1
|
Song D, Cen Y, Qian Z, Wu XS, Rivera K, Wee TL, Demerdash OE, Chang K, Pappin D, Vakoc CR, Tonks NK. PTPN23-dependent ESCRT machinery functions as a cell death checkpoint. Nat Commun 2024; 15:10364. [PMID: 39609437 PMCID: PMC11604704 DOI: 10.1038/s41467-024-54749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Cell death plasticity is crucial for modulating tissue homeostasis and immune responses, but our understanding of the molecular components that regulate cell death pathways to determine cell fate remains limited. Here, a CRISPR screen of acute myeloid leukemia cells identifies protein tyrosine phosphatase non-receptor type 23 (PTPN23) as essential for survival. Loss of PTPN23 activates nuclear factor-kappa B, apoptotic, necroptotic, and pyroptotic pathways by causing the accumulation of death receptors and toll-like receptors (TLRs) in endosomes. These effects are recapitulated by depletion of PTPN23 co-dependent genes in the endosomal sorting complex required for transport (ESCRT) pathway. Through proximity-dependent biotin labeling, we show that NAK-associated protein 1 interacts with PTPN23 to facilitate endosomal sorting of tumor necrosis factor receptor 1 (TNFR1), sensitizing cells to TNF-α-induced cytotoxicity. Our findings reveal PTPN23-dependent ESCRT machinery as a cell death checkpoint that regulates the spatiotemporal distribution of death receptors and TLRs to restrain multiple cell death pathways.
Collapse
MESH Headings
- Humans
- Endosomal Sorting Complexes Required for Transport/metabolism
- Endosomal Sorting Complexes Required for Transport/genetics
- Endosomes/metabolism
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Apoptosis
- NF-kappa B/metabolism
- Cell Death
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Toll-Like Receptors/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Signal Transduction
- Cell Line, Tumor
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- HEK293 Cells
- Receptors, Death Domain/metabolism
Collapse
Affiliation(s)
- Dongyan Song
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Yuxin Cen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Zhe Qian
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Xiaoli S Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, USA
| | - Keith Rivera
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Tse-Luen Wee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Osama E Demerdash
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Darryl Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | | | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA.
| |
Collapse
|
2
|
Adisornkanj P, Chanprasit R, Eliason S, Fons JM, Intachai W, Tongsima S, Olsen B, Arold ST, Ngamphiw C, Amendt BA, Tucker AS, Kantaputra P. Genetic Variants in Protein Tyrosine Phosphatase Non-Receptor Type 23 Are Responsible for Mesiodens Formation. BIOLOGY 2023; 12:393. [PMID: 36979085 PMCID: PMC10045488 DOI: 10.3390/biology12030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
A mesiodens is a supernumerary tooth located in the midline of the premaxilla. To investigate the genetic cause of mesiodens, clinical and radiographic examination were performed on 23 family members of a two-generation Hmong family. Whole exome sequencing (WES) or Sanger sequencing were performed in 22 family members and two unrelated Thai patients with mesiodens. WES in the Hmong family revealed a missense mutation (c.1807G>A;p.Glu603Lys) in PTPN23 in seven affected members and six unaffected members. The mode of inheritance was autosomal dominance with incomplete penetrance (53.84%). Two additional mutations in PTPN23, c.2248C>G;p.Pro750Ala and c.3298C>T;p.Arg1100Cys were identified in two unrelated patients with mesiodens. PTPN23 is a regulator of endosomal trafficking functioning to move activated membrane receptors, such as EGFR, from the endosomal sorting complex towards the ESCRT-III complex for multivesicular body biogenesis, lysosomal degradation, and subsequent downregulation of receptor signaling. Immunohistochemical study and RNAscope on developing mouse embryos showed broad expression of PTPN23 in oral tissues, while immunofluorescence showed that EGFR was specifically concentrated in the midline epithelium. Importantly, PTPN23 mutant protein was shown to have reduced phosphatase activity. In conclusion, mesiodens were associated with genetic variants in PTPN23, suggesting that mesiodens may form due to defects in endosomal trafficking, leading to disrupted midline signaling.
Collapse
Affiliation(s)
- Ploy Adisornkanj
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rajit Chanprasit
- Dental Department, Wiang Kaen Hospital, Wiang Kaen, Chiang Rai 57310, Thailand
| | - Steven Eliason
- Department of Anatomy and Cell Biology and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Juan M. Fons
- Centre for Craniofacial and Regenerative Biology, King’s College London, Floor 27 Guy’ Hospital, London Bridge, London SE1 9RT, UK
| | - Worrachet Intachai
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard University, Boston, MA 02115, USA
| | - Stefan T. Arold
- Computational Bioscience Research Center, Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Center for Structural Biology, National Institute of Health and Medical Research, National Centre for Scientific Research, University of Montpellier, 34090 Montpellier, France
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Brad A. Amendt
- Department of Anatomy and Cell Biology and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52242, USA
- Iowa Institute of Oral Health Research, University of Iowa, Iowa City, IA 52242, USA
| | - Abigail S. Tucker
- Centre for Craniofacial and Regenerative Biology, King’s College London, Floor 27 Guy’ Hospital, London Bridge, London SE1 9RT, UK
| | - Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Kazan JM, Desrochers G, Martin CE, Jeong H, Kharitidi D, Apaja PM, Roldan A, St. Denis N, Gingras AC, Lukacs GL, Pause A. Endofin is required for HD-PTP and ESCRT-0 interdependent endosomal sorting of ubiquitinated transmembrane cargoes. iScience 2021; 24:103274. [PMID: 34761192 PMCID: PMC8567383 DOI: 10.1016/j.isci.2021.103274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 11/20/2022] Open
Abstract
Internalized and ubiquitinated signaling receptors are silenced by their intraluminal budding into multivesicular bodies aided by the endosomal sorting complexes required for transport (ESCRT) machinery. HD-PTP, an ESCRT protein, forms complexes with ESCRT-0, -I and -III proteins, and binds to Endofin, a FYVE-domain protein confined to endosomes with poorly understood roles. Using proximity biotinylation, we showed that Endofin forms a complex with ESCRT constituents and Endofin depletion increased integrin α5-and EGF-receptor plasma membrane density and stability by hampering their lysosomal delivery. This coincided with sustained receptor signaling and increased cell migration. Complementation of Endofin- or HD-PTP-depleted cells with wild-type Endofin or HD-PTP, but not with mutants harboring impaired Endofin/HD-PTP association or cytosolic Endofin, restored EGFR lysosomal delivery. Endofin also promoted Hrs indirect interaction with HD-PTP. Jointly, our results indicate that Endofin is required for HD-PTP and ESCRT-0 interdependent sorting of ubiquitinated transmembrane cargoes to ensure efficient receptor desensitization and lysosomal delivery.
Collapse
Affiliation(s)
- Jalal M. Kazan
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Guillaume Desrochers
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Claire E. Martin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Hyeonju Jeong
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Dmitri Kharitidi
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Pirjo M. Apaja
- Physiology Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Ariel Roldan
- Physiology Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Nicole St. Denis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gergely L. Lukacs
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
- Physiology Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
4
|
Parkinson G, Roboti P, Zhang L, Taylor S, Woodman P. His domain protein tyrosine phosphatase and Rabaptin-5 couple endo-lysosomal sorting of EGFR with endosomal maturation. J Cell Sci 2021; 134:272512. [PMID: 34657963 PMCID: PMC8627557 DOI: 10.1242/jcs.259192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/13/2021] [Indexed: 01/20/2023] Open
Abstract
His domain protein tyrosine phosphatase (HD-PTP; also known as PTPN23) collaborates with endosomal sorting complexes required for transport (ESCRTs) to sort endosomal cargo into intralumenal vesicles, forming the multivesicular body (MVB). Completion of MVB sorting is accompanied by maturation of the endosome into a late endosome, an event that requires inactivation of the early endosomal GTPase Rab5 (herein referring to generically to all isoforms). Here, we show that HD-PTP links ESCRT function with endosomal maturation. HD-PTP depletion prevents MVB sorting, while also blocking cargo from exiting Rab5-rich endosomes. HD-PTP-depleted cells contain hyperphosphorylated Rabaptin-5 (also known as RABEP1), a cofactor for the Rab5 guanine nucleotide exchange factor Rabex-5 (also known as RABGEF1), although HD-PTP is unlikely to directly dephosphorylate Rabaptin-5. In addition, HD-PTP-depleted cells exhibit Rabaptin-5-dependent hyperactivation of Rab5. HD-PTP binds directly to Rabaptin-5, between its Rabex-5- and Rab5-binding domains. This binding reaction involves the ESCRT-0/ESCRT-III binding site in HD-PTP, which is competed for by an ESCRT-III peptide. Jointly, these findings indicate that HD-PTP may alternatively scaffold ESCRTs and modulate Rabex-5–Rabaptin-5 activity, thereby helping to coordinate the completion of MVB sorting with endosomal maturation. Summary: Sorting of endocytic cargo to the multivesicular body is accompanied by endosomal maturation. Here, we provide a potential mechanism by which these two processes are linked.
Collapse
Affiliation(s)
- Gabrielle Parkinson
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Peristera Roboti
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Ling Zhang
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Sandra Taylor
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Philip Woodman
- Faculty of Biology, Medicine and Health, Manchester Academic and Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
5
|
Pashkova N, Yu L, Schnicker NJ, Tseng CC, Gakhar L, Katzmann DJ, Piper RC. Interactions of ubiquitin and CHMP5 with the V domain of HD-PTP reveals role for regulation of Vps4 ATPase. Mol Biol Cell 2021; 32:ar42. [PMID: 34586919 PMCID: PMC8694081 DOI: 10.1091/mbc.e21-04-0219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The family of Bro1 proteins coordinates the activity of the Endosomal Sorting Complexes Required for Transport (ESCRTs) to mediate a number of membrane remodeling events. These events culminate in membrane scission catalyzed by ESCRT-III, whose polymerization and disassembly is controlled by the AAA-ATPase, Vps4. Bro1-family members Alix and HD-PTP as well as yeast Bro1 have central “V” domains that noncovalently bind Ub and connect ubiquitinated proteins to ESCRT-driven functions such as the incorporation of ubiquitinated membrane proteins into intralumenal vesicles of multivesicular bodies. Recently, it was discovered that the V domain of yeast Bro1 binds the MIT domain of Vps4 to stimulate its ATPase activity. Here we determine the structural basis for how the V domain of human HD-PTP binds ubiquitin. The HD-PTP V domain also binds the MIT domain of Vps4, and ubiquitin binding to the HD-PTP V domain enhances its ability to stimulate Vps4 ATPase activity. Additionally, we found that V domains of both HD-PTP and Bro1 bind CHMP5 and Vps60, respectively, providing another potential molecular mechanism to alter Vps4 activity. These data support a model whereby contacts between ubiquitin, ESCRT-III, and Vps4 by V domains of the Bro1 family may coordinate late events in ESCRT-driven membrane remodeling events.
Collapse
Affiliation(s)
- Natalya Pashkova
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | - Liping Yu
- NMR facility, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242.,Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| | | | - Chun-Che Tseng
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905.,Protein Crystallography Facility, University of Iowa, Iowa City, IA, 52242
| | - Lokesh Gakhar
- Protein Crystallography Facility, University of Iowa, Iowa City, IA, 52242
| | - David J Katzmann
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242
| |
Collapse
|
6
|
Heaven G, Hollas MA, Tabernero L, Fielding AJ. Spin Labeling of Surface Cysteines Using a Bromoacrylaldehyde Spin Label. APPLIED MAGNETIC RESONANCE 2021; 52:959-970. [PMID: 34776648 PMCID: PMC8550513 DOI: 10.1007/s00723-021-01350-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Structural investigations of proteins and their biological complexes are now frequently complemented by distance constraints between spin labeled cysteines generated using double electron-electron resonance (DEER) spectroscopy, via site directed spin labeling (SDSL). Methanethiosulfonate spin label (MTSSL), has become ubiquitous in the SDSL of proteins, however, has limitations owing to its high number of rotamers, and reducibility. In this article we introduce the use of bromoacrylaldehyde spin label (BASL) as a cysteine spin label, demonstrating an advantage over MTSSL due to its increased selectivity for surface cysteines, eliminating the need to 'knock out' superfluous cysteine residues. Applied to the multidomain protein, His domain protein tyrosine phosphatase (HD-PTP), we show that BASL can be easily added in excess with selective labeling, whereas MTSSL causes protein precipitation. Furthermore, using DEER, we were able to measure a single cysteine pair distance in a three cysteine domain within HD-PTP. The label has a further advantage of comprising a sulfide in a three-bond tether, making it a candidate for protein binding and in-cell studies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00723-021-01350-1.
Collapse
Affiliation(s)
- Graham Heaven
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL UK
| | - Michael A. Hollas
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL UK
| | - Lydia Tabernero
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PL UK
| | - Alistair J. Fielding
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF UK
| |
Collapse
|
7
|
Weng G, Wang E, Chen F, Sun H, Wang Z, Hou T. Assessing the performance of MM/PBSA and MM/GBSA methods. 9. Prediction reliability of binding affinities and binding poses for protein-peptide complexes. Phys Chem Chem Phys 2019; 21:10135-10145. [PMID: 31062799 DOI: 10.1039/c9cp01674k] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A significant number of protein-protein interactions (PPIs) are mediated through the interactions between proteins and peptide segments, and therefore determination of protein-peptide interactions (PpIs) is critical to gain an in-depth understanding of the PPI network and even design peptides or small molecules capable of modulating PPIs. Computational approaches, especially molecular docking, provide an efficient way to model PpIs, and a reliable scoring function that can recognize the correct binding conformations for protein-peptide complexes is one of the most important components in protein-peptide docking. The end-point binding free energy calculation methods, such as MM/GBSA and MM/PBSA, are theoretically more rigorous than most empirical and semi-empirical scoring functions designed for protein-peptide docking, but their performance in predicting binding affinities and binding poses for protein-peptide systems has not been systematically assessed. In this study, we first evaluated the capability of MM/GBSA and MM/PBSA with different solvation models, interior dielectric constants (εin) and force fields to predict the binding affinities for 53 protein-peptide complexes. For the 19 short peptides with 5-12 residues, MM/PBSA based on the minimized structures in explicit solvent with the ff99 force field and εin = 2 yields the best correlation between the predicted binding affinities and the experimental data (rp = 0.748), while for the 34 medium-size peptides with 20-25 residues, MM/GBSA based on 1 ns of molecular dynamics (MD) simulations in implicit solvent with the ff03 force field, the GBOBC1 model and a low interior dielectric constant (εin = 1) yields the best accuracy (rp = 0.735). Then, we assessed the rescoring capability of MM/PBSA and MM/GBSA to distinguish the correct binding conformations from the decoys for 112 protein-peptide systems. The results illustrate that MM/PBSA based on the minimized structures with the ff99 or ff14SB force field and MM/GBSA based on the minimized structures with the ff03 force field show excellent capability to recognize the near-native binding poses for the short and medium-size peptides, respectively, and they outperform the predictions given by two popular protein-peptide docking algorithms (pepATTRACT and HPEPDOCK). Therefore, MM/PBSA and MM/GBSA are powerful tools to predict the binding affinities and identify the correct binding poses for protein-peptide systems.
Collapse
Affiliation(s)
- Gaoqi Weng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | | | | | | | | | | |
Collapse
|
8
|
Bataller A, Montalban-Bravo G, Soltysiak KA, Garcia-Manero G. The role of TGFβ in hematopoiesis and myeloid disorders. Leukemia 2019; 33:1076-1089. [PMID: 30816330 PMCID: PMC11789621 DOI: 10.1038/s41375-019-0420-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 02/06/2023]
Abstract
The role of transforming growth factor-β (TGFβ) signaling in embryological development and tissue homeostasis has been thoroughly characterized. Its canonical downstream cascade is well known, even though its true complexity and other non-canonical pathways are still being explored. TGFβ signaling has been described as an important pathway involved in carcinogenesis and cancer progression. In the hematopoietic compartment, the TGFβ pathway is an important regulator of proliferation and differentiation of different cell types and has been implicated in the pathogenesis of a diverse variety of bone marrow disorders. Due to its importance in hematological diseases, novel inhibitors of this pathway are being developed against a number of hematopoietic disorders, including myelodysplastic syndromes (MDS). In this review, we provide an overview of the TGFβ pathway, focusing on its role in hematopoiesis and impact on myeloid disorders. We will discuss therapeutic interventions with promising results against MDS.
Collapse
Affiliation(s)
- Alex Bataller
- Hematology Department, IDIBAPS, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Kelly A Soltysiak
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
9
|
Desrochers G, Kazan JM, Pause A. Structure and functions of His domain protein tyrosine phosphatase in receptor trafficking and cancer. Biochem Cell Biol 2019; 97:68-72. [DOI: 10.1139/bcb-2017-0322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cell surface receptors trigger the activation of signaling pathways to regulate key cellular processes, including cell survival and proliferation. Internalization, sorting, and trafficking of activated receptors, therefore, play a major role in the regulation and attenuation of cell signaling. Efficient sorting of endocytosed receptors is performed by the ESCRT machinery, which targets receptors for degradation by the sequential establishment of protein complexes. These events are tightly regulated and malfunction of ESCRT components can lead to abnormal trafficking and sustained signaling and promote tumor formation or progression. In this review, we analyze the modular domain organization of the alternative ESCRT protein HD-PTP and its role in receptor trafficking and tumorigenesis.
Collapse
Affiliation(s)
- Guillaume Desrochers
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada
| | - Jalal M. Kazan
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada
| | - Arnim Pause
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada
| |
Collapse
|
10
|
Miller DSJ, Bloxham RD, Jiang M, Gori I, Saunders RE, Das D, Chakravarty P, Howell M, Hill CS. The Dynamics of TGF-β Signaling Are Dictated by Receptor Trafficking via the ESCRT Machinery. Cell Rep 2018; 25:1841-1855.e5. [PMID: 30428352 PMCID: PMC7615189 DOI: 10.1016/j.celrep.2018.10.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 08/03/2018] [Accepted: 10/15/2018] [Indexed: 01/17/2023] Open
Abstract
Signal transduction pathways stimulated by secreted growth factors are tightly regulated at multiple levels between the cell surface and the nucleus. The trafficking of cell surface receptors is emerging as a key step for regulating appropriate cellular responses, with perturbations in this process contributing to human diseases, including cancer. For receptors recognizing ligands of the transforming growth factor β (TGF-β) family, little is known about how trafficking is regulated or how this shapes signaling dynamics. Here, using whole genome small interfering RNA (siRNA) screens, we have identified the ESCRT (endosomal sorting complex required for transport) machinery as a crucial determinant of signal duration. Downregulation of ESCRT components increases the outputs of TGF-β signaling and sensitizes cells to low doses of ligand in their microenvironment. This sensitization drives an epithelial-to-mesenchymal transition (EMT) in response to low doses of ligand, and we demonstrate a link between downregulation of the ESCRT machinery and cancer survival.
Collapse
Affiliation(s)
- Daniel S J Miller
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Robert D Bloxham
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ming Jiang
- High Throughput Screening Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ilaria Gori
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rebecca E Saunders
- High Throughput Screening Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Debipriya Das
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Probir Chakravarty
- Bioinformatics and Biostatistics Facility, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
11
|
Dissecting the role of His domain protein tyrosine phosphatase/PTPN23 and ESCRTs in sorting activated epidermal growth factor receptor to the multivesicular body. Biochem Soc Trans 2018; 46:1037-1046. [PMID: 30190330 PMCID: PMC6195633 DOI: 10.1042/bst20170443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/31/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
Sorting of activated epidermal growth factor receptor (EGFR) into intraluminal vesicles (ILVs) within the multivesicular body (MVB) is an essential step during the down-regulation of the receptor. The machinery that drives EGFR sorting attaches to the cytoplasmic face of the endosome and generates vesicles that bud into the endosome lumen, but somehow escapes encapsulation itself. This machinery is termed the ESCRT (endosomal sorting complexes required for transport) pathway, a series of multi-protein complexes and accessory factors first identified in yeast. Here, we review the yeast ESCRT pathway and describe the corresponding components in mammalian cells that sort EGFR. One of these is His domain protein tyrosine phosphatase (HD-PTP/PTPN23), and we review the interactions involving HD-PTP and ESCRTs. Finally, we describe a working model for how this ESCRT pathway might overcome the intrinsic topographical problem of EGFR sorting to the MVB lumen.
Collapse
|
12
|
Gahloth D, Heaven G, Jowitt TA, Mould AP, Bella J, Baldock C, Woodman P, Tabernero L. The open architecture of HD-PTP phosphatase provides new insights into the mechanism of regulation of ESCRT function. Sci Rep 2017; 7:9151. [PMID: 28831121 PMCID: PMC5567221 DOI: 10.1038/s41598-017-09467-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/26/2017] [Indexed: 11/16/2022] Open
Abstract
HD-PTP is a tumour suppressor phosphatase that controls endocytosis, down-regulation of mitogenic receptors and cell migration. Central to its role is the specific recruitment of critical endosomal sorting complexes required for transport (ESCRTs). However, the molecular mechanisms that enable HD-PTP to regulate ESCRT function are unknown. We have characterised the molecular architecture of the entire ESCRT binding region of HD-PTP using small angle X-ray scattering and hydrodynamic analyses. We show that HD-PTP adopts an open and extended conformation, optimal for concomitant interactions with multiple ESCRTs, which contrasts with the compact conformation of the related ESCRT regulator Alix. We demonstrate that the HD-PTP open conformation is functionally competent for binding cellular protein partners. Our analyses rationalise the functional cooperation of HD-PTP with ESCRT-0, ESCRT-I and ESCRT-III and support a model for regulation of ESCRT function by displacement of ESCRT subunits, which is crucial in determining the fate of ubiquitinated cargo.
Collapse
Affiliation(s)
- Deepankar Gahloth
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Graham Heaven
- School of Chemistry and Photon Science Institute, University of Manchester, Manchester, UK
| | - Thomas A Jowitt
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Biomolecular Analysis Core Facility, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - A Paul Mould
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Biomolecular Analysis Core Facility, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jordi Bella
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Clair Baldock
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Philip Woodman
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Lydia Tabernero
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|