1
|
Liu Y, Zhou F, Wang XA, Chen XM, Zheng LL, Chen HY, Ma SJ. Molecular detection and genotyping of bovine viral diarrhea virus in four provinces of China. Arch Virol 2025; 170:114. [PMID: 40299171 DOI: 10.1007/s00705-025-06304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/17/2025] [Indexed: 04/30/2025]
Abstract
Bovine viral diarrhea virus (BVDV) is one of the major pathogens hindering the development of the global beef industry. To investigate the epidemic profile and genetic diversity of this virus, a total of 77 fecal samples were collected from cattle with diarrhea in Henan, Sichuan, Shandong, and Hebei provinces of China during 2023-2024 and screened for the presence of BVDV using reverse transcription polymerase chain reaction (RT-PCR). The results showed that 35 of the 77 bovine samples (45%) were positive for BVDV, with the highest positive rate of 26% (20/77) in Henan province. The 5'-UTR sequences of the viruses from 21 positive samples and the whole-genome sequence from one sample (BVDV-385) were determined and analyzed. The 5'-UTR sequences from this study were 74.7-96.4% identical to those of 23 reference sequences. Phylogenetic analysis based on the 5'-UTR sequences indicated that 20 of the strains belonged to the subtype BVDV-1m, while only one, BVDV-385 from Henan province, belonged to genotype BVDV-3. Analysis of the genome sequence of strain BVDV-385 showed that its E2 protein has a unique amino acid (aa) deletion and ten unique aa substitutions, and its NS5B protein has seven unique aa substitutions. The variations were predicted to affect four potential linear B cell epitopes in the E2 protein and to introduce a potential non-canonical N-glycosylation site (574 NPS) in the NS5B protein. The results of this study contribute to our understanding of the genetic diversity of BVDV in China.
Collapse
Affiliation(s)
- Ying Liu
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake #15, Zhengzhou, Henan Province, 450046, P.R. China
| | - Feng Zhou
- Henan Seed Industry Development Center, Zhengzhou, Henan Province, 450000, P.R. China
| | - Xuan-Ang Wang
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake #15, Zhengzhou, Henan Province, 450046, P.R. China
| | - Xi-Meng Chen
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake #15, Zhengzhou, Henan Province, 450046, P.R. China
| | - Lan-Lan Zheng
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake #15, Zhengzhou, Henan Province, 450046, P.R. China
| | - Hong-Ying Chen
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake #15, Zhengzhou, Henan Province, 450046, P.R. China.
| | - Shi-Jie Ma
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake #15, Zhengzhou, Henan Province, 450046, P.R. China.
| |
Collapse
|
2
|
Chen HW, Zaruba M, Dawood A, Düsterhöft S, Lamp B, Ruemenapf T, Riedel C. Modulation of ADAM17 Levels by Pestiviruses Is Species-Specific. Viruses 2024; 16:1564. [PMID: 39459898 PMCID: PMC11512297 DOI: 10.3390/v16101564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Upon host cell infection, viruses modulate their host cells to better suit their needs, including the downregulation of virus entry receptors. ADAM17, a cell surface sheddase, is an essential factor for infection of bovine cells with several pestiviruses. To assess the effect of pestivirus infection on ADAM17, the amounts of cellular ADAM17 and its presence at the cell surface were determined. Mature ADAM17 levels were reduced upon infection with a cytopathic pestivirus bovis (bovine viral diarrhea virus, cpBVDV), pestivirus suis (classical swine fever virus, CSFV) or pestivirus giraffae (strain giraffe), but not negatively affected by pestivirus L (Linda virus, LindaV). A comparable reduction of ADAM17 surface levels, which represents the bioactive form, could be observed in the presence of E2 of BVDV and CSFV, but not LindaV or atypical porcine pestivirus (pestivirus scrofae) E2. Superinfection exclusion in BVDV infection is caused by at least two proteins, glycoprotein E2 and protease/helicase NS3. To evaluate whether the lowered ADAM17 levels could be involved in superinfection exclusion, persistently CSFV- or LindaV-infected cells were challenged with different pestiviruses. Persistently LindaV-infected cells were significantly more susceptible to cpBVDV infection than persistently CSFV-infected cells, whilst the other pestiviruses tested were not or only hardly able to infect the persistently infected cells. These results provide evidence of a pestivirus species-specific effect on ADAM17 levels and hints at the possibility of its involvement in superinfection exclusion.
Collapse
Affiliation(s)
- Hann-Wei Chen
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (H.-W.C.); (M.Z.); (A.D.)
| | - Marianne Zaruba
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (H.-W.C.); (M.Z.); (A.D.)
| | - Aroosa Dawood
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (H.-W.C.); (M.Z.); (A.D.)
| | - Stefan Düsterhöft
- Institute for Molecular Pharmacology, RWTH Aachen University, 52062 Aachen, Germany;
| | - Benjamin Lamp
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany;
| | - Till Ruemenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria; (H.-W.C.); (M.Z.); (A.D.)
| | - Christiane Riedel
- CIRI—Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France
| |
Collapse
|
3
|
Mifsud JCO, Lytras S, Oliver MR, Toon K, Costa VA, Holmes EC, Grove J. Mapping glycoprotein structure reveals Flaviviridae evolutionary history. Nature 2024; 633:695-703. [PMID: 39232167 PMCID: PMC11410658 DOI: 10.1038/s41586-024-07899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024]
Abstract
Viral glycoproteins drive membrane fusion in enveloped viruses and determine host range, tissue tropism and pathogenesis1. Despite their importance, there is a fragmentary understanding of glycoproteins within the Flaviviridae2, a large virus family that include pathogens such as hepatitis C, dengue and Zika viruses, and numerous other human, animal and emergent viruses. For many flaviviruses the glycoproteins have not yet been identified, for others, such as the hepaciviruses, the molecular mechanisms of membrane fusion remain uncharacterized3. Here we combine phylogenetic analyses with protein structure prediction to survey glycoproteins across the entire Flaviviridae. We find class II fusion systems, homologous to the Orthoflavivirus E glycoprotein in most species, including highly divergent jingmenviruses and large genome flaviviruses. However, the E1E2 glycoproteins of the hepaciviruses, pegiviruses and pestiviruses are structurally distinct, may represent a novel class of fusion mechanism, and are strictly associated with infection of vertebrate hosts. By mapping glycoprotein distribution onto the underlying phylogeny, we reveal a complex evolutionary history marked by the capture of bacterial genes and potentially inter-genus recombination. These insights, made possible through protein structure prediction, refine our understanding of viral fusion mechanisms and reveal the events that have shaped the diverse virology and ecology of the Flaviviridae.
Collapse
Affiliation(s)
- Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Spyros Lytras
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Michael R Oliver
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Kamilla Toon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Vincenzo A Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Joe Grove
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
4
|
Avello V, Salazar S, González EE, Campos P, Manríque V, Mathieu C, Hugues F, Cabezas I, Gädicke P, Parra NC, Acosta J, Sánchez O, González A, Montesino R. Recombinant Subunit Vaccine Candidate against the Bovine Viral Diarrhea Virus. Int J Mol Sci 2024; 25:8734. [PMID: 39201420 PMCID: PMC11354329 DOI: 10.3390/ijms25168734] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Multivalent live-attenuated or inactivated vaccines are often used to control the bovine viral diarrhea disease (BVD). Still, they retain inherent disadvantages and do not provide the expected protection. This study developed a new vaccine prototype, including the external segment of the E2 viral protein from five different subgenotypes selected after a massive screening. The E2 proteins of every subgenotype (1aE2, 1bE2, 1cE2, 1dE2, and 1eE2) were produced in mammalian cells and purified by IMAC. An equimolar mixture of E2 proteins formulated in an oil-in-water adjuvant made up the vaccine candidate, inducing a high humoral response at 50, 100, and 150 µg doses in sheep. A similar immune response was observed in bovines at 50 µg. The cellular response showed a significant increase in the transcript levels of relevant Th1 cytokines, while those corresponding to the Th2 cytokine IL-4 and the negative control were similar. High levels of neutralizing antibodies against the subgenotype BVDV1a demonstrated the effectiveness of our vaccine candidate, similar to that observed in the sera of animals vaccinated with the commercial vaccine. These results suggest that our vaccine prototype could become an effective recombinant vaccine against the BVD.
Collapse
MESH Headings
- Animals
- Cattle
- Viral Vaccines/immunology
- Vaccines, Subunit/immunology
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Vaccines, Synthetic/immunology
- Bovine Virus Diarrhea-Mucosal Disease/prevention & control
- Bovine Virus Diarrhea-Mucosal Disease/immunology
- Bovine Virus Diarrhea-Mucosal Disease/virology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Sheep
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/genetics
- Cytokines/metabolism
- Diarrhea Viruses, Bovine Viral/immunology
- Diarrhea Viruses, Bovine Viral/genetics
- Diarrhea Virus 1, Bovine Viral/immunology
- Diarrhea Virus 1, Bovine Viral/genetics
Collapse
Affiliation(s)
- Verónica Avello
- Biotechnology and Biopharmaceuticals Laboratory, Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160C, Chile; (V.A.); (S.S.); (P.C.); (V.M.); (J.A.)
| | - Santiago Salazar
- Biotechnology and Biopharmaceuticals Laboratory, Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160C, Chile; (V.A.); (S.S.); (P.C.); (V.M.); (J.A.)
| | - Eddy E. González
- Department of Medicine, Division of Gastroenterology, Miller School of Medicine, University of Miami, Miami, FL 33146, USA;
| | - Paula Campos
- Biotechnology and Biopharmaceuticals Laboratory, Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160C, Chile; (V.A.); (S.S.); (P.C.); (V.M.); (J.A.)
| | - Viana Manríque
- Biotechnology and Biopharmaceuticals Laboratory, Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160C, Chile; (V.A.); (S.S.); (P.C.); (V.M.); (J.A.)
| | - Christian Mathieu
- Virology Section of the SAG’s Sub-Department Network of Animal Health Laboratories, Lo Aguirre, Santiago de Chile 9020000, Chile;
| | - Florence Hugues
- Pathology and Preventive Medicine Department, School of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán P.O. Box 537, Chile; (F.H.); (I.C.); (P.G.)
| | - Ignacio Cabezas
- Pathology and Preventive Medicine Department, School of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán P.O. Box 537, Chile; (F.H.); (I.C.); (P.G.)
| | - Paula Gädicke
- Pathology and Preventive Medicine Department, School of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán P.O. Box 537, Chile; (F.H.); (I.C.); (P.G.)
| | - Natalie C. Parra
- Biotechnology and Biopharmaceuticals Laboratory, Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160C, Chile; (V.A.); (S.S.); (P.C.); (V.M.); (J.A.)
| | - Jannel Acosta
- Biotechnology and Biopharmaceuticals Laboratory, Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160C, Chile; (V.A.); (S.S.); (P.C.); (V.M.); (J.A.)
| | - Oliberto Sánchez
- Pharmacology Department, School of Biological Sciences, Universidad de Concepción, Victor Lamas 1290, Concepción P.O. Box 160C, Chile;
| | - Alaín González
- Faculty of Basic Sciences, University of Medellin, Cra. 87 No 30-65, Medellin 050026, Colombia
| | - Raquel Montesino
- Biotechnology and Biopharmaceuticals Laboratory, Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción P.O. Box 160C, Chile; (V.A.); (S.S.); (P.C.); (V.M.); (J.A.)
| |
Collapse
|