1
|
Arcario MJ, Dalal V, Fan D, Cheng WWL. Examining the Thermotropic properties of Large, Circularized Nanodiscs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647641. [PMID: 40291733 PMCID: PMC12026983 DOI: 10.1101/2025.04.07.647641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Nanodiscs, soluble membrane mimetics composed of an amphipathic membrane scaffold protein encircling a lipid bilayer, are widely used in biophysical and structural studies of membrane proteins. Because many membrane proteins are responsive to their membrane environment, through specific protein-lipid interactions and bulk membrane shape and structure, it is important to understand the properties of lipid bilayers contained within nanodiscs in order to interpret studies using this technology. Nanodiscs are known to alter lipid properties, such as membrane thickness and melting temperature, and interactions with the nanodisc rim have been hypothesized to produce local perturbations in lipid structure and dynamics. Larger nanodiscs should compensate for this effect with a larger unperturbed area. To test this hypothesis, we examined the lipid bilayer properties of several lipids (DMPC, DPPC, POPC, DSPC) and soy polar extract in circularized nanodiscs of 11 nm to 50 nm diameter using the environmentally-sensitive fluorophore, Laurdan. In nanodiscs containing a single lipid type, as nanodisc size increased, lipid packing, melting temperature, and cooperativity better approximated the properties of that lipid in large unilamellar vesicles (LUVs). In spNW50 (50 nm nanodisc), the lipid packing and melting temperature were identical to LUVs. However, nanodiscs containing soy polar lipids did not follow this trend suggesting that complex lipid mixtures may produce preferential incorporation of lipids into the nanodisc or nonhomogeneous distribution of lipids within the nanodisc.
Collapse
|
2
|
Koh YH, Kim SJ, Roh SH. Unraveling membrane protein localization and interactions in nanodiscs. FEBS Lett 2025; 599:512-529. [PMID: 39607859 DOI: 10.1002/1873-3468.15059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
Nanodiscs, consisting of a lipid bilayer surrounded by membrane scaffold proteins (MSPs), are extensively used to study membrane proteins (MPs) because they provide a stable lipid environment. However, the precise mechanism governing MP behavior within the nanodisc remains elusive. Here, we examined the cryo-EM structures of various MPs reconstituted in nanodiscs from EMPIAR. By analyzing the heterogeneity and interactions in the nanodiscs, we discovered that MPs display a distinct spatial preference toward the edges of the nanodisc shells. Furthermore, MPs can establish direct, amphipathic interactions with the MSPs, causing a reduction in local protein dynamics. These interactions may rearrange MSP-MSP interactions into MP-MSP interactions. Collectively, we provide structural insights into how nanodiscs contribute to MP structural behavior and dynamics. Impact statement Nanodiscs are used to study membrane proteins (MPs), but the mechanisms governing the behavior of MPs within nanodiscs remain elusive. Here, we provide structural insights into how nanodiscs contribute to the behavior of MPs, which will aid the interpretation of cryo-EM studies performed using nanodiscs.
Collapse
Affiliation(s)
- Young Hoon Koh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, South Korea
| | - So-Jung Kim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, South Korea
| | - Soung-Hun Roh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, South Korea
| |
Collapse
|
3
|
Vassallo N. Poration of mitochondrial membranes by amyloidogenic peptides and other biological toxins. J Neurochem 2025; 169:e16213. [PMID: 39213385 DOI: 10.1111/jnc.16213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Mitochondria are essential organelles known to serve broad functions, including in cellular metabolism, calcium buffering, signaling pathways and the regulation of apoptotic cell death. Maintaining the integrity of the outer (OMM) and inner mitochondrial membranes (IMM) is vital for mitochondrial health. Cardiolipin (CL), a unique dimeric glycerophospholipid, is the signature lipid of energy-converting membranes. It plays a significant role in maintaining mitochondrial architecture and function, stabilizing protein complexes and facilitating efficient oxidative phosphorylation (OXPHOS) whilst regulating cytochrome c release from mitochondria. CL is especially enriched in the IMM and at sites of contact between the OMM and IMM. Disorders of protein misfolding, such as Alzheimer's and Parkinson's diseases, involve amyloidogenic peptides like amyloid-β, tau and α-synuclein, which form metastable toxic oligomeric species that interact with biological membranes. Electrophysiological studies have shown that these oligomers form ion-conducting nanopores in membranes mimicking the IMM's phospholipid composition. Poration of mitochondrial membranes disrupts the ionic balance, causing osmotic swelling, loss of the voltage potential across the IMM, release of pro-apoptogenic factors, and leads to cell death. The interaction between CL and amyloid oligomers appears to favour their membrane insertion and pore formation, directly implicating CL in amyloid toxicity. Additionally, pore formation in mitochondrial membranes is not limited to amyloid proteins and peptides; other biological peptides, as diverse as the pro-apoptotic Bcl-2 family members, gasdermin proteins, cobra venom cardiotoxins and bacterial pathogenic toxins, have all been described to punch holes in mitochondria, contributing to cell death processes. Collectively, these findings underscore the vulnerability of mitochondria and the involvement of CL in various pathogenic mechanisms, emphasizing the need for further research on targeting CL-amyloid interactions to mitigate mitochondrial dysfunction.
Collapse
Affiliation(s)
- Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Tal-Qroqq, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Tal-Qroqq, Malta
| |
Collapse
|
4
|
Vilela F, Sauvanet C, Bezault A, Volkmann N, Hanein D. Optimizing Transmembrane Protein Assemblies in Nanodiscs for Structural Studies: A Comprehensive Manual. Bio Protoc 2024; 14:e5099. [PMID: 39525973 PMCID: PMC11543783 DOI: 10.21769/bioprotoc.5099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/01/2024] [Accepted: 09/29/2024] [Indexed: 11/16/2024] Open
Abstract
Membrane protein structures offer a more accurate basis for understanding their functional correlates when derived from full-length proteins in their native lipid environment. Producing such samples has been a primary challenge in the field. Here, we present robust, step-by-step biochemical and biophysical protocols for generating monodisperse assemblies of full-length transmembrane proteins within lipidic environments. These protocols are particularly tailored for cases where the size and molecular weight of the proteins align closely with those of the lipid islands (nanodiscs). While designed for single-span bitopic membrane proteins, these protocols can be easily extended to proteins with multiple transmembrane domains. The insights presented have broad implications across diverse fields, including biophysics, structural biology, and cryogenic electron microscopy (cryo-EM) studies. Key features • Overview of the sample preparation steps from protein expression and purification and reconstitution of membrane proteins in nanodiscs, as well as biobeads and lipids preparation. • Focus on single-span bitopic transmembrane proteins. • Includes protocols for validation procedures via characterization using biochemical, biophysical, and computational techniques. • Guide for cryogenic electron microscopy data acquisition from vitrification to image processing.
Collapse
Affiliation(s)
- Fernando Vilela
- Structural Studies of Macromolecular Machines in Cellulo Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
- Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
| | - Cécile Sauvanet
- Structural Studies of Macromolecular Machines in Cellulo Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
- Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
| | - Armel Bezault
- Structural Studies of Macromolecular Machines in Cellulo Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
- Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
| | - Niels Volkmann
- Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
- Department of Biological Engineering; Department of Electrical and Computer Engineering University of California, Santa Barbara, CA, USA
| | - Dorit Hanein
- Department of Chemistry and Biochemistry, Department of Biological Engineering, University of California, Santa Barbara, CA, USA
| |
Collapse
|
5
|
Rouchidane Eyitayo A, Daury L, Priault M, Manon S. The membrane insertion of the pro-apoptotic protein Bax is a Tom22-dependent multi-step process: a study in nanodiscs. Cell Death Discov 2024; 10:335. [PMID: 39043635 PMCID: PMC11266675 DOI: 10.1038/s41420-024-02108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Membrane insertion of the pro-apoptotic protein Bax was investigated by setting up cell-free synthesis of full-length Bax in the presence of pre-formed nanodiscs. While Bax was spontaneously poorly inserted in nanodiscs, co-synthesis with the mitochondrial receptor Tom22 stimulated Bax membrane insertion. The initial interaction of Bax with the lipid bilayer exposed the hydrophobic GALLL motif in Hα1 leading to Bax precipitation through hydrophobic interactions. The same motif was recognized by Tom22, triggering conformational changes leading to the extrusion and the ensuing membrane insertion of the C-terminal hydrophobic Hα9. Tom22 was also required for Bax-membrane insertion after Bax was activated either by BH3-activators or by its release from Bcl-xL by WEHI-539. The effect of Tom22 was impaired by D154Y substitution in Bax-Hα7 and T174P substitution in Bax-Hα9, which are found in several tumors. Conversely, a R9E substitution promoted a spontaneous insertion of Bax in nanodiscs, in the absence of Tom22. Both Tom22-activated Bax and BaxR9E alone permeabilized liposomes to dextran-10kDa and formed ~5-nm-diameter pores in nanodiscs. The concerted regulation of Bax membrane insertion by Tom22 and BH3-activators is discussed.
Collapse
Affiliation(s)
| | - Laetitia Daury
- CNRS, Université de Bordeaux, UMR 5248, CBMN, Pessac, France
| | - Muriel Priault
- CNRS, Université de Bordeaux, UMR 5095, IBGC, Bordeaux, France
| | - Stéphen Manon
- CNRS, Université de Bordeaux, UMR 5095, IBGC, Bordeaux, France.
| |
Collapse
|
6
|
Wang B, Tieleman DP. The structure, self-assembly and dynamics of lipid nanodiscs revealed by computational approaches. Biophys Chem 2024; 309:107231. [PMID: 38569455 DOI: 10.1016/j.bpc.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Nanodisc technology is increasingly being used in structural, biochemical and biophysical studies of membrane proteins. The computational approaches have revealed many important features of nanodisc assembly, structures and dynamics. Therefore, we reviewed the application of computational approaches, especially molecular modeling and molecular dyncamics (MD) simulations, to characterize nanodiscs, including the structural models, assembly and disassembly, protocols for modeling, structural properties and dynamics, and protein-lipid interactions in nanodiscs. More amazing computational studies about nanodiscs are looked forward to in the future.
Collapse
Affiliation(s)
- Beibei Wang
- Centre for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China.
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary T2N 1N4, Canada.
| |
Collapse
|
7
|
Clifton LA, Wacklin-Knecht HP, Ådén J, Mushtaq AU, Sparrman T, Gröbner G. Creation of distinctive Bax-lipid complexes at mitochondrial membrane surfaces drives pore formation to initiate apoptosis. SCIENCE ADVANCES 2023; 9:eadg7940. [PMID: 37267355 PMCID: PMC10413641 DOI: 10.1126/sciadv.adg7940] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 06/04/2023]
Abstract
Apotosis is an essential process tightly regulated by the Bcl-2 protein family where proapoptotic Bax triggers cell death by perforating the mitochondrial outer membrane. Although intensively studied, the molecular mechanism by which these proteins create apoptotic pores remains elusive. Here, we show that Bax creates pores by extracting lipids from outer mitochondrial membrane mimics by formation of Bax/lipid clusters that are deposited on the membrane surface. Time-resolved neutron reflectometry and Fourier transform infrared spectroscopy revealed two kinetically distinct phases in the pore formation process, both of which were critically dependent on cardiolipin levels. The initially fast adsorption of Bax on the mitochondrial membrane surface is followed by a slower formation of pores and Bax-lipid clusters on the membrane surface. Our findings provide a robust molecular understanding of mitochondrial membrane perforation by cell-killing Bax protein and illuminate the initial phases of programmed cellular death.
Collapse
Affiliation(s)
- Luke A. Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 OQX, UK
| | - Hanna P. Wacklin-Knecht
- European Spallation Source ERIC, ESS, P.O. Box 176, SE-22100 Lund, Sweden
- Department of Chemistry, Division of Physical Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Jörgen Ådén
- Department of Chemistry, University of Umeå, SE-90187 Umeå, Sweden
| | - Ameeq Ul Mushtaq
- Department of Chemistry, University of Umeå, SE-90187 Umeå, Sweden
| | - Tobias Sparrman
- Department of Chemistry, University of Umeå, SE-90187 Umeå, Sweden
| | - Gerhard Gröbner
- Department of Chemistry, University of Umeå, SE-90187 Umeå, Sweden
| |
Collapse
|
8
|
Rouchidane Eyitayo A, Boudier-Lemosquet A, Chaignepain S, Priault M, Manon S. Bcl-xL Is Spontaneously Inserted into Preassembled Nanodiscs and Stimulates Bax Insertion in a Cell-Free Protein Synthesis System. Biomolecules 2023; 13:876. [PMID: 37371456 DOI: 10.3390/biom13060876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
The antiapoptotic protein Bcl-xL is a major regulator of cell death and survival, but many aspects of its functions remain elusive. It is mostly localized in the mitochondrial outer membrane (MOM) owing to its C-terminal hydrophobic α-helix. In order to gain further information about its membrane organization, we set up a model system combining cell-free protein synthesis and nanodisc insertion. We found that, contrary to its proapoptotic partner Bax, neosynthesized Bcl-xL was spontaneously inserted into nanodiscs. The deletion of the C-terminal α-helix of Bcl-xL prevented nanodisc insertion. We also found that nanodisc insertion protected Bcl-xL against the proteolysis of the 13 C-terminal residues that occurs during expression of Bcl-xL as a soluble protein in E. coli. Interestingly, we observed that Bcl-xL increased the insertion of Bax into nanodiscs, in a similar way to that which occurs in mitochondria. Cell-free synthesis in the presence of nanodiscs is, thus, a suitable model system to study the molecular aspects of the interaction between Bcl-xL and Bax during their membrane insertion.
Collapse
Affiliation(s)
- Akandé Rouchidane Eyitayo
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, 33077 Bordeaux, France
| | - Axel Boudier-Lemosquet
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, 33077 Bordeaux, France
| | - Stéphane Chaignepain
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, 33077 Bordeaux, France
- Centre de Génomique Fonctionnelle de Bordeaux, Université de Bordeaux, 33077 Bordeaux, France
| | - Muriel Priault
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, 33077 Bordeaux, France
| | - Stéphen Manon
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, 33077 Bordeaux, France
| |
Collapse
|
9
|
Moldoveanu T. Apoptotic mitochondrial poration by a growing list of pore-forming BCL-2 family proteins. Bioessays 2023; 45:e2200221. [PMID: 36650950 PMCID: PMC9975053 DOI: 10.1002/bies.202200221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
The pore-forming BCL-2 family proteins are effectors of mitochondrial poration in apoptosis initiation. Two atypical effectors-BOK and truncated BID (tBID)-join the canonical effectors BAK and BAX. Gene knockout revealed developmental phenotypes in the absence the effectors, supporting their roles in vivo. During apoptosis effectors are activated and change shape from dormant monomers to dynamic oligomers that associate with and permeabilize mitochondria. BID is activated by proteolysis, BOK accumulates on inhibition of its degradation by the E3 ligase gp78, while BAK and BAX undergo direct activation by BH3-only initiators, autoactivation, and crossactivation. Except tBID, effector oligomers on the mitochondria appear as arcs and rings in super-resolution microscopy images. The BH3-in-groove dimers of BAK and BAX, the tBID monomers, and uncharacterized BOK species are the putative building blocks of apoptotic pores. Effectors interact with lipids and bilayers but the mechanism of membrane poration remains elusive. I discuss effector-mediated mitochondrial poration.
Collapse
Affiliation(s)
- Tudor Moldoveanu
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences,Correspondence:
| |
Collapse
|
10
|
Elbahnasawy MA, Nasr ML. DNA-nanostructure-templated assembly of planar and curved lipid-bilayer membranes. Front Chem 2023; 10:1047874. [PMID: 36844038 PMCID: PMC9944057 DOI: 10.3389/fchem.2022.1047874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2022] [Indexed: 02/10/2023] Open
Abstract
Lipid-bilayer nanodiscs and liposomes have been developed to stabilize membrane proteins in order to study their structures and functions. Nanodiscs are detergent-free, water-soluble, and size-controlled planar phospholipid-bilayer platforms. On the other hand, liposomes are curved phospholipid-bilayer spheres with an aqueous core used as drug delivery systems and model membrane platforms for studying cellular activities. A long-standing challenge is the generation of a homogenous and monodispersed lipid-bilayer system with a very wide range of dimensions and curvatures (elongation, bending, and twisting). A DNA-origami template provides a way to control the shapes, sizes, and arrangements of lipid bilayers via enforcing the assembly of lipid bilayers within the cavities created by DNA nanostructures. Here, we provide a concise overview and discuss how to design planar and curved lipid-bilayer membranes by using DNA-origami nanostructures as templates. Finally, we will discuss the potential applications of DNA-origami nanostructures in the structural and functional studies of large membrane proteins and their complexes.
Collapse
Affiliation(s)
- Mostafa A. Elbahnasawy
- Immunology Laboratory, Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mahmoud L. Nasr
- Renal Division and Engineering in Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Johansen NT, Tidemand FG, Pedersen MC, Arleth L. Travel light: Essential packing for membrane proteins with an active lifestyle. Biochimie 2023; 205:3-26. [PMID: 35963461 DOI: 10.1016/j.biochi.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
We review the considerable progress during the recent decade in the endeavours of designing, optimising, and utilising carrier particle systems for structural and functional studies of membrane proteins in near-native environments. New and improved systems are constantly emerging, novel studies push the perceived limits of a given carrier system, and specific carrier systems consolidate and entrench themselves as the system of choice for particular classes of target membrane protein systems. This review covers the most frequently used carrier systems for such studies and emphasises similarities and differences between these systems as well as current trends and future directions for the field. Particular interest is devoted to the biophysical properties and membrane mimicking ability of each system and the manner in which this may impact an embedded membrane protein and an eventual structural or functional study.
Collapse
Affiliation(s)
- Nicolai Tidemand Johansen
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark.
| | - Frederik Grønbæk Tidemand
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| |
Collapse
|
12
|
Wang B, Tieleman DP. Release of nanodiscs from charged nano-droplets in the electrospray ionization revealed by molecular dynamics simulations. Commun Chem 2023; 6:21. [PMID: 36717705 PMCID: PMC9886951 DOI: 10.1038/s42004-023-00818-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Electrospray ionization (ESI) is essential for application of mass spectrometry in biological systems, as it prevents the analyte being split into fragments. However, due to lack of a clear understanding of the mechanism of ESI, the interpretation of mass spectra is often ambiguous. This is a particular challenge for complex biological systems. Here, we focus on systems that include nanodiscs as membrane environment, which are essential for membrane proteins. We performed microsecond atomistic molecular dynamics simulations to study the release of nanodiscs from highly charged nano-droplets into the gas phase, the late stage of ESI. We observed two distinct major scenarios, highlighting the diversity of morphologies of gaseous product ions. Our simulations are in reasonable agreement with experimental results. Our work provides a detailed atomistic view of the ESI process of a heterogeneous system (lipid nanodisc), which may give insights into the interpretation of mass spectra of all lipid-protein systems.
Collapse
Affiliation(s)
- Beibei Wang
- grid.20513.350000 0004 1789 9964Centre for Advanced Materials Research, Beijing Normal University, Zhuhai, 519087 People’s Republic of China
| | - D. Peter Tieleman
- grid.22072.350000 0004 1936 7697Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, T2N 1N4 Canada
| |
Collapse
|
13
|
Rouchidane Eyitayo A, Giraud MF, Daury L, Lambert O, Gonzalez C, Manon S. Cell-free synthesis and reconstitution of Bax in nanodiscs: Comparison between wild-type Bax and a constitutively active mutant. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184075. [PMID: 36273540 DOI: 10.1016/j.bbamem.2022.184075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Bax is a major player in the mitochondrial pathway of apoptosis, by making the Outer Mitochondrial Membrane (OMM) permeable to various apoptogenic factors, including cytochrome c. In order to get further insight into the structure and function of Bax when it is inserted in the OMM, we attempted to reconstitute Bax in nanodiscs. Cell-free protein synthesis in the presence of nanodiscs did not yield Bax-containing nanodiscs, but it provided a simple way to purify full-length Bax without any tag. Purified wild-type Bax (BaxWT) and a constitutively active mutant (BaxP168A) displayed biochemical properties that were in line with previous characterizations following their expression in yeast and human cells followed by their reconstitution into liposomes. Both Bax variants were then reconstituted in nanodiscs. Size exclusion chromatography, dynamic light scattering and transmission electron microscopy showed that nanodiscs formed with BaxP168A were larger than nanodiscs formed with BaxWT. This was consistent with the hypothesis that BaxP168A was reconstituted in nanodiscs as an active oligomer.
Collapse
Affiliation(s)
| | - Marie-France Giraud
- IBGC, UMR5095, CNRS, Université de Bordeaux, France; CBMN, UMR5248, CNRS, Université de Bordeaux, France
| | | | | | | | - Stéphen Manon
- IBGC, UMR5095, CNRS, Université de Bordeaux, France.
| |
Collapse
|
14
|
Sicard F, Yazaydin AO. Biohybrid Membrane Formation by Directed Insertion of Aquaporin into a Solid-State Nanopore. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48029-48036. [PMID: 36244033 PMCID: PMC9614727 DOI: 10.1021/acsami.2c14250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Biohybrid nanopores combine the durability of solid-state nanopores with the precise structure and function of biological nanopores. Particular care must be taken to control how biological nanopores adapt to their surroundings once they come into contact with the solid-state nanopores. Two major challenges are to precisely control this adaptability under dynamic conditions and provide predesigned functionalities that can be manipulated for engineering applications. In this work, we report on the computational design of a distinctive class of biohybrid active membrane layers, built from the directed-insertion of an aquaporin-incorporated lipid nanodisc into a model alkyl-functionalized silica pore. We show that in an aqueous environment when a pressure difference exists between the two sides of the solid-state nanopore, the preferential interactions between the hydrocarbon tail of the lipid molecules that surround the aquaporin protein and the alkyl group functionalizing the interior surface of the silica nanopore enable the insertion of the aquaporin-incorporated lipid shell into the nanopore by forcing out the water molecules. The same preferential interactions are responsible for the structural stability of the inserted aquaporin-incorporated lipid shell as well as the water sealing properties of the lipid-alkyl interface. We further show that the aquaporin protein stabilized in the alkyl-functionalized silica nanopore preserves its biological structure and function in both pure and saline water, and, remarkably, its water permeability is equal to the one measured in the biological environment. The designed biohybrid membrane could pave the way for the development of durable transformative devices for water filtration.
Collapse
|
15
|
Smith NA, Wardak AZ, Cowan AD, Colman PM, Czabotar PE, Smith BJ. The Bak core dimer focuses triacylglycerides in the membrane. Biophys J 2022; 121:347-360. [PMID: 34973947 PMCID: PMC8822611 DOI: 10.1016/j.bpj.2021.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/15/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023] Open
Abstract
Apoptosis, the intrinsic programmed cell death process, is mediated by the Bcl-2 family members Bak and Bax. Activation via formation of symmetric core dimers and oligomerization on the mitochondrial outer membrane (MOM) leads to permeabilization and cell death. Although this process is linked to the MOM, the role of the membrane in facilitating such pores is poorly understood. We recently described Bak core domain dimers, revealing lipid binding sites and an initial role of lipids in oligomerization. Here we describe simulations that identified localized clustering and interaction of triacylglycerides (TAGs) with a minimized Bak dimer construct. Coalescence of TAGs occurred beneath this Bak dimer, mitigating dimer-induced local membrane thinning and curvature in representative coarse-grain MOM and model membrane systems. Furthermore, the effects observed as a result of coarse-grain TAG cluster formation was concentration dependent, scaling from low physiological MOM concentrations to those found in other organelles. We find that increasing the TAG concentration in liposomes mimicking the MOM decreased the ability of activated Bak to permeabilize these liposomes. These results suggest that the presence of TAGs within a Bak-lipid membrane preserves membrane integrity and is associated with reduced membrane stress, suggesting a possible role of TAGs in Bak-mediated apoptosis.
Collapse
Affiliation(s)
- Nicholas A. Smith
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Ahmad Z. Wardak
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Angus D. Cowan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter M. Colman
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter E. Czabotar
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Brian J. Smith
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia,Corresponding author
| |
Collapse
|
16
|
Sperl LE, Rührnößl F, Schiller A, Haslbeck M, Hagn F. High-resolution analysis of the conformational transition of pro-apoptotic Bak at the lipid membrane. EMBO J 2021; 40:e107159. [PMID: 34523144 PMCID: PMC8521305 DOI: 10.15252/embj.2020107159] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022] Open
Abstract
Permeabilization of the outer mitochondrial membrane by pore-forming Bcl2 proteins is a crucial step for the induction of apoptosis. Despite a large set of data suggesting global conformational changes within pro-apoptotic Bak during pore formation, high-resolution structural details in a membrane environment remain sparse. Here, we used NMR and HDX-MS (Hydrogen deuterium exchange mass spectrometry) in lipid nanodiscs to gain important high-resolution structural insights into the conformational changes of Bak at the membrane that are dependent on a direct activation by BH3-only proteins. Furthermore, we determined the first high-resolution structure of the Bak transmembrane helix. Upon activation, α-helix 1 in the soluble domain of Bak dissociates from the protein and adopts an unfolded and dynamic potentially membrane-bound state. In line with this finding, comparative protein folding experiments with Bak and anti-apoptotic BclxL suggest that α-helix 1 in Bak is a metastable structural element contributing to its pro-apoptotic features. Consequently, mutagenesis experiments aimed at stabilizing α-helix 1 yielded Bak variants with delayed pore-forming activity. These insights will contribute to a better mechanistic understanding of Bak-mediated membrane permeabilization.
Collapse
Affiliation(s)
- Laura E Sperl
- Bavarian NMR Center at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Florian Rührnößl
- Center for Functional Protein Assemblies and Department of ChemistryTechnical University of MunichGarchingGermany
| | - Anita Schiller
- Bavarian NMR Center at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Martin Haslbeck
- Center for Functional Protein Assemblies and Department of ChemistryTechnical University of MunichGarchingGermany
| | - Franz Hagn
- Bavarian NMR Center at the Department of ChemistryTechnical University of MunichGarchingGermany
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| |
Collapse
|
17
|
Johansen NT, Luchini A, Tidemand FG, Orioli S, Martel A, Porcar L, Arleth L, Pedersen MC. Structural and Biophysical Properties of Supercharged and Circularized Nanodiscs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6681-6690. [PMID: 34038130 DOI: 10.1021/acs.langmuir.1c00560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanodiscs based on membrane scaffold proteins (MSPs) and phospholipids are used as membrane mimics to stabilize membrane proteins in solution for structural and functional studies. Combining small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and time-resolved small-angle neutron scattering (TR-SANS), we characterized the structure and lipid bilayer properties of five different nanodiscs made with dimyristoylphosphatidylcholine and different MSPs varying in size, charge, and circularization. Our SAXS modeling showed that the structural parameters of the embedded lipids are all similar, irrespective of the MSP properties. DSC showed that the lipid packing is not homogeneous in the nanodiscs and that a 20 Å wide boundary layer of lipids with perturbed packing is located close to the MSP, while the packing of central lipids is tighter than in large unilamellar vesicles. Finally, TR-SANS showed that lipid exchange rates in nanodiscs decrease with increasing nanodisc size and are lower for the nanodiscs made with supercharged MSPs compared to conventional nanodiscs. Altogether, the results provide a thorough biophysical understanding of the nanodisc as a model membrane system, which is important in order to carry out and interpret experiments on membrane proteins embedded in such systems.
Collapse
Affiliation(s)
- Nicolai Tidemand Johansen
- Structural Biophysics Group, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen E, Denmark
| | - Alessandra Luchini
- Structural Biophysics Group, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen E, Denmark
| | - Frederik Grønbæk Tidemand
- Structural Biophysics Group, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen E, Denmark
| | - Simone Orioli
- Structural Biophysics Group, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen E, Denmark
- Structural Biology and NMR Laboratory and Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Anne Martel
- Institut Laue Langevin, 38000 Grenoble, France
| | | | - Lise Arleth
- Structural Biophysics Group, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen E, Denmark
| | - Martin Cramer Pedersen
- Structural Biophysics Group, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen E, Denmark
| |
Collapse
|
18
|
Kjølbye LR, De Maria L, Wassenaar TA, Abdizadeh H, Marrink SJ, Ferkinghoff-Borg J, Schiøtt B. General Protocol for Constructing Molecular Models of Nanodiscs. J Chem Inf Model 2021; 61:2869-2883. [PMID: 34048229 DOI: 10.1021/acs.jcim.1c00157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanodisc technology is increasingly being applied for structural and biophysical studies of membrane proteins. In this work, we present a general protocol for constructing molecular models of nanodiscs for molecular dynamics simulations. The protocol is written in python and based on geometric equations, making it fast and easy to modify, enabling automation and customization of nanodiscs in silico. The novelty being the ability to construct any membrane scaffold protein (MSP) variant fast and easy given only an input sequence. We validated and tested the protocol by simulating seven different nanodiscs of various sizes and with different membrane scaffold proteins, both circularized and noncircularized. The structural and biophysical properties were analyzed and shown to be in good agreement with previously reported experimental data and simulation studies.
Collapse
Affiliation(s)
- Lisbeth R Kjølbye
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.,Novo Nordisk A/S, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | | | - Tsjerk A Wassenaar
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Haleh Abdizadeh
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds vej 14, 8000 Aarhus C, Denmark
| |
Collapse
|
19
|
Ros U, Pedrera L, Garcia-Saez AJ. Techniques for studying membrane pores. Curr Opin Struct Biol 2021; 69:108-116. [PMID: 33945958 DOI: 10.1016/j.sbi.2021.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 01/30/2023]
Abstract
Pore-forming proteins (PFPs) are of special interest because of the association of their activity with the disruption of the membrane impermeability barrier and cell death. They generally convert from a monomeric, soluble form into transmembrane oligomers that induce the opening of membrane pores. The study of pore formation in membranes with molecular detail remains a challenging endeavor because of its highly dynamic and complex nature, usually involving diverse oligomeric structures with different functionalities. Here we discuss current methods applied for the structural and functional characterization of PFPs at the individual vesicle and cell level. We highlight how the development of high-resolution and single-molecule imaging techniques allows the analysis of the structural organization of protein oligomers and pore entities in lipid membranes.
Collapse
Affiliation(s)
- Uris Ros
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Lohans Pedrera
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Ana J Garcia-Saez
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany.
| |
Collapse
|
20
|
Iadanza MG, Schiffrin B, White P, Watson MA, Horne JE, Higgins AJ, Calabrese AN, Brockwell DJ, Tuma R, Kalli AC, Radford SE, Ranson NA. Distortion of the bilayer and dynamics of the BAM complex in lipid nanodiscs. Commun Biol 2020; 3:766. [PMID: 33318620 PMCID: PMC7736308 DOI: 10.1038/s42003-020-01419-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 10/12/2020] [Indexed: 11/28/2022] Open
Abstract
The β-barrel assembly machinery (BAM) catalyses the folding and insertion of β-barrel outer membrane proteins (OMPs) into the outer membranes of Gram-negative bacteria by mechanisms that remain unclear. Here, we present an ensemble of cryoEM structures of the E. coli BamABCDE (BAM) complex in lipid nanodiscs, determined using multi-body refinement techniques. These structures, supported by single-molecule FRET measurements, describe a range of motions in the BAM complex, mostly localised within the periplasmic region of the major subunit BamA. The β-barrel domain of BamA is in a 'lateral open' conformation in all of the determined structures, suggesting that this is the most energetically favourable species in this bilayer. Strikingly, the BAM-containing lipid nanodisc is deformed, especially around BAM's lateral gate. This distortion is also captured in molecular dynamics simulations, and provides direct structural evidence for the lipid 'disruptase' activity of BAM, suggested to be an important part of its functional mechanism.
Collapse
Affiliation(s)
- Matthew G Iadanza
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul White
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew A Watson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Anna J Higgins
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Antreas C Kalli
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
21
|
Schachter I, Allolio C, Khelashvili G, Harries D. Confinement in Nanodiscs Anisotropically Modifies Lipid Bilayer Elastic Properties. J Phys Chem B 2020; 124:7166-7175. [PMID: 32697588 PMCID: PMC7526989 DOI: 10.1021/acs.jpcb.0c03374] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
Lipid
nanodiscs are small synthetic lipid bilayer structures that
are stabilized in solution by special circumscribing (or scaffolding)
proteins or polymers. Because they create native-like environments
for transmembrane proteins, lipid nanodiscs have become a powerful
tool for structural determination of this class of systems when combined
with cryo-electron microscopy or nuclear magnetic resonance. The elastic
properties of lipid bilayers determine how the lipid environment responds
to membrane protein perturbations, and how the lipid in turn modifies
the conformational state of the embedded protein. However, despite
the abundant use of nanodiscs in determining membrane protein structure,
the elastic material properties of even pure lipid nanodiscs (i.e.,
without embedded proteins) have not yet been quantitatively investigated.
A major hurdle is due to the inherently nonlocal treatment of the
elastic properties of lipid systems implemented by most existing methods,
both experimental and computational. In addition, these methods are
best suited for very large “infinite” size lipidic assemblies,
or ones that contain periodicity, in the case of simulations. We have
previously described a computational analysis of molecular dynamics
simulations designed to overcome these limitations, so it allows quantification
of the bending rigidity (KC) and tilt
modulus (κt) on a local scale even for finite, nonperiodic
systems, such as lipid nanodiscs. Here we use this computational approach
to extract values of KC and κt for a set of lipid nanodisc systems that vary in size and
lipid composition. We find that the material properties of lipid nanodiscs
are different from those of infinite bilayers of corresponding lipid
composition, highlighting the effect of nanodisc confinement. Nanodiscs
tend to show higher stiffness than their corresponding macroscopic
bilayers, and moreover, their material properties vary spatially within
them. For small-size MSP1 nanodiscs, the stiffness decreases radially,
from a value that is larger in their center than the moduli of the
corresponding bilayers by a factor of ∼2–3. The larger
nanodiscs (MSP1E3D1 and MSP2N2) show milder spatial changes of moduli
that are composition dependent and can be maximal in the center or
at some distance from it. These trends in moduli correlate with spatially
varying structural properties, including the area per lipid and the
nanodisc thickness. Finally, as has previously been reported, nanodiscs
tend to show deformations from perfectly flat circular geometries
to varying degrees, depending on size and lipid composition. The modulations
of lipid elastic properties that we find should be carefully considered
when making structural and functional inferences concerning embedded
proteins.
Collapse
Affiliation(s)
- Itay Schachter
- Institute of Chemistry, the Fritz Haber Research Center, and the Harvey M. Kruger center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Christoph Allolio
- Institute of Mathematics, Faculty of Mathematics and Physics, Charles University, Prague 18674, Czech Republic
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10065, United States.,Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York 10065, United States
| | - Daniel Harries
- Institute of Chemistry, the Fritz Haber Research Center, and the Harvey M. Kruger center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|