1
|
Teng S, Wang J, Sroge CD, Abendroth J, Lorimer DD, Horanyi PS, Edwards TE, Tillery L, Craig JK, Van Voorhis WC, Myler PJ, Smith CL. Crystal structure of the S-adenosylmethionine-dependent mycolic acid synthase UmaA from Mycobacterium tuberculosis. Acta Crystallogr F Struct Biol Commun 2025; 81:146-154. [PMID: 40059638 PMCID: PMC11970121 DOI: 10.1107/s2053230x25001530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/19/2025] [Indexed: 04/03/2025] Open
Abstract
Mycobacterium tuberculosis is a Gram-positive bacillus that causes tuberculosis and is a leading cause of mortality worldwide. This disease is a growing health threat due to the occurrence of multidrug resistance. Mycolic acids are essential for generating cell walls and their modification is important to the virulence and persistence of M. tuberculosis. A family of S-adenosylmethionine-dependent mycolic acid synthases modify mycolic acids and represent promising drug targets. UmaA is currently the least-understood member of this family. This paper describes the crystal structure of UmaA. UmaA is a monomer composed of two domains: a structurally conserved SAM-binding domain and a variable substrate-binding auxiliary domain. Fortuitously, our structure contains a nitrate in the active site, a structural mimic of carbonate, which is a known general base in cyclopropane-adding synthases. Further investigation indicated that the structure of the N-terminus is highly flexible. Finally, we have identified S-adenosyl-N-decyl-aminoethyl as a promising potential inhibitor.
Collapse
Affiliation(s)
- Sean Teng
- Department of BiologyWashington University in St LouisSt LouisMO63134USA
| | - Jie Wang
- Department of BiologyWashington University in St LouisSt LouisMO63134USA
| | - Collin D. Sroge
- UCB Biosciences, 7869 NE Day Road West, Bainbridge Island, WA98102, USA
| | - Jan Abendroth
- UCB Biosciences, 7869 NE Day Road West, Bainbridge Island, WA98102, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Donald D. Lorimer
- UCB Biosciences, 7869 NE Day Road West, Bainbridge Island, WA98102, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Peter S. Horanyi
- UCB Biosciences, 7869 NE Day Road West, Bainbridge Island, WA98102, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Thomas E. Edwards
- UCB Biosciences, 7869 NE Day Road West, Bainbridge Island, WA98102, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Logan Tillery
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, Division of Allergy and Infectious Diseases, School of MedicineUniversity of Washington750 Republican StreetSeattleWA98109USA
| | - Justin K. Craig
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, Division of Allergy and Infectious Diseases, School of MedicineUniversity of Washington750 Republican StreetSeattleWA98109USA
| | - Wesley C. Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Emerging and Re-emerging Infectious Diseases, Department of Medicine, Division of Allergy and Infectious Diseases, School of MedicineUniversity of Washington750 Republican StreetSeattleWA98109USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
- Center for Global Infectious Disease ResearchSeattle Children’s Research Institute307 Westlake Avenue North, Suite 500SeattleWA98102USA
- Departments of Pediatrics, Global Health, and Biomedical Informatics and Medical EducationUniversity of WashingtonSeattleWashingtonUSA
| | - Craig L. Smith
- Department of BiologyWashington University in St LouisSt LouisMO63134USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| |
Collapse
|
2
|
Geng J, Long J, Hu Q, Liu M, Ge A, Du Y, Zhang T, Jin Y, Yang H, Chen S, Duan G. Current status of cyclopropane fatty acids on bacterial cell membranes characteristics and physiological functions. Microb Pathog 2025; 200:107295. [PMID: 39805345 DOI: 10.1016/j.micpath.2025.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Wide-ranging sophisticated physiological activities of cell membranes are associated with changes in fatty acid structure and composition. The cfa gene is a core regulator of cell membrane fatty acid cyclopropanation reaction. Its encoded cyclopropane fatty acid synthase (CFA synthase) catalyzes the binding of unsaturated fatty acid (UFA) to methylene groups, which undergoes cyclopropanation modification to produce cyclopropane fatty acids (CFAs). Compelling evidence suggests a large role for the cfa gene and CFAs in bacterial adaptive responses. This review provides an overview of the relationship of CFAs with bacterial cell membrane properties and physiological functions, including the roles of cell membrane fluidity, stability, and permeability to protons, bacterial growth, acid resistance, and especially in bacterial antibiotic resistance and pathogenicity. The dysregulation and inhibition of the cfa gene may serve as potential therapeutic targets against bacterial drug resistance and pathogenicity. Therefore, elucidating the biological function of CFAs during the stationary growth phase therefore provides invaluable insights into the bacterial pathogenesis and the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Juan Geng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinzhao Long
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Quanman Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mengyue Liu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Anmin Ge
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China; Penglai Center for Disease Control and Prevention, Yantai, China
| | - Yazhe Du
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Teng Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Guangcai Duan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Bang S, Shin YH, Park SM, Deng L, Williamson RT, Graham DB, Xavier RJ, Clardy J. Unusual Phospholipids from Morganella morganii Linked to Depression. J Am Chem Soc 2025; 147:2998-3002. [PMID: 39818770 PMCID: PMC11783507 DOI: 10.1021/jacs.4c15158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/19/2025]
Abstract
A multifactorial association study detected a probable causal connection between the prevalence of Morganella morganii in the gut microbiome and the incidence of major depressive disorder (MDD) in the human host. A bioassay-guided fractionation approach identified bacterially produced metabolites that induced pro-inflammatory immune responses. The metabolites are unusual phospholipids that resemble conventional cardiolipins, in which diethanolamine (DEA) replaces the central glycerol. These molecular chimeras of endogenous metabolites from phospholipid biosynthetic pathways and the industrially produced micropollutant DEA activate TLR2/TLR1 receptors and induce the production of pro-inflammatory cytokines, especially IL-6. Their activity in conventional immunomodulatory assays largely parallels that of immunogenic cardiolipins with conventional structures. The molecular mechanism connecting these chimeric cardiolipins to MDD is supported by other studies and has implications for conditions other than MDD.
Collapse
Affiliation(s)
- Sunghee Bang
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| | - Yern-Hyerk Shin
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| | - Sung-Moo Park
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Molecular Biology and Center for the Study of Inflammatory Bowel
Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Lei Deng
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Molecular Biology and Center for the Study of Inflammatory Bowel
Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - R. Thomas Williamson
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28409, United States
| | - Daniel B. Graham
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Molecular Biology and Center for the Study of Inflammatory Bowel
Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Ramnik J. Xavier
- Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Molecular Biology and Center for the Study of Inflammatory Bowel
Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jon Clardy
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| |
Collapse
|
4
|
Ezeduru V, Shao ARQ, Venegas FA, McKay G, Rich J, Nguyen D, Thibodeaux CJ. Defining the functional properties of cyclopropane fatty acid synthase from Pseudomonas aeruginosa PAO1. J Biol Chem 2024; 300:107618. [PMID: 39095026 PMCID: PMC11387697 DOI: 10.1016/j.jbc.2024.107618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Cyclopropane fatty acid synthases (CFAS) catalyze the conversion of unsaturated fatty acids to cyclopropane fatty acids (CFAs) within bacterial membranes. This modification alters the biophysical properties of membranes and has been correlated with virulence in several human pathogens. Despite the central role played by CFAS enzymes in regulating bacterial stress responses, the mechanistic properties of the CFAS enzyme family and the consequences of CFA biosynthesis remain largely uncharacterized in most bacteria. We report the first characterization of the CFAS enzyme from Pseudomonas aeruginosa (PA), an opportunistic human pathogen with complex membrane biology that is frequently associated with antimicrobial resistance and high tolerance to various external stressors. We demonstrate that CFAs are produced by a single enzyme in PA and that cfas gene expression is upregulated during the transition to stationary phase and in response to oxidative stress. Analysis of PA lipid extracts reveal a massive increase in CFA production as PA cells enter stationary phase and help define the optimal membrane composition for in vitro assays. The purified PA-CFAS enzyme forms a stable homodimer and preferentially modifies phosphatidylglycerol lipid substrates and membranes with a higher content of unsaturated acyl chains. Bioinformatic analysis across bacterial phyla shows highly divergent amino acid sequences within the lipid-binding domain of CFAS enzymes, perhaps suggesting distinct membrane-binding properties among different orthologs. This work lays an important foundation for further characterization of CFAS in P. aeruginosa and for examining the functional differences between CFAS enzymes from different bacteria.
Collapse
Affiliation(s)
- Vivian Ezeduru
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Annie R Q Shao
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Felipe A Venegas
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Geoffrey McKay
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Jacquelyn Rich
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Dao Nguyen
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Christopher J Thibodeaux
- Department of Chemistry, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Omar I, Crotti M, Li C, Pisak K, Czemerys B, Ferla S, van Noord A, Paul CE, Karu K, Ozbalci C, Eggert U, Lloyd R, Barry SM, Castagnolo D. Insights into E. coli Cyclopropane Fatty Acid Synthase (CFAS) Towards Enantioselective Carbene Free Biocatalytic Cyclopropanation. Angew Chem Int Ed Engl 2024; 63:e202403493. [PMID: 38662909 DOI: 10.1002/anie.202403493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Indexed: 06/16/2024]
Abstract
Cyclopropane fatty acid synthases (CFAS) are a class of S-adenosylmethionine (SAM) dependent methyltransferase enzymes able to catalyse the cyclopropanation of unsaturated phospholipids. Since CFAS enzymes employ SAM as a methylene source to cyclopropanate alkene substrates, they have the potential to be mild and more sustainable biocatalysts for cyclopropanation transformations than current carbene-based approaches. This work describes the characterisation of E. coli CFAS (ecCFAS) and its exploitation in the stereoselective biocatalytic synthesis of cyclopropyl lipids. ecCFAS was found to convert phosphatidylglycerol (PG) to methyl dihydrosterculate 1 with up to 58 % conversion and 73 % ee and the absolute configuration (9S,10R) was established. Substrate tolerance of ecCFAS was found to be correlated with the electronic properties of phospholipid headgroups and for the first time ecCFAS was found to catalyse cyclopropanation of both phospholipid chains to form dicyclopropanated products. In addition, mutagenesis and in silico experiments were carried out to identify the enzyme residues with key roles in catalysis and to provide structural insights into the lipid substrate preference of ecCFAS. Finally, the biocatalytic synthesis of methyl dihydrosterculate 1 and its deuterated analogue was also accomplished combining recombinant ecCFAS with the SAM regenerating AtHMT enzyme in the presence of CH3I and CD3I respectively.
Collapse
Affiliation(s)
- Iman Omar
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| | - Michele Crotti
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| | - Chuhan Li
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Krisztina Pisak
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Blazej Czemerys
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| | - Salvatore Ferla
- Medical School, Faculty of Medicine, Health and Life Science, Swansea University, Swansea, SA2 8PP
| | - Aster van Noord
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The, Netherlands
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The, Netherlands
| | - Kersti Karu
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Cagakan Ozbalci
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Ulrike Eggert
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, SE1 1UL, United Kingdom
| | - Richard Lloyd
- DSD Chemistry, GSK Medicines Research Centre, Gunnels, Wood Road, Stevenage, SG1 2NY
| | - Sarah M Barry
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, 7 Trinity Street, SE1 1DB, London, United Kingdom
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| |
Collapse
|
6
|
John Peter AT, Kornmann B. Uncovering mechanisms of interorganelle lipid transport by enzymatic mass tagging. FEBS Lett 2024; 598:1292-1298. [PMID: 38268324 DOI: 10.1002/1873-3468.14810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Lipid trafficking is critical for the biogenesis and expansion of organelle membranes. Lipid transport proteins (LTPs) have been proposed to facilitate lipid transport at contact sites between organelles. Despite the fundamental importance of LTPs in cell physiology, our knowledge on the mechanisms of interorganelle lipid distribution remains poor due to the scarcity of assays to monitor lipid flux in vivo. In this review, we highlight the recent development of a versatile method named METALIC (Mass tagging-Enabled Tracking of Lipids in Cells), which uses a combination of enzymatic mass tagging and mass spectrometry to track lipid flux between organelles inside living cells. We discuss the methodology, its distinct advantages, limitations as well as its potential to unearth the pipelines of lipid transport and LTP function in vivo.
Collapse
|
7
|
Zhang H, Xie Y, Cao F, Song X. Gut microbiota-derived fatty acid and sterol metabolites: biotransformation and immunomodulatory functions. Gut Microbes 2024; 16:2382336. [PMID: 39046079 PMCID: PMC11271093 DOI: 10.1080/19490976.2024.2382336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/26/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Commensal microorganisms in the human gut produce numerous metabolites by using small molecules derived from the host or diet as precursors. Host or dietary lipid molecules are involved in energy metabolism and maintaining the structural integrity of cell membranes. Notably, gut microbes can convert these lipids into bioactive signaling molecules through their biotransformation and synthesis pathways. These microbiota-derived lipid metabolites can affect host physiology by influencing the body's immune and metabolic processes. This review aims to summarize recent advances in the microbial transformation and host immunomodulatory functions of these lipid metabolites, with a special focus on fatty acids and steroids produced by our gut microbiota.
Collapse
Affiliation(s)
- Haohao Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yadong Xie
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei Cao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xinyang Song
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Zhu X, Guo Z, Wang N, Liu J, Zuo Y, Li K, Song C, Song Y, Gong C, Xu X, Yuan F, Zhang L. Environmental stress stimulates microbial activities as indicated by cyclopropane fatty acid enhancement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162338. [PMID: 36813189 DOI: 10.1016/j.scitotenv.2023.162338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Soil microbial responses to environmental stress remain a critical question in microbial ecology. The content of cyclopropane fatty acid (CFA) in cytomembrane has been widely used to evaluate environmental stress on microorganisms. Here, we used CFA to investigate the ecological suitability of microbial communities and found a stimulating impact of CFA on microbial activities during wetland reclamation in Sanjiang Plain, Northeastern China. The seasonality of environmental stress resulted in the fluctuation of CFA content in the soil, which suppressed microbial activities due to nutrient loss upon wetland reclamation. After land conversion, the aggravation of temperature stress to microbes increased the CFA content by 5 % (autumn) to 163 % (winter), which led to the suppression of microbial activities by 7 %-47 %. By contrast, the warmer soil temperature and permeability decreased the CFA content by 3 % to 41 % and consequently aggravated the microbial reduction by 15 %-72 % in spring and summer. Complex microbial communities of 1300 CFA-produced species were identified using a sequencing approach, suggesting that soil nutrients dominated the differentiation in these microbial community structures. Further analysis with structural equation modeling highlighted the important function of CFA content to environmental stress and the stimulating influence of CFA induced by environmental stress on microbial activities. Our study shows the biological mechanisms of seasonal CFA content for microbial adaption to environmental stress under wetland reclamation. It advances our knowledge of microbial physiology affecting soil element cycling caused by anthropogenic activities.
Collapse
Affiliation(s)
- Xinhao Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China; Biology Department, San Diego State University, San Diego, CA 92182, USA
| | - Ziyu Guo
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nannan Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China
| | - Jianzhao Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunjiang Zuo
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kexin Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China
| | - Yanyu Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China
| | - Chao Gong
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China
| | - Xiaofeng Xu
- Biology Department, San Diego State University, San Diego, CA 92182, USA
| | - Fenghui Yuan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, China; Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN 55108, USA.
| | - Lihua Zhang
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
9
|
Caliskan M, Poschmann G, Gudzuhn M, Waldera-Lupa D, Molitor R, Strunk CH, Streit WR, Jaeger KE, Stühler K, Kovacic F. Pseudomonas aeruginosa responds to altered membrane phospholipid composition by adjusting the production of two-component systems, proteases and iron uptake proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159317. [PMID: 37054907 DOI: 10.1016/j.bbalip.2023.159317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023]
Abstract
Membrane protein and phospholipid (PL) composition changes in response to environmental cues and during infections. To achieve these, bacteria use adaptation mechanisms involving covalent modification and remodelling of the acyl chain length of PLs. However, little is known about bacterial pathways regulated by PLs. Here, we investigated proteomic changes in the biofilm of P. aeruginosa phospholipase mutant (∆plaF) with altered membrane PL composition. The results revealed profound alterations in the abundance of many biofilm-related two-component systems (TCSs), including accumulation of PprAB, a key regulator of the transition to biofilm. Furthermore, a unique phosphorylation pattern of transcriptional regulators, transporters and metabolic enzymes, as well as differential production of several proteases, in ∆plaF, indicate that PlaF-mediated virulence adaptation involves complex transcriptional and posttranscriptional response. Moreover, proteomics and biochemical assays revealed the depletion of pyoverdine-mediated iron uptake pathway proteins in ∆plaF, while proteins from alternative iron-uptake systems were accumulated. These suggest that PlaF may function as a switch between different iron-acquisition pathways. The observation that PL-acyl chain modifying and PL synthesis enzymes were overproduced in ∆plaF reveals the interconnection of degradation, synthesis and modification of PLs for proper membrane homeostasis. Although the precise mechanism by which PlaF simultaneously affects multiple pathways remains to be elucidated, we suggest that alteration of PL composition in ∆plaF plays a role for the global adaptive response in P. aeruginosa mediated by TCSs and proteases. Our study revealed the global regulation of virulence and biofilm by PlaF and suggests that targeting this enzyme may have therapeutic potential.
Collapse
Affiliation(s)
- Muttalip Caliskan
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mirja Gudzuhn
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Daniel Waldera-Lupa
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rebecka Molitor
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | | | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany; Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany.
| |
Collapse
|
10
|
Maiti A, Kumar A, Daschakraborty S. How Do Cyclopropane Fatty Acids Protect the Cell Membrane of Escherichia coli in Cold Shock? J Phys Chem B 2023; 127:1607-1617. [PMID: 36790194 DOI: 10.1021/acs.jpcb.3c00541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The cyclopropanation of unsaturated lipid acyl chains of some bacterial cell membranes is an important survival strategy to protect the same against drastic cooling. To elucidate the role of cyclopropane ring-containing lipids, we have simulated the lipid membrane of Escherichia coli (E. coli) and two modified membranes by replacing the cyclopropane rings with either single or double bonds at widely different temperatures. It has been observed that the cyclopropane rings provide more rigid kinks in the lipid acyl chain compared to the double bonds and therefore further reduce the packing density of the membrane and subsequently enhance the membrane fluidity at low temperatures. They also inhibit the close packing of other lipids and deleterious phase separation by strongly interacting with them. Therefore, this study has explained why E. coli bacterial strain, susceptible to freezing environments, relies on the cyclopropanation of an unsaturated chain.
Collapse
Affiliation(s)
- Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| | - Abhay Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| | | |
Collapse
|
11
|
Hari SB, Morehouse JP, Baker TA, Sauer RT. FtsH degrades kinetically stable dimers of cyclopropane fatty acid synthase via an internal degron. Mol Microbiol 2023; 119:101-111. [PMID: 36456794 PMCID: PMC9851988 DOI: 10.1111/mmi.15009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Targeted protein degradation plays important roles in stress responses in all cells. In E. coli, the membrane-bound AAA+ FtsH protease degrades cytoplasmic and membrane proteins. Here, we demonstrate that FtsH degrades cyclopropane fatty acid (CFA) synthase, whose synthesis is induced upon nutrient deprivation and entry into stationary phase. We find that neither the disordered N-terminal residues nor the structured C-terminal residues of the kinetically stable CFA-synthase dimer are required for FtsH recognition and degradation. Experiments with fusion proteins support a model in which an internal degron mediates FtsH recognition as a prelude to unfolding and proteolysis. These findings elucidate the terminal step in the life cycle of CFA synthase and provide new insight into FtsH function.
Collapse
|
12
|
Uegaki T, Takei T, Yamaguchi S, Fujiyama K, Sato Y, Hino T, Nagano S. Anammox Bacterial S-Adenosyl-l-Methionine Dependent Methyltransferase Crystal Structure and Its Interaction with Acyl Carrier Proteins. Int J Mol Sci 2023; 24:ijms24010744. [PMID: 36614187 PMCID: PMC9821293 DOI: 10.3390/ijms24010744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Ladderane lipids (found in the membranes of anaerobic ammonium-oxidizing [anammox] bacteria) have unique ladder-like hydrophobic groups, and their highly strained exotic structure has attracted the attention of scientists. Although enzymes encoded in type II fatty acid biosynthesis (FASII) gene clusters in anammox bacteria, such as S-adenosyl-l-methionine (SAM)-dependent enzymes, have been proposed to construct a ladder-like structure using a substrate connected to acyl carrier protein from anammox bacteria (AmxACP), no experimental evidence to support this hypothesis was reported to date. Here, we report the crystal structure of a SAM-dependent methyltransferase from anammox bacteria (AmxMT1) that has a substrate and active site pocket between a class I SAM methyltransferase-like core domain and an additional α-helix inserted into the core domain. Structural comparisons with homologous SAM-dependent C-methyltransferases in polyketide synthase, AmxACP pull-down assays, AmxACP/AmxMT1 complex structure predictions by AlphaFold, and a substrate docking simulation suggested that a small compound connected to AmxACP could be inserted into the pocket of AmxMT1, and then the enzyme transfers a methyl group from SAM to the substrate to produce branched lipids. Although the enzymes responsible for constructing the ladder-like structure remain unknown, our study, for the first time, supports the hypothesis that biosynthetic intermediates connected to AmxACP are processed by SAM-dependent enzymes, which are not typically involved in the FASII system, to produce the ladder-like structure of ladderane lipids in anammox bacteria.
Collapse
Affiliation(s)
- Tesshin Uegaki
- Department of Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
| | - Taisei Takei
- Department of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
| | - Shuhei Yamaguchi
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
| | - Keisuke Fujiyama
- Department of Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
| | - Yusuke Sato
- Department of Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
| | - Tomoya Hino
- Department of Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
| | - Shingo Nagano
- Department of Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan
- Correspondence:
| |
Collapse
|
13
|
Bai W, Anthony WE, Hartline CJ, Wang S, Wang B, Ning J, Hsu FF, Dantas G, Zhang F. Engineering diverse fatty acid compositions of phospholipids in Escherichia coli. Metab Eng 2022; 74:11-23. [PMID: 36058465 DOI: 10.1016/j.ymben.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/15/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022]
Abstract
Bacterial fatty acids (FAs) are an essential component of the cellular membrane and are an important source of renewable chemicals as they can be converted to fatty alcohols, esters, ketones, and alkanes, and used as biofuels, detergents, lubricants, and commodity chemicals. Most prior FA bioconversions have been performed on the carboxylic acid group. Modification of the FA hydrocarbon chain could substantially expand the structural and functional diversity of FA-derived products. Additionally, the effects of such modified FAs on the growth and metabolic state of their producing cells are not well understood. Here we engineer novel Escherichia coli phospholipid biosynthetic pathways, creating strains with distinct FA profiles enriched in ω7-unsaturated FAs (ω7-UFAs, 75%), Δ5-unsaturated FAs (Δ5-UFAs, 60%), cyclopropane FAs (CFAs, 55%), internally-branched FAs (IBFAs, 40%), and Δ5,ω7-double unsaturated FAs (DUFAs, 46%). Although bearing drastically different FA profiles in phospholipids, UFA, CFA, and IBFA enriched strains display wild-type-like phenotypic profiling and growth. Transcriptomic analysis reveals DUFA production drives increased differential expression and the induction of the fur iron starvation transcriptional cascade, but higher TCA cycle activation compared to the UFA producing strain. This likely reflects a slight cost imparted for DUFA production, which resulted in lower maximum growth in some, but not all, environmental conditions. The IBFA-enriched strain was further engineered to produce free IBFAs, releasing 96 mg/L free IBFAs from 154 mg/L of the total cellular IBFA pool. This work has resulted in significantly altered FA profiles of membrane lipids in E. coli, greatly increasing our understanding of the effects of FA structure diversity on the transcriptome, growth, and ability to react to stress.
Collapse
Affiliation(s)
- Wenqin Bai
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Winston E Anthony
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, Saint Louis, MO, 63110, USA
| | - Christopher J Hartline
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Shaojie Wang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, Saint Louis, MO, 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO, 63110, USA
| | - Jie Ning
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, Saint Louis, MO, 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO, 63110, USA
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, Saint Louis, MO, 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, Saint Louis, MO, 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, Saint Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA; Institute of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
| |
Collapse
|
14
|
Abdelraheem E, Thair B, Varela RF, Jockmann E, Popadić D, Hailes HC, Ward JM, Iribarren AM, Lewkowicz ES, Andexer JN, Hagedoorn P, Hanefeld U. Methyltransferases: Functions and Applications. Chembiochem 2022; 23:e202200212. [PMID: 35691829 PMCID: PMC9539859 DOI: 10.1002/cbic.202200212] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Indexed: 11/25/2022]
Abstract
In this review the current state-of-the-art of S-adenosylmethionine (SAM)-dependent methyltransferases and SAM are evaluated. Their structural classification and diversity is introduced and key mechanistic aspects presented which are then detailed further. Then, catalytic SAM as a target for drugs, and approaches to utilise SAM as a cofactor in synthesis are introduced with different supply and regeneration approaches evaluated. The use of SAM analogues are also described. Finally O-, N-, C- and S-MTs, their synthetic applications and potential for compound diversification is given.
Collapse
Affiliation(s)
- Eman Abdelraheem
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Benjamin Thair
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Romina Fernández Varela
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Emely Jockmann
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Désirée Popadić
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Helen C. Hailes
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - John M. Ward
- Department of Biochemical EngineeringBernard Katz BuildingUniversity College LondonLondonWC1E 6BTUK
| | - Adolfo M. Iribarren
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Elizabeth S. Lewkowicz
- Laboratorio de Biotransformaciones y Química de Ácidos NucleicosUniversidad Nacional de QuilmesRoque S. Peña 352B1876BXDBernalArgentina
| | - Jennifer N. Andexer
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstr. 2579104FreiburgGermany
| | - Peter‐Leon Hagedoorn
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| | - Ulf Hanefeld
- BiocatalysisDepartment of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelft (TheNetherlands
| |
Collapse
|
15
|
Transient Complexity of E. coli Lipidome Is Explained by Fatty Acyl Synthesis and Cyclopropanation. Metabolites 2022; 12:metabo12090784. [PMID: 36144187 PMCID: PMC9500627 DOI: 10.3390/metabo12090784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
In the case of many bacteria, such as Escherichia coli, the composition of lipid molecules, termed the lipidome, temporally adapts to different environmental conditions and thus modifies membrane properties to permit growth and survival. Details of the relationship between the environment and lipidome composition are lacking, particularly for growing cultures under either favourable or under stress conditions. Here, we highlight compositional lipidome changes by describing the dynamics of molecular species throughout culture-growth phases. We show a steady cyclopropanation of fatty acyl chains, which acts as a driver for lipid diversity. There is a bias for the cyclopropanation of shorter fatty acyl chains (FA 16:1) over longer ones (FA 18:1), which likely reflects a thermodynamic phenomenon. Additionally, we observe a nearly two-fold increase in saturated fatty acyl chains in response to the presence of ampicillin and chloramphenicol, with consequences for membrane fluidity and elasticity, and ultimately bacterial stress tolerance. Our study provides the detailed quantitative lipidome composition of three E. coli strains across culture-growth phases and at the level of the fatty acyl chains and provides a general reference for phospholipid composition changes in response to perturbations. Thus, lipidome diversity is largely transient and the consequence of lipid synthesis and cyclopropanation.
Collapse
|
16
|
Engelhart-Straub S, Cavelius P, Hölzl F, Haack M, Awad D, Brueck T, Mehlmer N. Effects of Light on Growth and Metabolism of Rhodococcus erythropolis. Microorganisms 2022; 10:microorganisms10081680. [PMID: 36014097 PMCID: PMC9416670 DOI: 10.3390/microorganisms10081680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Rhodococcus erythropolis is resilient to various stressors. However, the response of R. erythropolis towards light has not been evaluated. In this study, R. erythropolis was exposed to different wavelengths of light. Compared to non-illuminated controls, carotenoid levels were significantly increased in white (standard warm white), green (510 nm) and blue light (470 nm) illuminated cultures. Notably, blue light (455, 425 nm) exhibited anti-microbial effects. Interestingly, cellular lipid composition shifted under light stress, increasing odd chain fatty acids (C15:0, C17:1) cultured under white (standard warm white) and green (510 nm) light. When exposed to blue light (470, 455, 425 nm), fatty acid profiles shifted to more saturated fatty acids (C16:1 to C16:0). Time-resolved proteomics analysis revealed several oxidative stress-related proteins to be upregulated under light illumination.
Collapse
|
17
|
de Kok NAW, Driessen AJM. The catalytic and structural basis of archaeal glycerophospholipid biosynthesis. Extremophiles 2022; 26:29. [PMID: 35976526 PMCID: PMC9385802 DOI: 10.1007/s00792-022-01277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022]
Abstract
Archaeal glycerophospholipids are the main constituents of the cytoplasmic membrane in the archaeal domain of life and fundamentally differ in chemical composition compared to bacterial phospholipids. They consist of isoprenyl chains ether-bonded to glycerol-1-phosphate. In contrast, bacterial glycerophospholipids are composed of fatty acyl chains ester-bonded to glycerol-3-phosphate. This largely domain-distinguishing feature has been termed the “lipid-divide”. The chemical composition of archaeal membranes contributes to the ability of archaea to survive and thrive in extreme environments. However, ether-bonded glycerophospholipids are not only limited to extremophiles and found also in mesophilic archaea. Resolving the structural basis of glycerophospholipid biosynthesis is a key objective to provide insights in the early evolution of membrane formation and to deepen our understanding of the molecular basis of extremophilicity. Many of the glycerophospholipid enzymes are either integral membrane proteins or membrane-associated, and hence are intrinsically difficult to study structurally. However, in recent years, the crystal structures of several key enzymes have been solved, while unresolved enzymatic steps in the archaeal glycerophospholipid biosynthetic pathway have been clarified providing further insights in the lipid-divide and the evolution of early life.
Collapse
Affiliation(s)
- Niels A W de Kok
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
18
|
Advances in the Structural Biology, Mechanism, and Physiology of Cyclopropane Fatty Acid Modifications of Bacterial Membranes. Microbiol Mol Biol Rev 2022; 86:e0001322. [PMID: 35435731 PMCID: PMC9199407 DOI: 10.1128/mmbr.00013-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclopropane fatty acid (CFA) synthase catalyzes a remarkable reaction. The
cis
double bonds of unsaturated fatty acyl chains of phospholipid bilayers are converted to cyclopropane rings by transfer of a methylene moiety from S-adenosyl-L-methionine (SAM).
Collapse
|
19
|
Shao S, Zhang Y, Yin K, Zhang Y, Wei L, Wang Q. FabR senses long-chain unsaturated fatty acids to control virulence in pathogen Edwardsiella piscicida. Mol Microbiol 2022; 117:737-753. [PMID: 34932231 DOI: 10.1111/mmi.14869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 11/28/2022]
Abstract
Long-chain unsaturated fatty acids (UFAs) can serve as nutrient sources or building blocks for bacterial membranes. However, little is known about how UFAs may be incorporated into the virulence programs of pathogens. A previous investigation identified FabR as a positive regulator of virulence gene expression in Edwardsiella piscicida. Here, chromatin immunoprecipitation-sequencing coupled with RNA-seq analyses revealed that 10 genes were under the direct control of FabR, including fabA, fabB, and cfa, which modulate the composition of UFAs. The binding of FabR to its target DNA was facilitated by oleoyl-CoA and inhibited by stearoyl-CoA. In addition, analyses of enzyme mobility shift assay and DNase I footprinting with wild-type and a null mutant (F131A) of FabR demonstrated crucial roles of FabR in binding to the promoters of fabA, fabB, and cfa. Moreover, FabR also binds to the promoter region of the virulence regulator esrB for its activation, facilitating the expression of the type III secretion system (T3SS) in response to UFAs. Furthermore, FabR coordinated with RpoS to modulate the expression of T3SS. Collectively, our results elucidate the molecular machinery of FabR regulating bacterial fatty acid composition and virulence in enteric pathogens, further expanding our knowledge of its crucial role in host-pathogen interactions.
Collapse
Affiliation(s)
- Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yi Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Kaiyu Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Lifan Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| |
Collapse
|
20
|
Morozumi S, Ueda M, Okahashi N, Arita M. Structures and functions of the gut microbial lipidome. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159110. [PMID: 34995792 DOI: 10.1016/j.bbalip.2021.159110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022]
Abstract
Microbial lipids provide signals that are responsible for maintaining host health and controlling disease. The differences in the structures of microbial lipids have been shown to alter receptor selectivity and agonist/antagonist activity. Advanced lipidomics is an emerging field that helps to elucidate the complex bacterial lipid diversity. The use of cutting-edge technologies is expected to lead to the discovery of new functional metabolites involved in host homeostasis. This review aims to describe recent updates on functional lipid metabolites derived from gut microbiota, their structure-activity relationships, and advanced lipidomics technologies.
Collapse
Affiliation(s)
- Satoshi Morozumi
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Masahiro Ueda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; JSR Bioscience and Informatics R&D Center, JSR Corporation, 3-103-9 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Nobuyuki Okahashi
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
21
|
Multi-Omic Analysis to Characterize Metabolic Adaptation of the E. coli Lipidome in Response to Environmental Stress. Metabolites 2022; 12:metabo12020171. [PMID: 35208246 PMCID: PMC8880424 DOI: 10.3390/metabo12020171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/17/2022] Open
Abstract
As an adaptive survival response to exogenous stress, bacteria undergo dynamic remodelling of their lipid metabolism pathways to alter the composition of their cellular membranes. Here, using Escherichia coli as a well characterised model system, we report the development and application of a ‘multi-omics’ strategy for comprehensive quantitative analysis of the temporal changes in the lipidome and proteome profiles that occur under exponential growth phase versus stationary growth phase conditions i.e., nutrient depletion stress. Lipidome analysis performed using ‘shotgun’ direct infusion-based ultra-high resolution accurate mass spectrometry revealed a quantitative decrease in total lipid content under stationary growth phase conditions, along with a significant increase in the mol% composition of total cardiolipin, and an increase in ‘odd-numbered’ acyl-chain length containing glycerophospholipids. The inclusion of field asymmetry ion mobility spectrometry was shown to enable the enrichment and improved depth of coverage of low-abundance cardiolipins, while ultraviolet photodissociation-tandem mass spectrometry facilitated more complete lipid structural characterisation compared with conventional collision-induced dissociation, including unambiguous assignment of the odd-numbered acyl-chains as containing cyclopropyl modifications. Proteome analysis using data-dependent acquisition nano-liquid chromatography mass spectrometry and tandem mass spectrometry analysis identified 83% of the predicted E. coli lipid metabolism enzymes, which enabled the temporal dependence associated with the expression of key enzymes responsible for the observed adaptive lipid metabolism to be determined, including those involved in phospholipid metabolism (e.g., ClsB and Cfa), fatty acid synthesis (e.g., FabH) and degradation (e.g., FadA/B,D,E,I,J and M), and proteins involved in the oxidative stress response resulting from the generation of reactive oxygen species during β-oxidation or lipid degradation.
Collapse
|
22
|
Ma S, Mandalapu D, Wang S, Zhang Q. Biosynthesis of cyclopropane in natural products. Nat Prod Rep 2021; 39:926-945. [PMID: 34860231 DOI: 10.1039/d1np00065a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: 2012 to 2021Cyclopropane attracts wide interests in the fields of synthetic and pharmaceutical chemistry, and chemical biology because of its unique structural and chemical properties. This structural motif is widespread in natural products, and is usually essential for biological activities. Nature has evolved diverse strategies to access this structural motif, and increasing knowledge of the enzymes forming cyclopropane (i.e., cyclopropanases) has been revealed over the last two decades. Here, the scientific literature from the last two decades relating to cyclopropane biosynthesis is summarized, and the enzymatic cyclopropanations, according to reaction mechanism, which can be grouped into two major pathways according to whether the reaction involves an exogenous C1 unit from S-adenosylmethionine (SAM) or not, is discussed. The reactions can further be classified based on the key intermediates required prior to cyclopropane formation, which can be carbocations, carbanions, or carbon radicals. Besides the general biosynthetic pathways of the cyclopropane-containing natural products, particular emphasis is placed on the mechanism and engineering of the enzymes required for forming this unique structure motif.
Collapse
Affiliation(s)
- Suze Ma
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | | | - Shu Wang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
23
|
Ahmad S, Strunk CH, Schott-Verdugo SN, Jaeger KE, Kovacic F, Gohlke H. Substrate Access Mechanism in a Novel Membrane-Bound Phospholipase A of Pseudomonas aeruginosa Concordant with Specificity and Regioselectivity. J Chem Inf Model 2021; 61:5626-5643. [PMID: 34748335 DOI: 10.1021/acs.jcim.1c00973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PlaF is a cytoplasmic membrane-bound phospholipase A1 from Pseudomonas aeruginosa that alters the membrane glycerophospholipid (GPL) composition and fosters the virulence of this human pathogen. PlaF activity is regulated by a dimer-to-monomer transition followed by tilting of the monomer in the membrane. However, how substrates reach the active site and how the characteristics of the active site tunnels determine the activity, specificity, and regioselectivity of PlaF for natural GPL substrates have remained elusive. Here, we combined unbiased and biased all-atom molecular dynamics (MD) simulations and configurational free-energy computations to identify access pathways of GPL substrates to the catalytic center of PlaF. Our results map out a distinct tunnel through which substrates access the catalytic center. PlaF variants with bulky tryptophan residues in this tunnel revealed decreased catalysis rates due to tunnel blockage. The MD simulations suggest that GPLs preferably enter the active site with the sn-1 acyl chain first, which agrees with the experimentally demonstrated PLA1 activity of PlaF. We propose that the acyl chain-length specificity of PlaF is determined by the structural features of the access tunnel, which results in favorable free energy of binding of medium-chain GPLs. The suggested egress route conveys fatty acid (FA) products to the dimerization interface and, thus, contributes to understanding the product feedback regulation of PlaF by FA-triggered dimerization. These findings open up opportunities for developing potential PlaF inhibitors, which may act as antibiotics against P. aeruginosa.
Collapse
Affiliation(s)
- Sabahuddin Ahmad
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Christoph Heinrich Strunk
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Stephan N Schott-Verdugo
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.,Centro de Bioinformática y Simulación Molecular (CBSM), Faculty of Engineering, University of Talca, 3460000 Talca, Chile.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry) & Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.,John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry) & Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
24
|
Sun Q, Huang M, Wei Y. Diversity of the reaction mechanisms of SAM-dependent enzymes. Acta Pharm Sin B 2021; 11:632-650. [PMID: 33777672 PMCID: PMC7982431 DOI: 10.1016/j.apsb.2020.08.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 02/08/2023] Open
Abstract
S-adenosylmethionine (SAM) is ubiquitous in living organisms and is of great significance in metabolism as a cofactor of various enzymes. Methyltransferases (MTases), a major group of SAM-dependent enzymes, catalyze methyl transfer from SAM to C, O, N, and S atoms in small-molecule secondary metabolites and macromolecules, including proteins and nucleic acids. MTases have long been a hot topic in biomedical research because of their crucial role in epigenetic regulation of macromolecules and biosynthesis of natural products with prolific pharmacological moieties. However, another group of SAM-dependent enzymes, sharing similar core domains with MTases, can catalyze nonmethylation reactions and have multiple functions. Herein, we mainly describe the nonmethylation reactions of SAM-dependent enzymes in biosynthesis. First, we compare the structural and mechanistic similarities and distinctions between SAM-dependent MTases and the non-methylating SAM-dependent enzymes. Second, we summarize the reactions catalyzed by these enzymes and explore the mechanisms. Finally, we discuss the structural conservation and catalytical diversity of class I-like non-methylating SAM-dependent enzymes and propose a possibility in enzymes evolution, suggesting future perspectives for enzyme-mediated chemistry and biotechnology, which will help the development of new methods for drug synthesis.
Collapse
|
25
|
Pluhackova K, Horner A. Native-like membrane models of E. coli polar lipid extract shed light on the importance of lipid composition complexity. BMC Biol 2021; 19:4. [PMID: 33441107 PMCID: PMC7807449 DOI: 10.1186/s12915-020-00936-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/27/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Lipid-protein interactions stabilize protein oligomers, shape their structure, and modulate their function. Whereas in vitro experiments already account for the functional importance of lipids by using natural lipid extracts, in silico methods lack behind by embedding proteins in single component lipid bilayers. However, to accurately complement in vitro experiments with molecular details at very high spatio-temporal resolution, molecular dynamics simulations have to be performed in natural(-like) lipid environments. RESULTS To enable more accurate MD simulations, we have prepared four membrane models of E. coli polar lipid extract, a typical model organism, each at all-atom (CHARMM36) and coarse-grained (Martini3) representations. These models contain all main lipid headgroup types of the E. coli inner membrane, i.e., phosphatidylethanolamines, phosphatidylglycerols, and cardiolipins, symmetrically distributed between the membrane leaflets. The lipid tail (un)saturation and propanylation stereochemistry represent the bacterial lipid tail composition of E. coli grown at 37∘C until 3/4 of the log growth phase. The comparison of the Simple three lipid component models to the complex 14-lipid component model Avanti over a broad range of physiologically relevant temperatures revealed that the balance of lipid tail unsaturation and propanylation in different positions and inclusion of lipid tails of various length maintain realistic values for lipid mobility, membrane area compressibility, lipid ordering, lipid volume and area, and the bilayer thickness. The only Simple model that was able to satisfactory reproduce most of the structural properties of the complex Avanti model showed worse agreement of the activation energy of basal water permeation with the here performed measurements. The Martini3 models reflect extremely well both experimental and atomistic behavior of the E. coli polar lipid extract membranes. Aquaporin-1 embedded in our native(-like) membranes causes partial lipid ordering and membrane thinning in its vicinity. Moreover, aquaporin-1 attracts and temporarily binds negatively charged lipids, mainly cardiolipins, with a distinct cardiolipin binding site in the crevice at the contact site between two monomers, most probably stabilizing the tetrameric protein assembly. CONCLUSIONS The here prepared and validated membrane models of E. coli polar lipids extract revealed that lipid tail complexity, in terms of double bond and cyclopropane location and varying lipid tail length, is key to stabilize membrane properties over a broad temperature range. In addition, they build a solid basis for manifold future simulation studies on more realistic lipid membranes bridging the gap between simulations and experiments.
Collapse
Affiliation(s)
- Kristyna Pluhackova
- Department of Biosystems Science and Engineering, Eidgenössiche Technische Hochschule (ETH) Zürich, Mattenstr. 26, Basel, 4058, Switzerland.
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstr. 40, Linz, 4020, Austria
| |
Collapse
|
26
|
Blitzblau HG, Consiglio AL, Teixeira P, Crabtree DV, Chen S, Konzock O, Chifamba G, Su A, Kamineni A, MacEwen K, Hamilton M, Tsakraklides V, Nielsen J, Siewers V, Shaw AJ. Production of 10-methyl branched fatty acids in yeast. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:12. [PMID: 33413611 PMCID: PMC7791843 DOI: 10.1186/s13068-020-01863-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Despite the environmental value of biobased lubricants, they account for less than 2% of global lubricant use due to poor thermo-oxidative stability arising from the presence of unsaturated double bonds. Methyl branched fatty acids (BFAs), particularly those with branching near the acyl-chain mid-point, are a high-performance alternative to existing vegetable oils because of their low melting temperature and full saturation. RESULTS We cloned and characterized two pathways to produce 10-methyl BFAs isolated from actinomycetes and γ-proteobacteria. In the two-step bfa pathway of actinomycetes, BfaB methylates Δ9 unsaturated fatty acids to form 10-methylene BFAs, and subsequently, BfaA reduces the double bond to produce a fully saturated 10-methyl branched fatty acid. A BfaA-B fusion enzyme increased the conversion efficiency of 10-methyl BFAs. The ten-methyl palmitate production (tmp) pathway of γ-proteobacteria produces a 10-methylene intermediate, but the TmpA putative reductase was not active in E. coli or yeast. Comparison of BfaB and TmpB activities revealed a range of substrate specificities from C14-C20 fatty acids unsaturated at the Δ9, Δ10 or Δ11 position. We demonstrated efficient production of 10-methylene and 10-methyl BFAs in S. cerevisiae by secretion of free fatty acids and in Y. lipolytica as triacylglycerides, which accumulated to levels more than 35% of total cellular fatty acids. CONCLUSIONS We report here the characterization of a set of enzymes that can produce position-specific methylene and methyl branched fatty acids. Yeast expression of bfa enzymes can provide a platform for the large-scale production of branched fatty acids suitable for industrial and consumer applications.
Collapse
Affiliation(s)
- Hannah G Blitzblau
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA.
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA.
| | - Andrew L Consiglio
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA
| | - Paulo Teixeira
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | | | - Shuyan Chen
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA
| | - Oliver Konzock
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - Gamuchirai Chifamba
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA
| | - Austin Su
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
| | - Annapurna Kamineni
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA
| | - Kyle MacEwen
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA
| | - Maureen Hamilton
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA
| | - Vasiliki Tsakraklides
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Ginkgo BioWorks, 27 Drydock Ave., Boston, MA, 02210, USA
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
- BioInnovation Institute, Ole Maaløes Vej 3, 2200, Copenhagen N, Denmark
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, 41296, Gothenburg, Sweden
| | - A Joe Shaw
- Novogy, Inc., 85 Bolton Street, Cambridge, MA, 02140, USA
- Manus Biosynthesis, 1030 Massachusetts Ave. #300, Cambridge, MA, 02138, USA
| |
Collapse
|
27
|
Arcari T, Feger ML, Guerreiro DN, Wu J, O’Byrne CP. Comparative Review of the Responses of Listeria monocytogenes and Escherichia coli to Low pH Stress. Genes (Basel) 2020; 11:genes11111330. [PMID: 33187233 PMCID: PMC7698193 DOI: 10.3390/genes11111330] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Acidity is one of the principal physicochemical factors that influence the behavior of microorganisms in any environment, and their response to it often determines their ability to grow and survive. Preventing the growth and survival of pathogenic bacteria or, conversely, promoting the growth of bacteria that are useful (in biotechnology and food production, for example), might be improved considerably by a deeper understanding of the protective responses that these microorganisms deploy in the face of acid stress. In this review, we survey the molecular mechanisms used by two unrelated bacterial species in their response to low pH stress. We chose to focus on two well-studied bacteria, Escherichia coli (phylum Proteobacteria) and Listeria monocytogenes (phylum Firmicutes), that have both evolved to be able to survive in the mammalian gastrointestinal tract. We review the mechanisms that these species use to maintain a functional intracellular pH as well as the protective mechanisms that they deploy to prevent acid damage to macromolecules in the cells. We discuss the mechanisms used to sense acid in the environment and the regulatory processes that are activated when acid is encountered. We also highlight the specific challenges presented by organic acids. Common themes emerge from this comparison as well as unique strategies that each species uses to cope with acid stress. We highlight some of the important research questions that still need to be addressed in this fascinating field.
Collapse
|
28
|
Salmonella enterica Serovar Typhimurium Uses PbgA/YejM To Regulate Lipopolysaccharide Assembly during Bacteremia. Infect Immun 2019; 88:IAI.00758-19. [PMID: 31611279 PMCID: PMC6921655 DOI: 10.1128/iai.00758-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S Typhimurium) relies upon the inner membrane protein PbgA to enhance outer membrane (OM) integrity and promote virulence in mice. The PbgA transmembrane domain (residues 1 to 190) is essential for viability, while the periplasmic domain (residues 191 to 586) is dispensable. Residues within the basic region (residues 191 to 245) bind acidic phosphates on polar phospholipids, like for cardiolipins, and are necessary for salmonella OM integrity. S Typhimurium bacteria increase their OM cardiolipin concentrations during activation of the PhoPQ regulators. The mechanism involves PbgA's periplasmic globular region (residues 245 to 586), but the biological role of increasing cardiolipins on the surface is not understood. Nonsynonymous polymorphisms in three essential lipopolysaccharide (LPS) synthesis regulators, lapB (also known as yciM), ftsH, and lpxC, variably suppressed the defects in OM integrity, rifampin resistance, survival in macrophages, and systemic colonization of mice in the pbgAΔ191-586 mutant (in which the PbgA periplasmic domain from residues 191 to 586 is deleted). Compared to the OMs of the wild-type salmonellae, the OMs of the pbgA mutants had increased levels of lipid A-core molecules, cardiolipins, and phosphatidylethanolamines and decreased levels of specific phospholipids with cyclopropanated fatty acids. Complementation and substitution mutations in LapB and LpxC generally restored the phospholipid and LPS assembly defects for the pbgA mutants. During bacteremia, mice infected with the pbgA mutants survived and cleared the bacteria, while animals infected with wild-type salmonellae succumbed within 1 week. Remarkably, wild-type mice survived asymptomatically with pbgA-lpxC salmonellae in their livers and spleens for months, but Toll-like receptor 4-deficient animals succumbed to these infections within roughly 1 week. In summary, S Typhimurium uses PbgA to influence LPS assembly during stress in order to survive, adapt, and proliferate within the host environment.
Collapse
|
29
|
Bianco CM, Fröhlich KS, Vanderpool CK. Bacterial Cyclopropane Fatty Acid Synthase mRNA Is Targeted by Activating and Repressing Small RNAs. J Bacteriol 2019; 201:e00461-19. [PMID: 31308070 PMCID: PMC6755755 DOI: 10.1128/jb.00461-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Altering membrane protein and lipid composition is an important strategy for maintaining membrane integrity during environmental stress. Many bacterial small RNAs (sRNAs) control membrane protein production, but sRNA-mediated regulation of membrane fatty acid composition is less well understood. The sRNA RydC was previously shown to stabilize cfa (cyclopropane fatty acid synthase) mRNA, resulting in higher levels of cyclopropane fatty acids in the cell membrane. Here, we report that additional sRNAs, ArrS and CpxQ, also directly regulate cfa posttranscriptionally. RydC and ArrS act through masking an RNase E cleavage site in the cfa mRNA 5' untranslated region (UTR), and both sRNAs posttranscriptionally activate cfa In contrast, CpxQ binds to a different site in the cfa mRNA 5' UTR and represses cfa expression. Alteration of membrane lipid composition is a key mechanism for bacteria to survive low-pH environments, and we show that cfa translation increases in an sRNA-dependent manner when cells are subjected to mild acid stress. This work suggests an important role for sRNAs in the acid stress response through regulation of cfa mRNA.IMPORTANCE Small RNAs (sRNAs) in bacteria are abundant and play important roles in posttranscriptional regulation of gene expression, particularly under stress conditions. Some mRNAs are targets for regulation by multiple sRNAs, each responding to different environmental signals. Uncovering the regulatory mechanisms governing sRNA-mRNA interactions and the relevant conditions for these interactions is an ongoing challenge. In this study, we discovered that multiple sRNAs control membrane lipid composition by regulating stability of a single mRNA target. The sRNA-dependent regulation occurred in response to changing pH and was important for cell viability under acid stress conditions. This work reveals yet another aspect of bacterial physiology controlled at the posttranscriptional level by sRNA regulators.
Collapse
Affiliation(s)
- Colleen M Bianco
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| | | | - Carin K Vanderpool
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|