1
|
Jagtap UA, Rathod S, Shukla R, Paul AT. Computational insights into human UCP1 activators through molecular docking, MM-GBSA, and molecular dynamics simulation studies. Comput Biol Chem 2024; 113:108252. [PMID: 39461164 DOI: 10.1016/j.compbiolchem.2024.108252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/29/2024]
Abstract
The prevalence of obesity is rapidly increasing worldwide. Brown adipose tissue activates uncoupling protein 1 (UCP1) to generate heat through bypassing ATP synthesis, offering a potential target for obesity treatment. Targeting UCP1 activation to induce thermogenesis through small molecules presents a promising approach for obesity management. In this study, molecular docking of UCP1 activators, using 2,4-dinitrophenol (DNP) as a reference ligand (PDB ID: 8J1N, docking score: -5.343 kcal/mol), identified seven top-scoring compounds: naringin (-7.284 kcal/mol), quercetin (-6.661 kcal/mol), salsalate (-6.017 kcal/mol), rhein (-5.798 kcal/mol), mirabegron (-5.535 kcal/mol), curcumin (-5.479 kcal/mol), and formoterol (-5.451 kcal/mol). Prime MM-GBSA calculation of the top-scored molecule (i.e., naringin) in the docking study showed ΔGBind of -70.48 kcal/mol. Key interactions of these top 7 activators with UCP1 binding pocket residues Trp280, Arg276, Glu190, Arg83, and Arg91 were observed. Molecular dynamics simulations performed for 100 ns confirmed complex stability, with RMSD values below 6 Å. Additionally, most activators showed favorable intestinal absorption (>90 %) and lipophilicity (LogP 2-4), with pKa values supporting their pharmacological potential as UCP1-targeting therapeutics for obesity. These findings provide a foundation for designing potent UCP1 activators by integrating docking scores, interaction profiles, statistical profiles from MD simulations, and physicochemical assessments to develop effective anti-obesity therapies.
Collapse
Affiliation(s)
- Utkarsh A Jagtap
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani campus, Pilani, Rajasthan 333031, India
| | - Sanket Rathod
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani campus, Pilani, Rajasthan 333031, India; School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Ravi Shukla
- School of Science, RMIT University, Melbourne, VIC 3000, Australia; NanoBiotechnology Research Laboratory, Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, VIC 3001, Australia
| | - Atish T Paul
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani campus, Pilani, Rajasthan 333031, India.
| |
Collapse
|
2
|
Carpentier AC, Blondin DP. Is stimulation of browning of human adipose tissue a relevant therapeutic target? ANNALES D'ENDOCRINOLOGIE 2024; 85:184-189. [PMID: 38871497 DOI: 10.1016/j.ando.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Brown adipose tissue (BAT) and beige adipose tissues are important contributors to cold-induced whole body thermogenesis in rodents. The documentation in humans of cold- and ß-adrenergic receptor agonist-stimulated BAT glucose uptake using positron emission tomography (PET) and of a decrease of this response in individuals with cardiometabolic disorders led to the suggestion that BAT/beige adipose tissues could be relevant targets for prevention and treatment of these conditions. In this brief review, we will critically assess this question by first describing the basic rationale for this affirmation, second by examining the evidence in human studies, and third by discussing the possible means to activate the thermogenic response of these tissues in humans.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Sherbrooke, Québec, Canada.
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
3
|
Hou J, Ji X, Chu X, Shi Z, Wang B, Sun K, Wei H, Song Z, Wen F. Comprehensive lipidomic analysis revealed the effects of fermented Morus alba L. intake on lipid profile in backfat and muscle tissue of Yuxi black pigs. J Anim Physiol Anim Nutr (Berl) 2024; 108:764-777. [PMID: 38305489 DOI: 10.1111/jpn.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/08/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Mulberry leaf is a widely used protein feed and is often used as a strategy to reduce feed costs and improve meat quality in the livestock industry. However, to date, there is a lack of research on the improvement of meat quality using mulberry leaves, and the exact mechanisms are not yet known. The results showed that fermented mulberry leaves significantly reduced backfat content but had no significant effect on intramuscular fat (IMF). Lipidomic analysis showed that 98 and 303 differential lipid molecules (p < 0.05) were identified in adipose and muscle tissues, respectively, including triglycerides (TG), phosphatidylcholine, phosphatidylethanolamine, sphingolipids, and especially TG; therefore, we analysed the acyl carbon atom number of TG. The statistical results of acyl with different carbon atom numbers of TG in adipose tissue showed that the acyl group containing 13 carbon atoms (C13) in TG was significantly upregulated, whereas C15, C16, C17, and C23 were significantly downregulated, whereas in muscle tissue, the C12, C19, C23, C25, and C26 in TG were significantly downregulated. Acyl changes in TG were different for different numbers of carbon atoms in different tissues. We found that the correlations of C (14-18) in adipose tissue were higher, but in muscle tissue, the correlations of C (18-26) were higher. Through pathway enrichment analysis, we identified six and four metabolic pathways with the highest contributions of differential lipid metabolites in adipose and muscle tissues respectively. These findings suggest that fermented mulberry leaves improve meat quality mainly by inhibiting TG deposition by downregulating medium- and short-chain fatty acids in backfat tissue and long-chain fatty acids in muscle tissue.
Collapse
Affiliation(s)
- Junjie Hou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiang Ji
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiaoran Chu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zhuoyan Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Binjie Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Kangle Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Haibo Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zhen Song
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- The Kay Laboratory of High Quality Livestock and Poultry Germplasm Resources and Genetic Breeding of Luoyang, Henan University of Science and Technology, Luoyang, China
| | - Fengyun Wen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- The Kay Laboratory of High Quality Livestock and Poultry Germplasm Resources and Genetic Breeding of Luoyang, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
4
|
Jacobsen L, Lydersen L, Khandelia H. ATP-Bound State of the Uncoupling Protein 1 (UCP1) from Molecular Simulations. J Phys Chem B 2023; 127:9685-9696. [PMID: 37921649 DOI: 10.1021/acs.jpcb.3c03473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The uncoupling protein 1 (UCP1) dissipates the transmembrane (TM) proton gradient in the inner mitochondrial membrane (IMM) by leaking protons across the membrane and producing heat in the process. Such a nonshivering production of heat in the brown adipose tissue can combat obesity-related diseases. UCP1-associated proton leak is activated by free fatty acids and inhibited by purine nucleotides. The mechanism of proton leak and the binding sites of the activators (fatty acids) remain unknown, while the binding site of the inhibitors (nucleotides) was described recently. Using molecular dynamics simulations, we generated a conformational ensemble of UCP1. Using metadynamics-based free energy calculations, we obtained the most likely ATP-bound conformation of UCP1. Our conformational ensemble provides a molecular basis for a breadth of prior biochemical data available for UCP1. Based on the simulations, we make the following testable predictions about the mechanisms of activation of proton leak and proton leak inhibition by ATP: (1) R277 plays the dual role of stabilizing ATP at the binding site for inhibition and acting as a proton surrogate for D28 in the absence of a proton during proton transport, (2) the binding of ATP to UCP1 is mediated by residues R84, R92, R183, and S88, (3) R92 shuttles ATP from the E191-R92 gate in the intermembrane space to the nucleotide binding site and serves to increase ATP affinity, (4) ATP can inhibit proton leak by controlling the ionization states of matrix facing lysine residues such as K269 and K56, and (5) fatty acids can bind to UCP1 from the IMM either via the cavity between TM1 and TM2 or between TM5 and TM6. Our simulations set the platform for future investigations into the proton transport and inhibition mechanisms of UCP1.
Collapse
Affiliation(s)
- Luise Jacobsen
- PhyLife: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Laura Lydersen
- PhyLife: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Himanshu Khandelia
- PhyLife: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
5
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
6
|
Liao FH, Yao CN, Chen SP, Wu TH, Lin SY. Transdermal Delivery of Succinate Accelerates Energy Dissipation of Brown Adipocytes to Reduce Remote Fat Accumulation. Mol Pharm 2022; 19:4299-4310. [DOI: 10.1021/acs.molpharmaceut.2c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fang-Hsuean Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road,
Zhunan Town, Miaoli County 35053, Taiwan
| | - Chun-Nien Yao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road,
Zhunan Town, Miaoli County 35053, Taiwan
| | - Shu-Ping Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road,
Zhunan Town, Miaoli County 35053, Taiwan
| | - Te-Haw Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road,
Zhunan Town, Miaoli County 35053, Taiwan
| | - Shu-Yi Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road,
Zhunan Town, Miaoli County 35053, Taiwan
| |
Collapse
|
7
|
Li L, Wen M, Run C, Wu B, OuYang B. Experimental Investigations on the Structure of Yeast Mitochondrial Pyruvate Carriers. MEMBRANES 2022; 12:membranes12100916. [PMID: 36295675 PMCID: PMC9608981 DOI: 10.3390/membranes12100916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 06/01/2023]
Abstract
Mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytoplasm into the mitochondrial matrix to participate in the tricarboxylic acid (TCA) cycle, which further generates the energy for the physiological activities of cells. Two interacting subunits, MPC1 and MPC2 or MPC3, form a heterodimer to conduct transport function. However, the structural basis of how the MPC complex transports pyruvate is still lacking. Here, we described the detailed expression and purification procedures to obtain large amounts of yeast MPC1 and MPC2 for structural characterization. The purified yeast MPC1 and MPC2 were reconstituted in dodecylphosphocholine (DPC) micelles and examined using nuclear magnetic resonance (NMR) spectroscopy, showing that both subunits contain three α-helical transmembrane regions with substantial differences from what was predicted by AlphaFold2. Furthermore, the new protocol producing the recombinant MPC2 using modified maltose-binding protein (MBP) with cyanogen bromide (CNBr) cleavage introduced general way to obtain small membrane proteins. These findings provide a preliminary understanding for the structure of the MPC complex and useful guidance for further studies.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maorong Wen
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Changqing Run
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Bin Wu
- National Facility for Protein Science in Shanghai, ZhangJiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Bo OuYang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Guijas C, To A, Montenegro-Burke JR, Domingo-Almenara X, Alipio-Gloria Z, Kok BP, Saez E, Alvarez NH, Johnson KA, Siuzdak G. Drug-Initiated Activity Metabolomics Identifies Myristoylglycine as a Potent Endogenous Metabolite for Human Brown Fat Differentiation. Metabolites 2022; 12:749. [PMID: 36005620 PMCID: PMC9415469 DOI: 10.3390/metabo12080749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Worldwide, obesity rates have doubled since the 1980s and in the USA alone, almost 40% of adults are obese, which is closely associated with a myriad of metabolic diseases such as type 2 diabetes and arteriosclerosis. Obesity is derived from an imbalance between energy intake and consumption, therefore balancing energy homeostasis is an attractive target for metabolic diseases. One therapeutic approach consists of increasing the number of brown-like adipocytes in the white adipose tissue (WAT). Whereas WAT stores excess energy, brown adipose tissue (BAT) can dissipate this energy overload in the form of heat, increasing energy expenditure and thus inhibiting metabolic diseases. To facilitate BAT production a high-throughput screening approach was developed on previously known drugs using human Simpson-Golabi-Behmel Syndrome (SGBS) preadipocytes. The screening allowed us to discover that zafirlukast, an FDA-approved small molecule drug commonly used to treat asthma, was able to differentiate adipocyte precursors and white-biased adipocytes into functional brown adipocytes. However, zafirlukast is toxic to human cells at higher dosages. Drug-Initiated Activity Metabolomics (DIAM) was used to investigate zafirlukast as a BAT inducer, and the endogenous metabolite myristoylglycine was then discovered to mimic the browning properties of zafirlukast without impacting cell viability. Myristoylglycine was found to be bio-synthesized upon zafirlukast treatment and was unique in inducing brown adipocyte differentiation, raising the possibility of using endogenous metabolites and bypassing the exogenous drugs to potentially alleviate disease, in this case, obesity and other related metabolic diseases.
Collapse
Affiliation(s)
- Carlos Guijas
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA 92037, USA
| | - Andrew To
- California Institute for Biomedical Research (Calibr), Scripps Research, La Jolla, CA 92037, USA
| | - J. Rafael Montenegro-Burke
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA 92037, USA
- Department of Molecular Genetics, Donnelly Center, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Xavier Domingo-Almenara
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA 92037, USA
- Computational Metabolomics for Systems Biology Lab, Omics Sciences Unit, Eurecat—Technology Centre of Catalonia, 08005 Barcelona, Spain
| | - Zaida Alipio-Gloria
- California Institute for Biomedical Research (Calibr), Scripps Research, La Jolla, CA 92037, USA
| | - Bernard P. Kok
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Enrique Saez
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Nicole H. Alvarez
- California Institute for Biomedical Research (Calibr), Scripps Research, La Jolla, CA 92037, USA
| | - Kristen A. Johnson
- California Institute for Biomedical Research (Calibr), Scripps Research, La Jolla, CA 92037, USA
| | - Gary Siuzdak
- Scripps Center for Metabolomics, Scripps Research, La Jolla, CA 92037, USA
- Departments of Chemistry, Molecular, and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Horino M, Ikeda K, Yamada T. The Role of Thermogenic Fat Tissue in Energy Consumption. Curr Issues Mol Biol 2022; 44:3166-3179. [PMID: 35877443 PMCID: PMC9317885 DOI: 10.3390/cimb44070219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/19/2022] Open
Abstract
Mammalian adipose tissues are broadly divided into white adipose tissue (WAT) and thermogenic fat tissue (brown adipose tissue and beige adipose tissue). Uncoupling protein 1 (UCP1) is the central protein in thermogenesis, and cells that exhibit induced UCP1 expression and appear scattered throughout WAT are called beige adipocytes, and their induction in WAT is referred to as “beiging”. Beige adipocytes can differentiate from preadipocytes or convert from mature adipocytes. UCP1 was thought to contribute to non-shivering thermogenesis; however, recent studies demonstrated the presence of UCP1-independent thermogenic mechanisms. There is evidence that thermogenic fat tissue contributes to systemic energy expenditure even in human beings. This review discusses the roles that thermogenic fat tissue plays in energy consumption and offers insight into the possibility and challenges associated with its application in the treatment of obesity and type 2 diabetes.
Collapse
|
10
|
Zhang N, Jia X, Fan S, Wu B, Wang S, OuYang B. NMR Characterization of Long-Chain Fatty Acylcarnitine Binding to the Mitochondrial Carnitine/Acylcarnitine Carrier. Int J Mol Sci 2022; 23:ijms23094608. [PMID: 35563000 PMCID: PMC9103206 DOI: 10.3390/ijms23094608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
The mitochondrial carnitine/acylcarnitine carrier (CAC) transports short-, medium- and long-carbon chain acylcarnitines across the mitochondrial inner membrane in exchange for carnitine. How CAC recognizes the substrates with various fatty acyl groups, especially long-chain fatty acyl groups, remains unclear. Here, using nuclear magnetic resonance (NMR) technology, we have shown that the CAC protein reconstituted into a micelle system exhibits a typical six transmembrane structure of the mitochondrial carrier family. The chemical shift perturbation patterns of different fatty acylcarnitines suggested that the segment A76–G81 in CAC specifically responds to the long-chain fatty acylcarnitine. Molecular dynamics (MD) simulations of palmitoyl-L-carnitine inside the CAC channel showed the respective interaction and motion of the long-chain acylcarnitine in CAC at the cytosol-open state and matrix-open state. Our data provided a molecular-based understanding of CAC structure and transport mechanism.
Collapse
Affiliation(s)
- Ningning Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaopu Jia
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; (X.J.); (S.F.)
| | - Shuai Fan
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; (X.J.); (S.F.)
| | - Bin Wu
- National Facility for Protein Science in Shanghai, ZhangJiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Shuqing Wang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; (X.J.); (S.F.)
- Correspondence: (S.W.); (B.O.); Tel.: +86-021-54920143 (B.O.)
| | - Bo OuYang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (S.W.); (B.O.); Tel.: +86-021-54920143 (B.O.)
| |
Collapse
|
11
|
Uncoupling Proteins and Regulated Proton Leak in Mitochondria. Int J Mol Sci 2022; 23:ijms23031528. [PMID: 35163451 PMCID: PMC8835771 DOI: 10.3390/ijms23031528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Higher concentration of protons in the mitochondrial intermembrane space compared to the matrix results in an electrochemical potential causing the back flux of protons to the matrix. This proton transport can take place through ATP synthase complex (leading to formation of ATP) or can occur via proton transporters of the mitochondrial carrier superfamily and/or membrane lipids. Some mitochondrial proton transporters, such as uncoupling proteins (UCPs), transport protons as their general regulating function; while others are symporters or antiporters, which use the proton gradient as a driving force to co-transport other substrates across the mitochondrial inner membrane (such as phosphate carrier, a symporter; or aspartate/glutamate transporter, an antiporter). Passage (or leakage) of protons across the inner membrane to matrix from any route other than ATP synthase negatively impacts ATP synthesis. The focus of this review is on regulated proton transport by UCPs. Recent findings on the structure and function of UCPs, and the related research methodologies, are also critically reviewed. Due to structural similarity of members of the mitochondrial carrier superfamily, several of the known structural features are potentially expandable to all members. Overall, this report provides a brief, yet comprehensive, overview of the current knowledge in the field.
Collapse
|
12
|
Gaudry MJ, Jastroch M. Comparative functional analyses of UCP1 to unravel evolution, ecophysiology and mechanisms of mammalian thermogenesis. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110613. [PMID: 33971349 DOI: 10.1016/j.cbpb.2021.110613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022]
Abstract
Brown adipose tissue (BAT), present in many placental mammals, provides adaptive nonshivering thermogenesis (NST) for body temperature regulation and has facilitated survival in diverse thermal niches on our planet. Intriguingly, several key details on the molecular mechanisms of NST and their potential ecophysiological adaptations are still unknown. Comparative studies at the whole animal level are unpragmatic, due to the diversity and complexity of thermoregulation among different species. We propose that the molecular evolution of mitochondrial uncoupling protein 1 (UCP1), a central component for BAT thermogenesis, represents a powerful opportunity to unravel key questions of mammalian thermoregulation. Comparative analysis of UCP1 may elucidate how its thermogenic function arose, how environmental selection has shaped protein function to support ecophysiological requirements, and how the enigmatic molecular mechanism of proton leak is governed. Several approaches for the assessment of UCP1 function in vitro have been introduced over the years. For comparative characterization of UCP1, we put forward the overexpression of UCP1 orthologues and mutated variants in a mammalian cell system as a primary strategy and discuss advantageous aspects in contrast to other experimental systems. In turn, we suggest how remaining experimental caveats can be solved by complimentary test systems before physiological consolidation in the animal model. Furthermore, we highlight the appropriate bioenergetic techniques to perform the functional analyses on UCP1. The comparative characterizations of diverse UCP1 variants may enable key insights into open questions surrounding the molecular basis of NST.
Collapse
Affiliation(s)
- Michael J Gaudry
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
13
|
Nicholls DG. Mitochondrial proton leaks and uncoupling proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148428. [PMID: 33798544 DOI: 10.1016/j.bbabio.2021.148428] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 01/02/2023]
Abstract
Non-shivering thermogenesis in brown adipose tissue is mediated by uncoupling protein 1 (UCP1), which provides a carefully regulated proton re-entry pathway across the mitochondrial inner membrane operating in parallel to the ATP synthase and allowing respiration, and hence thermogenesis, to be released from the constraints of respiratory control. In the 40 years since UCP1 was first described, an extensive, and frequently contradictory, literature has accumulated, focused on the acute physiological regulation of the protein by fatty acids, purine nucleotides and possible additional factors. The purpose of this review is to examine, in detail, the experimental evidence underlying these proposed mechanisms. Emphasis will be placed on the methodologies employed and their relation to the physiological constraints under which the protein functions in the intact cell. The nature of the endogenous, UCP1-independent, proton leak will also be discussed. Finally, the troubled history of the putative novel uncoupling proteins, UCP2 and UCP3, will be evaluated.
Collapse
|
14
|
Shi M, Huang XY, Ren XY, Wei XY, Ma Y, Lin ZZ, Liu DT, Song L, Zhao TJ, Li G, Yao L, Zhu M, Zhang C, Xie C, Wu Y, Wu HM, Fan LP, Ou J, Zhan YH, Lin SY, Lin SC. AIDA directly connects sympathetic innervation to adaptive thermogenesis by UCP1. Nat Cell Biol 2021; 23:268-277. [PMID: 33664495 DOI: 10.1038/s41556-021-00642-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
The sympathetic nervous system-catecholamine-uncoupling protein 1 (UCP1) axis plays an essential role in non-shivering adaptive thermogenesis. However, whether there exists a direct effector that physically connects catecholamine signalling to UCP1 in response to acute cold is unknown. Here we report that outer mitochondrial membrane-located AIDA is phosphorylated at S161 by the catecholamine-activated protein kinase A (PKA). Phosphorylated AIDA translocates to the intermembrane space, where it binds to and activates the uncoupling activity of UCP1 by promoting cysteine oxidation of UCP1. Adipocyte-specific depletion of AIDA abrogates UCP1-dependent thermogenesis, resulting in hypothermia during acute cold exposure. Re-expression of S161A-AIDA, unlike wild-type AIDA, fails to restore the acute cold response in Aida-knockout mice. The PKA-AIDA-UCP1 axis is highly conserved in mammals, including hibernators. Denervation of the sympathetic postganglionic fibres abolishes cold-induced AIDA-dependent thermogenesis. These findings uncover a direct mechanistic link between sympathetic input and UCP1-mediated adaptive thermogenesis.
Collapse
Affiliation(s)
- Meng Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiao-Yu Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xin-Yi Ren
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiao-Yan Wei
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yue Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhi-Zhong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Dong-Tai Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Lintao Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tong-Jin Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Luming Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Mingxia Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yaying Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Han-Ming Wu
- Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Li-Ping Fan
- Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Jingxing Ou
- Department of Hepatic Surgery and Liver Transplantation Centre of the Third Affiliated Hospital, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, China
| | - Yi-Hong Zhan
- Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Shu-Yong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
- Department of Digestive Diseases, School of Medicine, Xiamen University, Xiamen, China.
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
15
|
Škulj S, Brkljača Z, Kreiter J, Pohl EE, Vazdar M. Molecular Dynamics Simulations of Mitochondrial Uncoupling Protein 2. Int J Mol Sci 2021; 22:ijms22031214. [PMID: 33530558 PMCID: PMC7866055 DOI: 10.3390/ijms22031214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Molecular dynamics (MD) simulations of uncoupling proteins (UCP), a class of transmembrane proteins relevant for proton transport across inner mitochondrial membranes, represent a complicated task due to the lack of available structural data. In this work, we use a combination of homology modelling and subsequent microsecond molecular dynamics simulations of UCP2 in the DOPC phospholipid bilayer, starting from the structure of the mitochondrial ATP/ADP carrier (ANT) as a template. We show that this protocol leads to a structure that is impermeable to water, in contrast to MD simulations of UCP2 structures based on the experimental NMR structure. We also show that ATP binding in the UCP2 cavity is tight in the homology modelled structure of UCP2 in agreement with experimental observations. Finally, we corroborate our results with conductance measurements in model membranes, which further suggest that the UCP2 structure modeled from ANT protein possesses additional key functional elements, such as a fatty acid-binding site at the R60 region of the protein, directly related to the proton transport mechanism across inner mitochondrial membranes.
Collapse
Affiliation(s)
- Sanja Škulj
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (S.Š.); (Z.B.)
| | - Zlatko Brkljača
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (S.Š.); (Z.B.)
| | - Jürgen Kreiter
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Elena E. Pohl
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, 1210 Vienna, Austria;
- Correspondence: (E.E.P.); (M.V.)
| | - Mario Vazdar
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (S.Š.); (Z.B.)
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague, Czech Republic
- Correspondence: (E.E.P.); (M.V.)
| |
Collapse
|
16
|
Piel MS, Masscheleyn S, Bouillaud F, Moncoq K, Miroux B. Structural models of mitochondrial uncoupling proteins obtained in DPC micelles are not functionally relevant. FEBS J 2020; 288:3024-3033. [DOI: 10.1111/febs.15629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/15/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Mathilde S. Piel
- Laboratoire de Biologie Physico‐Chimique des Protéines Membranaires, LBPC‐PM CNRS UMR7099 Université de Paris France
- Institut de Biologie Physico‐Chimique Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique Paris France
| | - Sandrine Masscheleyn
- Laboratoire de Biologie Physico‐Chimique des Protéines Membranaires, LBPC‐PM CNRS UMR7099 Université de Paris France
- Institut de Biologie Physico‐Chimique Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique Paris France
| | | | - Karine Moncoq
- Laboratoire de Biologie Physico‐Chimique des Protéines Membranaires, LBPC‐PM CNRS UMR7099 Université de Paris France
- Institut de Biologie Physico‐Chimique Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique Paris France
| | - Bruno Miroux
- Laboratoire de Biologie Physico‐Chimique des Protéines Membranaires, LBPC‐PM CNRS UMR7099 Université de Paris France
- Institut de Biologie Physico‐Chimique Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique Paris France
| |
Collapse
|
17
|
Functional characterization of human brown adipose tissue metabolism. Biochem J 2020; 477:1261-1286. [PMID: 32271883 DOI: 10.1042/bcj20190464] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.
Collapse
|
18
|
Lasitza‐Male T, Bartels K, Jungwirth J, Wiggers F, Rosenblum G, Hofmann H, Löw C. Membrane Chemistry Tunes the Structure of a Peptide Transporter. Angew Chem Int Ed Engl 2020; 59:19121-19128. [PMID: 32744783 PMCID: PMC7590137 DOI: 10.1002/anie.202008226] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 01/02/2023]
Abstract
Membrane proteins require lipid bilayers for function. While lipid compositions reach enormous complexities, high-resolution structures are usually obtained in artificial detergents. To understand whether and how lipids guide membrane protein function, we use single-molecule FRET to probe the dynamics of DtpA, a member of the proton-coupled oligopeptide transporter (POT) family, in various lipid environments. We show that detergents trap DtpA in a dynamic ensemble with cytoplasmic opening. Only reconstitutions in more native environments restore cooperativity, allowing an opening to the extracellular side and a sampling of all relevant states. Bilayer compositions tune the abundance of these states. A novel state with an extreme cytoplasmic opening is accessible in bilayers with anionic head groups. Hence, chemical diversity of membranes translates into structural diversity, with the current POT structures only sampling a portion of the full structural space.
Collapse
Affiliation(s)
- Tanya Lasitza‐Male
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Kim Bartels
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
| | - Jakub Jungwirth
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Felix Wiggers
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Gabriel Rosenblum
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Hagen Hofmann
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
- Department of Medical Biochemistry and BiophysicsKarolinska Institutet17177StockholmSweden
| |
Collapse
|
19
|
Lasitza‐Male T, Bartels K, Jungwirth J, Wiggers F, Rosenblum G, Hofmann H, Löw C. Membrane Chemistry Tunes the Structure of a Peptide Transporter. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tanya Lasitza‐Male
- Department of Structural Biology Weizmann Institute of Science Herzl St. 234 7610001 Rehovot Israel
| | - Kim Bartels
- Centre for Structural Systems Biology (CSSB) DESY and European Molecular Biology Laboratory Hamburg Notkestrasse 85 22607 Hamburg Germany
| | - Jakub Jungwirth
- Department of Chemical and Biological Physics Weizmann Institute of Science Herzl St. 234 7610001 Rehovot Israel
| | - Felix Wiggers
- Department of Structural Biology Weizmann Institute of Science Herzl St. 234 7610001 Rehovot Israel
| | - Gabriel Rosenblum
- Department of Structural Biology Weizmann Institute of Science Herzl St. 234 7610001 Rehovot Israel
| | - Hagen Hofmann
- Department of Structural Biology Weizmann Institute of Science Herzl St. 234 7610001 Rehovot Israel
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB) DESY and European Molecular Biology Laboratory Hamburg Notkestrasse 85 22607 Hamburg Germany
- Department of Medical Biochemistry and Biophysics Karolinska Institutet 17177 Stockholm Sweden
| |
Collapse
|
20
|
Zlatska AV, Vasyliev RG, Gordiienko IM, Rodnichenko AE, Morozova MA, Vulf MA, Zubov DO, Novikova SN, Litvinova LS, Grebennikova TV, Zlatskiy IA, Syroeshkin AV. Effect of the deuterium on efficiency and type of adipogenic differentiation of human adipose-derived stem cells in vitro. Sci Rep 2020; 10:5217. [PMID: 32251307 PMCID: PMC7089999 DOI: 10.1038/s41598-020-61983-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/27/2020] [Indexed: 12/30/2022] Open
Abstract
In this study, we performed an adipogenic differentiation of human adipose-derived stem cells (ADSCs) in vitro with different deuterium content (natural, low and high) in the culture medium during differentiation process with parallel analysis of the gene expression, metabolic activity and cell viability/toxicity. After ADSCs differentiation into adipocytes we have done the analysis of differentiation process efficiency and determined a type of resulting adipocytes (by morphology, gene expression, UCP1 protein detection and adipokine production analysis). We have found that high (5 × 105 ppm) deuterium content significantly inhibit in vitro adipogenic differentiation of human ADSCs compared to the groups with natural (150 ppm) and low (30 ppm) deuterium content. Importantly, protocol of differentiation used in our study leads to white adipocytes development in groups with natural (control) and high deuterium content, whereas deuterium-depleted differentiation medium leads to brown-like (beige) adipocytes formation. We have also remarked the direct impact of deuterium on the cellular survival and metabolic activity. Interesting, in deuterium depleted-medium, the cells had normal survival rate and high metabolic activity, whereas the inhibitory effect of deuterated medium on ADSCs differentiation at least was partly associated with deuterium cytotoxicity and inhibitory effect on metabolic activity. The inhibitory effect of deuterium on metabolic activity and the subsequent decrease in the effectiveness of adipogenic differentiation is probably associated with mitochondrial dysfunction. Thus, deuterium could be considered as an element that affects the substance chirality. These findings may be the basis for the development of new approaches in the treatment of obesity, metabolic syndrome and diabetes through the regulation of adipose-derived stem cell differentiation and adipocyte functions.
Collapse
Affiliation(s)
- Alona V Zlatska
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine.,Biotechnology Laboratory ilaya.regeneration, Medical Company ilaya, 9 I. Kramskogo Str., Kyiv, 03115, Ukraine
| | - Roman G Vasyliev
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine
| | - Inna M Gordiienko
- Biotechnology Laboratory ilaya.regeneration, Medical Company ilaya, 9 I. Kramskogo Str., Kyiv, 03115, Ukraine.,R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology NAS of Ukraine, 45 Vasylkivska Str., Kyiv, 03022, Ukraine
| | - Anzhela E Rodnichenko
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine
| | - Maria A Morozova
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| | - Maria A Vulf
- Immanuel Kant Baltic federal University (IKBFU), 6 Gaidara St, Kaliningrad, 236001, Russian Federation
| | - Dmytro O Zubov
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine
| | - Svitlana N Novikova
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine
| | - Larisa S Litvinova
- Immanuel Kant Baltic federal University (IKBFU), 6 Gaidara St, Kaliningrad, 236001, Russian Federation
| | - Tatiana V Grebennikova
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation.,Federal Research Center of Epidemiology and Microbiology named Gamalei, Moscow, Russian Federation
| | - Igor A Zlatskiy
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine. .,Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation.
| | - Anton V Syroeshkin
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| |
Collapse
|
21
|
Zlatskiy I, Antipova N, Zlatska A, Dolenko S, Syroeshkin A. Mitochondrial activity of cancer and normal mesenchymal stem cells in vitro cultured in medium with different deuterium content. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202202005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We showed that cancer and normal mesenchymal stem/stromal (MSC) cells in vitro in a deuterated growth medium show a decrease of mitochondrial activity (MA), while in a deuterium-depleted medium an increase. This was established using mitotracker and rhodamine 123, and was also confirmed by expression of the UCP1 gene. The correlation dependence of mitochondrial activity in a medium with a changed ratio of deuterium/protium (D/H) and supramolecular structures was established, using the laser diffraction method. Density inhomogeneities in the deuterated medium are noted to be large, and in the deuterium-depleted medium small, in comparison with the control.
Collapse
|
22
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 303] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
23
|
Ježek P, Jabůrek M, Porter RK. Uncoupling mechanism and redox regulation of mitochondrial uncoupling protein 1 (UCP1). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:259-269. [DOI: 10.1016/j.bbabio.2018.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 01/11/2023]
|
24
|
Gocen T, Bayarı SH, Guven MH. Effects of chemical structures of omega-6 fatty acids on the molecular parameters and quantum chemical descriptors. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Guilherme A, Pedersen DJ, Henriques F, Bedard AH, Henchey E, Kelly M, Morgan DA, Rahmouni K, Czech MP. Neuronal modulation of brown adipose activity through perturbation of white adipocyte lipogenesis. Mol Metab 2018; 16:116-125. [PMID: 30005879 PMCID: PMC6157614 DOI: 10.1016/j.molmet.2018.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/13/2018] [Accepted: 06/25/2018] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Crosstalk between adipocytes and local neurons may be an important regulatory mechanism to control energy homeostasis. We previously reported that perturbation of adipocyte de novo lipogenesis (DNL) by deletion of fatty acid synthase (FASN) expands sympathetic neurons within white adipose tissue (WAT) and stimulates the appearance of "beige" adipocytes. Here we tested whether WAT DNL activity can also influence neuronal regulation and thermogenesis in brown adipose tissue (BAT). METHODS AND RESULTS Induced deletion of FASN in all adipocytes in mature mice (iAdFASNKO) enhanced sympathetic innervation and neuronal activity as well as UCP1 expression in both WAT and BAT. This increased sympathetic innervation could be observed at both 22 °C and 30 °C, indicating it is not a response to heat loss but rather adipocyte signaling. In contrast, selective ablation of FASN in brown adipocytes of mice (iUCP1FASNKO) failed to modulate sympathetic innervation and the thermogenic program in BAT. Surprisingly, DNL in brown adipocytes was also dispensable in maintaining euthermia when UCP1FASNKO mice were cold-exposed. CONCLUSION These results indicate that DNL in white adipocytes influences long distance signaling to BAT, which can modify BAT sympathetic innervation and expression of genes involved in thermogenesis.
Collapse
Affiliation(s)
- Adilson Guilherme
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - David J Pedersen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Felipe Henriques
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Alexander H Bedard
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Elizabeth Henchey
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Mark Kelly
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
26
|
Yang Q, Brüschweiler S, Zhao L, Chou JJ. Reply to 'Concerns with yeast mitochondrial ADP/ATP carrier's integrity in DPC' and 'Dynamics and interactions of AAC3 in DPC are not functionally relevant'. Nat Struct Mol Biol 2018; 25:749-750. [PMID: 30177759 PMCID: PMC7842234 DOI: 10.1038/s41594-018-0126-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qin Yang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Aptitude Medical Systems, Inc., Santa Barbara, CA, USA
| | - Sven Brüschweiler
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Linlin Zhao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Chipot C, Dehez F, Schnell JR, Zitzmann N, Pebay-Peyroula E, Catoire LJ, Miroux B, Kunji ERS, Veglia G, Cross TA, Schanda P. Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chem Rev 2018; 118:3559-3607. [PMID: 29488756 PMCID: PMC5896743 DOI: 10.1021/acs.chemrev.7b00570] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 12/25/2022]
Abstract
Membrane proteins perform a host of vital cellular functions. Deciphering the molecular mechanisms whereby they fulfill these functions requires detailed biophysical and structural investigations. Detergents have proven pivotal to extract the protein from its native surroundings. Yet, they provide a milieu that departs significantly from that of the biological membrane, to the extent that the structure, the dynamics, and the interactions of membrane proteins in detergents may considerably vary, as compared to the native environment. Understanding the impact of detergents on membrane proteins is, therefore, crucial to assess the biological relevance of results obtained in detergents. Here, we review the strengths and weaknesses of alkyl phosphocholines (or foscholines), the most widely used detergent in solution-NMR studies of membrane proteins. While this class of detergents is often successful for membrane protein solubilization, a growing list of examples points to destabilizing and denaturing properties, in particular for α-helical membrane proteins. Our comprehensive analysis stresses the importance of stringent controls when working with this class of detergents and when analyzing the structure and dynamics of membrane proteins in alkyl phosphocholine detergents.
Collapse
Affiliation(s)
- Christophe Chipot
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
- Department
of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - François Dehez
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
| | - Jason R. Schnell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Nicole Zitzmann
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | - Laurent J. Catoire
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Bruno Miroux
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Edmund R. S. Kunji
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Gianluigi Veglia
- Department
of Biochemistry, Molecular Biology, and Biophysics, and Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy A. Cross
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Paul Schanda
- Université
Grenoble Alpes, CEA, CNRS, IBS, Grenoble F-38000, France
| |
Collapse
|
28
|
Kurauskas V, Hessel A, Ma P, Lunetti P, Weinhäupl K, Imbert L, Brutscher B, King MS, Sounier R, Dolce V, Kunji ERS, Capobianco L, Chipot C, Dehez F, Bersch B, Schanda P. How Detergent Impacts Membrane Proteins: Atomic-Level Views of Mitochondrial Carriers in Dodecylphosphocholine. J Phys Chem Lett 2018; 9:933-938. [PMID: 29397729 PMCID: PMC5834942 DOI: 10.1021/acs.jpclett.8b00269] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 05/30/2023]
Abstract
Characterizing the structure of membrane proteins (MPs) generally requires extraction from their native environment, most commonly with detergents. Yet, the physicochemical properties of detergent micelles and lipid bilayers differ markedly and could alter the structural organization of MPs, albeit without general rules. Dodecylphosphocholine (DPC) is the most widely used detergent for MP structure determination by NMR, but the physiological relevance of several prominent structures has been questioned, though indirectly, by other biophysical techniques, e.g., functional/thermostability assay (TSA) and molecular dynamics (MD) simulations. Here, we resolve unambiguously this controversy by probing the functional relevance of three different mitochondrial carriers (MCs) in DPC at the atomic level, using an exhaustive set of solution-NMR experiments, complemented by functional/TSA and MD data. Our results provide atomic-level insight into the structure, substrate interaction and dynamics of the detergent-membrane protein complexes and demonstrates cogently that, while high-resolution NMR signals can be obtained for MCs in DPC, they systematically correspond to nonfunctional states.
Collapse
Affiliation(s)
- Vilius Kurauskas
- Université
Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Audrey Hessel
- Université
Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Peixiang Ma
- Université
Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Paola Lunetti
- Department
of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | | | - Lionel Imbert
- Université
Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | | | - Martin S. King
- MRC-MBU, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Rémy Sounier
- CNRS,
INSERM, Université de Montpellier, 34094 Montpellier, France
| | - Vincenza Dolce
- Dept
of Pharmacy, University of Calabria, 87036 Arcavacata
di Rende, Italy
| | | | - Loredana Capobianco
- Department
of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Christophe Chipot
- LPCT, UMR
7019 Université de Lorraine, CNRS and Laboratoire International
Associé & University of Illinois at Urbana−Champaign, F-54500 Vandoeuvre-lès-Nancy, France
| | - François Dehez
- LPCT, UMR
7019 Université de Lorraine, CNRS and Laboratoire International
Associé & University of Illinois at Urbana−Champaign, F-54500 Vandoeuvre-lès-Nancy, France
| | - Beate Bersch
- Université
Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Paul Schanda
- Université
Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| |
Collapse
|