1
|
Olvera-Lucio FH, Riveros-Rosas H, Zaldívar-Rae J, Cano-Sánchez P, Hernández-Santoyo A. Biochemical and functional characterization of rMe'exLec1, a recombinant tandem-repeat lectin from the ancient marine chelicerate Limulus polyphemus. Int J Biol Macromol 2025; 309:142895. [PMID: 40203948 DOI: 10.1016/j.ijbiomac.2025.142895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/20/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Mass extinctions have disrupted the evolutionary history of several species, and with it the discovery of novel proteins with biomedical and biotechnological value. However, Limulus polyphemus, a xiphosuran marine arthropod, is a "living fossil" with a 480-million-year-old lineage. To explore this evolutionary legacy, rMe'exLec1, a 13.15 kDa tandem-repeat lectin from L. polyphemus, was studied. Named after the ancient Maya term "Me'ex" ("spider fish"), it was Identified in the genome, recombinantly expressed in Escherichia coli, and purified via nickel affinity chromatography, yielding 1 g/L of culture. The protein remained stable across a wide pH range and different salts. Far-UV circular dichroism confirmed proper folding and the presence of both α and β secondary structures. rMe'exLec1 exhibited specificity for L-Fuc and D-GalNAc, terminal sugars of the human A-antigen, demonstrating agglutinating activity on type A erythrocytes. It also bound divalent ions such as nickel, and formed monodisperse oligomers. Additionally, this lectin inhibited the growth of Gram-negative (Vibrio parahaemolyticus, E. coli Rosetta(DE3) and DH5α), and Gram-positive (Lactiplantibacillus plantarum) bacteria, highlighting its potential for biomedical applications. Structural and sequence analyses of homologous proteins, along with their limited phyletic distribution and unique evolutionary relationships, support the classification of this protein group as a novel lectin family, named Me'exLec-type. Furthermore, its tandemly repeated, non-identical binding sites are evolutionarily conserved across phylogenetically distant groups.
Collapse
Affiliation(s)
- Francisco H Olvera-Lucio
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán 04510, Mexico
| | - Héctor Riveros-Rosas
- Depto. Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán 04510, Mexico
| | - Jaime Zaldívar-Rae
- Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Mérida, Yucatán, Mexico
| | - Patricia Cano-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán 04510, Mexico
| | | |
Collapse
|
2
|
Carter MD, Tran TM, Cope-Arguello ML, Weinstein S, Li H, Hendrich CG, Prom JL, Li J, Chu LT, Bui L, Manikantan H, Lowe-Power TM, Allen C. Lectins and polysaccharide EPS I have flow-responsive roles in the attachment and biofilm mechanics of plant pathogenic Ralstonia. PLoS Pathog 2024; 20:e1012358. [PMID: 39312573 PMCID: PMC11449490 DOI: 10.1371/journal.ppat.1012358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/03/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Bacterial biofilm formation and attachment to hosts are mediated by carbohydrate-binding lectins, exopolysaccharides, and their interactions in the extracellular matrix (ECM). During tomato infection Ralstonia pseudosolanacearum (Rps) GMI1000 highly expresses three lectins: LecM, LecF, and LecX. The latter two are uncharacterized. We evaluated the roles in bacterial wilt disease of LecF, a fucose-binding lectin, LecX, a xylose-binding lectin, and the Rps exopolysaccharide EPS I. Interestingly, single and double lectin mutants attached to tomato roots better and formed more biofilm under static conditions in vitro. Consistent with this finding, static bacterial aggregation was suppressed by heterologous expression of lecFGMI1000 and lecXGMI1000 in other Ralstonia strains that naturally lack these lectins. Crude ECM from a ΔlecF/X double mutant was more adhesive than the wild-type ECM, and LecF and LecX increased Rps attachment to ECM. The enhanced adhesiveness of the ΔlecF/X ECM could explain the double mutant's hyper-attachment in static conditions. Unexpectedly, mutating lectins decreased Rps attachment and biofilm viscosity under shear stress, which this pathogen experiences in plant xylem. LecF, LecX, and EPS I were all essential for biofilm development in xylem fluid flowing through cellulose-coated microfluidic channels. These results suggest that under shear stress, LecF and LecX increase Rps attachment by interacting with the ECM and plant cell wall components like cellulose. In static conditions such as on root surfaces and in clogged xylem vessels, the same lectins suppress attachment to facilitate pathogen dispersal. Thus, Rps lectins have a dual biological function that depends on the physical environment.
Collapse
Affiliation(s)
- Mariama D. Carter
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tuan M. Tran
- Department of Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Matthew L. Cope-Arguello
- Department of Plant Pathology, University of California-Davis, Davis, California, United States of America
| | - Sofia Weinstein
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hanlei Li
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Connor G. Hendrich
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jessica L. Prom
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jiayu Li
- Department of Chemical Engineering, University of California-Davis, Davis, California, United States of America
| | - Lan Thanh Chu
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Loan Bui
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Harishankar Manikantan
- Department of Chemical Engineering, University of California-Davis, Davis, California, United States of America
| | - Tiffany M. Lowe-Power
- Department of Plant Pathology, University of California-Davis, Davis, California, United States of America
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
3
|
Saberi Riseh R, Gholizadeh Vazvani M, Taheri A, Kennedy JF. Pectin-associated immune responses in plant-microbe interactions: A review. Int J Biol Macromol 2024; 273:132790. [PMID: 38823736 DOI: 10.1016/j.ijbiomac.2024.132790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/04/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
This review explores the role of pectin, a complex polysaccharide found in the plant cell wall, in mediating immune responses during interactions between plants and microbes. The objectives of this study were to investigate the molecular mechanisms underlying pectin-mediated immune responses and to understand how these interactions shape plant-microbe communication. Pectin acts as a signaling molecule, triggering immune responses such as the production of antimicrobial compounds, reinforcement of the cell wall, and activation of defense-related genes. Pectin functions as a target for pathogen-derived enzymes, enabling successful colonization by certain microbial species. The document discusses the complexity of pectin-based immune signaling networks and their modulation by various factors, including pathogen effectors and host proteins. It also emphasizes the importance of understanding the crosstalk between pectin-mediated immunity and other defense pathways to develop strategies for enhancing plant resistance against diseases. The insights gained from this study have implications for the development of innovative approaches to enhance crop protection and disease management in agriculture. Further investigations into the components and mechanisms involved in pectin-mediated immunity will pave the way for future advancements in plant-microbe interaction research.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Abdolhossein Taheri
- Department of Plant Protection, Faculty of Plant Production, University of agricultural Sciences and natural resources of Gorgan, Iran.
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
4
|
Burnim AA, Dufault-Thompson K, Jiang X. The three-sided right-handed β-helix is a versatile fold for glycan interactions. Glycobiology 2024; 34:cwae037. [PMID: 38767844 PMCID: PMC11129586 DOI: 10.1093/glycob/cwae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024] Open
Abstract
Interactions between proteins and glycans are critical to various biological processes. With databases of carbohydrate-interacting proteins and increasing amounts of structural data, the three-sided right-handed β-helix (RHBH) has emerged as a significant structural fold for glycan interactions. In this review, we provide an overview of the sequence, mechanistic, and structural features that enable the RHBH to interact with glycans. The RHBH is a prevalent fold that exists in eukaryotes, prokaryotes, and viruses associated with adhesin and carbohydrate-active enzyme (CAZyme) functions. An evolutionary trajectory analysis on structurally characterized RHBH-containing proteins shows that they likely evolved from carbohydrate-binding proteins with their carbohydrate-degrading activities evolving later. By examining three polysaccharide lyase and three glycoside hydrolase structures, we provide a detailed view of the modes of glycan binding in RHBH proteins. The 3-dimensional shape of the RHBH creates an electrostatically and spatially favorable glycan binding surface that allows for extensive hydrogen bonding interactions, leading to favorable and stable glycan binding. The RHBH is observed to be an adaptable domain capable of being modified with loop insertions and charge inversions to accommodate heterogeneous and flexible glycans and diverse reaction mechanisms. Understanding this prevalent protein fold can advance our knowledge of glycan binding in biological systems and help guide the efficient design and utilization of RHBH-containing proteins in glycobiology research.
Collapse
Affiliation(s)
- Audrey A Burnim
- National Library of Medicine, National Institutes of Health, Building 38A, Room 6N607, 8600 Rockville Pike, Bethesda, MD 20894 United States
| | - Keith Dufault-Thompson
- National Library of Medicine, National Institutes of Health, Building 38A, Room 6N607, 8600 Rockville Pike, Bethesda, MD 20894 United States
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, Building 38A, Room 6N607, 8600 Rockville Pike, Bethesda, MD 20894 United States
| |
Collapse
|
5
|
Schnider B, M’Rad Y, el Ahmadie J, de Brevern AG, Imberty A, Lisacek F. HumanLectome, an update of UniLectin for the annotation and prediction of human lectins. Nucleic Acids Res 2024; 52:D1683-D1693. [PMID: 37889052 PMCID: PMC10767822 DOI: 10.1093/nar/gkad905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
The UniLectin portal (https://unilectin.unige.ch/) was designed in 2019 with the goal of centralising curated and predicted data on carbohydrate-binding proteins known as lectins. UniLectin is also intended as a support for the study of lectomes (full lectin set) of organisms or tissues. The present update describes the inclusion of several new modules and details the latest (https://unilectin.unige.ch/humanLectome/), covering our knowledge of the human lectome and comprising 215 unevenly characterised lectins, particularly in terms of structural information. Each HumanLectome entry is protein-centric and compiles evidence of carbohydrate recognition domain(s), specificity, 3D-structure, tissue-based expression and related genomic data. Other recent improvements regarding interoperability and accessibility are outlined.
Collapse
Affiliation(s)
- Boris Schnider
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
| | - Yacine M’Rad
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
| | - Jalaa el Ahmadie
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
- University Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | - Alexandre G de Brevern
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB Bioinformatics Team, F-75014 Paris, France
| | - Anne Imberty
- University Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | - Frederique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1211 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
- Section of Biology, University of Geneva, CH-1205 Geneva, Switzerland
| |
Collapse
|
6
|
Schnider B, Escudero FL, Imberty A, Lisacek F. BiotechLec: an interactive guide of commercial lectins for glycobiology and biomedical research applications. Glycobiology 2023; 33:684-686. [PMID: 37083961 PMCID: PMC10627245 DOI: 10.1093/glycob/cwad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
For decades, lectins have been used as probes in glycobiology and this usage has gradually spread to other domains of Life Science. Nowadays, researchers investigate glycan recognition with lectins in diverse biotechnology and clinical applications, addressing key questions regarding binding specificity. The latter is documented in scattered and heterogeneous sources, and this situation calls for a centralized and easy-access reference. To address this need, an on-line solution called BiotechLec (https://www.unilectin.eu/biotechlec) is proposed in a new section of UniLectin, a platform dedicated to lectin molecular knowledge.
Collapse
Affiliation(s)
- Boris Schnider
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, route de Drize 7, Geneva CH-1227, Switzerland
- Computer Science Department, University of Geneva, route de Drize 7, Geneva CH-1227, Switzerland
| | - Francisco L Escudero
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, route de Drize 7, Geneva CH-1227, Switzerland
| | - Anne Imberty
- University Grenoble Alpes, CNRS, CERMAV, 601 rue de la chimie, Grenoble 38000, France
| | - Frédérique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, route de Drize 7, Geneva CH-1227, Switzerland
- Computer Science Department, University of Geneva, route de Drize 7, Geneva CH-1227, Switzerland
- Section of Biology, University of Geneva, route de Drize 7, Geneva CH-1227, Switzerland
| |
Collapse
|
7
|
Duca M, Haksar D, van Neer J, Thies-Weesie DM, Martínez-Alarcón D, de Cock H, Varrot A, Pieters RJ. Multivalent Fucosides Targeting β-Propeller Lectins from Lung Pathogens with Promising Anti-Adhesive Properties. ACS Chem Biol 2022; 17:3515-3526. [PMID: 36414265 PMCID: PMC9764287 DOI: 10.1021/acschembio.2c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fungal and bacterial pathogens causing lung infections often use lectins to mediate adhesion to glycoconjugates at the surface of host tissues. Given the rapid emergence of resistance to the treatments in current use, β-propeller lectins such as FleA from Aspergillus fumigatus, SapL1 from Scedosporium apiospermum, and BambL from Burkholderia ambifaria have become appealing targets for the design of anti-adhesive agents. In search of novel and cheap anti-infectious agents, we synthesized multivalent compounds that can display up to 20 units of fucose, the natural ligand. We obtained nanomolar inhibitors that are several orders of magnitude stronger than their monovalent analogue according to several biophysical techniques (i.e., fluorescence polarization, isothermal titration calorimetry, and bio-layer interferometry). The reason for high affinity might be attributed to a strong aggregating mechanism, which was examined by analytical ultracentrifugation. Notably, the fucosylated inhibitors reduced the adhesion of A. fumigatus spores to lung epithelial cells when administered 1 h before or after the infection of human lung epithelial cells. For this reason, we propose them as promising anti-adhesive drugs for the prevention and treatment of aspergillosis and related microbial lung infections.
Collapse
Affiliation(s)
- Margherita Duca
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, NL-3508 TB Utrecht, The Netherlands,Department
of Biology, Utrecht University, Padualaan 8, 3584 CS Utrecht, The Netherlands,Univ.
Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Diksha Haksar
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, NL-3508 TB Utrecht, The Netherlands
| | - Jacq van Neer
- Department
of Biology, Utrecht University, Padualaan 8, 3584 CS Utrecht, The Netherlands
| | - Dominique M.E. Thies-Weesie
- Debye
Institute for Nanomaterials Science, Utrecht
University, Padualaan
8, 3584 CS Utrecht, The Netherlands
| | | | - Hans de Cock
- Department
of Biology, Utrecht University, Padualaan 8, 3584 CS Utrecht, The Netherlands,
| | | | - Roland J. Pieters
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, NL-3508 TB Utrecht, The Netherlands,
| |
Collapse
|
8
|
Goyard D, Ortiz AMS, Boturyn D, Renaudet O. Multivalent glycocyclopeptides: conjugation methods and biological applications. Chem Soc Rev 2022; 51:8756-8783. [PMID: 36193815 PMCID: PMC9575389 DOI: 10.1039/d2cs00640e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/21/2022]
Abstract
Click chemistry was extensively used to decorate synthetic multivalent scaffolds with glycans to mimic the cell surface glycocalyx and to develop applications in glycosciences. Conjugation methods such as oxime ligation, copper(I)-catalyzed alkyne-azide cycloaddition, thiol-ene coupling, squaramide coupling or Lansbury aspartylation proved particularly suitable to achieve this purpose. This review summarizes the synthetic strategies that can be used either in a stepwise manner or in an orthogonal one-pot approach, to conjugate multiple copies of identical or different glycans to cyclopeptide scaffolds (namely multivalent glycocyclopeptides) having different size, valency, geometry and molecular composition. The second part of this review will describe the potential of these structures to interact with various carbohydrate binding proteins or to stimulate immunity against tumor cells.
Collapse
Affiliation(s)
- David Goyard
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | | | - Didier Boturyn
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| | - Olivier Renaudet
- Univ. Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| |
Collapse
|
9
|
The choanoflagellate pore-forming lectin SaroL-1 punches holes in cancer cells by targeting the tumor-related glycosphingolipid Gb3. Commun Biol 2022; 5:954. [PMID: 36097056 PMCID: PMC9468336 DOI: 10.1038/s42003-022-03869-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Choanoflagellates are primitive protozoa used as models for animal evolution. They express a large variety of multi-domain proteins contributing to adhesion and cell communication, thereby providing a rich repertoire of molecules for biotechnology. Adhesion often involves proteins adopting a β-trefoil fold with carbohydrate-binding properties therefore classified as lectins. Sequence database screening with a dedicated method resulted in TrefLec, a database of 44714 β-trefoil candidate lectins across 4497 species. TrefLec was searched for original domain combinations, which led to single out SaroL-1 in the choanoflagellate Salpingoeca rosetta, that contains both β-trefoil and aerolysin-like pore-forming domains. Recombinant SaroL-1 is shown to bind galactose and derivatives, with a stronger affinity for cancer-related α-galactosylated epitopes such as the glycosphingolipid Gb3, when embedded in giant unilamellar vesicles or cell membranes. Crystal structures of complexes with Gb3 trisaccharide and GalNAc provided the basis for building a model of the oligomeric pore. Finally, recognition of the αGal epitope on glycolipids required for hemolysis of rabbit erythrocytes suggests that toxicity on cancer cells is achieved through carbohydrate-dependent pore-formation. A curated lectin database, structural characterization, and in vitro assays show that choanoflagellate lectin SaroL-1 binds to cancer-related α-galactosylated epitopes and can be toxic to cancer cells through a carbohydrate-dependent pore-formation mechanism.
Collapse
|
10
|
Gabius H, Cudic M, Diercks T, Kaltner H, Kopitz J, Mayo KH, Murphy PV, Oscarson S, Roy R, Schedlbauer A, Toegel S, Romero A. What is the Sugar Code? Chembiochem 2022; 23:e202100327. [PMID: 34496130 PMCID: PMC8901795 DOI: 10.1002/cbic.202100327] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Indexed: 12/18/2022]
Abstract
A code is defined by the nature of the symbols, which are used to generate information-storing combinations (e. g. oligo- and polymers). Like nucleic acids and proteins, oligo- and polysaccharides are ubiquitous, and they are a biochemical platform for establishing molecular messages. Of note, the letters of the sugar code system (third alphabet of life) excel in coding capacity by making an unsurpassed versatility for isomer (code word) formation possible by variability in anomery and linkage position of the glycosidic bond, ring size and branching. The enzymatic machinery for glycan biosynthesis (writers) realizes this enormous potential for building a large vocabulary. It includes possibilities for dynamic editing/erasing as known from nucleic acids and proteins. Matching the glycome diversity, a large panel of sugar receptors (lectins) has developed based on more than a dozen folds. Lectins 'read' the glycan-encoded information. Hydrogen/coordination bonding and ionic pairing together with stacking and C-H/π-interactions as well as modes of spatial glycan presentation underlie the selectivity and specificity of glycan-lectin recognition. Modular design of lectins together with glycan display and the nature of the cognate glycoconjugate account for the large number of post-binding events. They give an entry to the glycan vocabulary its functional, often context-dependent meaning(s), hereby building the dictionary of the sugar code.
Collapse
Affiliation(s)
- Hans‐Joachim Gabius
- Institute of Physiological ChemistryFaculty of Veterinary MedicineLudwig-Maximilians-University MunichVeterinärstr. 1380539MunichGermany
| | - Maré Cudic
- Department of Chemistry and BiochemistryCharles E. Schmidt College of ScienceFlorida Atlantic University777 Glades RoadBoca RatonFlorida33431USA
| | - Tammo Diercks
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801 A48160DerioBizkaiaSpain
| | - Herbert Kaltner
- Institute of Physiological ChemistryFaculty of Veterinary MedicineLudwig-Maximilians-University MunichVeterinärstr. 1380539MunichGermany
| | - Jürgen Kopitz
- Institute of PathologyDepartment of Applied Tumor BiologyFaculty of MedicineRuprecht-Karls-University HeidelbergIm Neuenheimer Feld 22469120HeidelbergGermany
| | - Kevin H. Mayo
- Department of BiochemistryMolecular Biology & BiophysicsUniversity of MinnesotaMinneapolisMN 55455USA
| | - Paul V. Murphy
- CÚRAM – SFI Research Centre for Medical Devices and theSchool of ChemistryNational University of Ireland GalwayUniversity RoadGalwayH91 TK33Ireland
| | - Stefan Oscarson
- Centre for Synthesis and Chemical BiologyUniversity College DublinBelfieldDublin 4Ireland
| | - René Roy
- Département de Chimie et BiochimieUniversité du Québec à MontréalCase Postale 888Succ. Centre-Ville MontréalQuébecH3C 3P8Canada
| | - Andreas Schedlbauer
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)Bizkaia Technology Park, Building 801 A48160DerioBizkaiaSpain
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Antonio Romero
- Department of Structural and Chemical BiologyCIB Margarita Salas, CSICRamiro de Maeztu 928040MadridSpain
| |
Collapse
|
11
|
Hütte HJ, Tiemann B, Shcherbakova A, Grote V, Hoffmann M, Povolo L, Lommel M, Strahl S, Vakhrushev SY, Rapp E, Buettner FFR, Halim A, Imberty A, Bakker H. A Bacterial Mannose Binding Lectin as a Tool for the Enrichment of C- and O-Mannosylated Peptides. Anal Chem 2022; 94:7329-7338. [PMID: 35549177 DOI: 10.1021/acs.analchem.2c00742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometry (MS) easily detects C-mannosylated peptides from purified proteins but not from complex biological samples. Enrichment of specific glycopeptides by lectin affinity prior to MS analysis has been widely applied to support glycopeptide identification but was until now not available for C-mannosylated peptides. Here, we used the α-mannose-specific Burkholderia cenocepacia lectin A (BC2L-A) and show that, in addition to its previously demonstrated high-mannose N-glycan binding capability, this lectin is able to retain C- and O-mannosylated peptides. Besides testing binding abilities to standard peptides, we applied BC2L-A affinity to enrich C-mannosylated peptides from complex samples of tryptic digests of HEK293 and MCF10A whole cell extracts, which led to the identification of novel C-mannosylation sites. In conclusion, BC2L-A enabled specific enrichment of C- and O-mannosylated peptides and might have superior properties over other mannose binding lectins for this purpose.
Collapse
Affiliation(s)
- Hermann J Hütte
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Birgit Tiemann
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Aleksandra Shcherbakova
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Valerian Grote
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Marcus Hoffmann
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Lorenzo Povolo
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Mark Lommel
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.,glyXera GmbH, Brenneckestrasse 20, 39120 Magdeburg, Germany
| | - Falk F R Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Adnan Halim
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, 601 rue de la chimie, 38000 Grenoble, France
| | - Hans Bakker
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
12
|
Shanina E, Kuhaudomlarp S, Lal K, Seeberger PH, Imberty A, Rademacher C. Allosterische, Wirkstoff‐zugängliche Bindestellen in β‐Propeller‐Lektinen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Elena Shanina
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Sakonwan Kuhaudomlarp
- University Grenoble Alpes CNRS CERMAV 38000 Grenoble Frankreich
- Department of Biochemistry Faculty of Science Mahidol University 10400 Bangkok Thailand
- Center for Excellence in Protein and Enzyme Technology Faculty of Science Mahidol University 10400 Bangkok Thailand
| | - Kanhaya Lal
- University Grenoble Alpes CNRS CERMAV 38000 Grenoble Frankreich
- Dipartimento di Chimica via Golgi 19 Università degli Studi di Milano 20133 Milano Italien
| | - Peter H. Seeberger
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Anne Imberty
- University Grenoble Alpes CNRS CERMAV 38000 Grenoble Frankreich
| | - Christoph Rademacher
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Department of Pharmaceutical Chemistry University of Vienna Althanstraße 14 1080 Wien Österreich
- Department of Microbiology, Immunobiology and Genetics Max F. Perutz Labs Campus Vienna Biocenter 5 1030 Wien Österreich
| |
Collapse
|
13
|
Shanina E, Kuhaudomlarp S, Lal K, Seeberger PH, Imberty A, Rademacher C. Druggable Allosteric Sites in β-Propeller Lectins. Angew Chem Int Ed Engl 2022; 61:e202109339. [PMID: 34713573 PMCID: PMC9298952 DOI: 10.1002/anie.202109339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/05/2021] [Indexed: 12/24/2022]
Abstract
Carbohydrate‐binding proteins (lectins) are auspicious targets in drug discovery to combat antimicrobial resistance; however, their non‐carbohydrate drug‐like inhibitors are still unavailable. Here, we present a druggable pocket in a β‐propeller lectin BambL from Burkholderia ambifaria as a potential target for allosteric inhibitors. This site was identified employing 19F NMR fragment screening and a computational pocket prediction algorithm SiteMap. The structure–activity relationship study revealed the most promising fragment with a dissociation constant of 0.3±0.1 mM and a ligand efficiency of 0.3 kcal mol−1 HA−1 that affected the orthosteric site. This effect was substantiated by site‐directed mutagenesis in the orthosteric and secondary pockets. Future drug‐discovery campaigns that aim to develop small molecule inhibitors can benefit from allosteric sites in lectins as a new therapeutic approach against antibiotic‐resistant pathogens.
Collapse
Affiliation(s)
- Elena Shanina
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Sakonwan Kuhaudomlarp
- University Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France.,Department of Biochemistry, Faculty of Science, Mahidol University, 10400, Bangkok, Thailand.,Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 10400, Bangkok, Thailand
| | - Kanhaya Lal
- University Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France.,Dipartimento di Chimica via Golgi 19, Universita" degli Studi di Milano, 20133, Milano, Italy
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Anne Imberty
- University Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany.,Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1080, Vienna, Austria.,Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Labs, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| |
Collapse
|
14
|
Lieberman NAP, Lin MJ, Xie H, Shrestha L, Nguyen T, Huang ML, Haynes AM, Romeis E, Wang QQ, Zhang RL, Kou CX, Ciccarese G, Dal Conte I, Cusini M, Drago F, Nakayama SI, Lee K, Ohnishi M, Konda KA, Vargas SK, Eguiluz M, Caceres CF, Klausner JD, Mitjà O, Rompalo A, Mulcahy F, Hook EW, Lukehart SA, Casto AM, Roychoudhury P, DiMaio F, Giacani L, Greninger AL. Treponema pallidum genome sequencing from six continents reveals variability in vaccine candidate genes and dominance of Nichols clade strains in Madagascar. PLoS Negl Trop Dis 2021; 15:e0010063. [PMID: 34936652 PMCID: PMC8735616 DOI: 10.1371/journal.pntd.0010063] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/06/2022] [Accepted: 12/06/2021] [Indexed: 11/19/2022] Open
Abstract
In spite of its immutable susceptibility to penicillin, Treponema pallidum (T. pallidum) subsp. pallidum continues to cause millions of cases of syphilis each year worldwide, resulting in significant morbidity and mortality and underscoring the urgency of developing an effective vaccine to curtail the spread of the infection. Several technical challenges, including absence of an in vitro culture system until very recently, have hampered efforts to catalog the diversity of strains collected worldwide. Here, we provide near-complete genomes from 196 T. pallidum strains-including 191 T. pallidum subsp. pallidum-sequenced directly from patient samples collected from 8 countries and 6 continents. Maximum likelihood phylogeny revealed that samples from most sites were predominantly SS14 clade. However, 99% (84/85) of the samples from Madagascar formed two of the five distinct Nichols subclades. Although recombination was uncommon in the evolution of modern circulating strains, we found multiple putative recombination events between T. pallidum subsp. pallidum and subsp. endemicum, shaping the genomes of several subclades. Temporal analysis dated the most recent common ancestor of Nichols and SS14 clades to 1717 (95% HPD: 1543-1869), in agreement with other recent studies. Rates of SNP accumulation varied significantly among subclades, particularly among different Nichols subclades, and was associated in the Nichols A subclade with a C394F substitution in TP0380, a ERCC3-like DNA repair helicase. Our data highlight the role played by variation in genes encoding putative surface-exposed outer membrane proteins in defining separate lineages, and provide a critical resource for the design of broadly protective syphilis vaccines targeting surface antigens.
Collapse
Affiliation(s)
- Nicole A. P. Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Michelle J. Lin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Hong Xie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Lasata Shrestha
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Tien Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Austin M. Haynes
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Emily Romeis
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Qian-Qiu Wang
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- National Center for STD Control, China Centers for Disease Control and Prevention, Nanjing, China
| | - Rui-Li Zhang
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cai-Xia Kou
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- National Center for STD Control, China Centers for Disease Control and Prevention, Nanjing, China
| | - Giulia Ciccarese
- Health Sciences Department, Section of Dermatology, San Martino University Hospital, Genoa, Italy
| | - Ivano Dal Conte
- STI Clinic, Infectious Diseases Unit, University of Turin, Turin, Italy
| | - Marco Cusini
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Drago
- Health Sciences Department, Section of Dermatology, San Martino University Hospital, Genoa, Italy
| | - Shu-ichi Nakayama
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenichi Lee
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kelika A. Konda
- Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano-Heredia, Lima, Peru
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Silver K. Vargas
- Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano-Heredia, Lima, Peru
| | - Maria Eguiluz
- Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano-Heredia, Lima, Peru
| | - Carlos F. Caceres
- Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano-Heredia, Lima, Peru
| | - Jeffrey D. Klausner
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Oriol Mitjà
- Fight Aids and Infectious Diseases Foundation, Hospital Germans Trias i Pujol, Barcelona, Spain
- Lihir Medical Centre-International SOS, Newcrest Mining, Lihir Island, Papua New Guinea
| | - Anne Rompalo
- Department of Infectious Diseases, Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | - Fiona Mulcahy
- Department of Genito Urinary Medicine and Infectious Diseases, St James’s Hospital, Dublin, Ireland
| | - Edward W. Hook
- Department of Medicine, University of Alabama, Birmingham, Birmingham, Alabama, United States of America
| | - Sheila A. Lukehart
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Amanda M. Casto
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
15
|
Frensch M, Jäger C, Müller PF, Tadić A, Wilhelm I, Wehrum S, Diedrich B, Fischer B, Meléndez AV, Dengjel J, Eibel H, Römer W. Bacterial lectin BambL acts as a B cell superantigen. Cell Mol Life Sci 2021; 78:8165-8186. [PMID: 34731252 PMCID: PMC8629787 DOI: 10.1007/s00018-021-04009-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 10/03/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
B cell superantigens crosslink conserved domains of B cell receptors (BCRs) and cause dysregulated, polyclonal B cell activation irrespective of normal BCR-antigen complementarity. The cells typically succumb to activation-induced cell death, which can impede the adaptive immune response and favor infection. In the present study, we demonstrate that the fucose-binding lectin of Burkholderia ambifaria, BambL, bears functional resemblance to B cell superantigens. By engaging surface glycans, the bacterial lectin activated human peripheral blood B cells, which manifested in the surface expression of CD69, CD54 and CD86 but became increasingly cytotoxic at higher concentrations. The effects were sensitive to BCR pathway inhibitors and excess fucose, which corroborates a glycan-driven mode of action. Interactome analyses in a model cell line suggest BambL binds directly to glycans of the BCR and regulatory coreceptors. In vitro, BambL triggered BCR signaling and induced CD19 internalization and degradation. Owing to the lectin's six binding sites, we propose a BCR activation model in which BambL functions as a clustering hub for receptor glycans, modulates normal BCR regulation, and induces cell death through exhaustive activation.
Collapse
Affiliation(s)
- Marco Frensch
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Christina Jäger
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Peter F Müller
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Annamaria Tadić
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Isabel Wilhelm
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Sarah Wehrum
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Britta Diedrich
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Dermatology, University Medical Center and University of Freiburg, Freiburg, Germany
| | - Beate Fischer
- Center for Chronic Immunodeficiency, CCI and University Medical Center Freiburg, Freiburg, Germany
| | - Ana Valeria Meléndez
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Dermatology, University Medical Center and University of Freiburg, Freiburg, Germany
| | - Hermann Eibel
- Center for Chronic Immunodeficiency, CCI and University Medical Center Freiburg, Freiburg, Germany.
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
16
|
Imberty A, Bonnardel F, Lisacek F. UniLectin, A One-Stop-Shop to Explore and Study Carbohydrate-Binding Proteins. Curr Protoc 2021; 1:e305. [PMID: 34826352 DOI: 10.1002/cpz1.305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
All eukaryotic cells are covered with a dense layer of glycoconjugates, and the cell walls of bacteria are made of various polysaccharides, putting glycans in key locations for mediating protein-protein interactions at cell interfaces. Glycan function is therefore mainly defined as binding to other molecules, and lectins are proteins that specifically recognize and interact non-covalently with glycans. UniLectin was designed based on insight into the knowledge of lectins, their classification, and their biological role. This modular platform provides a curated and periodically updated classification of lectins along with a set of comparative and visualization tools, as well as structured results of screening comprehensive sequence datasets. UniLectin can be used to explore lectins, find precise information on glycan-protein interactions, and mine the results of predictive tools based on HMM profiles. This usage is illustrated here with two protocols. The first one highlights the fine-tuned role of the O blood group antigen in distinctive pathogen recognition, while the second compares the various bacterial lectin arsenals that clearly depend on living conditions of species even in the same genus. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Searching for the structural details of lectins binding the O blood group antigen Basic Protocol 2: Comparing the lectomes of related organisms in different environments.
Collapse
Affiliation(s)
- Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - François Bonnardel
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France.,SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.,Computer Science Department, UniGe, Geneva, Switzerland
| | - Frédérique Lisacek
- SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.,Computer Science Department, UniGe, Geneva, Switzerland.,Section of Biology, UniGe, Geneva, Switzerland
| |
Collapse
|
17
|
Biochemical and structural studies of target lectin SapL1 from the emerging opportunistic microfungus Scedosporium apiospermum. Sci Rep 2021; 11:16109. [PMID: 34373510 PMCID: PMC8352872 DOI: 10.1038/s41598-021-95008-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/16/2021] [Indexed: 12/25/2022] Open
Abstract
Scedosporium apiospermum is an emerging opportunistic fungal pathogen responsible for life-threatening infections in humans. Host-pathogen interactions often implicate lectins that have become therapeutic targets for the development of carbohydrate mimics for antiadhesive therapy. Here, we present the first report on the identification and characterization of a lectin from S. apiospermum named SapL1. SapL1 was found using bioinformatics as a homolog to the conidial surface lectin FleA from Aspergillus fumigatus known to play a role in the adhesion to host glycoconjugates present in human lung epithelium. In our strategy to obtain recombinant SapL1, we discovered the importance of osmolytes to achieve its expression in soluble form in bacteria. Analysis of glycan arrays indicates specificity for fucosylated oligosaccharides as expected. Submicromolar affinity was measured for fucose using isothermal titration calorimetry. We solved SapL1 crystal structure in complex with α-methyl-L-fucoside and analyzed its structural basis for fucose binding. We finally demonstrated that SapL1 binds to bronchial epithelial cells in a fucose-dependent manner. The information gathered here will contribute to the design and development of glycodrugs targeting SapL1.
Collapse
|
18
|
Bonnardel F, Mariethoz J, Pérez S, Imberty A, Lisacek F. LectomeXplore, an update of UniLectin for the discovery of carbohydrate-binding proteins based on a new lectin classification. Nucleic Acids Res 2021; 49:D1548-D1554. [PMID: 33174598 PMCID: PMC7778903 DOI: 10.1093/nar/gkaa1019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022] Open
Abstract
Lectins are non-covalent glycan-binding proteins mediating cellular interactions but their annotation in newly sequenced organisms is lacking. The limited size of functional domains and the low level of sequence similarity challenge usual bioinformatics tools. The identification of lectin domains in proteomes requires the manual curation of sequence alignments based on structural folds. A new lectin classification is proposed. It is built on three levels: (i) 35 lectin domain folds, (ii) 109 classes of lectins sharing at least 20% sequence similarity and (iii) 350 families of lectins sharing at least 70% sequence similarity. This information is compiled in the UniLectin platform that includes the previously described UniLectin3D database of curated lectin 3D structures. Since its first release, UniLectin3D has been updated with 485 additional 3D structures. The database is now complemented by two additional modules: PropLec containing predicted β-propeller lectins and LectomeXplore including predicted lectins from sequences of the NBCI-nr and UniProt for every curated lectin class. UniLectin is accessible at https://www.unilectin.eu/.
Collapse
Affiliation(s)
- François Bonnardel
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
| | - Julien Mariethoz
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
- Section of Biology, University of Geneva, CH-1205 Geneva, Switzerland
| | - Serge Pérez
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Anne Imberty
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Frédérique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland
- Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland
- Section of Biology, University of Geneva, CH-1205 Geneva, Switzerland
| |
Collapse
|
19
|
Mylemans B, Voet AR, Tame JR. The Taming of the Screw: the natural and artificial development of β-propeller proteins. Curr Opin Struct Biol 2020; 68:48-54. [PMID: 33373773 DOI: 10.1016/j.sbi.2020.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/09/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022]
Abstract
Many proteins are found to possess repeated structural elements, which hint at ancient evolutionary origins and ongoing evolutionary processes. β-propeller proteins are a large family of such proteins, and a popular focus of structural analysis. This review highlights recent work to understand how they arose, and how they have developed into one of the most successful of all protein folds.
Collapse
Affiliation(s)
- Bram Mylemans
- Laboraotry for biomolecular modelling and design, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium
| | - Arnout Rd Voet
- Protein Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Suehiro 1-7-29, Tsurumi, Yokohama 230-0045, Japan
| | - Jeremy Rh Tame
- Protein Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Suehiro 1-7-29, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
20
|
Liu M, Cheng X, Wang J, Tian D, Tang K, Xu T, Zhang M, Wang Y, Wang M. Structural insights into the fungi-nematodes interaction mediated by fucose-specific lectin AofleA from Arthrobotrys oligospora. Int J Biol Macromol 2020; 164:783-793. [PMID: 32698064 DOI: 10.1016/j.ijbiomac.2020.07.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022]
Abstract
Fungal lectin can bind specific carbohydrate structures of the host and work in recognition and adhesion or as a toxic factor. AofleA, as a fucose-specific lectin from widely studied nematode predatory fungus Arthrobotrys oligospora, possibly plays a key role in the event of capturing nematodes, but the mechanism remains unknown. Here we report the crystal structure of AofleA, which exists as a homodimer with each subunit folds as a six-bladed β-propeller. Our structural and biological results revealed that three of the six putative binding sites of AofleA had fucose-binding abilities. In addition, we found that AofleA could bind to the pharynx and intestine of the nematode in a fucose-binding-dependent manner. Our results facilitate the understanding of the mechanism that fucose-specific lectin mediates fungi-nematodes interaction, and provide structural information for the development of potential applications of AofleA.
Collapse
Affiliation(s)
- Mingjie Liu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Xiaowen Cheng
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China
| | - Junchao Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Dongrui Tian
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Kaijing Tang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Ting Xu
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Min Zhang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China
| | - Mingzhu Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
21
|
Sýkorová P, Novotná J, Demo G, Pompidor G, Dubská E, Komárek J, Fujdiarová E, Houser J, Hároníková L, Varrot A, Shilova N, Imberty A, Bovin N, Pokorná M, Wimmerová M. Characterization of novel lectins from Burkholderia pseudomallei and Chromobacterium violaceum with seven-bladed β-propeller fold. Int J Biol Macromol 2020; 152:1113-1124. [DOI: 10.1016/j.ijbiomac.2019.10.200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023]
|
22
|
Wohlschlager T, Titz A, Künzler M, Varrot A. Expression, Purification, and Functional Characterization of Tectonin 2 from Laccaria bicolor: A Six-Bladed Beta-Propeller Lectin Specific for O-Methylated Glycans. Methods Mol Biol 2020; 2132:669-682. [PMID: 32306366 DOI: 10.1007/978-1-0716-0430-4_58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tectonins are conserved defense proteins of innate immune systems featuring a β-propeller fold. Tectonin 2 from Laccaria bicolor, Lb-Tec2, is the first fungal representative of the tectonin superfamily that has been described. In-depth characterization revealed a specificity for O-methylated glycans and identified a unique sequence motif and binding site architecture underlying this unusual specificity. This chapter provides information on how to produce and purify recombinant Lb-Tec2, characterize its interaction with O-methylated glycans and demonstrate its biological function.
Collapse
Affiliation(s)
- Therese Wohlschlager
- Department of Biology, Institute of Microbiology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland.,Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Salzburg, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Hannover-Braunschweig, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Markus Künzler
- Department of Biology, Institute of Microbiology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | | |
Collapse
|
23
|
Machon O, Varrot A. Expression, Purification, and Applications of the Recombinant Lectin PVL from Psathyrella velutina Specific for Terminal N-Acetyl-Glucosamine. Methods Mol Biol 2020; 2132:421-436. [PMID: 32306349 DOI: 10.1007/978-1-0716-0430-4_41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The lectin PVL from the mushroom Psathyrella velutina is the founding member of novel family of fungal lectins. It adopts a seven bladed β-propeller presenting six binding sites specific for the recognition of non-reducing terminal N-acetyl-glucosamine (GlcNAc). The latest can be mainly found in glycoconjugates presenting truncated glycans where aberrant β-GlcNAc terminated glycans represent tumor markers. It can also be found in O-GlcNAcylated proteins where disruption of the O-GlcNAcylation homeostasis is associated with many physiopathological states. The recombinant PVL lectin proved to be a very powerful tool for labelling terminal GlcNAc antigens displayed by extracellular glycoconjugates but also by O-GlcNAcylated proteins found in the cytoplasm and nucleus. This chapter will describe how to produce and purify recombinant PVL and several applications for rPVL as probe for the detection of terminal O-GlcNAc.
Collapse
Affiliation(s)
- Oriane Machon
- Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | | |
Collapse
|
24
|
Notova S, Bonnardel F, Lisacek F, Varrot A, Imberty A. Structure and engineering of tandem repeat lectins. Curr Opin Struct Biol 2019; 62:39-47. [PMID: 31841833 DOI: 10.1016/j.sbi.2019.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/28/2022]
Abstract
Through their ability to bind complex glycoconjugates, lectins have unique specificity and potential for biomedical and biotechnological applications. In particular, lectins with short repeated peptides forming carbohydrate-binding domains are not only of high interest for understanding protein evolution but can also be used as scaffold for engineering novel receptors. Synthetic glycobiology now provides the tools for engineering the specificity of lectins as well as their structure, multivalency and topologies. This review focuses on the structure and diversity of two families of tandem-repeat lectins, that is, β-trefoils and β-propellers, demonstrated as the most promising scaffold for engineering novel lectins.
Collapse
Affiliation(s)
- Simona Notova
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - François Bonnardel
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France; SIB Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland; Computer Science Department, UniGe, CH-1227 Geneva, Switzerland
| | - Frédérique Lisacek
- SIB Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland; Computer Science Department, UniGe, CH-1227 Geneva, Switzerland; Section of Biology, UniGe, CH-1205 Geneva, Switzerland
| | | | - Anne Imberty
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.
| |
Collapse
|
25
|
Kaus K, Biester A, Chupp E, Lu J, Visudharomn C, Olson R. The 1.9 Å crystal structure of the extracellular matrix protein Bap1 from Vibrio cholerae provides insights into bacterial biofilm adhesion. J Biol Chem 2019; 294:14499-14511. [PMID: 31439670 DOI: 10.1074/jbc.ra119.008335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/16/2019] [Indexed: 01/09/2023] Open
Abstract
Growth of the cholera bacterium Vibrio cholerae in a biofilm community contributes to both its pathogenicity and survival in aquatic environmental niches. The major components of V. cholerae biofilms include Vibrio polysaccharide (VPS) and the extracellular matrix proteins RbmA, RbmC, and Bap1. To further elucidate the previously observed overlapping roles of Bap1 and RbmC in biofilm architecture and surface attachment, here we investigated the structural and functional properties of Bap1. Soluble expression of Bap1 was possible only after the removal of an internal 57-amino-acid-long hydrophobic insertion sequence. The crystal structure of Bap1 at 1.9 Å resolution revealed a two-domain assembly made up of an eight-bladed β-propeller interrupted by a β-prism domain. The structure also revealed metal-binding sites within canonical calcium blade motifs, which appear to have structural rather than functional roles. Contrary to results previously observed with RbmC, the Bap1 β-prism domain did not exhibit affinity for complex N-glycans, suggesting an altered role of this domain in biofilm-surface adhesion. Native polyacrylamide gel shift analysis did suggest that Bap1 exhibits lectin activity with a preference for anionic or linear polysaccharides. Our results suggest a model for V. cholerae biofilms in which Bap1 and RbmC play dominant but differing adhesive roles in biofilms, allowing bacterial attachment to diverse environmental or host surfaces.
Collapse
Affiliation(s)
- Katherine Kaus
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Alison Biester
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Ethan Chupp
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Jianyi Lu
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Charlie Visudharomn
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Rich Olson
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| |
Collapse
|