179A/E180A) demonstrated the absence of calcium binding and significant disorder of the EF-hand-like motif. Distinct from the wild-type AlgQ2, the mutant was quite unstable at temperature of strain A1 growth, although unsaturated alginate oligosaccharides stabilized the mutant by formation of substrate/protein complex. In the assay of ATPase and alginate transport by AlgM1M2SS reconstructed in the liposome, the wild-type and mutant AlgQ2 induced AlgM1M2SS ATPase activity in the presence of unsaturated alginate tetrasaccharide. These results indicate that the calcium bound to EF-hand-like motif stabilizes the substrate-unbound AlgQ2 but is not required for the complexation of substrate-bound AlgQ2 and AlgM1M2SS.
Collapse
Affiliation(s)
- Kenji Okumura
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Yukie Maruyama
- Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Ryuichi Takase
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Bunzo Mikami
- Laboratory of Metabolic Sciences of Forest Plants and Microorganisms, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, Japan
| | - Kousaku Murata
- Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
11
|
Kitaoku Y, Fukamizo T, Kumsaoad S, Ubonbal P, Robinson RC, Suginta W. A structural model for (GlcNAc) 2 translocation via a periplasmic chitooligosaccharide-binding protein from marine Vibrio bacteria. J Biol Chem 2021; 297:101071. [PMID: 34400168 PMCID: PMC8449061 DOI: 10.1016/j.jbc.2021.101071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022] Open
Abstract
VhCBP is a periplasmic chitooligosaccharide-binding protein mainly responsible for translocation of the chitooligosaccharide (GlcNAc)2 across the double membranes of marine bacteria. However, structural and thermodynamic understanding of the sugar-binding/-release processes of VhCBP is relatively less. VhCBP displayed the greatest affinity toward (GlcNAc)2, with lower affinity for longer-chain chitooligosaccharides [(GlcNAc)3–4]. (GlcNAc)4 partially occupied the closed sugar-binding groove, with two reducing-end GlcNAc units extending beyond the sugar-binding groove and barely characterized by weak electron density. Mutation of three conserved residues (Trp363, Asp365, and Trp513) to Ala resulted in drastic decreases in the binding affinity toward the preferred substrate (GlcNAc)2, indicating their significant contributions to sugar binding. The structure of the W513A–(GlcNAc)2 complex in a ‘half-open’ conformation unveiled the intermediary step of the (GlcNAc)2 translocation from the soluble CBP in the periplasm to the inner membrane–transporting components. Isothermal calorimetry data suggested that VhCBP adopts the high-affinity conformation to bind (GlcNAc)2, while its low-affinity conformation facilitated sugar release. Thus, chitooligosaccharide translocation, conferred by periplasmic VhCBP, is a crucial step in the chitin catabolic pathway, allowing Vibrio bacteria to thrive in oceans where chitin is their major source of nutrients.
Collapse
Affiliation(s)
- Yoshihito Kitaoku
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Tamo Fukamizo
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| | - Sawitree Kumsaoad
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Prakayfun Ubonbal
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Robert C Robinson
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand; Research Institute of Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan.
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
12
|
Tsujikawa Y, Ishikawa S, Sakane I, Yoshida KI, Osawa R. Identification of genes encoding a novel ABC transporter in Lactobacillus delbrueckii for inulin polymers uptake. Sci Rep 2021; 11:16007. [PMID: 34362962 PMCID: PMC8346543 DOI: 10.1038/s41598-021-95356-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Lactobacillus delbrueckii JCM 1002T grows on highly polymerized inulin-type fructans as its sole carbon source. When it was grown on inulin, a > 10 kb long gene cluster inuABCDEF (Ldb1381-1386) encoding a plausible ABC transporter was suggested to be induced, since a transcriptome analysis revealed that the fourth gene inuD (Ldb1384) was up-regulated most prominently. Although Bacillus subtilis 168 is originally unable to utilize inulin, it became to grow on inulin upon heterologous expression of inuABCDEF. When freshly cultured cells of the recombinant B. subtilis were then densely suspended in buffer containing inulin polymers and incubated, inulin gradually disappeared from the buffer and accumulated in the cells without being degraded, whereas levan-type fructans did not disappear. The results imply that inuABCDEF might encode a novel ABC transporter in L. delbrueckii to "monopolize" inulin polymers selectively, thereby, providing a possible advantage in competition with other concomitant inulin-utilizing bacteria.
Collapse
Affiliation(s)
- Yuji Tsujikawa
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara, Shizuoka 421-0516 Japan ,grid.31432.370000 0001 1092 3077Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Shu Ishikawa
- grid.31432.370000 0001 1092 3077Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 Japan
| | - Iwao Sakane
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara, Shizuoka 421-0516 Japan
| | - Ken-ichi Yoshida
- grid.31432.370000 0001 1092 3077Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 Japan
| | - Ro Osawa
- grid.31432.370000 0001 1092 3077Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| |
Collapse
|
13
|
Zhang L, Li X, Zhang X, Li Y, Wang L. Bacterial alginate metabolism: an important pathway for bioconversion of brown algae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:158. [PMID: 34275475 PMCID: PMC8286568 DOI: 10.1186/s13068-021-02007-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Brown macroalgae have attracted great attention as an alternative feedstock for biorefining. Although direct conversion of ethanol from alginates (major components of brown macroalgae cell walls) is not amenable for industrial production, significant progress has been made not only on enzymes involved in alginate degradation, but also on metabolic pathways for biorefining at the laboratory level. In this article, we summarise recent advances on four aspects: alginate, alginate lyases, different alginate-degrading systems, and application of alginate lyases and associated pathways. This knowledge will likely inspire sustainable solutions for further application of both alginate lyases and their associated pathways.
Collapse
Affiliation(s)
- Lanzeng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xue Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiyue Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
14
|
Itoh T, Yaguchi M, Nakaichi A, Yoda M, Hibi T, Kimoto H. Structural characterization of two solute-binding proteins for N,N'-diacetylchitobiose/ N,N',N''-triacetylchitotoriose of the gram-positive bacterium, Paenibacillus sp. str. FPU-7. J Struct Biol X 2021; 5:100049. [PMID: 34195603 PMCID: PMC8233162 DOI: 10.1016/j.yjsbx.2021.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 10/27/2022] Open
Abstract
The chitinolytic bacterium Paenibacillus sp. str. FPU-7 efficiently degrades chitin into oligosaccharides such as N-acetyl-D-glucosamine (GlcNAc) and disaccharides (GlcNAc)2 through multiple secretory chitinases. Transport of these oligosaccharides by P. str. FPU-7 has not yet been clarified. In this study, we identified nagB1, predicted to encode a sugar solute-binding protein (SBP), which is a component of the ABC transport system. However, the genes next to nagB1 were predicted to encode two-component regulatory system proteins rather than transmembrane domains (TMDs). We also identified nagB2, which is highly homologous to nagB1. Adjacent to nagB2, two genes were predicted to encode TMDs. Binding experiments of the recombinant NagB1 and NagB2 to several oligosaccharides using differential scanning fluorimetry and surface plasmon resonance confirmed that both proteins are SBPs of (GlcNAc)2 and (GlcNAc)3. We determined their crystal structures complexed with and without chitin oligosaccharides at a resolution of 1.2 to 2.0 Å. The structures shared typical SBP structural folds and were classified as subcluster D-I. Large domain motions were observed in the structures, suggesting that they were induced by ligand binding via the "Venus flytrap" mechanism. These structures also revealed chitin oligosaccharide recognition mechanisms. In conclusion, our study provides insight into the recognition and transport of chitin oligosaccharides in bacteria.
Collapse
Key Words
- ABC transporter
- ABC, ATP-binding cassette
- Chitin oligosaccharide
- DSF, differential scanning fluorimetry
- GH, glycoside hydrolase
- GlcN, D-glucosamine
- GlcNAc, N-acetyl-D-glucosamine
- OD600, optical density at 600 nm
- PDB, Protein Data Bank
- PTS, phosphoenolpyruvate phosphotransferase system
- Paenibacillus
- RU, response unit
- SBP, solute binding protein
- Se-Met, selenomethionine
- Solute binding protein
- TMD, transmembrane domain
- Two-component regulatory system
- a.a., amino acid
- r.m.s.d., root mean-square deviation
Collapse
Affiliation(s)
- Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Misaki Yaguchi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Akari Nakaichi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Moe Yoda
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Takao Hibi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Hisashi Kimoto
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| |
Collapse
|
15
|
Choi CC, Ford RC. ATP binding cassette importers in eukaryotic organisms. Biol Rev Camb Philos Soc 2021; 96:1318-1330. [PMID: 33655617 DOI: 10.1111/brv.12702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 11/28/2022]
Abstract
ATP-binding cassette (ABC) transporters are ubiquitous across all realms of life. Dogma suggests that bacterial ABC transporters include both importers and exporters, whilst eukaryotic members of this family are solely exporters, implying that ABC import function was lost during evolution. This view is being challenged, for example energy-coupling factor (ECF)-type ABC importers appear to fulfil important roles in both algae and plants where they form the ABCI sub-family. Herein we discuss whether bacterial Type I and Type II ABC importers also made the transition into extant eukaryotes. Various studies suggest that Type I importers exist in algae and the liverwort family of primitive non-vascular plants, but not in higher plants. The existence of eukaryotic Type II importers is also supported: a transmembrane protein homologous to vitamin B12 import system transmembrane protein (BtuC), hemin transport system transmembrane protein (HmuU) and high-affinity zinc uptake system membrane protein (ZnuB) is present in the Cyanophora paradoxa genome. This protein has homologs within the genomes of red algae. Furthermore, its candidate nucleotide-binding domain (NBD) shows closest similarity to other bacterial Type II importer NBDs such as BtuD. Functional studies suggest that Type I importers have roles in maintaining sulphate levels in the chloroplast, whilst Type II importers probably act as importers of Mn2+ or Zn2+ , as inferred by comparisons with bacterial homologs. Possible explanations for the presence of these transporters in simple plants, but not in other eukaryotic organisms, are considered. In order to utilise the existing nomenclature for eukaryotic ABC proteins, we propose that eukaryotic Type I and II importers be classified as ABCJ and ABCK transporters, respectively.
Collapse
Affiliation(s)
- Cheri C Choi
- Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.,Department of Biology, University of York, York, YO10 5DD, U.K
| | - Robert C Ford
- Faculty of Biology Medicine and Health, School of Biological Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| |
Collapse
|
16
|
Feng Q, Guo W, Wang T, Cristina Macias Alvarez L, Luo M, Ge R, Zhou C, Zhang Q, Luo J. Iron coupling with carbon fiber to stimulate biofilms formation in aerobic biological film systems for improved decentralized wastewater treatment: Performance, mechanisms and implications. BIORESOURCE TECHNOLOGY 2021; 319:124151. [PMID: 32977096 DOI: 10.1016/j.biortech.2020.124151] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Iron coupling with carbon fiber (ICF) as carriers to stimulate the biofilms formation for decentralized wastewater treatment was proposed. The typical pollutants removal was accelerated and enhanced (increased by 13.65% for chemical oxygen demand, 19.68% for ammonia nitrogen and 32.66% for phosphate) in ICF compared with the traditional carbon fiber (CF) system. Mechanism explorations indicated that the iron coupling improved the surface properties of carbon fibers and contributed to the attachment and growth of biomass significantly. The components of biomass were changed with increasing proteins proportion in ICF, which was beneficial to the biofilms formation and stability. The microbial community was altered with the enrichment of functional microorganisms (i.e. Pseudomonas and Thauera). Moreover, the microbial metabolic functions (i.e. enzymatic activities and encoding genes) involved in pollutants removal derived from decentralized wastewater were highly expressed in ICF. This work provided an effective strategy to enhance the decentralized wastewater treatment.
Collapse
Affiliation(s)
- Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Wen Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Tong Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Laura Cristina Macias Alvarez
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Miaomiao Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Ran Ge
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Changren Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| |
Collapse
|
17
|
Huang Z, Petersen JM, Martijn J, Ettema TJG, Shao Z. A novel alphaproteobacterium with a small genome identified from the digestive gland of multiple species of abalone. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:387-395. [PMID: 32307920 DOI: 10.1111/1758-2229.12845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
We identified an alphaproteobacterium in the digestive gland of the abalone species Haliotis discus hannai. This phylotype dominated our 16S rRNA clone libraries from the digestive gland of H. discus hannai. Diversity surveys revealed that this phylotype was associated with H. discus hannai and also in another host species, H. gigantea. Whole genome phylogenies placed this bacterium as a new member affiliated with the family Rhodospirillaceae in Alphaproteobacteria. Gene annotation revealed a nearly complete glycolysis pathway but no TCA cycle, but the presence of anaerobic ribonucleoside-triphosphate reductase and oxygen-insensitive NAD(P)H-dependent nitroreductase, which show the genomic potential for anaerobic metabolism. A large cluster of genes encoding ankyrin repeat proteins (ANK) of eukaryotic-like repeat domains and a large gene set for the flagellar system were also detected. Alginate-binding periplasmic proteins and key genes responsible for alginate assimilation were found in the genome, which could potentially contribute to the breakdown of the host's alginate-rich macroalgal diet. These results raise the possibility that this novel alphaproteobacterium is a widespread member of the abalone microbiome that may use polysaccharides derived from its host's macroalgal diet.
Collapse
Affiliation(s)
- Zhaobin Huang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
| | - Jillian M Petersen
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Joran Martijn
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China
| |
Collapse
|
18
|
Bacterial chemotaxis towards polysaccharide pectin by pectin-binding protein. Sci Rep 2020; 10:3977. [PMID: 32132546 PMCID: PMC7055323 DOI: 10.1038/s41598-020-60274-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/10/2020] [Indexed: 11/08/2022] Open
Abstract
As opposed to typical bacteria exhibiting chemotaxis towards low-molecular-weight substances, such as amino acids and mono/oligosaccharides, gram-negative Sphingomonas sp. strain A1 shows chemotaxis towards alginate and pectin polysaccharides. To identify the mechanism of chemotaxis towards macromolecules, a genomic fragment was isolated from the wild-type strain A1 through complementation with the mutant strain A1-M5 lacking chemotaxis towards pectin. This fragment contained several genes including sph1118. Through whole-genome sequencing of strain A1-M5, sph1118 was found to harbour a mutation. In fact, sph1118 disruptant lost chemotaxis towards pectin, and this deficiency was recovered by complementation with wild-type sph1118. Interestingly, the gene disruptant also exhibited decreased pectin assimilation. Furthermore, the gene product SPH1118 was expressed in recombinant E. coli cells, purified and characterised. Differential scanning fluorimetry and UV absorption spectroscopy revealed that SPH1118 specifically binds to pectin with a dissociation constant of 8.5 μM. Using binding assay and primary structure analysis, SPH1118 was predicted to be a periplasmic pectin-binding protein associated with an ATP-binding cassette transporter. This is the first report on the identification and characterisation of a protein triggering chemotaxis towards the macromolecule pectin as well as its assimilation.
Collapse
|
19
|
Biochemical and biophysical characterization of nucleotide binding domain of Trehalose transporter from Mycobacterium tuberculosis. Int J Biol Macromol 2020; 152:109-116. [PMID: 32092417 DOI: 10.1016/j.ijbiomac.2020.02.237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
Abstract
The SugABC is an ABC transporter in Mycobacterium tuberculosis which is proposed to be involved in the process of Trehalose import, but till date the proteins of this transporter complex have not been functionally characterized. This transport process is driven by the nucleotide binding domain SugC of SugABC transporter. To understand the functional role of SugC, we expressed and purified the protein in E.coli. Our purification result shows, Mtb SugC exists as a monomer in solution but forms dimers upon binding to ATP. It is stable at pH 7.5 as analyzed by CD spectroscopy and showed maximum activity at this pH as estimated by Michaelis-Menten's kinetics for Mg-ATP at a KM of 0.15 mM. The SugCH193A mutant was observed to have a reduced catalytic activity implying that H193 is one of the residues involved in the hydrolysis of ATP. The molecular modeling further revealed that, like E.coli MalK, MtbSugC also has an ATPase domain and a regulatory domain. Despite having low sequence homology with other nucleotide binding domains of ABC transporters, the structure and functional motifs of MtbSugC are conserved. Thus, we show that SugC is a functional ATPase domain of SugABC transporter in Mycobacterium tuberculosis.
Collapse
|
20
|
Abstract
Energy-coupling factor (ECF)-type ATP-binding cassette (ABC) transporters catalyze membrane transport of micronutrients in prokaryotes. Crystal structures and biochemical characterization have revealed that ECF transporters are mechanistically distinct from other ABC transport systems. Notably, ECF transporters make use of small integral membrane subunits (S-components) that are predicted to topple over in the membrane when carrying the bound substrate from the extracellular side of the bilayer to the cytosol. Here, we review the phylogenetic diversity of ECF transporters as well as recent structural and biochemical advancements that have led to the postulation of conceptually different mechanistic models. These models can be described as power stroke and thermal ratchet. Structural data indicate that the lipid composition and bilayer structure are likely to have great impact on the transport function. We argue that study of ECF transporters could lead to generic insight into membrane protein structure, dynamics, and interaction.
Collapse
Affiliation(s)
- S Rempel
- Gr oningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; , ,
| | - W K Stanek
- Gr oningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; , ,
| | - D J Slotboom
- Gr oningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; , , .,Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
21
|
He M, Gao J, Wu J, Zhou Y, Fu H, Ke S, Yang H, Chen C, Huang L. Host Gender and Androgen Levels Regulate Gut Bacterial Taxa in Pigs Leading to Sex-Biased Serum Metabolite Profiles. Front Microbiol 2019; 10:1359. [PMID: 31275280 PMCID: PMC6591444 DOI: 10.3389/fmicb.2019.01359] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota regulates host metabolism and immunity. The phylogenetic composition of gut microbiota is influenced by diverse factors that include host gender. In this study, the effects of gender on gut microbial composition and its subsequent influence on serum metabolites in pigs were evaluated. The bacterial composition of feces samples was determined by 16S rRNA gene sequencing in 293 pure-bred Duroc pigs (108 gilts and 185 entire boars) and 64 validated pigs from an eight-breed mosaic F6 population. Twenty-eight F6 boars were castrated at 80 days of age to evaluate the effects of androgen on gut microbial composition. Untargeted serum metabolite features were determined in 45 boars and 26 gilts by an ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). The study observed an obvious influence of host gender on the gut microbial composition and identified numerous sex-biased bacterial taxa. These included Veillonellaceae, Roseburia, Bulleidia, and Escherichia which showed the higher abundance in boars, and Treponema and Bacteroides which were over-represented in gilts. Castration significantly shifted the fecal microbiota composition of the boars toward that of gilts. The predicted functional pathways of the gut microbiome related to obesity and energy harvest were enriched in gilts, and positively associated with gilt-enriched bacteria. Functional pathways related to peptidases and carbohydrate metabolism were enriched in boars and positively associated with boar-enriched bacteria. Serum metabolites related to androgen and cresol metabolism were identified as sex-biased metabolites. Correlation analysis between serum metabolites and sex-biased bacteria identified that the serum concentration of androgen-related metabolites was positively correlated with Bulleidia and Escherichia, but negatively associated with Treponema, suggesting a significant interaction between gut microbiota and host sex hormone metabolism. These results offer basic knowledge of how host gender and gut microbiota influence host metabolism.
Collapse
Affiliation(s)
- Maozhang He
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jun Gao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jinyuan Wu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yunyan Zhou
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Hao Fu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shanlin Ke
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Hui Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Congying Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
22
|
Cherry P, Yadav S, Strain CR, Allsopp PJ, McSorley EM, Ross RP, Stanton C. Prebiotics from Seaweeds: An Ocean of Opportunity? Mar Drugs 2019; 17:E327. [PMID: 31159359 PMCID: PMC6627129 DOI: 10.3390/md17060327] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
Seaweeds are an underexploited and potentially sustainable crop which offer a rich source of bioactive compounds, including novel complex polysaccharides, polyphenols, fatty acids, and carotenoids. The purported efficacies of these phytochemicals have led to potential functional food and nutraceutical applications which aim to protect against cardiometabolic and inflammatory risk factors associated with non-communicable diseases, such as obesity, type 2 diabetes, metabolic syndrome, cardiovascular disease, inflammatory bowel disease, and some cancers. Concurrent understanding that perturbations of gut microbial composition and metabolic function manifest throughout health and disease has led to dietary strategies, such as prebiotics, which exploit the diet-host-microbe paradigm to modulate the gut microbiota, such that host health is maintained or improved. The prebiotic definition was recently updated to "a substrate that is selectively utilised by host microorganisms conferring a health benefit", which, given that previous discussion regarding seaweed prebiotics has focused upon saccharolytic fermentation, an opportunity is presented to explore how non-complex polysaccharide components from seaweeds may be metabolised by host microbial populations to benefit host health. Thus, this review provides an innovative approach to consider how the gut microbiota may utilise seaweed phytochemicals, such as polyphenols, polyunsaturated fatty acids, and carotenoids, and provides an updated discussion regarding the catabolism of seaweed-derived complex polysaccharides with potential prebiotic activity. Additional in vitro screening studies and in vivo animal studies are needed to identify potential prebiotics from seaweeds, alongside untargeted metabolomics to decipher microbial-derived metabolites from seaweeds. Furthermore, controlled human intervention studies with health-related end points to elucidate prebiotic efficacy are required.
Collapse
Affiliation(s)
- Paul Cherry
- Nutrition Innovation Centre for Food and Health, Ulster University, Cromore Road, Coleraine, Co. Londonderry BT52 1SA, UK.
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
| | - Supriya Yadav
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| | - Conall R Strain
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
| | - Philip J Allsopp
- Nutrition Innovation Centre for Food and Health, Ulster University, Cromore Road, Coleraine, Co. Londonderry BT52 1SA, UK.
| | - Emeir M McSorley
- Nutrition Innovation Centre for Food and Health, Ulster University, Cromore Road, Coleraine, Co. Londonderry BT52 1SA, UK.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- College of Science, Engineering and Food Science, University College Cork, Cork T12 K8AF, Ireland.
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
| |
Collapse
|
23
|
Fukamizo T, Kitaoku Y, Suginta W. Periplasmic solute-binding proteins: Structure classification and chitooligosaccharide recognition. Int J Biol Macromol 2019; 128:985-993. [PMID: 30771387 DOI: 10.1016/j.ijbiomac.2019.02.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/12/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
Periplasmic solute-binding proteins (SBPs) serve as molecular shuttles that assist the transport of small solutes from the outer membrane to the inner membrane of all Gram-negative bacteria. Based on the available crystal structures, SBPs are classified into seven clusters, A-G, and are further divided into subclusters, IV. This minireview is focused on the classification, structure and substrate specificity of a distinct class of SBPs specific for chitooligosaccharides (CBPs). To date, only two structures of CBP homologues, VhCBP and VcCBP, have been reported in the marine Vibrio species, with exposition of their limited function. The Vibrio CBPs are structurally classified as cluster C/subcluster IV SBPs that exclusively recognize β-1,4- or β-1,3-linked linear oligosaccharides. The overall structural feature of the Vibrios CBPs is most similar to the cellobiose-binding orthologue from the hyperthermophilic bacterium Thermotoga maritima. This similarity provides an opportunity to engineer the substrate specificity of the proteins and to control the uptake of chitinous and cellulosic nutrients in marine bacteria.
Collapse
Affiliation(s)
- Tamo Fukamizo
- Biochemistry and Electrochemistry Research Unit and School of Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yoshihito Kitaoku
- Biochemistry and Electrochemistry Research Unit and School of Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wipa Suginta
- Biochemistry and Electrochemistry Research Unit and School of Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
24
|
Maruyama Y, Hashimoto W, Murata K. Structural studies on bacterial system used in the recognition and uptake of the macromolecule alginate. Biosci Biotechnol Biochem 2019; 83:794-802. [PMID: 30744540 DOI: 10.1080/09168451.2019.1578642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alginate is an acidic heteropolysaccharide produced by brown seaweed and certain kinds of bacteria. The cells of Sphingomonas sp. strain A1, a gram-negative bacterium, have several alginate-degrading enzymes in their cytoplasm and efficiently utilize this polymer for their growth. Sphingomonas sp. strain A1 cells can directly incorporate alginate into their cytoplasm through a transport system consisting of a "pit" on their cell surface, substrate-binding proteins in their periplasm, and an ATP-binding cassette transporter in their inner membrane. This review deals with the structural and functional aspects of bacterial systems necessary for the recognition and uptake of alginate.
Collapse
Affiliation(s)
- Yukie Maruyama
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Uji, Kyoto , Japan.,b Department of Life Science, Faculty of Science and Engineering , Setsunan University , Neyagawa, Osaka , Japan
| | - Wataru Hashimoto
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Uji, Kyoto , Japan
| | - Kousaku Murata
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Uji, Kyoto , Japan.,b Department of Life Science, Faculty of Science and Engineering , Setsunan University , Neyagawa, Osaka , Japan
| |
Collapse
|
25
|
Ping Q, Lu X, Zheng M, Li Y. Effect of CaO 2 addition on anaerobic digestion of waste activated sludge at different temperatures and the promotion of valuable carbon source production under ambient condition. BIORESOURCE TECHNOLOGY 2018; 265:247-256. [PMID: 29902657 DOI: 10.1016/j.biortech.2018.06.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
The effect of calcium peroxide (CaO2) addition on anaerobic digestion (AD) of waste activated sludge (WAS) at different temperatures (20 °C, 35 °C, and 55 °C) were investigated. The results show that CaO2 addition had significant positive effect on short-chain fatty acids (SCFAs) production under ambient and mesophilic conditions. Polysaccharides and proteins embedded in extracellular polymeric substances (EPS) were effectively released from inner fraction to outer fraction, and non-biodegradable humic-like substances were decreased while easily biodegradable tryptophan-like proteins increased. These effects were most remarkable under ambient conditions. However, CaO2 addition was unfavorable to thermophilic AD because of high free ammonia concentrations and the accumulation of humic-like substances. Temperature showed a stronger effect than CaO2 on microbial community structure, but CaO2 addition was more effective than temperature in enhancing hydrolytic and acidifying microorganisms. Predictive functional profiling indicated that microbial hydrolysis, metabolism and acidification were promoted by CaO2 under ambient conditions.
Collapse
Affiliation(s)
- Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiao Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ming Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
26
|
Alternative substrate-bound conformation of bacterial solute-binding protein involved in the import of mammalian host glycosaminoglycans. Sci Rep 2017; 7:17005. [PMID: 29208901 PMCID: PMC5717064 DOI: 10.1038/s41598-017-16801-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/15/2017] [Indexed: 12/16/2022] Open
Abstract
Glycosaminoglycans (GAGs), constituted by repeating uronate and amino sugar units, are major components of mammalian extracellular matrices. Some indigenous and pathogenic bacteria target GAGs for colonization to and/or infection of host mammalian cells. In Gram-negative pathogenic Streptobacillus moniliformis, the solute-binding protein (Smon0123)-dependent ATP-binding cassette (ABC) transporter incorporates unsaturated GAG disaccharides into the cytoplasm after depolymerization by polysaccharide lyase. Smon0123, composed of N and C domains, adopts either a substrate-free open or a substrate-bound closed form by approaching two domains at 47° in comparison with the open form. Here we show an alternative 39°-closed conformation of Smon0123 bound to unsaturated chondroitin disaccharide sulfated at the C-4 and C-6 positions of N-acetyl-d-galactosamine residue (CΔ4S6S). In CΔ4S6S-bound Smon0123, Arg204 and Lys210 around the two sulfate groups were located at different positions from those at other substrate-bound 47°-closed conformations. Therefore, the two sulfate groups in CΔ4S6S shifted substrate-binding residue arrangements, causing dynamic conformational change. Smon0123 showed less affinity with CΔ4S6S than with non-sulfated and monosulfated substrates. ATPase activity of the Smon0123-dependent ABC transporter in the presence of CΔ4S6S was lower than that in the presence of other unsaturated chondroitin disaccharides, suggesting that CΔ4S6S-bound Smon0123 was unpreferable for docking with the ABC transporter.
Collapse
|
27
|
He C, Muramatsu H, Kato SI, Ohnishi K. Characterization of an Alteromonas long-type ulvan lyase involved in the degradation of ulvan extracted from Ulva ohnoi. Biosci Biotechnol Biochem 2017; 81:2145-2151. [PMID: 28958183 DOI: 10.1080/09168451.2017.1379352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ulvan is a sulfated polysaccharide found in the cell wall of the green algae Ulva. We first isolated several ulvan-utilizing Alteromonas sp. from the feces of small marine animals. The strain with the highest ulvan-degrading activity, KUL17, was analyzed further. We identified a 55-kDa ulvan-degrading protein secreted by this strain and cloned the gene encoding for it. The deduced amino acid sequence indicated that the enzyme belongs to polysaccharide lyase family 24 and thus the protein was named ulvan lyase. The predicted molecular mass of this enzyme is 110 kDa, which is different from that of the identified protein. By deletion analysis, the catalytic domain was proven to be located on the N-terminal half of the protein. KUL17 contains two ulvan lyases, one long and one short, but the secreted and cleaved long ulvan lyase was demonstrated to be the major enzyme for ulvan degradation.
Collapse
Affiliation(s)
- Chuan He
- a The United Graduate School of Agricultural Sciences , Ehime University , Ehime , Japan
| | - Hisashi Muramatsu
- b Faculty of Agriculture and Marine Sciences , Kochi University , Kochi , Japan
| | - Shin-Ichiro Kato
- c Research Institute of Molecular Genetics , Kochi University , Kochi , Japan
| | - Kouhei Ohnishi
- c Research Institute of Molecular Genetics , Kochi University , Kochi , Japan
| |
Collapse
|
28
|
Temtrirath K, Okumura K, Maruyama Y, Mikami B, Murata K, Hashimoto W. Binding mode of metal ions to the bacterial iron import protein EfeO. Biochem Biophys Res Commun 2017; 493:1095-1101. [PMID: 28919419 DOI: 10.1016/j.bbrc.2017.09.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 01/18/2023]
Abstract
The tripartite EfeUOB system functions as a low pH iron importer in Gram-negative bacteria. In the alginate-assimilating bacterium Sphingomonas sp. strain A1, an additional EfeO-like protein (Algp7) is encoded downstream of the efeUOB operon. Here we show the metal binding mode of Algp7, which carries a M_75 metallopeptidase motif. The Algp7 protein was purified from recombinant E. coli cells and was subsequently characterized using differential scanning fluorimetry, fluorescence spectrometry, atomic absorption spectroscopy, and X-ray crystallography. The fluorescence of a dye, SYPRO Orange, bound to denatured Algp7 in the absence and presence of metal ions was measured during heat treatment. The fluorescence profile of Algp7 in the presence of metals such as ferric, ferrous, and zinc ions, shifted to a higher temperature, suggesting that Algp7 binds these metal ions and that metal ion-bound Algp7 is more thermally stable than the ligand-free form. Algp7 was directly demonstrated to show an ability to bind copper ion by atomic absorption spectroscopy. Crystal structure of metal ion-bound Algp7 revealed that the metal ion is bound to the cleft surrounded by several acidic residues. Four residues, Glu79, Glu82, Asp96, and Glu178, distinct from the M_75 motif (His115xxGlu118), are coordinated to the metal ion. This is the first report to provide structural insights into metal binding by the bacterial EfeO element.
Collapse
Affiliation(s)
- Kanate Temtrirath
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kenji Okumura
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yukie Maruyama
- Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kousaku Murata
- Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
29
|
Kaneko A, Uenishi K, Maruyama Y, Mizuno N, Baba S, Kumasaka T, Mikami B, Murata K, Hashimoto W. A solute-binding protein in the closed conformation induces ATP hydrolysis in a bacterial ATP-binding cassette transporter involved in the import of alginate. J Biol Chem 2017; 292:15681-15690. [PMID: 28768763 DOI: 10.1074/jbc.m117.793992] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/12/2017] [Indexed: 01/31/2023] Open
Abstract
The Gram-negative bacterium Sphingomonas sp. A1 incorporates alginate into cells via the cell-surface pit without prior depolymerization by extracellular enzymes. Alginate import across cytoplasmic membranes thereby depends on the ATP-binding cassette transporter AlgM1M2SS (a heterotetramer of AlgM1, AlgM2, and AlgS), which cooperates with the periplasmic solute-binding protein AlgQ1 or AlgQ2; however, several details of AlgM1M2SS-mediated alginate import are not well-understood. Herein, we analyzed ATPase and transport activities of AlgM1M2SS after reconstitution into liposomes with AlgQ2 and alginate oligosaccharide substrates having different polymerization degrees (PDs). Longer alginate oligosaccharides (PD ≥ 5) stimulated the ATPase activity of AlgM1M2SS but were inert as substrates of AlgM1M2SS-mediated transport, indicating that AlgM1M2SS-mediated ATP hydrolysis can be stimulated independently of substrate transport. Using X-ray crystallography in the presence of AlgQ2 and long alginate oligosaccharides (PD 6-8) and with the humid air and glue-coating method, we determined the crystal structure of AlgM1M2SS in complex with oligosaccharide-bound AlgQ2 at 3.6 Å resolution. The structure of the ATP-binding cassette transporter in complex with non-transport ligand-bound periplasmic solute-binding protein revealed that AlgM1M2SS and AlgQ2 adopt inward-facing and closed conformations, respectively. These in vitro assays and structural analyses indicated that interactions between AlgM1M2SS in the inward-facing conformation and periplasmic ligand-bound AlgQ2 in the closed conformation induce ATP hydrolysis by the ATP-binding protein AlgS. We conclude that substrate-bound AlgQ2 in the closed conformation initially interacts with AlgM1M2SS, the AlgM1M2SS-AlgQ2 complex then forms, and this formation is followed by ATP hydrolysis.
Collapse
Affiliation(s)
- Ai Kaneko
- From the Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, and
| | - Kasumi Uenishi
- From the Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, and
| | - Yukie Maruyama
- the Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan, and
| | - Nobuhiro Mizuno
- the Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo 679-5198, Japan
| | - Seiki Baba
- the Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo 679-5198, Japan
| | - Takashi Kumasaka
- the Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo 679-5198, Japan
| | - Bunzo Mikami
- the Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kousaku Murata
- the Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan, and
| | - Wataru Hashimoto
- From the Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, and
| |
Collapse
|
30
|
Locher KP. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol 2017; 23:487-93. [PMID: 27273632 DOI: 10.1038/nsmb.3216] [Citation(s) in RCA: 565] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/30/2016] [Indexed: 12/18/2022]
Abstract
ABC transporters catalyze transport reactions, such as the high-affinity uptake of micronutrients into bacteria and the export of cytotoxic compounds from mammalian cells. Crystal structures of ABC domains and full transporters have provided a framework for formulating reaction mechanisms of ATP-driven substrate transport, but recent studies have suggested remarkable mechanistic diversity within this protein family. This review evaluates the differing mechanistic proposals and outlines future directions for the exploration of ABC-transporter-catalyzed reactions.
Collapse
Affiliation(s)
- Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Alvarez CP, Stagljar M, Muhandiram DR, Kanelis V. Hyperinsulinism-Causing Mutations Cause Multiple Molecular Defects in SUR1 NBD1. Biochemistry 2017; 56:2400-2416. [PMID: 28346775 DOI: 10.1021/acs.biochem.6b00681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sulfonylurea receptor 1 (SUR1) protein forms the regulatory subunit in ATP sensitive K+ (KATP) channels in the pancreas. SUR proteins are members of the ATP binding cassette (ABC) superfamily of proteins. Binding and hydrolysis of MgATP at the SUR nucleotide binding domains (NBDs) lead to channel opening. Pancreatic KATP channels play an important role in insulin secretion. SUR1 mutations that result in increased levels of channel opening ultimately inhibit insulin secretion and lead to neonatal diabetes. In contrast, SUR1 mutations that disrupt trafficking and/or decrease gating of KATP channels cause congenital hyperinsulinism, where oversecretion of insulin occurs even in the presence of low glucose levels. Here, we present data on the effects of specific congenital hyperinsulinism-causing mutations (G716V, R842G, and K890T) located in different regions of the first nucleotide binding domain (NBD1). Nuclear magnetic resonance (NMR) and fluorescence data indicate that the K890T mutation affects residues throughout NBD1, including residues that bind MgATP, NBD2, and coupling helices. The mutations also decrease the MgATP binding affinity of NBD1. Size exclusion and NMR data indicate that the G716V and R842G mutations cause aggregation of NBD1 in vitro, possibly because of destabilization of the domain. These data describe structural characterization of SUR1 NBD1 and shed light on the underlying molecular basis of mutations that cause congenital hyperinsulinism.
Collapse
Affiliation(s)
- Claudia P Alvarez
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6.,Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | - Marijana Stagljar
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6.,Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario, Canada M5S 3H6.,Department of Cell and Systems Biology, University of Toronto , 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - D Ranjith Muhandiram
- Department of Molecular Genetics, University of Toronto , 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Voula Kanelis
- Department of Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road, Mississauga, Ontario, Canada L5L 1C6.,Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario, Canada M5S 3H6.,Department of Cell and Systems Biology, University of Toronto , 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| |
Collapse
|
32
|
Oiki S, Mikami B, Maruyama Y, Murata K, Hashimoto W. A bacterial ABC transporter enables import of mammalian host glycosaminoglycans. Sci Rep 2017; 7:1069. [PMID: 28432302 PMCID: PMC5430744 DOI: 10.1038/s41598-017-00917-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/16/2017] [Indexed: 01/08/2023] Open
Abstract
Glycosaminoglycans (GAGs), such as hyaluronan, chondroitin sulfate, and heparin, constitute mammalian extracellular matrices. The uronate and amino sugar residues in hyaluronan and chondroitin sulfate are linked by 1,3-glycoside bond, while heparin contains 1,4-glycoside bond. Some bacteria target GAGs as means of establishing colonization and/or infection, and bacterial degradation mechanisms of GAGs have been well characterized. However, little is known about the bacterial import of GAGs. Here, we show a GAG import system, comprised of a solute-binding protein (Smon0123)-dependent ATP-binding cassette (ABC) transporter, in the pathogenic Streptobacillus moniliformis. A genetic cluster responsible for depolymerization, degradation, and metabolism of GAGs as well as the ABC transporter system was found in the S. moniliformis genome. This bacterium degraded hyaluronan and chondroitin sulfate with an expression of the genetic cluster, while heparin repressed the bacterial growth. The purified recombinant Smon0123 exhibited an affinity with disaccharides generated from hyaluronan and chondroitin sulfate. X-ray crystallography indicated binding mode of Smon0123 to GAG disaccharides. The purified recombinant ABC transporter as a tetramer (Smon0121-Smon0122/Smon0120-Smon0120) reconstructed in liposomes enhanced its ATPase activity in the presence of Smon0123 and GAG disaccharides. This is the first report that has molecularly depicted a bacterial import system of both sulfated and non-sulfated GAGs.
Collapse
Affiliation(s)
- Sayoko Oiki
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Bunzo Mikami
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yukie Maruyama
- Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, 572-8508, Japan
| | - Kousaku Murata
- Laboratory of Food Microbiology, Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, 572-8508, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
33
|
Crystal Structure of the Substrate-Binding Domain from Listeria monocytogenes Bile-Resistance Determinant BilE. CRYSTALS 2016. [DOI: 10.3390/cryst6120162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Culurgioni S, Harris G, Singh AK, King SJ, Walsh MA. Structural Basis for Regulation and Specificity of Fructooligosaccharide Import in Streptococcus pneumoniae. Structure 2016; 25:79-93. [PMID: 27939783 PMCID: PMC5222590 DOI: 10.1016/j.str.2016.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/28/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022]
Abstract
Streptococcus pneumoniae is dependent on carbohydrate uptake for colonization and pathogenesis, and dedicates over a third of its transport systems to their uptake. The ability of the pneumococcus to utilize fructooligosaccharides (FOSs) is attributed to the presence of one of two types of FOS ATP-binding cassette (ABC) transporters. Strains encoding SfuABC are only able to utilize short-chain FOSs, while strains encoding FusABC can utilize both short- and long-chain FOSs. The crystal structures of the substrate-binding protein FusA in its open and closed conformations bound to FOSs, and solution scattering data of SfuA, delineate the structural basis for import of short- and long-chain FOSs. The structure of FusA identifies an EF hand-like calcium-binding motif. This is shown to be essential for translocation of FOSs in FusABC and forms the basis for the definition of a new class of substrate-binding proteins that regulate substrate translocation by calcium.
Collapse
Affiliation(s)
- Simone Culurgioni
- Diamond House, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Gemma Harris
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Anirudh K Singh
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Samantha J King
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Martin A Walsh
- Diamond House, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK.
| |
Collapse
|
35
|
Scheepers GH, Lycklama A Nijeholt JA, Poolman B. An updated structural classification of substrate-binding proteins. FEBS Lett 2016; 590:4393-4401. [PMID: 27714801 DOI: 10.1002/1873-3468.12445] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/02/2016] [Accepted: 09/25/2016] [Indexed: 01/29/2023]
Abstract
Substrate-binding proteins (SBPs) play an important role in solute uptake and signal transduction. In 2010, Berntsson et al. classified the 114 organism-specific SBP structures available at that time and defined six protein clusters, based on their structural similarity. Since then, the number of unique SBP structures has increased almost fivefold, whereas the number of protein entries in the Protein Data Bank (PDB) nearly doubled. On the basis of the much larger dataset, we now subclassify the SBPs within the original clusters. Moreover, we propose a 7th cluster based on a small group of SBPs with structural features significantly different from those observed in the other proteins.
Collapse
Affiliation(s)
- Giel H Scheepers
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| | - Jelger A Lycklama A Nijeholt
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| |
Collapse
|
36
|
Biofuel Production Based on Carbohydrates from Both Brown and Red Macroalgae: Recent Developments in Key Biotechnologies. Int J Mol Sci 2016; 17:145. [PMID: 26861307 PMCID: PMC4783879 DOI: 10.3390/ijms17020145] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/15/2016] [Indexed: 02/06/2023] Open
Abstract
Marine macroalgae (green, red and brown macroalgae) have attracted attention as an alternative source of renewable biomass for producing both fuels and chemicals due to their high content of suitable carbohydrates and to their advantages over terrestrial biomass. However, except for green macroalgae, which contain relatively easily-fermentable glucans as their major carbohydrates, practical utilization of red and brown macroalgae has been regarded as difficult due to the major carbohydrates (alginate and mannitol of brown macroalgae and 3,6-anhydro-L-galactose of red macroalgae) not being easily fermentable. Recently, several key biotechnologies using microbes have been developed enabling utilization of these brown and red macroalgal carbohydrates as carbon sources for the production of fuels (ethanol). In this review, we focus on these recent developments with emphasis on microbiological biotechnologies.
Collapse
|