1
|
Xing X, Han J, Wang K, Tian F, Jiang C, Liang W, Qi L, Yue X, Wen Y, Hu Y, Qiao H. Target-specific peptides for BK virus agnoprotein identified through phage display screening: advancing antiviral therapeutics. Sci Rep 2025; 15:2718. [PMID: 39837922 PMCID: PMC11750963 DOI: 10.1038/s41598-025-86439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
BK virus is implicated in polyomavirus-associated nephropathy (PVAN) and hemorrhagic cystitis, particularly in kidney transplant recipients, affecting the functionality of the transplanted kidney and posing a risk of graft loss. Despite these challenges, specific antiviral drugs targeting BK virus remain elusive. Agnoprotein, a small, positively charged protein encoded by the BK virus late gene, functions in the assembly, maturation, and release of the virus. Consequently, agnoprotein emerges as a promising target for potential anti-BK virus drugs. Utilizing phage display technology, we conducted screening to identify specific binding peptides against the agnoprotein. The primary objective of screening binding peptides is to utilize them to disrupt the virus's life cycle, impeding its replication and transmission, thereby achieving antiviral effects. In the current experimental study, a combination of phage 7 peptide libraries and 12 peptide libraries was employed for screening purposes. Following four rounds of screening, seven positive phages demonstrating the ability to bind Agnoprotein were successfully isolated. Following ELISA validation, it was observed that the optical density (OD) values for Agnoprotein binding of the seven positive clones significantly exceeded three times the value of the negative control (NC). Subsequent analysis identified one 7-peptide and six 12-peptides within the binding peptides. Moreover, OD values of dodecapeptide phage clones bound to agnoprotein were generally higher than those of heptapeptide phage clones.In conclusion, our study demonstrates the successful identification of specific binding peptides against agnoprotein, a crucial component in the BK virus life cycle.
Collapse
Affiliation(s)
- Xiaofei Xing
- Department of Clinical Laboratory, Zhengzhou No. 7 People's Hospital, 17 Jingnan 5th Road, Jingkai District, Zhengzhou, Henan, China.
| | - Jingxian Han
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou NO.7 People's Hospital, Zhengzhou, Henan, China
| | - Keke Wang
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou NO.7 People's Hospital, Zhengzhou, Henan, China
| | - Fuyun Tian
- Department of Clinical Laboratory, Zhengzhou No. 7 People's Hospital, 17 Jingnan 5th Road, Jingkai District, Zhengzhou, Henan, China
| | - CuiXia Jiang
- Department of Clinical Laboratory, Zhengzhou No. 7 People's Hospital, 17 Jingnan 5th Road, Jingkai District, Zhengzhou, Henan, China
| | - Wei Liang
- Department of Clinical Laboratory, Zhengzhou No. 7 People's Hospital, 17 Jingnan 5th Road, Jingkai District, Zhengzhou, Henan, China
| | - Lin Qi
- Department of Clinical Laboratory, Zhengzhou No. 7 People's Hospital, 17 Jingnan 5th Road, Jingkai District, Zhengzhou, Henan, China
| | - Xin Yue
- Department of Clinical Laboratory, Zhengzhou No. 7 People's Hospital, 17 Jingnan 5th Road, Jingkai District, Zhengzhou, Henan, China
| | - Yinhang Wen
- Department of Clinical Laboratory, Zhengzhou No. 7 People's Hospital, 17 Jingnan 5th Road, Jingkai District, Zhengzhou, Henan, China
| | - Yuwei Hu
- Department of Clinical Laboratory, Zhengzhou No. 7 People's Hospital, 17 Jingnan 5th Road, Jingkai District, Zhengzhou, Henan, China
| | - Hui Qiao
- Department of Clinical Laboratory, Zhengzhou No. 7 People's Hospital, 17 Jingnan 5th Road, Jingkai District, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Gerges D, Abd El-Ghany K, Hevesi Z, Aiad M, Omic H, Baumgartner C, Winnicki W, Eder M, Schmidt A, Eskandary F, Wagner L. Shedding Light on Viral Shedding: Novel Insights into Nuclear Assembly, Cytoplasmic Transformation and Extracellular Vesicle Release of the BK Virus. Int J Mol Sci 2024; 25:9130. [PMID: 39201816 PMCID: PMC11354704 DOI: 10.3390/ijms25169130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Despite the high prevalence of BK polyomavirus (BKPyV) and the associated risk for BKPyV-associated nephropathy (BKPyVAN) in kidney transplant (KTX) recipients, many details on viral processes such as replication, maturation, assembly and virion release from host cells have not been fully elucidated. VP1 is a polyomavirus-specific protein that is expressed in the late phase of its replicative cycle with important functions in virion assembly and infectious particle release. This study investigated the localization and time-dependent changes in the distribution of VP1-positive viral particles and their association within the spectrum of differing cell morphologies that are observed in the urine of KTX patients upon active BKPyV infection. We found highly differing recognition patterns of two anti-VP1 antibodies with respect to intracellular and extracellular VP1 localization, pointing towards independent binding sites that were seemingly associated with differing stages of virion maturation. Cells originating from single clones were stably cultured out of the urine sediment of KTX recipients with suspected BKPyVAN. The cell morphology, polyploidy, virus replication and protein production were investigated by confocal microscopy using both a monoclonal (mAb 4942) and a polyclonal rabbit anti-VP1-specific antibody (RantiVP1 Ab). Immunoblotting was performed to investigate changes in the VP1 protein. Both antibodies visualized VP1 and the mAb 4942 recognized VP1 in cytoplasmic vesicles exhibiting idiomorphic sizes when released from the cells. In contrast, the polyclonal antibody detected VP1 within the nucleus and in cytoplasm in colocalization with the endoplasmic reticulum marker CNX. At the nuclear rim, VP1 was recognized by both antibodies. Immunoblotting revealed two smaller versions of VP1 in urinary decoy cell extracts, potentially from different translation start sites as evaluated by in silico analysis. Oxford Nanopore sequencing showed integration of BKPyV DNA in chromosomes 3, 4 and 7 in one of the five tested primary cell lines which produced high viral copies throughout four passages before transcending into senescence. The different staining with two VP1-specific antibodies emphasizes the modification of VP1 during the process of virus maturation and cellular exit. The integration of BKPyV into the human genome leads to high virus production; however, this alone does not transform the cell line into a permanently cycling and indefinitely replicating one.
Collapse
Affiliation(s)
- Daniela Gerges
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (D.G.); (K.A.E.-G.); (M.A.); (H.O.); (C.B.); (W.W.); (M.E.); (A.S.); (L.W.)
| | - Karim Abd El-Ghany
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (D.G.); (K.A.E.-G.); (M.A.); (H.O.); (C.B.); (W.W.); (M.E.); (A.S.); (L.W.)
- Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Zsofia Hevesi
- Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Monika Aiad
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (D.G.); (K.A.E.-G.); (M.A.); (H.O.); (C.B.); (W.W.); (M.E.); (A.S.); (L.W.)
| | - Haris Omic
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (D.G.); (K.A.E.-G.); (M.A.); (H.O.); (C.B.); (W.W.); (M.E.); (A.S.); (L.W.)
| | - Clemens Baumgartner
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (D.G.); (K.A.E.-G.); (M.A.); (H.O.); (C.B.); (W.W.); (M.E.); (A.S.); (L.W.)
- Division of Endocrinology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Winnicki
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (D.G.); (K.A.E.-G.); (M.A.); (H.O.); (C.B.); (W.W.); (M.E.); (A.S.); (L.W.)
| | - Michael Eder
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (D.G.); (K.A.E.-G.); (M.A.); (H.O.); (C.B.); (W.W.); (M.E.); (A.S.); (L.W.)
| | - Alice Schmidt
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (D.G.); (K.A.E.-G.); (M.A.); (H.O.); (C.B.); (W.W.); (M.E.); (A.S.); (L.W.)
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (D.G.); (K.A.E.-G.); (M.A.); (H.O.); (C.B.); (W.W.); (M.E.); (A.S.); (L.W.)
| | - Ludwig Wagner
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (D.G.); (K.A.E.-G.); (M.A.); (H.O.); (C.B.); (W.W.); (M.E.); (A.S.); (L.W.)
| |
Collapse
|
3
|
Hurdiss DL, Frank M, Snowden JS, Macdonald A, Ranson NA. The Structure of an Infectious Human Polyomavirus and Its Interactions with Cellular Receptors. Structure 2018; 26:839-847.e3. [PMID: 29706532 PMCID: PMC5992339 DOI: 10.1016/j.str.2018.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/14/2018] [Accepted: 03/29/2018] [Indexed: 01/23/2023]
Abstract
BK polyomavirus (BKV) causes polyomavirus-associated nephropathy and hemorrhagic cystitis in immunosuppressed patients. These are diseases for which we currently have limited treatment options, but potential therapies could include pre-transplant vaccination with a multivalent BKV vaccine or therapeutics which inhibit capsid assembly or block attachment and entry into target cells. A useful tool in such efforts would be a high-resolution structure of the infectious BKV virion and how this interacts with its full repertoire of cellular receptors. We present the 3.4-Å cryoelectron microscopy structure of native, infectious BKV in complex with the receptor fragment of GT1b ganglioside. We also present structural evidence that BKV can utilize glycosaminoglycans as attachment receptors. This work highlights features that underpin capsid stability and provides a platform for rational design and development of urgently needed pharmacological interventions for BKV-associated diseases. Present the cryo-EM structure of native, infectious BKV virion at 3.4 Å resolution Reveal interpentamer interactions that mediate capsid assembly Determine the interaction of BKV with a receptor fragment of GT1b ganglioside Identify possible sites for glycosaminoglycan binding on the virion surface
Collapse
Affiliation(s)
- Daniel L Hurdiss
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Martin Frank
- Biognos AB, P.O. Box 8963, Gothenburg 40274, Sweden
| | - Joseph S Snowden
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew Macdonald
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
4
|
Panou MM, Prescott EL, Hurdiss DL, Swinscoe G, Hollinshead M, Caller LG, Morgan EL, Carlisle L, Müller M, Antoni M, Kealy D, Ranson NA, Crump CM, Macdonald A. Agnoprotein Is an Essential Egress Factor during BK Polyomavirus Infection. Int J Mol Sci 2018; 19:ijms19030902. [PMID: 29562663 PMCID: PMC5877763 DOI: 10.3390/ijms19030902] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/16/2022] Open
Abstract
BK polyomavirus (BKPyV; hereafter referred to as BK) causes a lifelong chronic infection and is associated with debilitating disease in kidney transplant recipients. Despite its importance, aspects of the virus life cycle remain poorly understood. In addition to the structural proteins, the late region of the BK genome encodes for an auxiliary protein called agnoprotein. Studies on other polyomavirus agnoproteins have suggested that the protein may contribute to virion infectivity. Here, we demonstrate an essential role for agnoprotein in BK virus release. Viruses lacking agnoprotein fail to release from host cells and do not propagate to wild-type levels. Despite this, agnoprotein is not essential for virion infectivity or morphogenesis. Instead, agnoprotein expression correlates with nuclear egress of BK virions. We demonstrate that the agnoprotein binding partner α-soluble N-ethylmaleimide sensitive fusion (NSF) attachment protein (α-SNAP) is necessary for BK virion release, and siRNA knockdown of α-SNAP prevents nuclear release of wild-type BK virions. These data highlight a novel role for agnoprotein and begin to reveal the mechanism by which polyomaviruses leave an infected cell.
Collapse
Affiliation(s)
- Margarita-Maria Panou
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Emma L Prescott
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Daniel L Hurdiss
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Gemma Swinscoe
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Michael Hollinshead
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Laura G Caller
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Ethan L Morgan
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Louisa Carlisle
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Marietta Müller
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Michelle Antoni
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - David Kealy
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Neil A Ranson
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Colin M Crump
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Andrew Macdonald
- Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
5
|
Trang VD, Rockett R, Jeoffreys N, Trung NV, Hai An HP, Kok J, Dwyer DE. BK polyomavirus: a review of the virology, pathogenesis, clinical and laboratory features, and treatment. Future Virol 2017. [DOI: 10.2217/fvl-2017-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BK polyomavirus (BKPyV) is a non-enveloped, circular dsDNA virus with a genome of approximately 5100 base pairs. It can be divided into four major genotypes, but the effects of different genotypes on clinical disease are uncertain. Primary BKPyV infection is generally acquired asymptomatically in childhood. It establishes low-level persistence in many tissues, particularly the genitourinary tract. Reactivation can lead to severe disease including BKPyV-associated nephropathy confirmed by renal biopsy, hemorrhagic cystitis and meningoencephalitis. Nucleic acid amplification testing of blood and urine is the main diagnostic and prognostic test for BKPyV infection. The treatment of BKPyV infection has concentrated on reduction in immunosuppressive therapy. Recent studies suggest that antiviral drugs have demonstrated only modest benefit, but adoptive T-cell therapies offer potential advances.
Collapse
Affiliation(s)
- Van Dinh Trang
- Clinical Laboratory, National Hospital of Tropical Diseases, 78-Giai Phong, Dong Da, Hanoi, Vietnam
- Western Clinical School, Westmead Hospital, The University of Sydney, NSW 2006, Australia
| | - Rebecca Rockett
- Center for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, NSW Health Pathology, Westmead Hospital, Westmead NSW 2145, Australia
| | - Neisha Jeoffreys
- Center for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, NSW Health Pathology, Westmead Hospital, Westmead NSW 2145, Australia
| | - Nguyen Vu Trung
- Clinical Laboratory, National Hospital of Tropical Diseases, 78-Giai Phong, Dong Da, Hanoi, Vietnam
- Department of Medical Microbiology, Hanoi Medical University, No. 1 Ton That Tung St, Dong Da, Hanoi, Vietnam
| | - Ha Phan Hai An
- Department of International Cooperation, Hanoi Medical University, No. 1 Ton That Tung St, Dong Da, Hanoi, Vietnam
- Kidney Diseases & Dialysis Department, Viet Duc Hospital, No. 40 Trang Thi St, Hoan Kiem, Hanoi, Vietnam
| | - Jen Kok
- Center for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, NSW Health Pathology, Westmead Hospital, Westmead NSW 2145, Australia
| | - Dominic E Dwyer
- Western Clinical School, Westmead Hospital, The University of Sydney, NSW 2006, Australia
- Center for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, NSW Health Pathology, Westmead Hospital, Westmead NSW 2145, Australia
| |
Collapse
|